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Abstract

We consider a system of ordinary difference equations with constant coefficients, which is defined on an infinite
one-dimensional mesh. The right-hand side (RHS) of the system is compactly supported, therefore, the system
appears to be homogeneous outside some finite mesh interval. At infinity, we impose certain boundary conditions,
e.g., conditions of boundedness or decay of the solution, so that the resulting boundary-value problem is uniquely
solvable and well posed.

We also consider a truncation of this infinite-domain problem to some finite mesh interval that entirely contains
the support of the RHS. We require that the solution to this truncated problem, which is the one we are going to
actually calculate, coincides on the finite mesh interval where it is defined with the corresponding fragment of the
solution to the original (infinite) problem.

This requirement necessitates setting some special boundary conditions at the ends of the aforementioned finite
interval. In so doing, one should guarantee an exact transfer of boundary conditions from infinity through the
(semi-infinite) intervals of homogeneity of the original system. It turns out that the desired boundary conditions at
the ends of the finite interval can be naturally formulated in terms of the eigen subspaces of the system operator.
This, in turn, enables us to develop an effective numerical algorithm for solving the system of ordinary difference
equations on the finite mesh interval. This algorithm can be referred to as a version of the well-known successive
substitution technique but without its final (“inverse” or “resolving”) stage.

The special class of systems described in this paper appears to be most useful when constructing highly accurate
artificial boundary conditions (ABCs) for the numerical treatment of problems initially formulated on unbounded
domains. Therefore, an effective numerical algorithm for solving such systems becomes an important issue.

1. Formulation of the problem

We consider a two-point system of ordinary difference equations,

Avm+l+va=fm+l/2’ —o<m< +ox, (1)
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which is defined on an infinite one-dimensional mesh —o <m < 4. Here, v,,, —0 <m < +oo,
is an n-dimensional vector function representing unknowns, f, ., ,, —®<m <+, is an
n-dimensional vector function representing the right-hand side (RHS), 4 and B are the
constant square matrices of order n. None of the matrices 4 and B is expected to be singular,
so that both Q=A4"'B and Q '=B"'A exist. The entries of 4 and B, as well as the
components of v,, and f, ., ,» may, generally speaking, be complex.

The only specific assumption we do regarding the RHS f,,, ,,, —© <m < +o, of system
(D, is that f, ., ,2 is compactly supported. More precisely, we henceforth allow f, ., to
differ from zero nowhere except for some finite mesh interval {m +1/2|m=0,..., M -1}, M
being a positive integer.

We first assume that none of the eigenvalues p,, s=1,...,n, of the matrix Q has an
absolute value equal to unity, |u,| #1, s =1,..., n. Moreover, we assume that both eigenval-
ues u, with the absolute values less than unity, | 1, | <1, and eigenvalues w, with the absolute
values greater than unity, |u | > 1, always exist in the spectrum of Q. Therefore, we can
require that the solution v, to (1) vanishes at infinity, i.e.,

v, >0, asm—> +o. (2)

As will be seen from further consideration, the problem (1)-(2) is uniquely solvable for any
compactly supported RHS. In Section 4, we describe some practical applications in which
formulations like (1) and (2) may appear to be most useful.

We also consider a truncated version of (1)

Avm+l+Bum :fmf»l/zv ’n:O""?M¥]‘ (3)
which is defined on a finite one-dimensional mesh, m =0,..., M. This new finite mesh,
m=0,..., M, is contained in the original one, —o <m < 4+, as a subset. Moreover, we

emphasize that the finite mesh m =0, ..., M is chosen so that to entirely contain the support of
the RHS, supp f,, ., ,<{m+1/2|m=0,...,. M~ 1}.

