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Abstract. A problem of eliminating the unwanted time-harmonic noise
on a predetermined region of interest is solved by active means, i.e., by
introducing the additional sources of sound, called controls, that gener-
ate the appropriate annihilating signal (anti-sound). The general solu-
tion for controls has been obtained previously for both the continuous
and discrete formulation of the problem. Next, the control sources are
optimized using different criteria. Minimization of the overall absolute
acoustic source strength is equivalent to minimization of multi-variable
complex functions in the sense of L1 with conical constraints. The global
L1 optimum appears to be a special layer of monopoles on the perimeter
of the protected region. The use of quadratic cost functions, e.g., the L2

norm of the controls, leads to a versatile numerical procedure. It allows
one to analyze sophisticated geometries in the case of a constrained min-
imization. Finally, minimization of power consumed by an active control
system always involves interaction between the sources of sound and the
surrounding acoustic field, which was not the case for either L1 or L2.
One can, in fact, build a control system that would require no power
input for operation and may even produce a net power gain while pro-
viding the exact noise cancellation. This, of course, comes at the expense
of having the original sources of noise produce even more energy.

1 Introduction

Let Ω ⊂ Rn be a given domain (bounded or unbounded), and Γ be its boundary:
Γ = ∂Ω, where the dimension of the space n is either 2 or 3. Both on Ω and
on its complement Ω1 = R

n\Ω we consider the time-harmonic acoustic field
u = u(x ), x ∈ Rn, governed by the inhomogeneous Helmholtz equation:

Lu ≡ ∆u+ k2u = f, (1)

subject to the Sommerfeld radiation boundary conditions at infinity:

u(x ) = O
(
|x |−

n−1
2

)
,

∂u(x )
∂|x |

+ iku(x ) = o
(
|x |−

n−1
2

)
, as |x| −→ ∞. (2)
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Boundary conditions (2) specify the direction of wave propagation, and distin-
guish between the incoming and outgoing waves at infinity by prescribing the
outgoing direction only; they guarantee the unique solvability of the Helmholtz
equation (1) for any compactly supported right-hand side f = f(x ). Note that
all the solutions considered hereafter represent traveling waves and are generally
speaking complex-valued.

The source terms f = f(x ) in equation (1) can be located on both Ω and its
complement Ω1 = R

n\Ω; to emphasize the distinction, we denote

f = f+ + f−, supp f+ ⊂ Ω, supp f− ⊂ Ω1. (3)

Accordingly, the overall acoustic field u = u(x ) can be represented as a sum of
the two components:

u = u+ + u−, (4)

where u+ is driven by the interior sources f+, and u− is driven by the exterior
sources f− w.r.t. Ω:

Lu+ = f+, (5a)

Lu− = f−. (5b)

Note, both u+ = u+(x ) and u− = u−(x ) are defined on the entire Rn, the super-
scripts “+” and “−” refer to the sources that drive each of the field components
rather than to the domains of these components. The setup described above is
schematically shown in Figure 1 for the case of a bounded domain Ω.
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Fig. 1. Geometric setup.

Hereafter, we will call
the component u+ of (4),
(5a) sound, or “friendly”
part of the total acoustic
field; the component u−

of (4), (5b) will accord-
ingly be called noise, or
“adverse” part of the to-
tal acoustic field.Ω will be
a predetermined region of
space to be protected from
noise. This means that we
would like to eliminate the
noise component of u(x )
inside Ω, while leaving the
sound component there
unaltered. In the math-
ematical framework that
we have adopted, the com-

ponent u− of the total acoustic field, i.e., the response to the adverse sources
f− [see (3), (4), (5)], will have to be canceled out on Ω, whereas the component



u+, i.e., the response to the friendly sources f+, will have to be left unaffected
on Ω. A physically more involved but conceptually easy to understand example
is that inside the passenger compartment of an aircraft we would like to elimi-
nate the noise coming from the propulsion system located outside the fuselage,
while not interfering with the ability of the passengers to listen to the inflight
entertainment programs or simply converse. Another good example is found in
medicine, where high levels of periodic noise are produced by resonance coils in
magnetic resonance imaging (MRI) machines.

