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We consider fourth order accurate compact schemes, in both space and time, for the 
second order wave equation with a variable speed of sound. For unbounded domains we 
add a fourth order accurate sponge layer to damp the outgoing waves. We demonstrate 
that usually this is more efficient than lower order schemes despite being implicit and 
conditionally stable. Fast time marching of the implicit scheme is accomplished by iterative 
methods such as multi-grid. Computations confirm the design convergence rate for the in-
homogeneous, variable wave speed equation.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The acoustic wave equation describes the propagation of waves in the atmosphere or underwater and can also be used 
as a simplification for modeling electromagnetic waves or elastic waves in a solid. The methods developed here for the 2D 
and 3D acoustic wave equation may be extended to more complicated hyperbolic systems. In particular, the fourth order 
scheme in time is applicable to any second order equation in time (i.e., in which second time derivatives appear). If first 
order time derivatives also appear, then an extension of the method described here is straightforward. In the proposed 
scheme, the time and space portions are discretized separately. Hence, a fourth order approximation in space depends only 
on a similar fourth order discretization for the time harmonic version of the equation. The resulting spatial equation in this 
case is negative definite elliptic rather than non-definite as with the Helmholtz equation.

Even though the formulation is implicit, the overall scheme remains efficient due to the high order of accuracy and the 
use of rapidly converging iterative methods for time marching. Since the spatial equation at each time step is symmetric 
negative definite, conjugate gradient (CG) and multigrid (MG) can be used. Performance is improved by using a 2nd order 
accurate initial guess at each time step from the standard explicit scheme, and this further reduces the number of iterations 
per time step.

In [5,22] we developed a compact fourth order accurate scheme in space and time for the acoustic wave equation in an 
interior region. In this paper, we extend that scheme to an unbounded region. We generalize a damping layer suggested by 
Sochacki et al. [23] that prevents reflections back into the domain, see also [1]. A similar damping layer was proposed by 
Cerjan et al. [6]. In this layer, an additional term containing a first time derivative is added to the wave equation. Gao et al. 
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[11] found that the sponge layer is not as effective as a PML for second order accuracy. Lee and Joo-Min [15] suggested an 
improvement that contains a frequency term and so is most appropriate for wave equations in the frequency domain. The 
sponge layer is a simpler modification to the wave equation than that required by a PML layer and requires fewer variables. 
Thus, one can use a larger layer than the PML but still not have more degrees of freedom. In addition, we shall use an 
improved stretching function than found in [23,11]. In terms of CPU times, the additional term put adds only a negligible 
overhead compared with utt and the calculation of the Laplacian. This is especially true when the more complicated formula 
for a fourth order accurate approximation to the Laplacian is used. On the other hand, the PML complicates the second order 
wave equation by the addition of several terms and requires the solution of several ODEs. So also from the viewpoint of 
computational time the sponge layer can be much thicker without requiring more time. As a further factor, we have seen 
that the addition of the sponge layer does not reduce the allowable time step for stability while a PML frequently requires a 
smaller time step. This smaller step is then required in the entire domain and not just the PML adding considerably to the 
cost of the PML approach.

More importantly, we are able to develop a compact formula that is still fourth order accurate in both space and time, in 
both the interior and the absorbing layer. We were not able to develop a stable fourth order accurate compact discretization 
of a PML for the second order acoustic wave equation. Computations we have performed demonstrate that using a fourth 
order accurate scheme in the interior and a second order accurate scheme for the PML yields a global second order accuracy. 
Hence, we do not present any comparisons between the sponge layer and a PML. We note that, a non-compact 25 point 
stencil for the 2D Helmholtz equation was developed by Chen et al. [7] and improved to a 13 point stencil by Dastour 
and Liao [8,9]. Fourth order accuracy is important to reduce the pollution error inherent in a wave equation [2]. Non-
compact schemes cause difficulties near boundaries and for the Helmholtz equation increase the bandwidth of the matrix 
that is inverted. We note that, Duru and Kreiss [10] achieved fourth order accuracy in the interior for a two dimensional 
waveguide. They used a summation by parts SBP-SAT difference scheme to obtain estimates for the energy and accuracy. 
As such, the scheme is not compact and so the order of accuracy is reduced near boundaries. A final advantage of the 
sponge layer approach is that it is straightforward to apply to a large range of equations. Constructing a PML for the elastic 
equations or other physical systems is difficult especially if one needs high order accuracy.

