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1. Introduction. Let us �rst briey repeat the general arguments behind constructing the arti�cial
boundary conditions (ABCs) for the numerical solution of problems formulated on unbounded domains.
As has been mentioned, a standard approach to solving in�nite-domain boundary-value problems on the
computer involves truncation as a �rst step, prior to the discretization of the continuous problem and solution
of the resulting discrete system. The truncated problem is clearly subde�nite unless supplemented by the
proper closing procedure at the outer boundary of the �nite computational domain. The latter boundary
is often called arti�cial emphasizing the fact that it originates from the numerical limitations rather than
original physical formulation. The corresponding closing procedure is called the ABCs.

In the ideal case, the ABCs would be speci�ed so that the solution on the truncated domain coincide
with the corresponding fragment of the original in�nite-domain solution. However, in spite of the fact that
di�erent ABCs' methodologies have been studied extensively over the recent two decades, the construction
of such exact ABCs that would at the same time be computationally e�cient, still remains a di�cult task.
The primary reason is that the exact ABCs are typically nonlocal; the exceptions are rare and, as a rule,
restricted to one-dimensional model formulations. From the viewpoint of computing, nonlocality may imply
cumbersomeness and high cost. Moreover, as the standard apparatus for deriving the exact ABCs involves
integral transforms along the boundary, such ABCs are often not universal geometrically, i.e., can be obtained
easily only for the boundaries of regular shape.

On the other hand, highly accurate ABCs are most demanded in many areas of scienti�c computing
because as shown by di�erent authors both theoretically and computationally, the overall accuracy and
performance of numerical algorithms, as well as interpretation of the results, strongly depend on the proper
treatment of outer boundaries. This applies not only to external aerodynamics, which is the subject of the
current chapter, but to many other areas of scienti�c computing as well.

Besides minimization of the error associated with domain truncation, one usually requires of the ABCs
that they be computationally inexpensive, geometrically universal, and easy to implement along with the
existing interior solvers. These requirements are typically met by many approximate local methods that are
considered an alternative to the exact ABCs as the latter are not attainable routinely. However, the basic
trend in terms of accuracy remains the following: higher accuracy for the boundary procedure requires more
of the nonlocal nature of exact ABCs to be somehow taken into account.

In fact, almost any numerical algorithm for setting the ABCs can be thought of as a compromise between
the foregoing two groups of requirements that to some extent contradict one another. Shifting the balance
towards locality and practical e�cacy often implies insu�cient accuracy; shifting it to the other end, towards
highly accurate nonlocal techniques, may often yield cumbersome and all but impractical algorithms.

In modern production computations, the treatment of external boundaries typically follows the �rst,
local, path. For example, in computational uid dynamics (CFD) only a few ABCs' methodologies out of
the wide variety proposed to date can be regarded as commonly used tools. All of them are local, and
to guarantee su�cient accuracy when using these procedures, one often has to choose excessively large
computational domains.

The di�erence potentials method (DPM) provides a powerful tool for constructing highly accurate non-
local ABCs that at the same time meet the requirements of overall computational e�cacy. In other words,
the DPM-based ABCs combine the advantages relevant to the known local and nonlocal approaches and as
such, appear a valuable alternative to both.

The general construction of the DPM-based ABCs has been delineated previously. In this chapter, we
describe the results of applying the nonlocal DPM-based ABCs to the numerical solution of several typical
problems in external aerodynamics. We focus primarily on comparing the DPM-generated solutions with
those obtained using standard local ABCs along the two main lines | computational performance and overall
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accuracy. We concentrate less on addressing the speci�c details of implementation of the foregoing general
DPM-based ABCs' methodology to the CFD setups that are pertinent to external ows. Some of the latter
issues are nonetheless touched upon, for the rest we refer the reader to the original publications that we cite
below. Neither do we discuss here (beyond the level of describing the standard methods against which the
DPM results are compared) numerous other ABCs' methodologies that are available in the literature; for
survey information we rather refer the reader to the recent review paper by Tsynkov [1].

2. Formulation of the Problem.

2.1. Physical Setup. We consider an unbounded steady-state ow of viscous uid past a �nite im-
mersed con�guration in two (see Section 3) or three (see Sections 4and 5) space dimensions. The ow is
assumed uniform at in�nity. We primarily study the case of a compressible uid, which is additionally as-
sumed thermodynamically perfect; the free stream is always considered subsonic. We also derive the ABCs
for the incompressible formulation, however these are used only for calculating low speed compressible ows
rather than truly incompressible ows (see Sections 3 and 4). As the uid is viscous and the size of the
immersed con�guration is �nite, the ow limit at in�nity is always the free stream. Besides the ows past
closed bounded con�gurations we also study a ow over the con�guration with jet exhaust, see Section 5.
All aerodynamic setups that we analyze are typical for the applications that originate from aeronautics.

Generally, the near-�eld ow is governed by the full Navier-Stokes equations supplemented by the equa-
tion of state for the perfect gas. In many cases the full Navier-Stokes system can be simpli�ed and reduced
to the so-called thin-layer equations, which do not contain streamwise viscous derivatives. In our studies,
we have used both systems of equations to construct the DPM-based ABCs for external ow computations.
Moreover, for the most interesting case of turbulent ows a special mechanism that accounts for the turbu-
lent phenomena in the near �eld has to be incorporated in the overall formulation. Typically, this is done by
building turbulence models that supplement the original numerical integration scheme for the Navier-Stokes
equations; we briey discuss the models that we have used in Section 2.3, as well as later on in the sections
devoted to computational results. Attention is also required to describing the turbulent phenomena in the
far �eld (although there turbulence plays a lesser role); elementary approaches to the treatment turbulence
in the far �eld are briey discussed in Section 2.3 as well.

2.2. Far-Field Linearization. The �rst key step in obtaining the DPM-based ABCs is linearization
of the governing ow equations in the far �eld. This is done by assuming that the ow perturbations caused
by the immersed con�guration are small far away from it. Thus, we can represent each component of the
solution as a sum of a constant background value plus the corresponding small perturbation and subsequently
rewrite the equations by retaining only the �rst-order terms with respect to the perturbations. This yields
a system of linear partial di�erential equations with constant coe�cients. As the actual ow quantities
approach the corresponding far-�eld values at in�nity, then the boundary condition for the perturbations
governed by the foregoing linear system will be that they vanish at in�nity.

For the purpose of constructing the ABCs the linearization is performed outside the �nite computational
domain, i.e., outside the external arti�cial boundary. Of course, we cannot say ahead of time whether or not
the linearization is possible for a particular location of the arti�cial boundary, i.e., for a particular distance
between the immersed body and outer boundary of the computational domain. Therefore, the validity of
the far-�eld linearization is always veri�ed by a posteriori numerical checks.

Let us also note that in the two-dimensional case some of the nonlinear terms may formally have to be
kept in the equations; in the simple inviscid setting if we additionally assume the existence of the velocity
potential this leads to the nonlinear K�arm�an-Guderley equation as opposed to the linear Prandtl-Glauert
equation. However, this e�ect manifests itself primarily in the transonic limit, i.e., when the Mach number
approaches the value one. We, in our two-dimensional computations, have always used a linear far-�eld
model only, and experimentally corroborated that it was quite appropriate at least for the Mach numbers
su�ciently distant from one, see Section 3. Moreover, the situation in three dimensions is entirely di�erent.
A simple asymptotic analysis of the three-dimensional K�arm�an-Guderley equation shows (see [2]) that the
nonlinear transonic corrections are not needed in the far �eld even if the Mach number is close to one. This
is, of course, in agreement with the well known result that the three-dimensional far �eld is always linear
(see, e.g., [3]).

Finally, we should mention that in the case of the ow with jet exhaust, the linearization against
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constant free-stream background obviously cannot be valid in the vicinity of the jet because jet parameters
may di�er substantially from those of the free stream. In this case, the ABCs actually combine two di�erent
methodologies | one for the relatively small jet area and another one for the rest of the arti�cial boundary;
the combined technique is discussed in Section 5.

2.3. Numerical Setup. Having linearized the ow in the far �eld, we arrive at a combined problem |
original nonlinear inside the computational domain, and linear outside it. This problem is still formulated on
an unbounded domain. However, linearity allows us to apply the DPM and equivalently replace the entire
in�nite exterior portion of the combined problem by the corresponding operator relations at the arti�cial
boundary. These relations that contain a generalized di�erence boundary projection operator, will provide
the ABCs for the interior problem solved on the �nite computational domain.

The aforementioned interior problem is typically discretized and solved on the grid generated around
the immersed body. The grids used for modern CFD applications are often very complex; besides the
boundary-�tting capability they, as a rule, include multiple blocks. In our studies we did not consider very
sophisticated con�gurations and accordingly, too complex grids. We have used curvilinear C-type grids for
two-dimensional airfoil ows (see Section 3), one-block C-O-type grids around a three-dimensional wing (see
Section 4), and two-block C-O, H-O-type point-matched grid for calculating the ow around a slender body
with jet exhaust (see Section 5).