The concept of active noise control implies that the component u− is to be
suppressed on Ω by introducing additional sources of sound g = g(x ) exterior
with respect to Ω, supp g ⊂ Ω1, so that the total acoustic field ũ = ũ(x ) be now
governed by the equation [cf. formulae (1), (3)]:

Lũ = f+ + f− + g, (6)

and coincide with only the friendly component u+ on the domain Ω:

ũ
∣∣
x∈Ω = u+

∣∣
x∈Ω . (7)

The new sources g = g(x ) of (6), see Figure 1, will hereafter be referred to
as the control sources or simply controls. An obvious solution for these control
sources is g = −f−. This solution, however, is clearly sub-optimal because on one
hand, it requires an explicit and detailed knowledge of the structure and location
of the sources f−, which is, in fact, superfluous, see [1]. On the other hand, its
implementation in many cases, like in the previously mentioned example with
an airplane, may not be feasible. Fortunately, there are other solutions of the
foregoing noise control problem (see Section 2 and [1] for detail), and some of
them may be preferable from both the theoretical and practical standpoint.

The area of active control of sound has a rich history of development, both as
a chapter of theoretical acoustics, and in the perspective of many different appli-
cations. We refer the reader to the monographs [2–4] that, among other things,
contain a detailed survey of the literature. Potential applications range from the
aircraft industry to manufacturing industry to ground and air transportation to
the military to consumer products and other fields, including even such highly
specialized and narrow areas as acoustic measurements in the wind tunnels. It is
generally known that active techniques are more efficient for lower frequencies,
and they are usually expected to complement passive strategies (sound insula-
tion, barriers, etc.) that are more efficient for higher frequencies, because the
rate of sound dissipation is proportional to the square of the frequency [5].

In the current paper we only analyze the constant-coefficient Helmholtz equa-
tion (1), which governs the field throughout the entire Rn. This is most straight-
forward formulation. However, one can as well consider other, more complex,
cases that involve variable coefficients, different types of far-field behavior, dis-
continuities in the material properties, and maybe even nonlinearities in the
governing equations over some regions. Approaches to obtaining solutions for
active controls in these cases are based on the theory of generalized Calderon’s
potentials and boundary projections, and can be found in our previous paper [1]
and in the monograph by Ryaben’kii [6, Part VIII].



2 General Solutions for Control Sources

A general solution for the volumetric continuous control sources g = g(x ) is
given by the following formula (Ω1 = R

n\Ω):

g(x ) = −Lw
∣∣
x∈Ω1

, (8)

where w = w(x ), x ∈ Ω1, is a special auxiliary function-parameter that parame-
terizes the family of controls (8). The function w(x ) must satisfy the Sommerfeld
boundary conditions at infinity (2), and at the interface Γ the function w and
its normal derivative have to coincide with the corresponding quantities that
pertain to the total acoustic field u given by formula (4):

w
∣∣
Γ

= u
∣∣
Γ
,

∂w

∂n

∣∣∣∣
Γ

=
∂u

∂n

∣∣∣∣
Γ

. (9)

Other than that, the function w(x ) used in (8) is arbitrary, and consequently
formula (8) defines a large family of control sources, which provides ample room
for optimization. The justification for formula (8) as general solution for controls
can be found in [1]. In [7], we also emphasize that the controls

g(x ) =
∫
g(y)δ(x − y)dy = g ∗ δ

given by (8) are actually volumetric control sources of the monopole type with reg-
ular density g ∈ L(loc)

1 (Rn) [assuming that w(x ) was chosen sufficiently smooth
so that to guarantee local absolute integrability of g(x )].

Note that to obtain the controls (8) one needs no knowledge of the actual
exterior sources of noise f−. All one needs to know is u and ∂u

∂n on the perimeter Γ
of the protected region Ω. In a practical setting, u

∣∣
Γ

and ∂u
∂n

∣∣
Γ

can be interpreted
as measurable quantities that are supplied to the control system as the input
data. Moreover, these measurable quantities can refer to the overall acoustic field
u, rather than only its unwanted component u−. In other words, the methodology
can automatically distinguish between the signals coming from the exterior and
interior sources, and can tune the controls so that they cancel only the unwanted
exterior signal. This capability, which essentially implies that the control sources
(8) are insensitive to the interior sound u+(x ), is extremely important because
in many applications the overall acoustic field always contains a component that
needs to be suppressed along with the part that needs to be left intact.