We require that the solution to (3) defined for m =0,..., M coincides on this finite mesh
interval with the corresponding fragment of the solution to (1)-(2). In other words, we require
that the solution to (3) found for m =0, ..., M admits such a unique complement to the entire
line (i.e., to the infinite mesh) that solves problem (1)-(2). Obviously, to meet this requirement,
one needs to set some special boundary conditions for system (3) at the edges of the finite mesh
interval, i.e., at m = 0 and at m = M. We will do that analyzing the behavior of the solution to
problem (1)-(2) for m > M and m < 0. We, however, emphasize that problem (1)-(2) itself is
not intended for the numerical solution since the corresponding domain of definition is infinite.
The system we will actually solve is (3) with such boundary conditions at m =0 and m =M that
ensure its equivalence to (1)-(2) on m =0,..., M; the corresponding computational procedure
is described in Section 2.

To construct the desired boundary conditions for (3), we first recall that system (1) is
homogeneous outside the interval m =0, ..., M. Therefore, each solution v, (which satisfies
Av,, ., +Bv,, =0 for m > M and for m < 0) can be uniquely represented as a sum of two vector
functions, v,, = v,; + v, . Either of these vector functions, v,} and v, is also a solution to the

m?

homogeneous part of (1), Av), , +Bv,) =0 and Av, , +Bv, =0, moreover, v} -0 as

m—oand v, —0as m—> —x
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Let us now introduce the space C of all complex n-dimensional vectors. This space can be
represented as a direct sum of two its subspaces, C=C*® C~, C*NnC~=0. Here, both C*
and C~ are the eigen subspaces of operator @, which means that Vv*te C* Qv*e C* and
Yv e C Qv eC~. Moreover, Vvte C* Q"v "> 0as m - +wand Q"v"— w0 as m = —o,
analogously, Ve € C~ Q"v — 0 as m —> — and Q"v ™ — » as m — +x (here, Q™ are the
integer powers of Q). The subspaces C* and C~ obviously depend on the structure of the
spectrum of Q. Namely, C~ is a linear span of all those eigen and adjoint vectors of @ that
correspond to the eigenvalues w, |, | > 1; C* is a linear span of all those eigen and adjoint
vectors of @ that correspond to the eigenvalues u, |u, | < 1. (Clearly, all eigen and adjoint
vectors of Q as a whole form a full system of n linearly independent vectors because Q is
nonsingular, Ker @ =0.) Note, since the spectrum of Q always contains the eigenvalues n,
lu | <1, as well as the eigenvalues u, |p | > 1, none of the subspaces C* and C~ is trivial.
Clearly, the representation of an arbitrary solution »,, to the homogeneous part of (1) as a sum
of two terms, v, = v, + v, (see above), actually implies that v € C* for each m (m > M or
m <0) and v, € C~ for each m (m>M or m <0).

Let us now recall that the solution to system (1) we are looking for should meet boundary
conditions (2). It means that for both semi-infinite intervals of homogeneity, m > M and m <0,
we have to select only decreasing components from the general representation v,, = v} +v,,.
In other words, the solution v,, to (1) satisfies (2) iff v, € C* forall m >M and v, € C™ for
m < 0, or equivalently, v,, =0 for all m > M and v, =0 for all m <0. The latter statement, in
particular, implies that boundary conditions (2) are noncontradictory because the subspaces C™*
and C~ are complementary, C*NC~ =0 and C*® C~ = C. (Note, the two parts of the solution
v,, that correspond to m < 0 and m > M, respectively, are different, both of them are driven by
the RHS f, ., ,, which is concentrated on {m+1/2|m=0,...,M—1}. Therefore, the
requirements v,, =0 for m <0 and v,, =0 for m > M should not cause misunderstandings
since they, of course, do not imply that ¢, and v, are also zero for m >M and m <0,
respectively.)

Clearly, since C* and C~ are the eigen subspaces of @, then the following boundary
conditions at m =0,

voeC, (4a)
and at m=M,
vy, €CT, (4b)

should supplement system (3) in order to guarantee that its solution found for m =0,..., M
will coincide on this finite interval with the corresponding fragment of the solution to (1)-(2).