In two dimensions, we used a NASA-developed code FLOMG by Swanson and Turkel, see [4{6], to in-
tegrate the ow equations on the grid inside the computational domain. In three dimensions, we used
another NASA-developed code, TLNS3D by Vatsa, et al. [7, 8], which is similar to FLOMG but tailored for the
three-dimensional con�gurations. The two-dimensional code FLOMG is capable of integrating both the full
Navier-Stokes equations, as well as the thin layer equations, the three-dimensional code TLNS3D is designed
speci�cally for the thin layer equations. Both codes are based on the central-di�erence �nite-volume dis-
cretization in space with the �rst- and third-order arti�cial dissipation. Pseudo-time iterations are used for
obtaining the steady-state solution; the integration in time is done by the �ve-stage Runge-Kutta algorithm
(with Courant's number calculated locally in most cases) supplemented by the residual smoothing. For the
purpose of accelerating the convergence, the multigrid methodology is implemented. In our two-dimensional
computations we employed W-cycles with up to �ve nested grid levels; in the three-dimensional case we
employed three nested grid levels with V-cycles, the three-level V-cycle algorithm was, in fact, a �nal stage
of the full multigrid (FMG) procedure. In addition, the preconditioning technique of [9] was incorporated
to allow for the calculation of low speed ows (incompressible limit), as well as to generally improve the
convergence to steady state.

It has been mentioned that for simulating turbulent ows special turbulence models need to be used.
Both codes FLOMG and TLNS3D have several di�erent turbulence models incorporated. Depending on the
particular ow case, we have used either the well known algebraic Baldwin-Lomax model, which is based on
the concept of mixing length (fully attached ows), or more sophisticated Menter's model [10], which uses
two additional di�erential equations for turbulence-related quantities (ows with separation and following
reattachment). In the far �eld, we use a simpler approach based on the Boussinesq's concept of e�ective
viscosity (see, e.g., [12]). The idea is to qualitatively describe the turbulent ow, i.e., the process of turbulent
mixing, as a laminar ow of model uid having some new e�ective \turbulent" viscosity, which is typically
much larger than the corresponding molecular viscosity. The corresponding e�ective Reynolds number then
enters the linearized far-�eld ow equations. This treatment, of course, cannot be very accurate, but it has
been experimentally found su�cient for the purpose of constructing the far-�eld ABCs. The corresponding
derivations vary for the cases of airfoil/wing ows and ows with propulsive jets, details can be found in the
original publications cited below.

The standard treatment of external boundary in both FLOMG and TLNS3D is local. It is based on quasi-
one-dimensional interpretation of the equations near the arti�cial boundary and subsequent analysis of
characteristics (with pseudo-time), which allows one to determine what quantities propagate from inside the
computational domain outwards, and what quantities rather propagate inwards. In two dimensions, these
local boundary conditions may or may not be supplemented by the point-vortex correction [11], which is a
lift-based treatment that uses the leading circulation-driven term in the far-�eld asymptotic expansion for
the velocity potential.

The DPM-based nonlocal ABCs (see Section 2.4) are implemented only on the �nest level of the foregoing
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multigrid sequence (W-cycle for 2D and V-cycle for 3D) and only in the �nal FMG stage (if FMG is
employed); the boundary data for coarser grid levels are provided by the coarsening procedure. In three
dimensions, to further reduce the computational overhead associated with the ABCs we implement the
DPM-based boundary conditions only on the �rst and last Runge-Kutta stages, which has been shown to
make very little di�erence compared to the implementation on all �ve stages; the boundary data for the
three intermediate stages are provided from the DPM-based ABCs on the �rst stage. The results obtained
using global DPM-based ABCs are compared in Sections 3, 4, and 5 against those obtained with the help
of the aforementioned standard local boundary conditions. As will be seen, the DPM-based ABCs clearly
outperform the standard ones from the standpoints of accuracy, multigrid convergence rate, and overall
robustness.

2.4. Nonlocal DPM-based ABCs. As has been demonstrated, the DPM-based ABCs are nonlocal
relations obtained with the help of the generalized di�erence boundary projections. In the particular case
of ABCs for external ow problems, boundary projections are constructed at the external boundary of the
computational domain for the linearized far-�eld ow equations. The boundary equation with projection
equivalently replaces the entire linear exterior problem. To calculate the action of the projection, one needs
to solve the so-called auxiliary problem (AP). A convenient AP for external ows (as well as for many other
settings) involves periodization in all spatial directions except one. The exceptional direction in which the
periodization is not performed is stream-wise; in 2D periodization is performed in the cross-stream direction
(Section 3), and in 3D it is performed in both cross-stream and span-wise directions (Section 4). The
reasons for introducing periodization, as well as the notion of successively more accurate approximations to
a non-periodic solution by periodic ones on a �nite �xed subdomain when the period increases, have been
delineated previously.

Technically, the DPM-based ABCs reduce to a matrix-vector relation that connects the values of the
solution on the penultimate and outermost coordinate surfaces of the interior grid. This additional relation
makes the overall discrete system inside the computational domain closed; otherwise it would have had less
equations than unknowns because the stencil of the (central-di�erence) interior scheme, which is three node
wide in each direction, obviously cannot be applied to any outermost node. The data on the penultimate grid
surface are assumed known, they form a vector which is then operated on by a special operator obtained via
the implementation of the generalized boundary projection. This yields the solution vector on the outermost
grid surface, i.e., in the ghost nodes. Several slightly di�erent versions of constructing the aforementioned
operator are delineated in the original publications (see Section 2.5). In fact, this operator does not necessar-
ily have to be obtained explicitly in the form of a matrix, it is su�cient to be able to calculate the result of
its action on a given vector, which may be a cheaper strategy in many cases. As has already been mentioned
in the end of Section 2.3, the DPM-based ABCs (in the form of a matrix-vector relation) are included into
the iterative scheme used inside the computational domain. In the course of iterations, this matrix-vector
relation is needed for updating the values of the solution at the outer boundary so that the residuals on
the next step can then be evaluated. The DPM-based ABCs appear easy to combine with a given interior
solver (this is corroborated by the experience with both FLOMG and TLNS3D) because this merely amounts to
replacing the subroutine, which is responsible for updating the outer boundary.

The AP for calculating the projections is formulated on a rectangular domain using a Cartesian grid.
Accordingly, the projection operates on the functions de�ned on the grid boundary | a special fringe of
nodes of the Cartesian grid that is located near and straddles the actual arti�cial boundary. The latter
may have a rather complex shape, which presents no limitation for the implementation of the DPM, it only
requires some interpolations. The AP is solved by the separation of variables. Periodicity in the cross-
stream (and span-wise) direction(s) suggests the use of the discrete Fourier transform. In the case of non-
uniform grids in these directions, the corresponding non-unitary transform is employed (the eigenvectors
are calculated numerically). The resulting collection of one-dimensional systems (with the stream-wise
coordinate as independent variable) is solved using either the technique of [13], which can be considered a
modi�cation of Godunov's orthogonal successive substitution, or simply by the eigenvectors' expansion. The
boundary conditions for each of these one-dimensional systems represent a proper mode selection that would
guarantee the decay of the solution at in�nity.
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2.5. Brief Literature Review. The construction of the DPM-based ABCs, as well as the correspond-
ing numerical results, have been reported in a series of papers. In [14], we describe the foundations of
the DPM-based approach to setting the ABCs for computation of two-dimensional external viscous ows
(Navier-Stokes equations). In [15], this approach is implemented along with the code FLOMG; work [15] also
reports computational results for several cases of subsonic and transonic laminar ows over single-element
airfoils. In [16], the results of subsequent numerical experiments are shown, which include turbulent airfoil
ows, and the e�ective viscosity approach to the approximate treatment of turbulence in the far �eld is in-
troduced. Our work [13] delineates the algorithm for solving one-dimensional systems of ordinary di�erence
equations that arise when calculating the generalized di�erence potentials and projections. In [17], the area
of applications for the DPM-based ABCs is extended by analyzing two-dimensional ows that oscillate in
time; work [17] also provides some solvability results for the linearized thin-layer equations used for con-
structing the ABCs. In [18], we present a general survey of the DPM-based methodology as applied to solving
external problems in CFD, including parallel implementation of the algorithm, combined implementation
of nonlocal ABCs with multigrid, and entry-wise interpolation of the matrices of boundary operators with
respect to the Mach number and angle of attack. Additionally, in [18] one can �nd some new theoretical
results on the computation of generalized potentials, which involve a new concept of the so-called systems of
simple structure, and some numerical results for various airfoil ows: laminar and turbulent, transonic and
subsonic, including low speed two-dimensional ows.

The next natural objective after constructing the two-dimensional algorithm is the analysis of three-
dimensional steady-state ows. This case is undoubtedly the one most demanded by the current practice in
CFD. References [19, 20] outline the basic elements of the DPM-based ABCs for steady-state viscous ows
around wing-shaped con�gurations and show some preliminary numerical results for the subsonic regime.
Work [21] further develops the three-dimensional DPM-based algorithm and presents some computational
results for transonic ows. In all cases (see [20, 21]), the DPM-based ABCs allow one to greatly reduce
the size of the computational domain (compared to the standard local boundary conditions) while still
maintaining high accuracy of the numerical solution. This actually means the overall increase of accuracy
due to the improved treatment of the arti�cial boundary; it also implies a substantial economy of the
computer resources. Moreover, the DPM-based ABCs may provide for a noticeable speedup (up to a factor
of three) of the convergence of multigrid iterations.

