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Abstract

High order numerical methods exhibit dramatic
gains in efficiency over low order methods by
providing better accuracy on coarse grids, and
therefore the computation time needed to ob-
tain a desired level of accuracy in simulations
is greatly reduced. In addition to the increased
convergence rate, it has been shown that high
order methods result in smaller dispersion er-
rors than low order methods. In order to fit the
needs of physical problems, high order methods
must exhibit several capabilities, such as han-
dling variable coefficient operators, realistic ge-
ometries, and different types of boundary condi-
tions. We demonstrate a flexible approach that
efficiently solves second order hyperbolic PDEs
with high order accuracy through the combined
methodology of compact high order finite dif-
ferences and difference potentials.

Keywords: high order accuracy, non-
conforming boundaries, time-dependent waves,
variable wave speed

1 Introduction

Consider the wave equation

utt = c2∆u+ F (x, y, t), (1)

where F is an inhomogeneous term and the
wave-speed c may vary in space but not in
time. Time discretization by the θ-method with
θ = 1

12 yields a temporally fourth order implicit
scheme. At each time step, one must solve an
elliptic spatial equation in the form of the mod-
ified Helmholtz equation,

∆u−Ku = G, (2)

where G depends on the inhomogeneous term
F as well as the solution at two previous time
steps, and K = 1

θc2h2t
where ht is the time step.

When θ = 1
12 , the scheme is conditionally sta-

ble and fourth order accurate in time, while

choosing θ ≥ 1
4 yields an unconditionally stable

scheme which is only second order in time. At
each time step, equation (2) can be interpreted
as a steady-state equation. We propose to solve
it by compact high order finite differences and
the method of difference potentials [4]. This is
a distinctly different approach than that of [3],
where the method of difference potentials is ap-
plied directly to the unsteady wave equation in
3+1 dimensional space-time.

2 Compact finite differences

Finite difference schemes on regular structured
grids are a straightforward and efficient way to
achieve high order accuracy for variable coeffi-
cient equations such as (2). Compact schemes
enable high order accuracy without increasing
the stencil size, and this simplifies the treat-
ment of boundary conditions since the stencil
will not extend beyond the boundary at the
near-boundary nodes, see Figure 1. Compact

Figure 1: 2D
compact (left)
and five-point
(right) stencils.

schemes also yield matrices with lower band-
widths than those resulting from wider stencils,
and this reduced bandwidth improves the effi-
ciency of solving the resulting linear system. A
major limitation of conventional or compact fi-
nite differences is that they lose accuracy on do-
mains which do not coincide with the discretiza-
tion grid, and we address this by the method of
difference potentials [4].

A compact 4th order Cartesian scheme for
the Helmholtz equation (2) with variable K can
be found in [5], and its efficiency in solving the
wave equation (1) on conforming domains is ex-
amined in [1].
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3 Difference potentials

The method of difference potentials incorpo-
rates a given finite difference scheme to solve
problems efficiently on nonconforming geome-
tries while maintaining the design convergence
rate. For a general domain Ω, we embed the
problem within an auxiliary domain Ω0 which
is a simple shape (e.g., a square, as in Figure 2).
The shape of Ω0 along with its boundary condi-

Figure 2: Domain
for the method of
difference poten-
tials.

tions should be chosen so that the PDE on Ω0

is well-posed, but otherwise can be chosen for
convenience. The key feature of the method of
difference potentials is that the original prob-
lem on Ω is reformulated as an equivalent set of
problems on the auxilary domain Ω0 with dif-
ferent right-hand sides.

4 Time marching with difference poten-
tials on each step

After discretizing the wave equation (1) in time,
at time tn we solve the modified Helmholtz
equation (2) with K = 1

θc2h2t
on Ω by dif-

ference potentials, where the right-hand side
G = G(x, y, tn) on Ω is given. In 2D, the auxil-
iary problem is given by the modified Helmholtz
equation (2) on the auxiliary domain Ω0 which
is a square with homogeneous Dirichlet bound-
ary conditions.

Three finite difference solves on the auxil-
iary domain Ω0 are required at each time step
to produce the solution on the nonconforming
domain Ω with high order accuracy, with the
right-hand sides determined by the method of
difference potentials. The solutions of the re-
sulting finite difference problems on Ω0 can be
computed efficiently by iterative methods.

Fourth order convergence in both space and
time for Dirichlet and Neumann problems has
been demonstrated using θ = 1

12 for variable
wave speeds on a nonconforming disk centered
at the origin in 2D (Figure 3).
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Fourth order convergence for a Dirichlet problem

Figure 3: Variable wave speed c(r) = r
4 + 1 on

a nonconforming disk with CFL = 0.6. Er-
ror is measured from the test solution u =
cos(5x) cos(2y) cos(4t).
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