As mentioned above, the subspaces C* and C* depend on the eigenvalues of matrix Q. One
can explicitly determine these subspaces using the following equalities,

Sv,=0, (5a)

S0y =0, (5b)
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where
S ITIM(Q“MI% (6a)
S+=\ Il—ll(Q—u,J), (6b)

here I is the identity matrix of order n and the matrix products in (6) are calculated in
accordance with the multiplicities of eigenvalues. Indeed, it was proven in [6] that the inclusion
(4a) is equivalent to the fulfilment of equality (5a) (when S~ is defined in (6a)); analogously,
the inclusion (4b) is equivalent to the fulfilment of equality (5b) (when S* is defined in (6b)).
Note, we do not impose any special restrictions on Q in [6], in particular, @ may not have a
basis composed of eigenvectors (or equivalently, may contain Jordan blocks of order more than
1 in its canonical form).

Based on the equivalence of (4) and (5), one can affirm that the solution of problem (3) and
(5) and the solution of problem (1)—(2) coincide for m =0,..., M. It is easy to make sure that
the problem (3) and (5) is well posed in the sense of [3], i.e.,

max |le, |l <c- max 1 I f it 12l (7)

O<sm<M O<sm<gM-—

where the constant ¢ does not depend on M. In the next section, we describe an effective
numerical algorithm for solving (3) and (5).

2. Numerical algorithm

Let us first introduce the projection operators, P* and P~, onto the subspaces C* and C~,
respectively, so that any v € C is uniquely represented as a sum of two terms, v =v* +v~,
where v*=P*'v €C* and v =P v € C". The existence of such a unique representation for
any v € C is simply a reformulation of the fact that C=C* e C".

Note that both matrices S~ and S* (see (6)) are rank-deficient,

def f
rank S” =n", rank S+ % n*,
and clearly n™+ n*=n. Clearly,
dim C"=n—-n"=n", dmCtr=n—-nt=n".

Let us select any n~ linearly independent rows of S~, orthonormalize them, and complement
the resulting set of n~ n-component orthonormal vectors up to the full orthonormal system (of
n vectors). For example, one can use any n* linearly independent rows of S* to construct this
complement. Now, the complex conjugate vectors to those which constitute the above comple-
ment form the basis in C™. Let us designate this basis {e,..., e, +}. Analogously, starting from
the orthonormalization of any #n™* linearly independent rows of §* and then complementing up
to the full system we obtain the basis in C* and designate it {d|,...,d,-}. Let

n*t n
vo=1Y ae,, = ZB‘,dj;

(=1 =1
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we need to find the coefficients a,, i=1,...,n",and B;, j=1,...,n". Since v "+ v~ =v, these
coefficients solve the following linear algebraic system of order n

= A

a,
) 9)] (N (1)
el eyt d v dy? : 0
) v 2) @ v
6'1 e”3 d] dn— a,- i
: =l . | (8)
B
. . . . U(")
( (n) (n) ( :
e .. el d| .o dw :
_ﬁn‘J

The coordinate representation of {e,...,e,-}, {d,,...,d,-} in (8) is written with respect to the
same (“third”) basis as the coordinate representation of v. Now, let D_ be a rectangular matrix
of n* rows and n columns and D, be a rectangular matrix of n~ rows and n columns, so that
the square {(n X n) matrix [g:] coincides with the inverse system matrix from (8),

-1

(1) e (M (1]

el el dl v di?

2 2 3] 2
D,| e el d o dy
o=l o . ©)
B : : :

e A

Then, the operators P~ and P are given by

[ (1)
e .
e? .. e
P = : . |D,, (10a)
(n) (n)
ey’ .. e
P 4
N
e @
Pr= Dg. (10v)
(n) (n)
_d] oo dYs

It is easy to see from (9)—(10) that P* = P* and P~ =P, i.e., the operators P* and P~ are
projections. We will use projecting onto the subspaces C* and C~ while solving problem (3)
and (5).
Let us specify v, = 0 (superscript “/”’ means left) and “integrate” (3) from left to right,
Upor=—Qul+A7 S, 0 m=0,... M1, (11a)
implementing the projection,

Urln+1:P+U;rlHl (I]b)
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(1324

onto the subspace C* at each step. Analogously, let v}, = 0 (superscript “r”” means right) and

“integrate” (3) from right to left,
vp==Q vy B, m=M~—1,..,0, (12a)

projecting onto C~ at each step,
v, =P (12b)

Then, we can justify the following:

” . def . . .
Proposition 1. The vector function v,, = v, + vl m =0,..., M, is the solution to (3) that satisfies

(5).