Work [2] systematically describes the three-dimensional DPM-based ABCs for calculating compressible
viscous ows around wings. It addresses theoretical foundations of the approach, discusses numerical algo-
rithm at a fair extent of detail, and demonstrates computational results for di�erent ow regimes, including
a low speed ow and a ow with the shock-induced separation. Numerical results for the DPM-based ABCs
are compared with those obtained with the standard local method. Work [22] throughly describes the phe-
nomenon of multigrid convergence speedup, which is consistently observed when global external ABCs are
implemented along with a multigrid solver. Finally, in our work [23] we incorporate a new and essentially
di�erent physical element into the formulation of the problem; namely, we consider external ows around
con�gurations with jet exhaust. Including this type of ow phenomena into the range of admissible for-
mulations for the DPM-based methodology substantially enlarges its scope of capabilities. Moreover, as
di�erent ows with jets are frequently encountered in aerospace applications, the possibility of computing
external aerodynamics more e�ciently with jet exhaust phenomena taken into account is important for both
con�guration analysis and design.

A review paper by Tsynkov [1] provides a comprehensive survey and comparative assessment of di�erent
ABCs' methodologies published in the literature, this includes di�erent physical formulations and di�erent
numerical techniques, and in particular, implementations of the DPM to the problems other than external
ows.

3. Two-Dimensional Flows Around Airfoils.

3.1. Computational Setup in Two Dimensions. A typical geometric setup for external ow prob-
lems in two space dimensions is shown on Figure 3.1. We are calculating the ow past an airfoil; the free
stream is aligned with the positive x direction. The ow equations are integrated on a C-type curvilinear
grid, which actually forms the computational domain Din. The penultimate coordinate row of this grid is
denoted �, and the outermost coordinate row is denoted �1, see Figure 3.1. The DPM-based ABCs con-
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nect the values of the solution at � and �1 thus providing for a closure to the discrete system inside Din.
Otherwise, as has been mentioned, the discrete system inside Din would have lacked equations compared to
unknowns because the stencil of the interior scheme cannot be applied to the outermost nodes on �1.
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Fig. 3.1. Con�guration of domains for two-dimensional ows.

The governing ow equations are
linearized outside �, i.e., on the exte-
rior domain Dex. The auxiliary prob-
lem for the linearized ow equations
that is needed to calculate the general-
ized boundary projection, is formulated
and solved on the rectangular domain
D0

Y = [0; X ]� [�Y=2; Y=2], which fully
contains �1. The discrete AP employs
an (x; y) Cartesian grid; we reiterate
that the implementation of the DPM
requires no boundary-�tting. The for-
mulation of the AP involves periodiza-
tion in the cross-stream direction y, the
value of the period Y may actually vary
while the size of the computational do-
main Din remains �xed. The resulting
DPM-based ABCs appear global, this
means that the solution value at every
node of �1 depends, generally speak-
ing, on the values at all nodes of �.
We emphasize the the nonlocal nature
of the DPM-based ABCs is essential,
the boundary conditions are obtained
\as a whole," for example, they do not
require distinguishing between the in-
ow and outow portions of the arti�-
cial boundary ahead of time. This dis-
tinction is, in a sense, automatic and
built-in into the methodology. On Fig-
ure 3.1, we put the \inow" and \out-
ow" marks only to identify the pre-
dominant ow direction.

Using the general setup shown on Figure 3.1, we have calculated several compressible viscous ows
around the airfoils NACA0012 and RAE2822. The investigated regimes include laminar and turbulent ows,
subsonic and transonic ows, as well as low Mach number ows. We have been able to demonstrate that
compared to the standard local external boundary conditions (characteristics' analysis supplemented by the
point-vortex treatment, see Section 2.3) the DPM-based ABCs provide for a better accuracy and faster
multigrid convergence rate, and also improve the overall robustness of the algorithm.

3.2. Multigrid Convergence Speedup. One of the most important aspects of implementation of any
ABCs is the inuence that the boundary conditions exert on the convergence to steady state. Our numerical
experiments for both two space dimensions (see [15, 16, 18] and this section) and three space dimensions
(see [2,21] and Section 4) show that the nonlocal DPM-based ABCs can substantially speed up the multigrid
convergence compared to the standard characteristics-based boundary conditions.

This positive inuence on the convergence rate is, however, not a case general occurrence. Apparently,
convergence speedup occurs only when the interior iterative solver involves multigrid. Otherwise, the nonlocal
highly accurate ABCs either do not inuence the convergence at all or may even slow it down. Observations of
this kind have, in particular, been reported by Ferm in the series of papers [24{26]; the corresponding ABCs
are constructed for regular boundaries using the separation of variables and appropriate mode selection.
To accelerate the convergence of non-augmented pseudo-time iterations with nonlocal boundary conditions,
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Ferm employs the technique by Engquist and Halpern [27], which allows him to make the convergence at least
as fast as it is for the simplest locally-one-dimensional non-reecting boundary conditions that are based on
the analysis of characteristics. On the other hand, when nonlocal exact ABCs are implemented along with
a multigrid ow solver, they no longer slow down the convergence and, therefore, no longer require special
acceleration procedures.

As mentioned above, when the DPM-based ABCs are combined with the multigrid algorithm FLOMG

(see [4{6]), they are capable of even speeding up the convergence to steady state compared to the standard
boundary conditions. We reproduce in this section several plots from [15, 18] that represent convergence
histories for di�erent subsonic and transonic laminar ows around the airfoil NACA0012. In the captions
to all �gures hereafter, M0 denotes the free-stream Mach number, � denotes the angle of attack, and Re
denotes the molecular Reynolds number.
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Fig. 3.2. Convergence history for a laminar ow around NACA0012, M0 = 0:63, � = 2�, Re = 400, log(residual) of the
continuity equation versus number of multigrid cycles. Grid dimension 256� 64.
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Fig. 3.3. Convergence histories for laminar ows around NACA0012, M0 = 0:63, � = 2�, log(residual) of the continuity
equation versus number of multigrid cycles. Grid dimension 256 � 64.

From Figures 3.2 and 3.3 one can easily see that the use of the DPM-based ABCs may cause the increase
of the multigrid convergence rate by up to a factor of three depending on the speci�c variant of computations.
Note, the subcritical (i.e., fully subsonic) laminar cases that correspond to Figures 3.2 and 3.3 have been
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computed on the grids with low stretching ratios because near the airfoil surface those grids could be chosen
relatively coarse. As a result, we have used global rather than local time step. In this respect, one can say
that Figures 3.2 and 3.3 demonstrate the inuence exerted by the DPM-based ABCs on a \pure" multigrid
procedure (augmented only by the residual smoothing).

For the case of two-dimensional turbulent ows that are computed on the grids with much higher
stretching ratios and with local time step, we have not been able to obtain as drastic convergence speedup as
for the foregoing laminar cases. Convergence histories for two di�erent two-dimensional transonic turbulent
cases are presented in Figure 3.4. We however, mention, that for many three-dimensional transonic turbulent
cases, the DPM-based ABCs have been able to produce the increase of the convergence rate about as big
as shown above for the two-dimensional laminar ows. The corresponding results are reported in [2,21] and
will also be discussed in Section 4.
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Fig. 3.4. Convergence history for a turbulent ow around RAE2822, M0 = 0:73, � = 2:79�, Re = 6:5 � 106, log(residual)
of the continuity equation versus number of multigrid cycles. Grid dimension 256� 64, average radius of Din 11 chords.

Returning to Figures 3.2 and 3.3, we see that the convergence rates for two di�erent types of ABCs are
the same on the initial stage of the iteration process; then, for the DPM-based ABCs the convergence rate
remains the same all the time and for the standard boundary conditions it drastically decreases. Therefore,
it would be reasonable to assume that the ABCs start to actually inuence the convergence only after the
numerical perturbations caused by the immersed body reach the external boundary. In other words, the
DPM-based ABCs become most e�ective from the standpoint of convergence acceleration on the so-called
asymptotic stage of the multigrid. The similar type of behavior can be observed for the three-dimensional
computations as well (see Section 4).