Along with the volumetric controls (8), one can also consider surface controls,
i.e., the control sources that are concentrated only on the interface Γ . A general
solution for the surface controls is given by (see [8, 7]):

g(surf) = −
[
∂w

∂n
− ∂u

∂n

]
Γ

δ(Γ )− ∂

∂n

(
[w − u]Γ δ(Γ )

)
, (10)

where w = w(x ), as before, denotes the auxiliary function-parameter. In con-
tradistinction to the previous case, now it has to satisfy the homogeneous



Helmholtz equation on the complementary domain: Lw = 0 for x ∈ Ω1, and
the Sommerfeld boundary condition at infinity (2), but at the interface Γ it may
be arbitrary, i.e., it does not have to meet boundary conditions (9). The cor-
responding discontinuities [expressions in rectangular brackets in formula (10)]
drive the surface control sources. The first term on the right-hand side of (10)
represents the density of a single-layer potential, which is a layer of monopoles
on the interface Γ , and the second term on the right-hand side of (10) represents
the density of a double-layer potential, which is a layer of dipoles on the interface
Γ . The fundamental properties of the surface controls (10) are the same as those
of the volumetric controls (8) — they are also insensitive to the interior sound
u+(x ), and do not require any knowledge of the actual sources of noise f−.

In the family of surface controls (10) we identify two important particular
cases. First, the cancellation of u(x ), x ∈ Ω, can be achieved by using surface
monopoles only, i.e., by employing only a single-layer potential as the anti-sound.
To do that, we need to find w(x ), x ∈ Ω1, such that there will be no discontinuity
on Γ between u(x ) and w(x ), i.e., in the function itself, and the discontinuity
may only “reside” in the normal derivative [see formula (10)]. This w(x ) will
obviously be a solution of the following external Dirichlet problem:

Lw = 0, x ∈ Ω1,

w
∣∣
Γ

= u
∣∣
Γ
,

(11)

subject to the Sommerfeld boundary conditions (2). Problem (11) is always
uniquely solvable on Ω1 = R

n\Ω. Second, one can employ only the double-layer
potential to cancel out u(x ), x ∈ Ω, i.e., use only surface dipoles as the control
sources. In this case, the function w(x ), x ∈ Ω1, has to be chosen such that the
discontinuity on Γ be only in the function itself, i.e., between the actual values
of u(x ) and w(x ), and not between the normal derivatives. This w(x ) should
then solve the following external Neumann problem:

Lw = 0, x ∈ Ω1,

∂w

∂n

∣∣∣
Γ

=
∂u

∂n

∣∣∣
Γ
,

(12)

again, subject to the Sommerfeld conditions at infinity (2) that guarantee the
solvability of (12). We therefore see that surface control sources (10) are basically
given by combinations of the monopole and dipole layers, with the two “extreme”
cases corresponding to either only monopoles, see (11), or only dipoles, see (12).

Altogether, we have now introduced active controls of two different types on
the surface, but only one type of the volumetric controls — monopoles. From
the standpoint of physics, the monopole and dipole sources provide different
types of acoustic excitation. A point monopole source can be interpreted as a
vanishingly small pulsating sphere with isotropic radiation, whereas a dipole
source resembles a small oscillating membrane that has a particular directivity
of radiation. In the genuine time-dependent context, monopole sources alter the
balance of mass in the system; they are scalar in nature and reside on the right-
hand side of the continuity equation. Dipole sources alter the balance of force,



they are vectors and reside on the right-hand side of the momentum equation,
see [7]. This distinction warrants a separate consideration of the monopole and
dipole type sources for the point-wise or surface excitation. However, for the
time-harmonic volumetric excitation a separate consideration of dipole fields
appears superfluous because any volumetric distribution of dipoles can, in fact,
be recast in the form of an equivalent volumetric distribution of monopoles, see
[7]. In so doing, the Helmholtz equation (1) is re-written as follows:

∆u(x ) + k2u(x ) = divbvol(x ) + iωρ0qvol(x ), (13)

where the volume velocity per unit volume qvol, also known as acoustic source
density, represents monopoles, the force per unit volume bvol represents dipoles,
see [2, 9]; the wavenumber k is given by k = ω/c, where ω is the frequency of
the temporal oscillations, and u = u(x ) has the meaning of acoustic pressure.