2. High order discretization of the wave equation in time

2.1. Derivation of the time-marching scheme

We consider the variable coefficient wave equation:

utt = c2�u + F , (1)

where c = c(x) and F = F (x, t) are given, x ∈ R2 or x ∈ R3. For our numerical demonstrations (see Sections 4 and 5), 
we choose a constant c. We wish to solve the initial value problem where equation (1) is supplemented with the initial 
conditions in R2 or R3:

u(x, y, t = 0) = u0(x, y),

ut(x, y, t = 0) = ψ(x, y).
(2)

To reduce the infinite domain to finite size, we consider a bounded computational domain, which is a Cartesian square in 
R2 or cube in R3, and introduce a sponge layer at all its edges or faces that correspond to unbounded regions. We then 
replace (1) with the equation:

utt + p(x, y)ut = c2�u + F , (3)

where p = p(x) is non-zero in the layer, p =0 at the interface with the interior domain, and p is given by an arctangent 
function to some maximum value. At the end of this layer either a homogeneous Dirichlet boundary condition is imposed 
or preferably a local absorbing boundary condition.

We consider a semi-discrete approach by first discretizing the equation in time and later in space. Denote by ht the 
uniform time step so that tn =nht . The first and second central difference operators are given respectively by

δt un = un+1 − un−1

2
,

δtt un = un+1 − 2un + un−1.

The first and second time derivatives are then approximated by

un
t = 1

ht
δt un − h2

t

6
un

ttt +O
(

h4
t

)
,

un
tt = 1

h2
t

δtt un − h2
t

12
un

tttt +O
(

h4
t

)
.
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Substituting into equation (3) we get

1

h2
t

δtt u − h2
t

12
utttt = c2�u − p

(
1

ht
δt u − h2

t

6
uttt

)
+ F . (4)

To find the higher derivatives we differentiate (3) to get

uttt = c2�ut − putt + Ft,

utttt = c2�utt − puttt + Ftt .

Substituting utttt into (4) we get

1

h2
t

δtt u − h2
t

12
(c2�utt − puttt + Ftt) = c2�u − p

ht
δt u + ph2

t

6
uttt + F .

Combining uttt on both sides we get

1

h2
t

δtt u − h2
t

12
c2�utt − h2

t

12
puttt − h2

t

12
Ftt = c2�u − p

ht
δt u + F .

Using the expression for uttt and merging the terms δtt u on both sides, we arrive at the scheme(
1

h2
t

+ p2

12

)
δtt u − c2�u + p

ht
δt u = h2

t

12
c2 δtt�u

h2
t

+ ph2
t

12

(
c2 δt�u

ht
+ Ft

)
+ F + h2

t

12
Ftt . (5)

Next, we explicitly express the finite differences δt and δtt . Then (5) becomes(
1

h2
t

+ p2

12

)
(un+1 − 2un + un−1) − c2�un + p

un+1 − un−1

2ht

= 1

12

(
c2(�un+1 − 2�un + �un−1) + phtc2 �un+1 − �un−1

2
+h2

t pF n
t +h2

t F n
tt

)
+ F n. (6)

Bringing all the terms at step n + 1 to the left hand side and those at steps n and n − 1 to the right hand side we then have

− 1

12
c2

(
1 + pht

2

)
�un+1 + 1

12

(
p2 + 6p

ht
+ 12

h2
t

)
un+1 = F n+1

1 = (7)

1

12

(
c2(−2�un + �un−1) − phtc2 �un−1

2
+ p2(2un − un−1) + ph2

t F n
t + h2

t F n
tt

)

+ 2un − un−1

h2
t

+ c2�un + p
un−1

2ht
+ F n.