We, however, acknowledge that although the acceleration of multigrid convergence provided by the
DPM-based ABCs is very important for applications, the mechanism of interaction of the nonlocal DPM-
based ABCs with multigrid may require an additional study. Work [22] provides a systematic description
of experimental observations available to date, but in fact neither a rigorous mathematical explanation of
the convergence speedup nor de�nite experimental conclusion of why and when it happens has been given
yet. For our two- and three-dimensional computations, we have used di�erent multigrid strategies (W- and
V-cycles, respectively). Moreover, all three-dimensional cases have been computed using local time step.
The corresponding results are also di�erent. Whereas for two-dimensional transonic turbulent ows we did
not see much of an increase in the convergence rate, in three dimensions the strongest speedup occurs just for
these cases (turbulent transonic, see work [2,21] and also Section 4). At the same time, the convergence rates
for subsonic turbulent ows in three space dimensions are the same for the ABCs of di�erent types [2, 21].
As for the laminar ows, the experiments have only been conducted in two space dimensions.
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Analyzing the inuence that nonlocal boundary conditions may exert on the convergence of multigrid
iterations, we should also note that many modern multigrid solvers are not optimal themselves. A massive
e�ort is currently underway towards constructing the new �nite-di�erence schemes, for which the convergence
characteristics of multigrid methods would substantially improve. In [28], Ta'asan devised an essentially
optimal multigrid solver for the Euler equations in subsonic regime. Due to the separate treatment of
the elliptic and advection parts of the system, this approach allows one to achieve in subsonic regime the
convergence rates similar to those that can be obtained when solving the full potential equation. Sidilkover,
et al. in [29{33] proposed a family of the so-called genuinely multidimensional high-resolution factorizable
schemes. Among other attractive features, these schemes separate the elliptic and advection parts of the
governing equations in the original primitive variables on the discrete level and thus facilitate the construction
of optimally convergent multigrid algorithms that apply to the entire range of Mach numbers (from almost
incompressible to transonic ows). An initial approach to the construction and combined implementation
of nonlocal highly-accurate ABCs with the new multigrid ow solvers of type [29{33] is reported in the
forthcoming paper [34].

-14

-12

-10

-8

-6

-4

-2

0 1000 2000 3000 4000 5000 6000 7000

 standard 
 DPM, Y=6 

(a) NACA0012, M0 = 0:85, � = 1�, Re = 4000

-14

-12

-10

-8

-6

-4

-2

0 200 400 600 800 1000 1200

 DPM 

 standard 

(b) RAE2822, M0 = 0:73, � = 2:79, Re = 6:5 � 106

Fig. 3.5. Illustration to the improved overall robustness through the use of global DPM-based ABCs. Convergence histories
for a laminar and turbulent airfoil ows, log(residual) of the continuity equation versus number of multigrid cycles.

Finally, we should mention that the DPM-based ABCs generally improve the robustness of the en-
tire numerical procedure. In conducting our computational experiments [15, 16, 18], we have noticed that
sometimes the multigrid iterations of FLOMG supplemented by the standard characteristics-based boundary
conditions simply fail to converge, which never happens if these standard ABCs are replaced by the nonlocal
DPM-based boundary conditions. In Figure 3.5, we show convergence histories for some of the corresponding
computations. A similar phenomenon has been observed in three dimensions as well, see [2] and Section 4.

3.3. Accuracy. Another most important outcome of using the DPM-based ABCs is the substantial
increase of solution accuracy that these boundary conditions provide for when computing the external viscous
ows. In this section, we compare some numerical results obtained on the basis of the DPM-based boundary
conditions for a certain transonic turbulent ow around the airfoil RAE2822 with the results obtained for
the same ow regime on the basis of the standard characteristics-based local ABCs enhanced by the point-
vortex correction [11]. In Table 3.1, we present the results for three di�erent grids, 640�128, 608�112, and
600� 104 nodes, that correspond to the computational domains of the average radii of 50, 8, and 2.5 chords
of the airfoil, respectively. It is important that each subsequent (smaller) grid is obtained here by cutting
o� several external coordinate lines of the preceding (larger) grid. This is done in order to completely avoid
any possible inuence that the change of the grid near the airfoil surface may exert on the solution.

From Table 3.1 one can see that the corresponding \asymptotic" values of the force coe�cients (lift Cl,
wave drag Cd, total drag CD), i.e., the values obtained for the large (50 chords) computational domain, are
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Table 3.1
Comparison of the DPM-based and point-vortex (p.-v.) ABCs for RAE2822 airfoil; M0 = 0:73; Re0 = 6:5�106; � = 2:79�;

normal grid spacing near the airfoil 0:5 � 10�5.

Domain \radius" 3 chords 8 chords 50 chords
Grid dimension 600� 104 608� 112 640� 128
Type of ABCs p.-v. DPM p.- v. DPM p.-v. DPM

Cl 0.8653 0.8591 0.8624 0.8589 0.8603 0.8593
relative error 0.58% 0.02% 0.24% 0.04% 0% 0%

Cd � 10 0.1203 0.1263 0.1209 0.1261 0.1255 0.1260
relative error 4.14% 0.24% 3.67% 0.08% 0% 0%

CD � 10 0.1755 0.1816 0.1762 0.1815 0.1810 0.1815
relative error 3.04% 0.05% 2.65% 0% 0% 0%

Table 3.2
Comparison of the DPM-based and point-vortex (p.-v.) ABCs for RAE2822 airfoil; M0 = 0:73; Re0 = 6:5�106; � = 2:79�;

normal grid spacing near the airfoil 0:5 � 10�5.

Domain \radius" 2.5 chords 50 chords
Grid dimension 320� 64 320� 64 640� 128
Type of ABCs p.-v. DPM p.- v. DPM p.-v. DPM

Cl 0.8688 0.8560 0.8504 0.8492 0.8603 0.8593
relative error 2.15% 0.38% 1.15% 1.17% 0% 0%

Cd � 10 0.1123 0.1259 0.1260 0.1265 0.1255 0.1260
relative error 10.5% 0.07% 0.40% 0.39% 0% 0%

Cf � 100 0.5469 0.5492 0.5478 0.5480 0.5543 0.5544
relative error 1.34% 0.94% 1.17% 1.15% 0% 0%

CD � 10 0.1670 0.1808 0.1808 0.1814 0.1810 0.1815
relative error 7.73% 0.39% 0.11% 0.05% 0% 0%

very close to one another for the di�erent types of ABCs. However, as the arti�cial boundary approaches
the airfoil the discrepancy between the corresponding values increases, and the force coe�cients obtained on
the basis of the DPM-based boundary conditions deviate from their asymptotic values much less than the
coe�cients obtained using local ABCs do. In other words, the nonlocal DPM-based ABCs allow one to use
much smaller computational domains than the standard boundary conditions do and to still maintain high
accuracy of computations. Moreover, from Table 3.1 one can see that unlike the DPM-based ABCs, which
perform equally well for all coe�cients, the point-vortex boundary conditions perform much better for the
lift coe�cient Cl than they do for the drag coe�cients Cd and CD . This behavior seems reasonable since
the point-vortex model is a purely lift-based treatment and does not take into account drag at all.

In Table 3.2 we also compare the results obtained using the two aforementioned types of ABCs; however,
the computations presented in this table were conducted on di�erent grids. One can see that the DPM-based
boundary conditions again outperform the point-vortex ABCs; Cf in Table 3.2 is the skin friction.

We should also emphasize that the bene�t of using smaller computational domains and, as a consequence,
smaller grids, i.e., grids with smaller dimension, is not only the direct reduction of the computational work
because of the grid shrinkage but also the improvement of convergence because the grids may be chosen less
stretched.

3.4. Low Speed Flows. Another interesting aspect of implementation of the DPM-based ABCs is
computation of low speed ows. It is well-known that many standard explicit solvers for compressible ows
encounter di�culties when directly applied to calculating the ows with low Mach numbers. The di�culties
are caused by \di�erent scales" of eigenvalues u and u� c (u is the ow velocity and c is the speed of sound,
juj � c), and result in severe Courant-type limitations on the time step. It has been mentioned in Section 3.2
that the new generation of schemes [29{33] is capable of overcoming this di�culty. An alternative approach
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Table 3.3
Low Mach number turbulent ow around RAE2822 airfoil; M0 = 0:01; Re0 = 6:5 � 106; � = 2:79�; normal grid spacing

near the airfoil 0:6 � 10�5.

Domain \radius" 2.5 chords 20 chords
Grid dimension 320� 64 320� 64
Type of ABCs p.-v. DPM p.-v. DPM

Cl 0.5708 0.5387 0.5419 0.5390
relative error 5.3% 0.05% 0% 0%

Cd -0.0005 0.0016 0.0014 0.0016
relative error ??? 0% 0% 0%

CD � 100 0.5676 0.7761 0.7551 0.7764
relative error 24.8% 0.03% 0% 0%

that rather aims at improving the behavior of the standard existing schemes is based on the so-called local
preconditioning techniques. The idea of these techniques is to change the time-evolving system (multiplying
it by some nonsingular matrix-preconditioner) so that the gap between the eigenvalues is narrowed but at
the same time the steady state remains una�ected. An approach of this type [9] has been referred to in
Section 2.3 as already incorporated in the codes that we use; for additional information on preconditioning
see [35, 36].

In terms of external boundary conditions, it turns out the standard local ABCs incorporated in the code
FLOMG perform poorly for the case of low Mach number ows. On the other hand, the DPM-based boundary
conditions in this case demonstrate the same good performance as they show in the case of transonic ows. In
Table 3.3, we compare numerical results obtained using two di�erent types of ABCs for a low Mach number
turbulent ow around the airfoil RAE2822. One can see that as in the previous cases, the DPM-based ABCs
allow us to maintain high accuracy of computations for small computational domains.

