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Abstract. Artificial boundary conditions (ABCs) are constructed for the computation
of unsteady acoustic and electromagnetic waves. The waves propagate from a source
or a scatterer toward infinity, and are simulated numerically on a truncated domain,
while the ABCs provide the required closure at the external artificial boundary. They
guarantee the complete transparency of this boundary for all the outgoing waves. They
are non-local in both space and time but can be implemented efficiently because their
temporal non-locality is fixed and limited. The restriction of temporal nonlocality of the
proposed ABCs does not come as a result of any model simplification or approximation,
but rather as a consequence of a fundamental property of the solutions — the presence
of lacunae, or in other words, sharp aft fronts of the waves, in odd-dimension spaces.

1 Outline of the Algorithm Properties

Two major well-recognized difficulties encountered when computing the propa-
gation of waves over unbounded domains are the accumulation of error during
long time intervals and the necessity to truncate the domain and subsequently
set the artificial boundary conditions (ABCs) as a closure for the resulting finite
formulation. Our previous work conducted for the scalar wave equation indicates
that the two aforementioned issues are closely related, [4,5]. Namely, we have
used an inherently three-dimensional phenomenon of lacunae, which amounts to
the presence of sharp aft fronts of the waves in the solutions of the Cauchy prob-
lem, and developed a methodology that modifies any appropriate finite-difference
scheme for the wave equation so that the long-term error buildup is eliminated.
At the same time, all original properties of the underlying scheme (foremost, its
order of accuracy) are fully preserved. More precisely, for a problem of radiation
of waves by a continuously operating source, which is compactly supported in
space for all times, the algorithm guarantees temporally uniform grid conver-
gence of the solution on a finite computational domain that fully contains the
source region. The rate of convergence is the same as that of the original scheme.

The key idea of taking advantage of lacunae is simple. As the propagation
speed is finite and the computational domain size is finite, any wave originating
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inside the domain will leave it completely no later than after a finite interval of
time that is determined only by the geometry and the speed. With the appropri-
ate partition of the continuously operating source that drives the problem into
a collection of finite-duration sources, the solution at any given moment of time
can be represented as a finite sum of terms that each needs to be integrated nu-
merically only over a finite fixed time interval. Both aforementioned quantities,
the number of terms and the interval of integration, remain fixed and bounded
for all times, which easily translates into temporally uniform grid convergence
estimates. Moreover, during the same time interval that is needed for a given
wave to cross the domain, no other wave can propagate in any other direction
beyond a certain distance in space that is again determined by the propagation
speed. This implies that the entire computation can only be conducted on a
bounded auxiliary domain.

The introduction of the latter bounded domain facilitates the construction of
a finite-dimensional discretization and as such, leads to obtaining highly accu-
rate non-local unsteady ABCs for a class of combined problems that may include
complex phenomena on a given interior region but reduce to the homogeneous
wave equation in the far field, [3,6]. These ABCs are built directly for the spe-
cific discrete approximation used in the interior, and can be considered its most
natural extension. In other words, the procedure of obtaining the lacunae-based
ABCs “bypasses” the two steps common for other existing algorithms — ratio-
nal approximation of the so-called non-reflecting kernels and discretization of
the continuous boundary conditions. This substantially reduces the chances of
encountering instabilities, in particular, long-term instabilities. Most important,
the extent of temporal nonlocality of the lacunae-based ABCs appears fixed and
bounded for all times. This bound is not a consequence of any approximation, it
rather follows from the fundamental properties of the solutions that satisfy the
Huygens’ principle.

Subsequently, the lacunae-based algorithm has been extended to include the
cases of waves governed by systems of PDEs, or in physical terminology, by
vector models. The two key models considered in this context are acoustics
and electrodynamics. The waves are again assumed to propagate from a given
bounded region of space outward. The mechanism of wave generation inside this
region is not of a particular concern. The waves can be produced by an actual
source of any specific (complex) nature or by a scatterer. What is important, that
beyond this region, i.e., in the far field, the propagation be governed by a linear
constant-coefficient system, see. e.g., equations (1) or (2) below. The properties
of the ABCs remain the same — they are built directly for the discretization,
they guarantee the complete transparency of the external artificial boundary for
all the outgoing waves, and the extent of their temporal nonlocality is fixed and
limited, which comes as a natural consequence of the lacunae in the solution.