A similar discrete formulation of the noise control problem has been previ-
ously developed in the context of finite differences, see [8, 7, 10, 11, 6]. We use it
hereafter for computations of Sections 3.1 and 3.2.

3 Optimization of the Control Sources

Once the general solution for controls (8) or (10) is available, the next step is to
decide what particular control distribution will be optimal for a specific setting.
There are many possible criteria for optimality that one can use. In practical
problems the cancellation of noise is often only approximate, and the key cri-
terion for optimization is the quality of this cancellation. In contradistinction
to that, here we are considering ideal, or exact, cancellation, i.e., every control
field (8) or (10) completely eliminates the unwanted noise on Ω. Consequently,
the criteria for optimality that we can employ will not include the level of the
residual noise and should rather depend only on the control sources themselves.

3.1 Optimization in the Sense of L1

Clearly, the physical meaning of the control sources will be the same as that
of the original sources, see equations (1), (6), and (13). In this perspective, we
would first argue for selecting the optimal control sources based on minimization
of their overall absolute acoustic source strength. Mathematically, this translates
into minimization of the L1 norm of the control sources:

‖g‖1 ≡
∫

supp g

|g(x )|dx −→ min, (14)

where the search space for minimization in (14) includes all the appropriate aux-
iliary functions w(x ), by means of which the controls g(x ) are defined, see (8),
(9). The advantage of using this criterion for optimization is that it has a clear
physical interpretation, and the quantities involved, namely, the volume velocity



and the force applied to fluid particles (14), actually characterize the correspond-
ing engineering devices (i.e., actuators in the active noise control system).

The disadvantage of using the L1 norm of the control sources as a cost func-
tion for optimization is that the discrete counterpart of minimization problem
(14) is very difficult to solve numerically, see [7]. This discrete problem appears
non-smooth and non-linear; moreover, it is only “marginally” convex as it essen-
tially reduces to optimization over a large number of cones. Linear programming
does not apply to this problem because of the complex nature of the quantities
involved. And even the most sophisticated nonlinear programming techniques
known as interior point methods can only solve such problems for very low di-
mensions. Our best numerical results were obtained with the software package
SeDuMi by J. F. Sturm [12].
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Fig. 2. Computed control sources.

In Figure 2, we compare the computed L1 optimum with surface monopoles
defined by (10), (11), for a particular setup when the protected region Ω is a
disk. There are no visual differences between the two solutions. In fact, this
behavior appears coherent and has been observed for all other cases computed
in [7]. Moreover, the fact of coincidence of the L1 minimum (14) with surface
monopoles (10), (11) has been corroborated in [7] by the grid convergence tests.

Motivated by these consistent numerical observations, we have also been able
to rigorously prove that the global minimum of the control sources (8), (9) in the
sense of L1 is given by the surface monopoles (10), (11). The proof obtained in [7]
holds for both the continuous and discrete formulation of the problem, but only
in the one-dimensional case. Even though we have not yet been able to prove a
similar result for a general multi-dimensional framework, we still believe that it
holds, because a combination of the two-dimensional numerical evidence and a
one-dimensional accurate proof cannot, in our opinion, be a mere coincidence.
As such, we put forward the following

Conjecture 1. Let a complex function w = w(x ) be sufficiently smooth on Ω1

so that the operator L of (1) can be applied to w(x ) in the classical sense,



and Lw ∈ L(loc)
1 (Ω1). Let also w(x ) satisfy the interface conditions (9) and the

Sommerfeld conditions (2). Then, the greatest lower bound for the L1 norms of
all the control sources g(x ) obtained with such auxiliary functions w(x ) using
(8), is given by the L1 norm on Γ of the magnitude of surface monopoles ν(x ) ≡
−
[
∂w
∂n −

∂u
∂n

]
x∈Γ , see (10), for a particular w(x ) that solves problem (11):

inf
w(x)

∫
Ω1

|g(x )|dx =
∫
Γ

|ν(x )|ds. (15)

Conjecture 1 implies, in particular, that no numerical optimization is needed for
determining what the L1-optimal active controls are.