By construction, we find that the error is O
(
h4

t

)
, i.e. the scheme is fourth order accurate.

To put this in a more standard form we divide the equation by − 1
12 c2(1 + pht

2 ). Then, (7) can be expressed as a modified 
Helmholtz equation

�un+1 − k2un+1 = Gn+1, (8)

k2 = 1

c2h2
t

1 + pht
2 + p2h2

t
12

1
12 (1 + pht

2 )
, (9)

Gn+1 = − F n+1
1

c2

12 (1 + pht
2 )

.

We can also express k2 as

k2 = 1

φc2h2
t

, where (10)

φ =
1

12 (1 + pht
2 )

1 + pht
2 + p2h2

t
12

= 1

12

⎛
⎝1 −

p2h2
t

12

1 + pht
2 + p2h2

t
12

⎞
⎠ = 1

12
+ O (h2

t ).
3
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F n+1
1 from (7) simplifies to

F n+1
1 = 5

6
c2�un + c2

12
(1 − pht

2
)�un−1 (11)

+
(

p2

12
+ 1

h2
t

)
(2un − un−1) + pun−1

2ht
+ F + h2

t

12
(pFt + Ftt).

If F and its time derivatives are not given analytically then Ft and Ftt , which are multiplied by h2
t , can be approximated by 

central finite differences with second order accuracy without extending the needed levels in time. The initial data u0 and 
u0

t =ψ are given (see (2)). One then obtains an approximation to u1 by combining the Taylor expansion with an equation-
based procedure as follows:

u1 = u0 + ht u0
t + h2

t

2
u0

tt + h3
t

6
u0

ttt + h4
t

24
u0

tttt +O
(
h5

t

)
= u0 + ht u0

t + h2
t

2

(
c2�u0 + F 0

)
+ h3

t

6
(c2�u0

t + F 0
t )

+ h4
t

24

(
c2�

(
c2�u0 + F 0

)
+ F 0

tt

)
+O

(
h5

t

)
.

(12)

If u0 and u0
t are given by explicit formulae, then the expressions of (12) can be computed exactly to give the desired 

approximation. Otherwise, (12) can be approximated by difference formulae. The initial conditions for a scheme of order ρ
should be accurate, in time, to order ρ + 1 [14].

3. High order spatial discretization

We thus have a modified Helmholtz equation (8) with k2 given by (9). Since k2 > 0, equation (8) differs substantially 
from the conventional Helmholtz equation. The quantity k is not a physical wavenumber. It is rather a parameter of the 
discrete approximation that depends primarily on the time step ht .

We approximate the equation by the compact finite difference scheme given in [21] on a Cartesian grid, which is equally 
spaced in all coordinate directions. The scheme is developed in [4] is for an equation with a variable coefficient Laplacian. 
We note that for the equation with constant coefficients in the Laplacian term the schemes of [21] and [4] coincide. In the 
rest of this section, we discuss the 2D, while the corresponding analysis in 3D is similar.

Let us and uc denote, respectively, the sums of the four side and corner points:

us = um+1,n + um−1,n + um,n+1 + um,n−1,

uc = um+1,n+1 + um+1,n−1 + um−1,n+1 + um−1,n−1.

Let gs and gc denote the corresponding sums for the inhomogeneous term of (8). Then, any symmetric compact scheme for 
the Helmholtz equation (8) can be written in the form

A0um,n + Asus + Acuc = B0 gm,n + Bs gs + Bc gc,

where A0, As , and Ac represent, respectively, the coefficients of the center, side, and corner nodes of the compact stencil 
acting on the solution u. The 4th order scheme described in [21] (with k2 replaced by −k2) is given by

A0 = −10

3
− 2

3
k2h2

x , As = 2

3
− k2h2

x

12
, Ac = 1

6
. (13)

We define the stencil operating on the right-hand side of (8) by Bi corresponding to the Ai . Then,

B0 = 2h2
x

3
, Bs = h2

x

12
, Bc = 0. (14)

Define λ(x) = c(x)ht
hx

which we shall refer to as the Courant-Friedrichs-Lewy (CFL) number. In [5], we showed that for the 
interior domain the stability condition is given by λ2 ≤ 3

8 . In [22], we present the scheme in three dimensions and for a 
variable speed of sound.