The proposed ABCs for acoustics and electromagnetics are very versatile.
They can be built for any consistent and stable finite-difference scheme. Their
accuracy can always be made at least as high as that of the interior solver.
Moreover, because of the lacunae this accuracy will not deteriorate even when
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integrating over long time intervals. The ABCs are also very flexible geometri-
cally and can handle artificial boundaries of irregular shape on regular grids with
no fitting/adaptation needed and no accuracy loss induced. Finally, they allow
for a wide range of model characteristics to be taken into account. In particu-
lar, in the context of sound propagation one can analyze not only the standard
ambient acoustics case and the simplest advective acoustics case with uniform
background flow, but also the case when the waves’ source or scatterer is en-
gaged in an accelerated motion (e.g., a maneuvering aircraft). The latter setup
has always been considered difficult to treat. To the best of our knowledge, no
successful attempt of constructing the corresponding ABCs has been done pre-
viously. In the context of propagation of electromagnetic waves, the capability
of handling the non-stationary sources, especially those that move with acceler-
ation, is apparently somewhat less of an issue than in acoustics. Still, there may
be applications for which this capability is important, e.g., in astrophysics.

The actual vector models that we have analyzed in the current study, both
theoretically and numerically, were the two-dimensional unsteady acoustics equa-
tions (linearized Euler) and two-dimensional Maxwell’s equations, both with
cylindrical symmetry: (r, z, t). Cylindrical symmetry obviously allows us to take
full advantage of the crucial three-dimensional lacunae effects in an essentially
two-dimensional computational setting. In acoustics, we therefore assume that
the velocity vector has no angular component, and that no quantity in the model
depends on the polar angle θ, which yields:
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where c is the speed of sound and p, u, and v are acoustic pressure, radial
velocity, and axial velocity, respectively. For the Maxwell equations, we analyze
the appropriate transverse magnetic (TM) mode with respect to the radial and
axial components of the magnetic field: Hr and Hz, and the angular component
of the electric field Eθ:
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where c is the speed of light. System (2) satisfies a particular gauge (see, e.g.,
[1]): ϕ = 0, Eθ = − 1

c
∂Aθ
∂t , Hr = −∂Aθ∂z , Hz = 1

r
∂rAθ
∂r , where ϕ is the scalar

potential and A = (Ar, Aθ, Az) is the vector potential. We re-emphasize that
the linear homogeneous constant-coefficient systems (1) and (2) only govern the
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propagation of waves in the far field. As such, they are employed to construct the
far-field ABCs, whereas the actual mechanism of waves’ generation in the near
field may be substantially more complex. We also note that systems (1) and (2)
look similar but not quite identical. The differences are obviously accounted for
by the vector nature of all the quantities involved in the Maxwell system. Com-
parison between these two systems is instrumental for understanding geometry
of the lacunae, as well as sufficient conditions for their existence. The latter, in
turn, utilize existence of the potential.

2 Numerical Demonstrations

On the computer, each of the systems (1) and (2), is integrated by an appropri-
ate second-order central-difference staggered scheme, which can be considered a
flavor of the well-known Yee scheme [7]. No reduction of either system to a set
of independent wave equations is required. We compare our numerical solutions
with the analytic solutions driven by some specially constructed sources. These
solutions have been obtained using the most general form of retarded potentials
that takes into account the non-uniform motion of the wave sources, see [2].
Comparison with the exact solution allows us to experimentally demonstrate
the design convergence rate of the algorithm over long time intervals.

In Figure 1, we show the logarithmic error curves for the acoustic pressure.
The source cyclically speeds up and slows down along the z axis with the min-
imum speed 0 and maximum speed 0.2c. It also generates periodic waves with
the frequency three times that of the motion oscillations. The computation was

0
�

20 40 60 80 100
�

Dimensionless time

−9.5

−9

−8.5

−8

−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

Ln
[r

el
at

iv
e 

er
ro

r]

�

Lacunae−based ABCs for unsteady acoustics
Grid convergence for pressure, accelerated source motion

64x128 grid
128x256 grid
256x512 grid

�

Fig. 1. Second-order central-difference scheme for cylindrically symmetric acoustics.
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continued till t = 100, which is one hundred times the interval required for the
waves to cross the domain. Figure 1 clearly indicates the second order of grid
convergence. The convergence also does not deteriorate with time. Similar results
for the Maxwell equations are presented in Figure 2.
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Fig. 2. Second-order central-difference scheme for cylindrically symmetric Maxwell.
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