3.2 Optimization in the Sense of L2

A natural quadratic criterion for optimization is the L2 norm of the controls:

‖g‖2 ≡

√∫
supp g

|g(x )|2dx −→ min . (16)

The optimum according to (16) is easy to compute numerically, especially in
the unconstrained case. However, the quantity ‖g‖2 does not have a clear phys-
ical meaning, such as ‖g‖1 of Section 3.1, which is the absolute acoustic source
strength. We emphasize that ‖g‖2 is the L2 norm of the residuals, and not of
the solution itself, which is often related to energy.
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Fig. 3. Computed L2 optimal control sources.

Nonetheless, in [13] we have computed several L2 optima. In the uncon-
strained case we have been able to prove in [13] that the matrix of the system
which is actually solved in the sense of the least squares has full column rank and
consequently, no Moore-Penrose type arguments are required. An example of the
unconstrained L2-optimal solution for Ω being a disk is shown in Figure 3(a). We



have also shown in [13] that our unconstrained discrete L2-optimal solutions do
converge to the solutions obtained previously in [1] by a semi-analytic spectral
type method for those case, for which the latter are available.

An example of the L2-optimal solution with constraints of equality type is
shown in Figure 3(b). We have required that no control effort can be present in
two sector-shape regions that can be thought of as portholes in the cylindrical
fuselage. This example shows that by optimizing in the sense of L2 one can
analyze relatively complex geometries. Of course, the L2-optimal solutions are
distinctly different from the L1-optimal solutions of Section 3.1. They tend to
spread over the volume rather than concentrate on the interface, and they do
not reduce to any known special cases, such as surface monopoles.

3.3 Optimization of Power

A quadratic optimization criterion that, unlike ‖g‖2 of Section 3.2, would have a
transparent physical interpretation, is energy or power. In acoustics, using this
criterion will necessarily involve the interaction between the sources of sound and
the surrounding field. It turns out [14] that active noise control can extract more
than enough power from the acoustic field to achieve exact noise cancellation.
In fact, one can control interior noise, and at the same time increase acoustic
loading on exterior noise sources. This increases emitted noise power and allows
the noise control to extract even more power from the field.

Let the perimeter Γ , where surface controls (10) are defined, be closely sur-
rounded by contours Γ+ and Γ−. Introducing the velocity potential [5] to express
velocity in terms of pressure p and averaging over the period T = 2π/ω, we seek
to minimize the combined control power requirements at frequencies ω and −ω
(equation (1) is obtained by Fourier transforming the wave equation w.r.t. time):

W =
2
ρω

∮
Γ+

⋃
Γ−

Im
(
p
∂p

∂n

)
da −→ min . (17)

Exact noise cancellation implies that along Γ+ (just inside Γ ) pressures and
velocities coincide with the sound field produced by interior sources only, so at
best we can collect all of the power leaving the interior. However, we have the
freedom to alter the exterior acoustic field so that more power can be extracted.
Cylindrical geometry (Ω being a disk of radius R) and Fourier transform in the
circumferential direction allow us to carry out optimization (17) analytically.

For the noise field p−m(r) at the Fourier circumferential mode m, the optimal
total pressure (that guarantees minimum power) just outside Γ is given by [14]:

pm(r) =
p−m(R)

2Jm(kR)
(Jm(kr) + iYm(kr)) ,

and the minimal control power due to only p− is

Wm = − 2|p−m(R)|2

ωρ[Jm(kR)]2
≤ 0.



When p−m(r) represents the field from a unit point source located at r = s > R,
the control power requirements for mode m due to this source evaluate to

W s
m = − [Jm(ks)]2 + [Ym(ks)]2

8ωρ
< 0. (18)

The magnitudes of W s
m of (18) increase rapidly with m. Therefore, the Parseval

relation implies that more and more power can be extracted from the noise
field when the number of circumferential modes taken into account grows. The
physical explanation is that the optimal control increases acoustic loading seen
by the noise sources, thereby increasing their power output. In a practical setting,
power extraction is limited by the power available at the noise sources and by
engineering constraints. A reasonable approach would be to optimize control
power for |m| ≤ M but for |m| > M leave the exterior field unaltered. In
all cases, the control sources along Γ are given by formula (10), in which the
difference [w−u] shall be interpreted as the optimal pressure field due to controls.
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