To preserve fourth order spatial accuracy, the Laplacian that appears in (11) also needs to be approximated to fourth 
order accuracy. One option to do this is to use a fourth order accurate Padé approximation for each second order derivative. 
Thus, the second derivative in each direction would be approximated by

1
(D j+1 + D j−1) + 5

D j = u j+1 − 2u j + u j−1
2

,

12 6 h

4
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where D is an approximation to the second derivative bound by a Padé approximation (rather than central differences). This 
leads to a tridiagonal system which can be rapidly solved. An alternative approach is to note that we have already solved 
(8) for un+1. We then use (8) to find �un+1.

�un+1 = k2un+1 + Gn+1, (15)

which is then stored (we need only store two steps). Thus, when evaluating (11) we use the previously stored �un and 
�un−1 (known to fourth order accuracy). To complete this recursion, we need only �u at the initial and first time step. 
Initially, we know u explicitly and so can calculate �u0 analytically. For the next time step, we have the Taylor series (12)
which gives u1 explicitly to fourth order accuracy. We can compute its Laplacian by either a Padé approximation or by an 
explicit fourth order finite difference formula with a larger stencil. Since the source is compact, u is zero near the boundary 
at time �t and so the larger stencil causes no difficulties near the boundary. Computations show that the two approaches 
yield a similar error and require similar CPU times.

3.1. Stability analysis

We now present a generalization of the stability proof by Britt et al. [5], Smith et al. [22], or Z. Li [16]. The following 
analysis is general provided that the spatial scheme is self-adjoint negative definite. For example, the wave equation can be 
extended to include a self-adjoint Laplacian with variable coefficients. We now consider the effect of the dissipative term 
put on the stability.

We consider the stability analysis for a generalized wave equation

1

c2

∂2u

∂t2
+ p

∂u

∂t
= Lu.

where both c and p are functions of the space variables and p is nonnegative. Let 1
h2

x
Lh be the numerical approximation to 

L (in Section 2.1, L ≡ �), where hx is the uniform spatial grid size and the operator Lh has the following properties:

1. Lh is negative definite, i.e., there exists a real inner product so that (u, v) =(v, u) and (−Lhu, u) ≥ 0. Further, we require 
that 0 <Llower‖u‖2≤(−Lhu, u) ≤Lupper‖u‖2.

2. Lh is self-adjoint, so that (Lhu, v) =(u, Lh v). Hence there exists a symmetric or anti-symmetric matrix M which satisfies 
M2 =Lh . Thus (Lhu, u) =(Mu, Mu), showing that (−Lhu, u) is a norm. Note that, in the case of a one-dimensional PDE, 
Lh is a second derivative while M is a first derivative which is anti-symmetric.

We consider a modified θ scheme, with 0 ≤ θ ≤ 1. We replace 1
12 in (6) with θ i.e., the scheme is fourth order accurate 

when θ =φ= 1
12 + O (h2

t ), see (10). We allow c = c(x) and p = p(x) and replace � in (6) with Lh

h2
x

. Dividing by c2 and setting 
F =0, we obtain from (6)(

1

c2h2
t

+ θ p2

c2

)(
un+1 − 2un + un−1) + p

un+1 − un−1

2c2ht
(16)

= 1

h2
x

Lh
(
θun+1 + (1 − 2θ)un + θun−1) + ht

2h2
x

Lh
(

pθ(un+1 − un−1)
)

= 1

h2
x

Lh
(
θ(un+1 − un) − θ(un − un−1) + un) + ht

2h2
x

Lh
(

pθ(un+1 − un−1)
)
.