Proof. It is easy to see that if we “integrate” (3) from left to right,

-1 =
m+1_ Q m+A fm»rl/l* l’[)_o‘

and from right to left,

-l‘r - Sro
m—_—Q m+l+B fm+l/27 vM~07

without projecting onto C* and C7, respectxvely, at each step, then ol —vleC” (e,
vl =P"p}) and b —vl €C* (ic, v, =P ). In other words, v/, and #! have the same

n

projection v} onto C ; analogously, v/ and o/, have the same projection v, onto C™. Let us
designate

=1
v

Y . - FIM N, +
=V, U, eC : - vm v, € C
and also

—1 o o+ —

A m412 = 8mi1,2 = 8ms12  8me1,25

+ _ p+ + - _ p- -
8mr12=P 8ni1n€CT, 8ni12=P 8ni1p€CT,

_1 _ _ _
B m+1/2“‘hm+1/2“ m+1/"+hm+l/7’

+ _ p+ - _ p- -
hpiip=P"h, ,,€CT, mi12=P Ry 1 €CT.
Then,
/ _ f 1
U1 = —va+g;+1/2> U1 = —Ql) +gm+l/7’ (13)
—l =r o — 15
= _Q m+1 +hm+l/2’ vr - _—Q vm+] +hm+1/2 (14)

One can easily see that 4g, ., ,.=Bh, ., and Ag, ., ,»=Bh, . Indeed,

_ —1 _ =1 — -
g;11+l/’Z_A m*—l/Z_—A Bh/ni—l/l_th-(»l/_ th+l/7+th+l/2
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and, consequently, g, ., =Qh, ., and g,,,,,=Qh_ ., , (since C* and C~ are the eigen
subspaces of @), which implies the above statement. Then, multiplying the first of Egs. (13) by
A and the first of Eqgs. (14) by B and adding them, we obtain,

! , ! _ -
A(vm+'l+br:1+l)+B(Um+vrrn)— ;1+1/2+ma+1/2
Agm+|/2+Agm+l/2 Agpi12= fm+l/2’

which means that v, = v}, + v’ solves (3). Moreover, since v, =v} + vy =vi€ C~ and v, =v),
+uvy,=v,€C* the boundary conditions (5) are satisfied. O

Note, the algorithm (11)-(12) for solving problem (3) and (5) can be referred to as a variant
of the well-known approach based on the idea of successive substitution. We, however, see that
(11)-(12) does not require the final, i.e., “resolving” stage, which is generally relevant to the
successive substitution techniques. Instead, we can simply add two quantities, v,’,, +v, =v,,
and thus obtain the desirable solution. This is an essential simplification in comparison with the
general (matrix) successive substitution, it is accounted for by the special form of boundary
conditions (5). The latter are formulated in accordance with the structure of the “growing” and
“decaying’ eigen subspaces of the operator Q.