We also note that for the two-dimensional cases presented in Table 3.3 we used the ABCs' algorithm con-
structed on the basis of the compressible linearized ow equations. Alternatively, for the three-dimensional
low speed ow computed in [2] (M0 = 0:01) the DPM-based ABCs based on the incompressible equations
have been employed; they performed as well as the compressible boundary conditions did for higher subsonic
and transonic Mach numbers (see Section 4).

Finally, we should mention that the computational overhead associated with the use of the DPM-based
ABCs in two dimensions is low. Compared to the standard local boundary conditions, the DPM-based ABCs
add about a total of 10{12% of CPU time for performing the same number of multigrid iterations on the
same grid. This extra expense is obviously well compensated for by the better accuracy and faster multigrid
convergence provided by the new methodology. A detailed discussion on the origins of this overhead, as well
as on the approaches to further reducing it, can be �nd in [18].

4. Three-Dimensional Flows Past a Wing.

4.1. Computational Setup in Three Dimensions. On Figure 4.1, we schematically show a typical
con�guration that we analyze in the three-dimensional case. The actual structure displayed in this �gure
is the well-known test wing ONERA M6 (the wingtip is blunted, it is in the \hidden" area on the �gure).
The wing stretches span-wise along the Cartesian axis z and is assumed symmetric with respect to the plane
z = 0. The uid ow is uniform at in�nity and aligned with the positive x direction; together with the
symmetry of the wing this implies the symmetry of the entire ow pattern with respect to z = 0. A non-zero
angle of attack can be introduced by tilting the wing rather than changing the ow direction at in�nity.

The ow equations are integrated numerically on a curvilinear body-�tted grid generated around the
wing. The grid shown in Figure 4.1 is a one-block C-O type grid. The surface � on Figure 4.1 is actually an
external set of nodes of the C-O grid, i.e., the arti�cial boundary. The surface �1 on Figure 4.1 represents
the set of ghost nodes (rather centers of the ghost cells for the case of �nite-volume discretization), it can
also be thought of as the outermost set of nodes of the original C-O grid; the surface � then becomes the
penultimate set of nodes. The linearization of the governing thin-layer equations is assumed valid outside �;
as has been mentioned, we actually verify it by a posteriori numerical checks.
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Fig. 4.1. Schematic geometric setup; the wing on the left is enlarged.

As pointed out in Section 2.4, when the stencil of the interior scheme (a second order central scheme
employed in the code TLNS3D) is applied to any node from �, it generally requires the ghost cell data. These
data are provided by the ABCs, therefore making the discrete system solved inside the computational domain
well de�ned (i.e., making the number of equations equal to the number of unknowns).

The auxiliary problem for the linearized ow equations (thin-layer) that is needed to calculate the
generalized boundary projection, is formulated and solved on a parallelepiped [0; X ]� [�Y=2; Y=2]� [0; Z=2],
which fully contains �1; a Cartesian (x; y; z) grid is used for discretization of the AP. The formulation of the
AP involves periodization in the cross-stream direction y and span-wise direction z, the respective values
of the periods Y and Z vary while the size of the interior computational domain remains �xed (only half
of the period is actually needed in the z direction because of the aforementioned symmetry). The typical
values are between 20 and 30 sizes of the computational domain for Y and between 4 and 10 sizes of the
computational domain for Z. The Cartesian grids of the AP are typically stretched along the coordinates y
and z; the stretching starts outside �1 with the factors (geometric progression) that vary between 1.07 and
1.1 for di�erent cases. The resulting DPM-based ABCs, as before, appear global.

Using the general setup shown on Figure 4.1, we have calculated several compressible viscous ows
around the ONERA M6 wing. All of the cases that we have analyzed are turbulent, they include subsonic
and transonic ows, a low-speed ow, and a ow with shock-induced separation. As in the previously
addressed two-dimensional case we have been able to demonstrate a clear superiority of the DPM-based
ABCs over the standard local external boundary conditions in terms of the solution accuracy, multigrid
convergence rate, and overall robustness of the algorithm. Unlike the two-dimensional case, the standard
treatment of external boundary in three dimensions (code TLNS3D) is based only on locally one-dimensional
analysis of characteristics as the point-vortex model is not applicable.

4.2. Low Mach Number Regime. We �rst consider a very low speed ow,M0 = 0:01, i.e., an almost
incompressible case; preconditioning [9] makes the analysis of this ow possible with TLNS3D. The ow is
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Table 4.1
ONERA M6: M0 = 0:01; Re0 = 11:7 � 106; � = 3:06�.

\Average radius" of the domain 1.25 root chords 10 root chords
Dimension of the grid 193� 49� 33 193� 49� 33
Type of ABCs standard DPM standard DPM

Full lift, CL 0.2052 0.1954 0.1940 0.1939
Relative error 5.78% 0.77% 0% 0%

Full drag, CD � 100 0.695 0.685 0.681 0.681
Relative error 2.1% 0.58% 0% 0%

turbulent with the molecular Reynolds number based on the root chord of the wing Re0 = 11:7 � 106; the
angle of attack is � = 3:06�; there is no separation and the near-�eld turbulence is simulated using the
Baldwin{Lomax algebraic model, which is based on the concept of mixing length. Since the free-stream
Mach number is so small, we have implemented here a truly incompressible version of the nonlocal DPM-
based ABCs. In Table 4.1, we present the results of calculations for two di�erent computational domains of
the \average radii" of 10 and 1.25 root chords of the wing, respectively (root chord means the chord length
at z = 0).

In both cases, we used the C-O type grids of the same dimension 193�49�33; for the smaller domain the
grid was obtained by scaling down the bigger grid and was obviously �ner in the near �eld. Therefore, for this
set of computations one can expect to achieve a better resolution of the ow �eld near the wing on the smaller
domain. From Table 4.1, one can see that for the larger domain the results (force coe�cients CL and CD)
obtained with both local and global methods are very close to each other. However, as the domain shrinks
the accuracy obtained with the DPM-based procedure appears much better than the accuracy provided by
the standard methodology. In other words, the nonlocal DPM-based ABCs allow one to substantially reduce
the size of the computational domain without compromising the accuracy. This con�rms that if the structure
of the far-�eld solution is correctly taken into account by means of the ABCs, then within a certain range
of domain sizes the computed near-�eld solution becomes essentially domain-independent. Moreover, as the
near �eld grid on the smaller domain is �ner than on the larger domain, it provides for a mechanism to
improve the overall accuracy of numerical solution.

4.3. Subsonic Regime. The next case is a subcritical (i.e., fully subsonic) compressible ow for M0 =
0:5. Here, the free-stream Mach number is already high enough to make the compressibility e�ects essential
but on the other hand, it is still not too high and therefore the ow remains subsonic throughout the entire
domain. The angle of attack and the molecular Reynolds number for this case are the same as for the
previous one: � = 3:06�, Re0 = 11:7 � 106. The ow is also fully attached and the interior turbulence model
is again algebraic (Baldwin{Lomax). The DPM-based ABCs for this case were constructed on the basis of
the linearized compressible thin-layer equations.

Table 4.2
ONERA M6: M0 = 0:5; Re0 = 11:7 � 106; � = 3:06�.

\Average radius" of the domain 1.25 root chords 2 root chords 10 root chords
Dimension of the grid 193� 49� 33 193� 49� 33 193� 49� 33
Type of ABCs standard DPM standard DPM standard DPM

Full lift, CL 0.2218 0.2065 0.2185 0.2065 0.2081 0.2072
Relative error 6.58% 0.34% 5.0% 0.34% 0% 0%

Full drag, CD � 100 0.817 0.791 0.793 0.791 0.787 0.788
Relative error 3.8% 0.38% 0.76% 0.38% 0% 0%

In Table 4.2, we compare the results of calculations for three di�erent computational domains. Similarly
to the previous case (Section 4.2), we use the same grid dimension for the domains of di�erent sizes; as a
consequence, we expect to obtain a higher resolution of the near �eld on smaller domains. As one can clearly
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see from Table 4.2, the DPM-based ABCs produce much more accurate solutions for the domains of the
\radii" 1.25 and 2 root chords than the standard boundary conditions do. This essentially creates a vehicle
for calculating the solutions una�ected by the size of the computational domain (within a certain range).
Along with the grid re�nement on smaller domains, it implies (at least for this series of tests) a better overall
accuracy while keeping the computational cost at approximately the same level.

4.4. Transonic Regime. Most of the standard test cases for ows around the ONERA M6 wing are
transonic (see, e.g., experimental work [37]). In such ows the free-stream Mach number is su�ciently high
so that the local speed exceeds the speed of sound in some bounded region near the upper surface of the wing.
This leads to the formation of a supersonic (i.e., supercritical) \bubble," which typically has a sonic-surface
type upstream boundary and a shock-wave type downstream boundary.