Define vn+1 =un+1 −un . Observe that vn+1 −vn =un+1 −2un +un−1 and vn+1 + vn =un+1 −un−1. Multiplying both sides of 
(16) by h2

x and taking the inner product with un+1−un−1=vn+1+vn , we obtain

h2
x

c2h2
t

(1 + θ p2h2
t )(vn+1 − vn, vn+1 + vn) + h2

x

2c2ht
(p(vn+1 + vn), vn+1 + vn)

= (θ Lh(vn+1 − vn) + Lhun, vn+1 + vn) + ht

2
(pθ Lh(vn+1 + vn), vn+1 + vn).

As before, λ(x) = c(x)ht
hx

. Simplifying, we obtain

1

λ2
(1 + θ p2h2

t )(‖vn+1‖2−‖vn‖2) + h2
x

2c2ht
(p(vn+1+vn), vn+1 + vn) (17)

= θ(Lh(vn+1−vn), vn+1+vn)+(Lhun, vn+1+vn) + ht

2
(pθ Lh(vn+1 + vn), vn+1 + vn).
5
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Since Lh is self-adjoint, the cross term in (Lh(vn+1−vn), vn+1+vn) is zero, so that (17) reduces to

1

λ2
(1 + θ p2h2

t )(‖vn+1‖2−‖vn‖2)+ h2
x

2c2ht
(p(vn+1+vn), vn+1+vn)

= θ
(
(Lh vn+1, vn+1)−(Lh vn, vn)

)+(Lhun, un+1+vn) + ht

2
(pθ Lh(vn+1 + vn), vn+1 + vn).

Rearranging yields

1

λ2
(1 + θ p2h2

t )‖vn+1‖2−θ(Lh vn+1, vn+1)+ h2
x

2c2ht
(p(vn+1+vn), vn+1+vn) (18)

= 1

λ2
(1 + θ p2h2

t )‖vn‖2−θ(Lh vn, vn) + (Lhun, vn+1 + vn) + ht

2
(pθ Lh(vn+1 + vn), vn+1 + vn).

We rewrite (Lhun, vn+1 + vn) using the following identity vn+1 + vn =un+1 − un−1 and

(Lhun, un+1) − (Lhun, un−1) = 1

4

[
(Lh vn, vn) − (Lh vn+1, vn+1) (19)

−(Lh(un + un−1), un + un−1) + (Lh(un+1 + un), un+1 + un)
]
.

This is verified by expanding the right hand side. Combining (18) with (19) we get

1

λ2
(1 + θ p2h2

t )‖vn+1‖2 + h2
x

2c2ht
(p(vn+1 + vn), vn+1 + vn)

+
(

1

4
− θ

)
(Lh vn+1, vn+1) − 1

4
(Lh(un+1 + un), un+1 + un) (20)

= 1

λ2
(1 + θ p2h2

t )‖vn‖2 +
(

1

4
− θ

)
(Lh vn, vn) − 1

4
(Lh(un + un−1), un + un−1)

+ ht

2
(pθ Lh(vn+1 + vn), vn+1 + vn).

Define

Sn = 1

λ2
(1 + θ p2h2

t )‖vn‖2 +
(

1

4
− θ

)
(Lh vn, vn) − 1

4
(Lh(un + un−1), un + un−1).

Then, (20) is equivalent to

Sn+1 = Sn − h2
x

2c2ht
(p(vn+1 + vn), vn+1 + vn) + ht

2
(pθ Lh(vn+1 + vn), vn+1 + vn).

However,

pmin‖vn+1+vn‖2 ≤ h2
x

2ht
(p(vn+1+vn)), vn+1 + vn)) ≤ pmax‖vn+1+vn‖2.

