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Abstract

We propose a method for the numerical solu-
tion of 3D time-harmonic scattering problems
which (i) handles complex scattering shapes us-
ing high-order finite differences on regular Carte-
sian grids; (ii) guarantees a perfect non-reflecting
behavior at the artificial outer boundary; (iii)
has a reusable core that allows one to recom-
pute the solution with new boundary conditions
conveniently and at a low cost.
Keywords: Calderon’s boundary equations with
projections, method of difference potentials
(MDP), non-conforming scattering shapes, CAD
surface, lacunae of hyperbolic equations.

1 Introduction

We consider single-frequency scattering of a scalar
field about an obstacle embedded in a homoge-
neous medium. The scattered field u in the ex-
terior of the scatterer Ω satisfies the Helmholtz
equation with a constant wavenumber k:

∆u+ k2u = 0, x ∈ Ω̃ = R3 \ Ω, (1a)
lΓu = φ, x ∈ Γ ≡ ∂Ω, (1b)

∂|x |u− iku = o(|x |−1), x →∞, (1c)

subject to the boundary condition (1b) on the
surface Γ of the scatterer Ω and the Sommerfeld
radiation condition at infinity (1c).

2 Surface parametrization

The scattering surface is composed of a number
of non-intersecting patches, each represented as
a 2D spline (NURBS) using CAD software, see
Figure 1.

3 Method of difference potentials (MDP)

Define the Calderon potential for equation (1a):

PΩ̃ξΓ(x ) =

∫
Γ
{ξ1(y)G(x − y)−

ξ0(y)
∂G

∂n
(x − y)

}
dSy , (2)

where the density ξΓ = (ξ0, ξ1) is a vector func-
tion on the boundary Γ. Using the MDP, prob-
lem (1) is reduced to the boundary equation
with projection for the density ξΓ:

PΓξΓ = ξΓ (3a)
lΓξΓ = φ, (3b)

where PΓ
def
= TrΓPΩ̃ is the Calderon projec-

tion defined as the vector trace of the potential
(2), TrΓw

def
=
(
w, ∂w∂n

)∣∣
Γ
, and equation (3b) is

the boundary condition (1b) recast in terms of
the density ξΓ. Once the density has been deter-
mined, the solution to (1) is given by u = PΩ̃ξΓ.

It is important that, instead of evaluating
the integral (2), one can compute PΩ̃ξΓ and
PΓξΓ, see (3a), by solving the auxiliary prob-
lem (AP) formulated on the entire R3:

∆v + k2v = f, x ∈ R3, (4a)

∂|x |v − ikv = o(|x |−1), x →∞, (4b)

where the RHS f of equation (4a) is defined
with the help of a sufficiently smooth compactly
supported function w such that TrΓw = ξΓ.
Namely, f = (∆w+ k2w) on Ω̃ and f = 0 on Ω.
Then, PΩ̃ξΓ = w − v.

In practice, both ξ0 and ξ1 are represented as
a truncated expansion with respect to an appro-
priate basis, e.g., Fourier or Chebyshev, ξΓ =∑N

s=1 c0,sψ0,s + c1,sψ1,s, where ψ0,s = (ψs, 0)
and ψ1,s = (0, ψs). Then, (3b) becomes a rela-
tion between the coefficients c0 = (c0,1, ..., c0,N )
and c1 = (c1,1, ..., c1,N ).

By linearity, solution to the AP (4) can be
written as v =

∑N
s=1 c0,sv0,s + c1,sv1,s, where

v0,s, v1,s solve (4) with the RHSs that corre-
spond to the individual basis functionsψ0,s, ψ1,s.
Solutions to these 2N subproblems are computed
independently from one another on a finite com-
putational domain Ωaux ⊃ Ω of a simple shape
(e.g., a cube) using finite differences on a reg-
ular Cartesian grid, as explained in Section 4.
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Figure 1: Plane wave sound-soft scattering
about a submarine-like shape.

Then, equation (3a) can be recast as

Q0c0 + Q1c1 = 0, (5)

where Q0 and Q1 are matrices with N columns
given by the numerical solutions v0,s and v1,s

sampled on the grid boundary, which is a spe-
cially chosen fringe of nodes of the discretiza-
tion grid that straddles the continuous bound-
ary Γ, see [1] for detail. Equation (5) along with
the boundary condition (3b) is solved by least
squares for the unknowns c0, c1. The matri-
ces Q0 and Q1 are computed only once ahead
of time. They represent a reusable core of the
algorithm. It enables an inexpensive recalcula-
tion of the solution subject to a new boundary
condition on the scatterer.

4 Lacunae-based solution of the AP

An outgoing solution to the wave equation:

1

c2

∂2v

∂t2
−∆v = −f(x )e−iωt, (6)

with a compactly supported in space RHS
−f(x )e−iωt and subject to zero initial condi-
tions, differs by factor e−iωt from the solution
to the AP (4) inside the secondary lacuna of the
wave equation, see [2, p. 467]. The lacuna is the
space-time region behind the aft front of the out-
going wave. Hence, to compute v on the domain
of interest Ωint, Ω ⊂ Ωint ⊂ Ωaux, it is sufficient
to integrate the wave equation (6) over a finite
time interval diam(Ωint)/c, after which the do-
main of interest Ωint completely falls into the
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Figure 2: Grid convergence for the second- and
fourth-order accurate finite-difference schemes.
Boundary condition (1b) is of a Dirichlet type.

lacuna. By placing the artificial outer bound-
ary ∂Ωaux far enough from Ωint, one can make
sure that no numerical reflection from ∂Ωaux will
reach Ωint during the integration time regardless
of boundary conditions on ∂Ωaux. The solution
to the wave equation (6) computed this way is
cleared from e−iωt at the last time step yielding
the solution v to (4) on Ωint.

This approach to solving the Helmholtz equa-
tion, based on casting it into the time domain,
resolves the long-standing issue of radiation
boundary conditions (see, e.g., [3]) with perfect
accuracy, guaranteeing no reflections at all from
the outer boundary. As far as the general use of
lacunae of hyperbolic equations for the numeri-
cal simulation of unsteady waves on unbounded
regions, see [1] and the references therein.

5 Computational results

An example of a scattering solution is presented
in Figure 1. Figure 2 corroborates the design
rate of grid convergence for the central-difference
second-order accurate scheme and compact
fourth-order accurate scheme.
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