4.4.1. Attached Flow. The �rst transonic case that we present is M0 = 0:84, � = 3:06�, Re0 =
11:7 � 106. In this case, the angle of attack � remains su�ciently small so that the weak shock on the upper
surface of the wing does not cause ow separation. Therefore, we still use the Baldwin-Lomax model for
simulating the turbulence in the near �eld. An important di�erence compared to the previously studied
cases is that here we cannot bring the arti�cial boundary as close to the wing as done in Sections 4.2 and 4.3.
The reason is that our far-�eld treatment is purely subsonic and therefore, the arti�cial boundary should
not come too close to the boundary of the supercritical bubble. Therefore, we ran our computations for two
domains, the \radius" of the larger one is still about 10 root chords of the wing and the \radius" of the
smaller one is about 3 root chords of the wing. Moreover, unlike in the previous cases, here we employed a
di�erent strategy, namely, used a bigger grid (i.e., more nodes) for the larger domain. Thus, provided that
the new boundary conditions algorithm will again produce solutions (almost) una�ected by the domain size,
on the smaller domain one will have a reduced computational cost (because of the reduced grid dimension)
while preserving the accuracy. Geometrically, the smaller (3 root chords) C-O grid is constructed as an exact
subset of the larger (10 root chords) grid. This should completely eliminate any inuence that the change
of the grid in the near �eld may possibly exert on the calculated solution.

The nonlocal ABCs for this case were again constructed on the basis of the linearized compressible thin-
layer equations. In Table 4.3, we compare the computed results (calculated lift CL and drag CD coe�cients)
for two di�erent types of ABCs on two di�erent domains.

Table 4.3
ONERA M6: M0 = 0:84; Re0 = 11:7 � 106; � = 3:06�.

\Average radius" of the domain 3 root chords 10 root chords
Dimension of the grid 193� 49� 33 209� 57� 33
Type of ABCs standard DPM standard DPM

Full lift, CL 0.298�0.004 0.2798 0.2805 0.2786
Relative error 6.24%�1.43% 0.43% 0% 0%

Full drag, CD � 10 0.168�0.008 0.1537 0.1542 0.1531
Relative error 8.95%�5.19% 0.39% 0% 0%

For the smaller domain, the DPM-based ABCs again clearly outperform the standard method from the
standpoint of accuracy. Moreover, the total number of nodes in the bigger grid here (see Table 4.3) is about
25% more than in the smaller grid, which obviously implies a proportional di�erence in the associated cost
of computations.

Even more important, for this transonic case the DPM-based ABCs inuence not only the �nal accuracy
of the solution but also convergence rate of the iteration procedure employed inside the computational
domain. Namely, multigrid iterations with standard ABCs on the smaller domain converge noticeably
slower than they do if supplemented by the DPM-based ABCs. In fact, for the same 500 V-cycles on the
�nest multigrid level, we simply could not obtain a fully converged solution on the 3 root chords domain
with standard boundary conditions. That's why the corresponding data in Table 4.3 are given with the
error bands indicated. Convergence history for this transonic ow computation on the 3 chords domain
is given in Figure 4.2(a) for the residual of the continuity equation and in Figure 4.2(b) for the number
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Fig. 4.2. Convergence histories for an attached transonic ow past the ONERA M6 wing: M0 = 0:84, Re0 = 11:7 � 106,
� = 3:06�. \Average radius" of the computational domain is 3 root chords of the wing; dimension of the grid is 193� 49� 33.
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Fig. 4.3. Convergence histories for an attached transonic ow past the ONERA M6 wing: M0 = 0:84, Re0 = 11:7 � 106,
� = 3:06�. \Average radius" of the computational domain is 10 root chords of the wing; dimension of the grid is 209�57�33.

of supersonic points in the domain. (The latter quantity is deemed very sensitive for calculation of the
transonic ows.) Note, in our opinion the behavior of the corresponding curves in Figures 4.2 suggests that
the standard algorithm on the 3 root chords domain still converges, although extremely slow. Quantitatively,
from Figures 4.2 one can see that the multigrid convergence rates for di�erent types of ABCs can di�er by
as much as approximately a factor of three.

The history of convergence of the same two quantities for the larger (10 root chords) computational
domain is presented in Figures 4.3. We see that that in this case the DPM-based ABCs also provide for
some convergence speedup, although the di�erence between the two methodologies appears less dramatic.
This seems reasonable because one could generally expect that the bigger the computational domain, the
smaller is the inuence that the external boundary conditions exert on the numerical procedure.
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Let us also note that on the smaller (3 root chords) domain the two algorithms apparently converge
to quite di�erent solutions (this is most clearly seen in Figure 4.2(b)), whereas Figure 4.3(b) allows one to
assume that on the larger (10 root chords) domain the �nal solutions are close to one another. The data from
Table 4.3 corroborate these conclusions. This behavior of the solution again �ts into the aforementioned
concept that the overall impact of the ABCs on the computational algorithm decreases as the domain
enlarges.

4.4.2. Separated Flow. When one increases the angle of attack � in the transonic regime, the ow
pattern changes. The shock on the upper surface of the wing becomes stronger. Since the chord length of the
wing decreases span-wise as z increases (see Figure 4.1), then the stream-wise dimension of the supersonic
bubble decreases as well, and eventually the upstream sonic surface and the downstream shock wave meet
somewhere in the area close to the wingtip. For su�ciently strong shocks this, in particular, produces ow
separation on the upper surface of the wing. We have analyzed the separated ow of this type forM0 = 0:84,
� = 5:06�, Re0 = 11:7 � 106.

The separation zone on the upper surface of the wing for this case is relatively small, the ow fully
reattaches before it reaches the trailing edge so that no phenomena associated with the separation are
present in the wake. However, the simulation of such ows already requires more sophisticated turbulence
models inside the computational domain; we have used the the two-equation Menter's model [10]. Moreover,
it requires much �ner grids in the near �eld than the simulation of the fully attached ows does.

As in the previous transonic case, the global DPM-based ABCs are constructed here using the linearized
compressible thin-layer equations. The computations are conducted for two di�erent domains of the \average
radii" of 3 and 10 root chords of the wing, respectively. The grids for both domains in this case have the
dimension of 193� 49� 33, i.e., we choose the same gridding strategy as for subsonic numerical experiments
of Sections 4.2 and 4.3. Of course, the actual grids here are not the same as those used previously, their
normal cell size near the wing surface is an order of magnitude smaller. Similarly to the foregoing subsonic
cases (Sections 4.2 and 4.3), we expect for this case that the resolution of the near �eld for the smaller
domain will be better than for the larger domain. This is particularly important because of the complicated
ow structure that involves the shock-induced separation.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x/c

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

Experimental data
Global ABC’s, 3 chords
Standard ABC’s, 10 chords
Global ABC’s, 10 chords

Fig. 4.4. ONERA M6: M0 = 0:84, Re0 = 11:7 � 106, � = 5:06�. Surface
pressure distribution at the 90% of semi-span (x=c: x is the coordinate calcu-
lated from the leading edge, c is the local chord length). Dimension of all grids
is 193� 49� 33.

In Figure 4.4, we present the distri-
bution of the pressure coe�cient

Cp =
p� p0
1

2
�0u02

(here p is the pressure at a given loca-
tion and p0, �0, and u0, are static pres-
sure, density, and absolute velocity of
the ow at in�nity, respectively) on the
upper and lower surfaces of the wing in
the cross-section z = const at 90% of
semi-span. The 90% of semi-span sta-
tion corresponds to the area of devel-
oped separation. The three solutions
that we have computed in this case are
for global DPM-based ABCs on the 3
and 10 root chords domains and stan-
dard ABCs on the 10 chords domain.
These solutions are compared in Fig-
ure 4.4 against the experimental data.

From Figure 4.4 we conclude that
all three numerical solutions very well
match one another and also match the

experimental data to a reasonable degree of accuracy. We also emphasize that analogously to the previous
cases, the DPM-based global ABCs are capable of generating accurate numerical solution on the smaller
domain for this separated ow case. On the other hand, standard algorithm for � = 5:06� (separated
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Fig. 4.5. Convergence histories (residual of the continuity equation) for a separated transonic ow past the ONERA M6
wing: M0 = 0:84, Re0 = 11:7 � 106, � = 5:06�. Dimension of both grids is 193� 49� 33.

ow around ONERA M6) fails to converge on the 3 root chords computational domain; the corresponding
convergence history is presented in Figure 4.5(a). Comparing Figure 4.5(a) with Figure 4.2(a) we see that
whereas for the relatively easy attached case � = 3:06� one could still observe a very slow convergence of the
standard algorithm, its convergence for the separated case � = 5:06� is completely destroyed. At the same
time, on the larger (10 root chords) domain both the DPM-based and standard algorithms for � = 5:06�

converge at the same rate, see Figure 4.5(b).
Figures 4.4 and 4.5 allow us to conclude that the nonlocal DPM-based ABCs not only speed up the

convergence of multigrid iterations but are generally capable of increasing robustness of the entire numerical
procedure. Note, the issues of combined implementation of global DPM-based ABCs with multigrid and
resulting speedup of multigrid convergence have been speci�cally addressed and emphasized in [22].

The average cost of application of the DPM-based ABCs in three space dimension is somewhat higher
than it is in two space dimensions. The global boundary conditions add about 20{25% of the CPU time to
the cost of the same iteration procedure with the standard (characteristics-based) boundary conditions. This
extra expense is however still quite acceptable especially taking into account the resulting improvement of
accuracy; moreover, it can often be compensated for and even noticeably prevailed over by the convergence
acceleration and reduction of the domain size.