In addition, Lh is negative definite and so if p is constant then (pLh(vn+1 + vn), vm+1 + vn) is nonpositive. Hence, the 
quantity Sn is non-increasing during the calculation. To prove stability it remains to show that Sn is equivalent to a norm. 
We stress that the conditions for stability, i.e., the CFL condition, depend only on the properties of the spatial operator and 
are not affected by the additional term put . Thus, the maximal time step allowed is independent of the dissipative layer 
that we have added.

We now check the stability of the scheme in two cases:

1. θ ≥ 1
4 : Since Lh is negative definite, every term in Sn is positive. Hence, defining ‖u‖2

E= Sn , we have energy loss of ‖u‖E , 
and the scheme is unconditionally stable.

2. 0 ≤θ < 1
4 : We now use the assumption that 0 <Llower‖u‖2 ≤ (−Lhu, u) ≤Lupper‖u‖2. We then get(

1

λ2
−

(
1

4
− θ

)
Lupper

)
‖vn‖2 + Llower

4
‖un + un−1‖2 ≤ Sn ≤(

1
2

+
(

1 − θ

)
Llower

)
‖vn‖2 + Lupper ‖un + un−1‖2.
λ 4 4

6
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Therefore, Sn is equivalent to the norm ‖un − un−1‖2 + ‖un + un−1‖2 if and only if 1
λ2 − ( 1

4 − θ
)

Lupper ≥0. Also ‖un −
un−1‖2 + ‖un + un−1‖2 = 2(‖un‖2 + ‖un−1‖2). Thus, when θ < 1

4 the scheme is stable provided that

max
x

λ(x)2 ≤ 1( 1
4 − θ

)
Lupper

.

For θ = 1
12 , this yields λ2 ≤ 6

Lupper
which is 50% larger than for the explicit scheme θ =0. For the five point second order 

central difference stencil, Lupper =8 and the stability condition is λ ≤√
0.75. For a fourth order spatial approximation to the 

modified Helmholtz equation, the value of Lupper depends on the details of the scheme.
While we have derived the stability limit on the time step, there are occasions when one wishes to use a larger time 

step. This may occur because there are regions with small grid cells that locally restrict the time step, which then implies a 
globally small time step. Another scenario is when there are several wave speeds. The time step is then limited by the fastest 
wave, which may be physically negligible. One way to extend the time step beyond the CFL limit is to perturb the unstable 
eigenvalues or, alternatively, use filtering of the high frequencies. Accuracy can be kept by using dispersion transforms. This 
allows a time step 2-3 times larger than the CFL limit, see Gao et al. [12,13] and also [17]. A different approach is to use 
deep learning to train the scheme. This allows a much larger time step without any loss of accuracy, see [19].

4. Numerical simulations in 2D

In this section we will present several 2D computations demonstrating the effect of the dissipative layer. The next section 
will present several 3D results. The two and three dimensional results were produced by two independent codes developed 
by the first two authors. Therefore, the details are not always identical.

4.1. Scheme implementation

In order to construct an exact solution it is sufficient to consider F as a function of x and y but not t . This simplifies 
(11). We rewrite (7) as:(

p2

12
+ p

2ht
+ 1

h2
t

)
un+1 −

(
c2

12
+ phtc2

24

)
�un+1 =

(
p2

6
+ 2

h2
t

)
un −

(
p2

12
− p

2ht
+ 1

h2
t

)
un−1

+
(

5c2

6

)
�un +

(
c2

12
− phtc2

24

)
�un−1 + F .

To ease the notation, divide by the coefficient of un+1 and set:

ω1 =
c2

12 + pht c2

24
p2

12 + p
2ht

+ 1
h2

t

, ω2 =
p2

6 + 2
h2

t

p2

12 + p
2ht

+ 1
h2

t

, ω3 =
p2

12 + 1
h2

t
− p

2ht

p2

12 + p
2ht

+ 1
h2

t

,

ω4 =
5c2

6
p2

12 + p
2ht

+ 1
h2

t

, ω5 =
c2

12 − pht c2

24
p2

12 + p
2ht

+ 1
h2

t

, ω6 = 1
p2

12 + p
2ht

+ 1
h2

t

.