We will now address the issue of computational stability of the numerical procedure
(11)-(12). Namely, we will show that the spurious (e.g., roundoff) errors arising at all stages of
the computational process cannot be accumulated and therefore cannot cause large errors in
the final solution. Instead of (11), let us consider a real computational process

';(l)=/\[u’
Bhyr= =B, +A [+l m=0,. M1, (15)

+ A

m+1°

= ptp!

m+1 m+l

where 8/ and A’m are the computational errors involved at each step. Generally, these errors
may be caused by the non-precise specification of the RHSs, as well as by the non-precise
specification of the entries of matrices. Note, representation (15) is somewhat rough since we
assume that the computations are conducted in accordance with the exact formulae and then,
the results are altered by introducing the perturbations of order &,

max [8. 1l <e, max [|A Il <e
Osm< O<sm<M

Comparing (11) and (15), one can easily derive:

blL—vl =X, m=0,
=1 l + ol ! - (p+(sl i (16)
U= U =P8, + X, + 1 (—Q)P" (8., ,+A, ), m=1,... .M.

To obtain (16), we take into account that P* is a projection, P*° = P*, and consequently, the
operators P and Q commute, QP*=P*Q, since C* is the eigen subspace of Q; moreover, we
formally let 8}, = 0. Recall now that the subspace C*, which is the image of the projection P*,
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corresponds to those eigenvalues u, of the matrix Q that satisfy | u | < 1. Designate | u'| =
max,, | <, | u,l; obviously, | w'| < 1. Then,

t[.LIlM+I

max (|}, — 5! | <const-e- || P* || (17)

D<m<M 1|
Here, we use the usual maximum norm for the n-component vectors v, || v || = max; _; ., lv'}.
The value of const in (17) does not depend on M. It, however, may depend on the structure of
the canonical form of Q (presence or absence of the nontrivial Jordan blocks), as well as on the
transformation that maps @ from its original to the canonical form. Clearly, since the
dimension n of the matrix Q is fixed we can disregard the last-mentioned dependence and
from (17) conclude that the numerical process (11) is weakly sensitive to the spurious
computational errors.

Analogously, we write instead of (12),

U =AMy,
<r__ -1 -1 _
b= —Q ' +B f, .+, m=M-1,..0, (18)
i)‘l’r'l :P'b;; + /\rIH’
and obtain:
lj':l_vr’r.z=/\'}\4’ sz,
t=M-m (19)

D;, _U;:z =Pw8:;y +A’;v1 + Z (HQ)-—[P_(BII;I'FI +’\rm+l)s sz"“l,...,O,

t=1
which immediately yields the following estimate,
—~ | ,u.’ l —(M+1)

max v, — &, || <const-g- [P ||
Osm<M 1- !}.L’

It (20)
here |u”| =min,, | silul, Tl > 1. To obtain (20), we take into account that P =P,
Q~'"P =P~ Q7', and assume that the perturbations A, and &/, are of order . Again, the value
of const in (20) does not depend on M but may depend on @, the last-named dependence is
not essential for our consideration. Recall now that the final solution is given by v,, =v. +v.,.
Designating &,, = #!, + # and combining (17) and (20), we obtain,

[lM+1 1—|/-Lrl—(M+l)

1—lu
max |lv, =5, |l<const-e-|||P" || —————+ || P || - , 21
O<m<M 1“]#” v 1"“1»" ! ( )