5. Three-Dimensional Flow with Jet Exhaust.

5.1. Computational Setup. The major di�erence between the simplest formulation of an external
ow problem (like in Section 4) and a ow with jet exhaust is that in the vicinity of the jet we can no longer
claim that ow perturbations against the free-stream background are small. Indeed, inside the propulsive
jet the speed of the ow is typically much higher than the one in the surrounding area; moreover, other
parameters, e.g., temperature, may also di�er substantially. Therefore, the linearization of the ow against
a constant free-stream background everywhere in the far �eld is, generally speaking, not valid in this case.

However, in many applications (in particular, aerospace) one can clearly distinguish between those parts
of the overall ow that contain jet(s) and the remaining areas. Therefore, the most comprehensive approach
to far-�eld linearization in this situation would apparently be to employ the appropriate asymptotic solutions
for jets as a background (see, e.g., [38]). For ow regions outside the jet, it is always reasonable to assume
that the foregoing linearization around a uniform free-stream solution will still be valid.

A particular setting that we will be studying hereafter is schematically shown on Figure 5.1. (The
meaning of the two external grid surfaces � and �1 is the same as in Figure 4.1.) The setup includes a
three-dimensional slender body (symmetric with respect to the z = 0 plane but not axially symmetric) with
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Fig. 5.1. Schematic geometric setup for the slender body with jet exhaust.

sharp nose and boat-tail aft con�guration; the rearmost plane surface of the body (not shown explicitly in
Figure 5.1) is actually a location of the nozzle outlet; the outlet is rectangular in its cross section. The
exterior ow is subsonic with the free-stream Mach number M0 = 0:6 and zero angle of attack, the jet that
is discharged from the outlet is supersonic, Mj = 1:6, and conuent with the exterior ow.

The speci�c shape of the body (see Figure 5.1), as well as the parameters of the ow, have been previously
proposed for numerical study and actually analyzed by Compton [39]. In this original work, Compton had
calculated the external ow with propulsive jet and also considered the interior portion of the ow, namely
the ow in the actual nozzle located inside the afterbody. For our study, we have generated new grids and also
simpli�ed the overall formulation by eliminating the nozzle and specifying instead the uniform supersonic
ow conditions at the nozzle outlet, i.e., at the place where the jet is discharged. This simpli�cation is
coherent with our overall goal of assessing the performance of di�erent external boundary conditions for the
ow with jet exhaust as opposed to Compton's goal [39] of assessing the performance of di�erent turbulence
models including their prediction capabilities for the ow inside the nozzle.

Our typical grid consists of two blocks: block 1 of C-O type is for the exterior ow and block 2 of H-O
type is for the jet portion (see Figure 5.1). Of course, this subdivision can only have an approximate meaning
because the jet will obviously tend to spread while propagating downstream; basically, it means that the
shear layer between the jet and coow is located in the vicinity of the block interface. On this interface, the
two grid blocks are point-matched, which is a requirement for TLNS3D.

As has been mentioned, the exterior ow is subsonic and the jet is supersonic. The standard boundary
conditions in TLNS3D for this two-block jet ow case include one-dimensional characteristics for external inow
(block 1, upstream portion of the boundary), speci�cation of the free-stream pressure with extrapolation of
all other quantities for external outow (block 1, downstream portion of the boundary), extrapolation of all
quantities for the jet downstream boundary (block 2) and speci�cation of all quantities for the jet inow
boundary (block 2); the boundary conditions on the solid surface of the body are standard no-slip conditions.
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Extrapolation of all ow quantities at the jet outow boundary is justi�ed because as shown by numerous
simulations the core of the jet remains supersonic even at large distances downstream of the body, at least
as far as 40{50 nozzle calibers away.

In work [23] we have developed an alternative to the foregoing local boundary conditions for the jet
ow case | global ABCs similar to those described in Section 4, and compared the performance of the
two techniques. Clearly, a direct implementation of the original DPM-based ABCs (Sections 2.4 and 4)
would encounter a major obstacle in the jet ow case case: as has been mentioned, we cannot linearize the
governing equations against constant free-stream background in the jet region and therefore, cannot directly
implement the global boundary conditions over the entire external boundary. Of course, if we linearized the
ow against a constant free-stream background outside the jet and against some approximate asymptotic
solution in the jet region (see [38]) and then used the corresponding linear system (it would have variable
coe�cients) to construct the DPM-based ABCs similar to those described previously, then we could have
applied the resulting boundary conditions straightforwardly as done in the previous work [2, 21] for ows
with no jets. Computation of the new DPM-based ABCs in this framework will, in turn, require a di�erent
construction of the AP, certainly more elaborate (because of the variable coe�cients) and possibly more
expensive than the one described in Section 4 (see [2] for detail). Although in general all this may be
feasible, we �rst opted for constructing the algorithm based on the original DPM-based boundary conditions
with minimal alterations.

As the original DPM-based ABCs obviously cannot be applied in the jet area, i.e., on that portion of the
arti�cial boundary where the jet exits the domain, we need another procedure. The most natural choice will
be to extrapolate all ow quantities downstream at the outow boundary because the core of the jet remains
supersonic even at large distances away from the nozzle outlet. Of course, we cannot actually predict where
on the downstream boundary the ow actually becomes subsonic, i.e., where the extrapolation ceases to be
applicable. However, we have observed that for the particular case under study we can extrapolate at least
on the entire downstream boundary of the second grid block (see Figure 5.1). Thus, extrapolation of all ow
quantities will be used henceforth as downstream boundary conditions for block 2.

In the standard procedure, the downstream boundary conditions for grid block 1, i.e., on the rest of
the outow boundary, are based on the speci�cation of free-stream pressure and extrapolation of all other
quantities. Basically, these boundary conditions are relevant for subsonic outow. In practice, some portion
of the downstream boundary of block 1 may also be supersonic; in this case, however, the implementation
of these pressure boundary conditions does not lead to noticeable errors because the streamwise variations
of pressure away from the nozzle are small (the jet is close to design, it is only slightly overexpanded) and
therefore, speci�cation of the free-stream pressure and extrapolation from the interior are both procedures
with acceptable accuracy.

To replace local boundary conditions on the outer boundary of block 1 (the region outside the jet) by
the more accurate global ABCs, we use the DPM. However, in in the DPM-based procedure both the input
and output are global, i.e., not only the ABCs provide the ghost cell data along the entire outer boundary
�1 but also require the data along the entire penultimate surface � as driving terms. By using instead the
extrapolation downstream in the core of the jet, we make sure that the possibly erroneous data from the
global procedure are not used on this part of the boundary (jet area). However, as the original global ABCs
are constructed on the basis of the linearization against a constant background, which is not valid in the
jet area, using the actual ow quantities (including the jet pro�le) as the driving terms of the DPM-based
ABCs may potentially generate errors along the entire outer boundary.

On the other hand, it has been veri�ed for model examples [20] and also seen for more complex cases that
typically, closely located boundary nodes inuence one another much stronger than the remote ones. This
behavior is obviously meaningful from the standpoint of physics. If one explicitly calculates the operator
of the global boundary conditions in the form of a matrix, this phenomenon would manifest itself so that
on one hand the matrix will be dense (non-locality) but on the other hand its near-diagonal terms will
be much larger than the o�-diagonal ones (for systems as opposed to scalar equations, it will be a similar
block-wise structure). Although it may be di�cult (if possible at all in any su�ciently complex setting)
to obtain analytical estimates for the rate of decay of the o�-diagonal terms, we can still make use of this
block-wise o�-diagonal decay in the numerical experiments. In practical terms, this implies that although
substituting the jet pro�le as the data for the DPM-based ABCs violates the small perturbations assumption,
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the associated error on the results will mostly be concentrated again in the jet area; in this area the the
output of global ABCs is not used for boundary conditions anyway as it is overridden by extrapolation.

Thus, the actual combined DPM-based ABCs that we employ for computation of the foregoing jet
ow case are the following. For most of the outer boundary (except the near-jet area) we use the original
DPM-based ABCs while substituting the actual ow pro�le as their driving terms. For the jet core (outow
boundary for grid block 2) we extrapolate all ow quantities downstream. For the small intermediate portion
of the downstream boundary (near the jet core) we extrapolate all quantities except pressure, the latter is
prescribed from its free-stream value. In fact, we have observed that within a certain range (5 to 30 cells of
the �ne grid described below), the actual position of where to switch from the pressure boundary condition
to the DPM does not exert much inuence on either the �nal accuracy or multigrid convergence rate.

The particular geometry of the body shown in Figure 5.1 is the following: rectangular cross section
y � z = 6:2� 6:8 with rounded edges; sharp nose and boat-tail afterbody; total length in the x direction is
63; rectangular nozzle outlet y � z = 2:62� 5:12. The geometry and the ow are symmetric with respect
to the plane z = 0 (zero angle of attack). For our computations we have used three di�erent domains with
successively reduced dimensions, see Figure 5.2; domain I (or large domain) with the diameter of about 30
calibers of the body was used for calculating the reference solutions, domain II is 0:36 or about 1=3 of the size
of domain I in each direction and domain III is 0:22 or about 1=5 of the size of domain I in each direction.