Therefore,

un+1 − ω1�un+1 = ω2un − ω3un−1 + ω4�un + ω5�un−1 = G,

which conforms with (8). We use the 3 × 3 stencils from (13) and (14) to construct the following matrices:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 ... 0 0 0 0 ... 0 0 0 0 ... 0 0 0 0 ... 0 0
0 1 ... 0 0 0 0 ... 0 0 0 0 ... 0 0 0 0 ... 0 0
...

... ...
...

...
...

... ...
...

...
...

... ...
...

...
...

... ...
...

...

0 0 ... Ac As Ac 0 ... As A0 As 0 ... Ac As Ac 0 ... 0 0
0 0 ... 0 Ac As Ac ... 0 As A0 As ... 0 Ac As Ac ... 0 0
...

... ...
...

...
...

... ...
...

...
...

... ...
...

...
...

... ...
...

...

0 0 ... 0 0 0 0 ... 0 0 0 0 ... 0 0 0 0 ... 1 0
0 ... 0 0 0 0 ... 0 0 0 0 ... 0 0 0 0 ... 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

7
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Fig. 1. Damping profile examples for different α values.

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 ... 0 0 0 0 ... 0 0 0 0 ... 0 0 0 0 ... 0 0
0 1 ... 0 0 0 0 ... 0 0 0 0 ... 0 0 0 0 ... 0 0
...

... ...
...

...
...

... ...
...

...
...

... ...
...

...
...

... ...
...

...

0 0 ... Bc Bs Bc 0 ... Bs B0 Bs 0 ... Bc Bs Bc 0 ... 0 0
0 0 ... 0 Bc Bs Bc ... 0 Bs B0 Bs ... 0 Bc Bs Bc ... 0 0
...

... ...
...

...
...

... ...
...

...
...

... ...
...

...
...

... ...
...

...

0 0 ... 0 0 0 0 ... 0 0 0 0 ... 0 0 0 0 ... 1 0
0 ... 0 0 0 0 ... 0 0 0 0 ... 0 0 0 0 ... 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Finally, we directly solve Aun+1 = BG to get un+1. To ensure fourth order accuracy and reduce computational complexity, 
in the first time step we calculate �u0 and �u1 to 4th order accuracy. For the next time steps we calculate �un+1. All 
ωk, 1 ≤ k ≤ 6, are dependent on the damping profile p. In the interior we set p =0 and in the sponge layers we create a 
damping profile:

p(s) = p0 arctan(α(2s − 1)), s ∈ [0,1].
This creates a one-dimensional damping profile. We use this profile for the sponge layers on each of the four boundaries. 
For example, for the top boundary where x ∈ [0, π ] and y ∈ [−π

2 ,0
]
, we get

p(x, y) = p0 arctan

(
α

(
2

(
1 + 2

π
y

)
− 1

))
We use similar expressions for the other boundaries. We first normalize the damping profile so that the values of p are 
between 0 and 1, and then multiply the values by a factor p0, so the final profile values are between 0 (on the interface 
with the interior) and p0 (on the outer boundary, end of the sponge layers). Based on numerical tests, a small value of p0
results in less absorption in the sponge layers and a large value of p0 results in reflections from the interface between the 
sponge and the interior. To choose p0 we conducted a series of numerical experiments, enlarging the value and monitoring 
the total energy in the system to determine the value that leads to the lowest energy (best absorption) and we achieved 
that in this setup p0 =2105 was a good choice in this trade-off. On the corners, we arbitrarily set the damping profile as one 
of the horizontal boundaries and achieved sufficiently good results and there was no need to create a complex definition for 
the corners. The choice of α dictates how steep the damping profile is. A rather flat profile results in low absorption and a 
steep one produces numerical artifacts. We chose α=5 using trial and error. For each side of the domain (upper, lower, left 
and right boundaries) we create an appropriate profile and adjust the coefficients ωk accordingly. Examples of different one 
dimensional damping profiles are shown in Fig. 1 (before normalization between 0 and 1).