which implies that in solving problem (3) and (5) by means of (11)-(12) the effect of spurious
computational errors does not grow when the number of steps M of the numerical procedure
(11)-(12) increases. Therefore, one can successively use the algorithm (11)-(12) for solving the
well-posed (see (7)) problem (3) and (5). We additionally emphasize here that the projecting
stage of the described algorithm (see (11b) and (12b), respectively) is essential since it enables
to always keep the error in the corresponding “decaying” subspace, see (16) and (19).
Otherwise, the error may (exponentially) grow and the estimate (21) would not hold.
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To conclude this section, we will comment on the question of numerical efficiency of the
algorithm (11)—(12). Obviously, either of the two parts of this algorithm, (11) and (12), requires
two n-order matrix—vector multiplications per node. Indeed, for practical computing we may
combine the stages (11a) and (11b), as well as (12a) and (12b), by calculating in advance the
matrix products PTQ, P*4" ! and P~Q~', P B!, respectively. Therefore, the entire algo-
rithm costs O(4Mn?) floating-point operations. We emphasize here that if the dimension n is
fixed, then the total amount of computations required for solving problem (3) and (5) by means
of (11)—(12) linearly increases with the growth of the number of grid nodes M. On the other
hand, system (3) and (5) can generally be thought of as a linear algebraic system of (M +1) -n
equations with (M + 1) -n unknowns. Therefore, we can implement some elimination proce-
dure to obtain its exact solution. (Note, since (11)-(12) provides an exact solution for problem
(3) and (5), any other method for solving (3) and (5) that we are going to compare with
(11)—(12) should not be iterative but should also provide an exact solution.) Clearly, an original
Gauss method being applied to problem (3) and (5) would require O((M - n)?) operations and
therefore, would be essentially less effective than (11)-(12). We, however, know that the best
direct methods for solving linear algebraic systems may generally require as little as O(N - In N)
operations, here N is the dimension of the system (in our case N =(M + 1) - n). Such methods
usually take into account the sparseness of the system matrix and/or its specific structure. In
our case, we actually consider a (M + 1) -n X (M + 1) - n square matrix, which has two nonzero
block diagonals composed of the standard n X #n square blocks with somewhat non-standard
upper-left and lower-right corners. Though we. do not know if there is an exact O(N-In N)
algorithm for solving the linear algebraic systems of the type (3) and (5), such an algorithm
would at any rate be asymptotically (for large M and fixed n) less effective than the process
(11)-(12) since the latter is linear with respect to M. Note, linear dependence of the required
amount of computations on the dimension of the mesh is relevant to the scalar (one-dimen-
sional) successive substitution techniques.

3. More general formulation

We now admit that some eigenvalue(s) u, of the matrix Q may have an absolute magnitude
equal to unity, | u | = 1. If such an eigenvalue is not multiple, then we may expect system (1)
would have a constant or oscillating eigensolution on its intervals of homogeneity. Otherwise
(i.e., when an eigenvalue p , | u | =1, is multiple), the behavior of the corresponding eigenso-
lutions depends on the structure of the set of eigenvectors of Q. We will further restrict
ourselves by considering only that case when there exist as many linearly independent
eigenvectors corresponding to the multiple eigenvalue u,, |u | =1, as its multiplicity is. In
other words, we do not admit nontrivial Jordan blocks with the unitary (by the absolute
magnitude) entries on the main diagonal in the canonical form of Q. Note, we do not generally
require that Q always has a full system of linearly independent eigenvectors (i.e., n linearly
independent eigenvectors); the requirement of having as many different eigenvectors as the
multiplicity of the corresponding eigenvalue is applies only to those u that | u | = 1. Later on,
in Section 4, we will see that the generalized formulation we are considering here actually
originates from some important practical applications. In the meantime, we only note that
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admitting the nontrivial Jordan blocks that correspond to the multiple eigenvalues w, | u, | =1,
(if any) does not, generally speaking, lead to any essential complications; we simply avoid this
situation since we do not have it in the computational practice.

Since we henceforth assume that all those eigenvalues w, of Q, for which | x| =1, have as
many linearly independent eigenvectors as their multiplicity is, then the corresponding eigenso-
lutions of (1) (on the semi-infinite intervals of homogeneity, m > M and m <0) are either
constant or oscillatory but always bounded. (Otherwise, we would have the polynomially
growing eigensolutions.) Therefore, boundary conditions (2) can no longer be satisfied; instead,
we will require

v, Il <const, as m— +oo. (22a)

More specifically, we can always require that the solution to (1) vanishes as m — —o and be
bounded as m — +x, ie.,

o, Il =0, as m - —oo,
(22b)

v, Il <const, as m— +o.

The reason for such an asymmetry originates from practical applications, it is delineated in [1]
and will also be addressed in Section 4. For the time being, we simply point out that problem
(1) and (22b) is uniquely solvable; in case there are actually no eigenvalues p, |, | =1, in the
spectrum of @ the formulation (1) and (22b) still remains valid and becomes equivalent to
(1)-(2). Note, there are, of course, other possible correct formulations of the infinite-mesh
problem for the case when the spectrum of Q contains the eigenvalue(s) u, |, | = 1.