Fig. 5.2. Three computational domains for the jet ow, projection onto
the z = 0 plane.

To account for the turbulent phe-
nomena in the near �eld, the solver
is also supplemented with Menter's
two-equation turbulence model [10].
The actual molecular Reynolds number
based on unit length is Re = 321000.
In the far �eld we, as before, use the
Boussinesq's concept of e�ective turbu-
lent viscosity.

We have used several di�erent grids
to calculate the jet ow; in all cases
we kept the normal spacing near the
solid surface the same: � 3 � 10�4.
All grids are stretched, the cell size in-
creases away of the body in geometric
progression. The dimension of the C-O
grid block 1 for domain I was i�j�k =
385 � 77 � 33 (i is the streamwise C-
type coordinate, j is the radial coordi-
nate, and k is the circumferential cross-
stream O-type coordinate, quarter cir-
cle). The dimension of the H-O grid
block 2 for domain I was i � j � k =
81 � 77 � 65 (i is streamwise, j is ra-
dial, and k covers half circle). We will

further refer to this grid as �ne; it is used for calculating reference solutions.

5.2. Numerical Results. On the �ne grid described in Section 5.1, we have calculated two reference
solutions, one with standard ABCs and another one | with global ABCs. As the arti�cial boundary for
domain I is located su�ciently far away of the body, the di�erence between the corresponding results is
negligible. On Figures 5.3 we show convergence histories for this case: residual of the continuity equation is
plotted vs. work units on Figure 5.3(a) and drag coe�cient is plotted vs. work units in Figure 5.3(b). (One
work unit is the cost of advancing one time step on the �nest grid.)

From Figures 5.3 we conclude that multigrid convergence rates are the same for local and global ABCs
on domain I. Moreover, the values of total drag coe�cient per unit area CD are summarized for this case in
the right column of Table 5.1. They di�er by about one third of one per cent, which corroborates that for
large computational domains the type of external boundary conditions has little e�ect on the solution itself,
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Fig. 5.3. Flow around a slender body with propulsive jet: Convergence histories for domain I, �ne grid.

Table 5.1
Flow with jet exhaust: Total drag coe�cient per unit area CD.

Domain III II I
Grid �ne coarse �ne �ne
Local | 2:77� :03 2:74� :04 2.506
Global 2.365 2.495 2.484 2.497

as well as on the multigrid convergence history.
For domain II, we have computed the ow on two grids with di�erent dimensions. The �rst grid has

the same number of nodes as the one used for domain I; it was, in fact, constructed by scaling down the
original large �ne grid by a factor of 0:36 in each direction. We will also refer to it as �ne grid. As shown in
Table 5.1, the coe�cient CD obtained on this grid with global ABCs di�ers by less than one per cent from its
reference value, whereas the accuracy provided by local ABCs is not nearly as good, about 9% discrepancy;
moreover, because of the poor convergence (see Figures 5.4) the value of CD for local ABCs is given with
the error bands indicated.

The much smaller geometric size of domain II compared to domain I actually suggests that on domain
II one can successfully compute the solution on a grid with fewer nodes. Therefore, the second grid that
we have used for domain II had one half of the original dimension in two out of three directions, block 1
i� j � k = 193� 39� 33 and block 2 i� j � k = 41� 39� 65, this grid will be referred to as coarse. Again,
as follows from Table 5.1, global ABCs provide for an accurate solution whereas the accuracy of local ABCs
is not su�cient and the convergence is slow (or even non-existent). Convergence histories for domain II are
presented on Figures 5.4.

Since the node count for the coarse grid is only 1=4 of the node count for the �ne grid, the convergence
vs. work for the coarse grid is about four times faster (see Figures 5.4), although convergence rates measured
vs. number of multigrid cycles will be approximately the same for both grids. Note that because of the
particular grid dimensions (the issue of divisibility by 2) we have used three nested multigrid levels on the
�ne grid and two levels on the coarse grid. One can clearly see from Figures 5.4 that the DPM-based ABCs
provide for a noticeably higher multigrid convergence rate than the standard local ABCs do. Moreover, it
is, in fact, hard to conclude from Figures 5.4 whether or not the algorithm with local ABCs converges at all.
If it does, the resulting CD will be about 10% o� its reference value.
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Fig. 5.4. Flow around a slender body with propulsive jet: Convergence histories for domain II, �ne and coarse grids.
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Fig. 5.5. Flow around a slender body with propulsive jet: Convergence histories for domain III, �ne grid.

On domain III, the computations were performed on the �ne grid, which again was obtained by scaling
down the grid from domain I (a factor of 0.22 in each direction). The algorithm with local ABCs for this
domain/grid failed to converge, whereas the algorithm with global ABCs converged with the same rate
as before. However, the actual computed CD is about 5% o� its reference value (see Table 5.1). This
can apparently be attributed to the fact that the assumption of linearity (small perturbations) outside the
computational domain is violated for such a small domain size. Convergence histories for domain III are
presented on Figures 5.5.

Computations on a coarse grid for domain III were not performed because we did not expect to recover
the accurate value of CD . However, the fact that the algorithm with global ABCs converges on domain III
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corroborates the high robustness of this procedure.

Basically, the computational results presented above already allow us to see that the performance of
the global DPM-based ABCs is superior to that of the standard local boundary conditions. This conclusion
is supported by the faster multigrid convergence rates, as well as better accuracy of the calculated drag
coe�cient CD on small domains, that we obtained through the use of the DPM-based ABCs. In terms
of accuracy, we corroborate this conclusion even further by presenting a more detailed account of the ow
characteristics that pertain to the computed solutions (in addition to the values of the overall drag coe�cient).
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Fig. 5.6. Flow around a slender body with propulsive jet: Distribution of the pressure coe�cient Cp on the afterbody in
the symmetry plane z = 0.

On Figures 5.6, we present the distribution of the pressure coe�cient in the vertical plane of symmetry
z = 0 on the afterbody portion of the analyzed con�guration (see Figure 5.1). Figure 5.6(a) shows a longer
stretch for the streamwise coordinate x normalized by the total length of the body L: 0:84 � x=L � 1:0; and
Figure 5.6(b) presents a \zoomed in" view of the same distribution on a shorter stretch 0:88 � x=L � 0:94.
Both �gures summarize the distribution of Cp on all three computational domains on �ne grids.

From Figures 5.6 we see that on the large domain I the solutions obtained with global and local ABCs
indeed deviate from one another very slightly. The solution obtained with global ABCs on the intermediate
domain II practically does not deviate from the reference solution (domain I) as well. As opposed to global
ABCs, the solution obtained with local ABCs on the intermediate domain II di�ers from the reference
solution (domain I) much more noticeably. On the small domain III, the solution with local ABCs could
not be computed at all, and the solution with global ABCs di�ers from the reference solution even less than
the solution with local ABCs from domain II does. Similar behavior of the pressure coe�cient Cp can be
observed in the horizontal plane of symmetry y = 0 on the afterbody portion of the analyzed con�guration
as well, see Figures 5.7.

Let us also note that we have picked these particular Cp distributions (see Figures 5.6 and 5.7) as
the examples of more detailed calculated ow characteristics (as opposed to presenting only integral force
coe�cients) because it is known that the Cp pro�les on the afterbody are rather sensitive to the type and
parameters of the numerical algorithm. Besides, these particular computed pro�les have also been chosen
by Compton for presenting in [39]; and the results of our computations display a good correlation with the
results by Compton that have been obtained on a very large computational domain.

Computational overhead due to the use of global DPM-based ABCs for the jet ow case is about 15%
for the particular �ne grid referenced before. This overhead is determined mostly by the domain geometry
and typically does not scale linearly with the dimension of the interior grid. For the aforementioned coarse
grid the overhead reaches 30%.
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Fig. 5.7. Flow around a slender body with propulsive jet: Distribution of the pressure coe�cient Cp on the afterbody in
the symmetry plane y = 0.

6. Conclusions. We have summarized the results of implementation of the global DPM-based ABCs
for calculating steady-state external viscous ows in two and three space dimensions, including a three-
dimensional ow with jet exhaust.

The new ABCs are capable of greatly reducing the size of the computational domain (compared to the
standard local boundary conditions) while still maintaining high accuracy of the numerical solution. This
size reduction amounts to either the possibility of re�ning the grid in the near �eld, which potentially leads
to increasing the accuracy, or use of the grids with smaller dimensions while keeping the accuracy at the same
level. Moreover, the DPM-based ABCs may noticeably speed up the convergence of multigrid iterations and
generally improve the robustness of the entire numerical procedure. Finally, the new boundary conditions
appear geometrically universal and easy to incorporate in the structure of the existing ow solvers. The
properties of the new ABCs have been corroborated experimentally by computing subsonic and transonic
ows past the NACA0012 and RAE2822 airfoils using the NASA-developed code FLOMG, as well as ows past
the ONERA M6 wing and a slender 3D body with jet exhaust using another NASA-developed code TLNS3D.
Note, the code TLNS3D is widely used for production ow computations in both research institutions and
industry.
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