WAVES 2024, Berlin, Germany

Lacunae-based computation of time-harmonic scattering in 3D
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Abstract

We propose a method for the numerical solu-
tion of 3D time-harmonic scattering problems
which (i) handles complex scattering shapes us-
ing high-order finite differences on regular Carte-
sian grids; (ii) guarantees a perfect non-reflecting
behavior at the artificial outer boundary; (iii)
has a reusable core that allows one to recom-
pute the solution with new boundary conditions
conveniently and at a low cost.
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1 Introduction

We consider single-frequency scattering of a scalar
field about an obstacle embedded in a homoge-
neous medium. The scattered field u in the ex-
terior of the scatterer () satisfies the Helmholtz
equation with a constant wavenumber k:

Au+Ku=0, zcQ=R\Q, (1la)
bu=¢, xel =00, (1b)
O)g|u — thu = o(lz|™), = — oo, (1c)

subject to the boundary condition on the
surface I' of the scatterer {2 and the Sommerfeld
radiation condition at infinity .

2 Surface parametrization

The scattering surface is composed of a number
of non-intersecting patches, each represented as

a 2D spline (NURBS) using CAD software, see
Figure

3 Method of difference potentials (MDP)
Define the Calderon potential for equation :

Pyt (x) = /F {E(w)Glz — y)-

Goy) oc (@~ 9)}dS,, (2

where the density & = (§p,&1) is a vector func-
tion on the boundary I'. Using the MDP, prob-
lem is reduced to the boundary equation
with projection for the density &:

Pr&r =¢&p (3a)
ngl" = ¢7 (3b)

where Pr def Trr Pg is the Calderon projec-
tion defined as the vector trace of the potential
7 Trrw def (w, %‘:”F, and equation (3b) is
the boundary condition recast in terms of
the density £&p. Once the density has been deter-
mined, the solution to is given by u = Pg&p.

It is important that, instead of evaluating
the integral , one can compute Pa&pr and
Pré&r, see , by solving the auxiliary prob-
lem (AP) formulated on the entire R3:

Av + kv = f,

Olgv — thv = o(|z|™1),

x € R3, (4a)
T — 00, (4b)

where the RHS f of equation is defined
with the help of a sufficiently smooth compactly
supported function w such that Trrw = &r.
Namely, f = (Aw + k*w) on Q and f = 0 on €.
Then, Paér = w — v.

In practice, both &y and & are represented as
a truncated expansion with respect to an appro-
priate basis, e.g., Fourier or Chebyshev, & =
Zivzl CO7S¢O,S + cl,swl,m where ’(pO,s = (%70)
and 1, ; = (0,%s). Then, becomes a rela-
tion between the coefficients ¢y = (co.1, ..., co,n)
and Cl = (61,1, ...,CLN).

By linearity, solution to the AP can be
written as v = Zivzl €o,sV0,s + €1,5V1,5, Where
Vo,s, V1,s solve with the RHSs that corre-
spond to the individual basis functions ¥y ¢, ¥ ;.
Solutions to these 2N subproblems are computed
independently from one another on a finite com-
putational domain Q2 O ) of a simple shape
(e.g., a cube) using finite differences on a reg-
ular Cartesian grid, as explained in Section [
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Figure 1: Plane wave sound-soft scattering

about a submarine-like shape.

Then, equation can be recast as

Qoco+ Qicy =0, (5)

where @y and @ are matrices with N columns
given by the numerical solutions v, and vy s
sampled on the grid boundary, which is a spe-
cially chosen fringe of nodes of the discretiza-
tion grid that straddles the continuous bound-
ary I', see |1| for detail. Equation along with
the boundary condition is solved by least
squares for the unknowns ¢y, ¢;. The matri-
ces Qp and @ are computed only once ahead
of time. They represent a reusable core of the
algorithm. It enables an inexpensive recalcula-
tion of the solution subject to a new boundary
condition on the scatterer.

4 Lacunae-based solution of the AP

An outgoing solution to the wave equation:

1 90%v

292 Av = —f(:n)e_i“t, (6)

with a compactly supported in space RHS
—f(z)e ™! and subject to zero initial condi-
tions, differs by factor e~ from the solution
to the AP (4)) inside the secondary lacuna of the
wave equation, see |2, p. 467]. The lacuna is the
space-time region behind the aft front of the out-
going wave. Hence, to compute v on the domain
of interest Q" Q C Q" C QA it is sufficient
to integrate the wave equation @ over a finite
time interval diam(Q™)/c, after which the do-
main of interest Q™ completely falls into the
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Figure 2: Grid convergence for the second- and
fourth-order accurate finite-difference schemes.
Boundary condition (|1b)) is of a Dirichlet type.

lacuna. By placing the artificial outer bound-
ary 09" far enough from Q™ one can make
sure that no numerical reflection from 9Q*"™* will
reach Q™ during the integration time regardless
of boundary conditions on 9Q***. The solution
to the wave equation @ computed this way is
cleared from e~™? at the last time step yielding
the solution v to (4] on Qint.

This approach to solving the Helmholtz equa-
tion, based on casting it into the time domain,
resolves the long-standing issue of radiation
boundary conditions (see, e.g., ) with perfect
accuracy, guaranteeing no reflections at all from
the outer boundary. As far as the general use of
lacunae of hyperbolic equations for the numeri-
cal simulation of unsteady waves on unbounded
regions, see [1] and the references therein.

5 Computational results

An example of a scattering solution is presented
in Figure [} Figure [2| corroborates the design
rate of grid convergence for the central-difference
second-order accurate scheme and compact
fourth-order accurate scheme.
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