We now reformulate our definitions of the spaces C* and C~. Again, we require that
C*'NC =0, C*® C =C. The space C, in fact, remains the same as before, i.e., it is the
“decaying to the left” eigen subspace of Q. The space C* is also the eigen subspace of Q but
we now weaken our above condition and only require that the positive (integer) powers of Q
applied to any v*€ C™* always remain bounded. Clearly, C~ is still a linear span of all those
eigen and adjoint vectors of Q that correspond to the eigenvalues u, fu | >1; C* is now a
linear span of all those eigen and adjoint vectors of @ that correspond to the eigenvalues u,
|l <1

Then, we construct a finite-mesh analogue to problem (1) and (22b) (as done in Section 1).
More precisely, we supplement system (3) by special boundary conditions at m =0 and at
m = M that would ensure that the solution of this system found on the finite mesh coincides for
m =0,..., M with the corresponding fragment of the solution to (1) and (22b). Such boundary
conditions for the finite-mesh problem may again be formulated in the form (5). However, we
have to give here a new definition of the matrix S*. Namely, instead of (6) we now write

S = IIL(Q—MJ), (23a)
S*=‘ ITI](Q—M,J)- (23b)

Note, equalities (6a) and (23a) are the same; equalities (6b) and (23b) are different.
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The new finite-mesh problem, i.e., problem (3), (5), and (23), remains well-posed, however,
the value of ¢ in (7) can no longer be independent of M. In our specific case, when @ has the
eigenvalue(s) u,, |, | =1, but does not have the corresponding nontrivial Jordan blocks in its
canonical form, it is possible to show that ¢ becomes proportional to M, ¢ =¢ - M.

The algorithm for solving (3), (5), and (6) described in Section 2, i.e., the computational
process (11)-(12), applies to solving (3), (5), and (23) without any formal changes, except for the
new definition of $* (compare (23b) to (6b)). All estimates of the numerical efficiency of this
algorithm (see Section 2) also remain valid. The only natural difference occurs in justification of
the computational stability of the process (11)-(12) being applied to solving (3), (5), and (23).
Namely, instead of (17) we now have a new estimate,

gt M

max |vl, — 5! || <const,-e- || P* ||

+ t,-M|. 24
Osms<M 1— | const ( )

Here, the definition of x' remains the same as above, inequality (24) simply takes into account
that there are also u,, |u | =1. To obtain the final estimate of type (21), we should now
combine (20) and (24), which yields,

max llv, =0, <e-(c,+c;-M). (25)
Osmg
The quantities ¢, and ¢, in (25) are constants, which depend on [| P |, | P~ |, | &'[, | »"| but

do not depend on M. Estimate (25) naturally agrees with the above-made comment on the
dependence of ¢ on M in the (7)-type inequality for the case when the eigenvalue(s) u,,
| w,| =1, exist(s) in the spectrum of Q.

To conclude this section, we would like to note that the idea of calculating the “growing”
and “‘decaying” subspaces for a homogeneous one-dimensional system and then projecting the
nonhomogeneous contribution onto the corresponding subspace was effectively employed by
Godunov in [2]. Our algorithm, however, markedly differs from Godunov’s orthogonal succes-
sive substitution (see [2]) since we essentially use the constancy of coefficients, as well as the
special form of boundary conditions (5) and (6) or (5) and (23).

4. Practical origins and applications

The one-dimensional problems like (3), (5), and (6) and /or (3), (5), and (23) arise in practical
computations when constructing artificial boundary conditions (ABCs) for the numerical
solution of boundary-value problems initially formulated on infinite domains. These boundary
conditions are typically set at the external (artificial) boundary of the finite computational
domain once the latter is obtained from the original unbounded domain by means of
truncation. Implementation of the ABCs enables completing the “truncated problem” and,
therefore, making it available for solution on the computer.

The issue of setting the ABCs presents a particular interest in computational fluid dynamics,
where a lot of interesting problems have an external nature (e.g., a finite body or system of
bodies immersed in an unbounded fluid flow). In the previous work [6-8], we have constructed
the ABCs for computation of a certain class of the external compressible viscous flows. The
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ABCs [6-8] provide high accuracy of computations and can essentially improve the robustness
of the entire numerical procedure since, contrary to many other techniques, these boundary
conditions may basically be constructed as close to the exact ones as desired. In other words,
the ABCs [6-8] meet the following fundamental requirement. One should be able to uniquely
complement the solution calculated inside the finite computational domain to its infinite exterior so
that the original problem is solved within the prescribed accuracy.

To construct the ABCs [6-8], we first linearize the governing (Navier—Stokes) equations in
the far field (against the constant free-stream background) and then implement the Difference
Potentials Method (DPM) [4,5]. Clearly, after the linearization we obtain a homogeneous
system of linear PDEs with constant coefficients; the domain of definition for this linear system
is an infinite exterior to the computational domain. The central idea of the approach [6-8] is to
equivalently replace the linearized exterior problem by a certain operator equation formulated
at the artificial boundary. The last-named equation may be referred to as being partially
analogous to the Calderon boundary pseudodifferential equations [1]. Once appropriately
resolved, this equation provides highly accurate ABCs for practical computing. The principle
element of the entire construction is a special auxiliary problem (AP) whose Green’s operator
plays in our consideration the role analogous to the role of convolution with the fundamental
solution in the classical potential theory. Namely, the solution of the AP is used for construct-
ing the generalized potential [4,5]. Then, the solution to the exterior linear problem is
represented in the form of this generalized potential and the above-mentioned operator
equation is written with respect to the density of the generalized potential.

The AP is first formulated on the entire plane for the nonhomogeneous counterpart of the
constant-coefficients system of PDEs obtained after the linearization, the RHS for the AP is
always compactly supported. We require that the solution to the AP has the same behavior at
infinity as the behavior of the solution to the original problem (linearized in the far field).
Specifically, we require that all perturbations vanish at infinity, which is natural for the external
viscous flows. Then, we truncate the AP and consider a new formulation of this problem on
some rectangular domain; the solution of the new AP is in a certain sense (asymptotically) close
to the solution of the original AP. Our algorithm for constructing the ABCs requires a repeated
solution of the new AP, which is done by means of variables separation. In doing so, we
implement the Fourier transform in the cross-stream direction and obtain a problem like (3),
(5), and (23) for each wavenumber. Note, the asymmetry in boundary conditions (22b) (i.e., in
boundary conditions (5) and (23)) is accounted for by the physical asymmetry: we require a
strict decay of each Fourier mode upstream and admit selected non-decaying (but bounded)
modes downstream (see [6] for more details). In the process of calculating the ABCs (i.e.,
calculating the matrices of the operators involved), problem (3), (5), and (23) should be solved
many times (for different system matrices and for different RHSs), therefore, the issue of a fast
numerical algorithm for solving such problems appears to be most important. Our computa-
tional experience corroborates the efficiency of the process (11)-(12) as applied to solving (3),
(5), and (23).

Finally, we note that the above-mentioned approach for constructing the ABCs (see [6—8])
may, generally speaking, have an essentially more wide domain of applications than only
external flow problems. Indeed, for many physical formulations, the consideration of a linear
problem (at least) in the far field is reasonable. Since any constant-coefficients system of PDEs
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admits variable separation in the Cartesian coordinates, we can appropriately modify the
technique [6-8] for handling these problems as well. Of course, such a modification will be
based on another governing system, however, the final problem which requires the actual
numerical solution will have a form similar to (3), (5), and (6) or (3), (5), and (23). Therefore,
the computational algorithm described above (see Section 2) can be applied to a new problem
without any changes (the difference will be “hidden” in the structure of system matrices).
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