The initial condition is a compactly supported Gaussian of the form Ae
−

(
(x−x0)2+(y−y0)2

)
2σ and for the numerical tests we 

set A =σ =1. The initial velocity is set to ut(x, y, t = 0) ≡ 0. We use the above implementation to iterate over Nt =400
time steps on a grid of size Nx × N y with sponge size Ns . The values of Nx, N y and Ns vary in different tests. We chose 
�t = 10−5. to comply with the CFL condition, and �x = �y = π

Nx
, so the spatial size is [0, π ] × [0, π ].

4.2. 2D results

As mentioned above we were not able to construct a stable compact fourth order accurate scheme for a PML that ter-
minates the time dependent acoustic wave equation. The existing algorithms in the literature are not compact. As noted 
8
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Fig. 2. Graph of the error over time for a single mesh and varying sponge layer thickness.

Fig. 3. Graphs of the error and energy over time for different meshes and scaling sponge layer thickness.

above most of them are for the Helmholtz equation. The scheme of Duru and Kreiss [10] is also non-compact and requires 
a completely different scheme in the interior based on summation by parts. Hence, we do not present any comparisons 
between the fourth order accurate sponge layer and a PML alternative. To check the accuracy we compare the two dimen-
sional numerical solution u ABC on a grid with the sponge layers �ABC to the solution uL on a much larger grid, without 
sponge layers �L . The large grid simulates open boundaries. When comparing the two grids, we compute the numerical 
artifacts that return from the sponge layers back to the domain. The grid �L is of size 3Nx × 3N y and the spatial size is set 
to [−π, 2π ] × [−π, 2π ]. The initial condition on both grids is the same. For �L , we set p(z) = 0 so there is no absorption 
at all. We then measure the difference in the interior of both domains ([0, π ] × [0, π ]). We calculate:

error(t) = 1

Nx · N y
‖u ABC (x, y, t) − uL(x, y, t)‖2 , (x, y) ∈ [0,π ] × [0,π ].

In Fig. 2, we display the error for a mesh of size 75 × 75 for different sponge layer thicknesses. The error is a function 
of time. We observe that the error decreases when the thickness of the sponge layer increases. We again stress that the 
sponge layer requires only one extra variable while a PML requires several new variables plus the solution of ODEs. So, for 
example, the sponge layer with 30 points requires less storage and CPU than a second order accurate PML with 10 points. 
Presumably a fourth order accurate PML would require even more storage and CPU time.

We wish to determine the order of accuracy of the proposed method. We compute the error only in the interior domain 
when using the sponge layer. In addition, we compute the error on the interior when using large grid �L . Before the wave-
front has an initial impact on the boundary of the interior, both errors are similar and the difference is 0. We are interested 
only in the error after the initial impact. To calculate the order of accuracy we first calculate the norm over all the time 
steps (per grid): errormesh = 1

Nt
‖error(t)‖2. We do this for multiple grids by increasing the grid size. Assuming the error 

is bounded by: errormesh ≤ α0hk0
mesh , we compute the error rate by: ErrorRate =

log(errormesh1
)

log(errormesh2
)

log(hmesh1
)

log(hmesh2
)

. Here, mesh1 and mesh2 are 

different grids (of different size). The mesh sizes we test have: 35 × 35, 50 × 50 and 65 × 65 interior points. The sponge 
size scales with the number of points, so the sizes are 17, 25 and 32 respectively (half of the number of points in the x
direction). The error rate between grids 35 × 35 and 50 × 50 received is 10.47 and between 50 × 50 and 65 × 65 is 4.16, 
ensuring the desired fourth order of accuracy. In Fig. 3a, we display the error for the different grid sizes and Fig. 3b shows 
the decrease in the energy (L2-norm) in time and shows how the absorption causes the energy to decrease.
9
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5. Numerical simulations in 3D

5.1. Test solution

For the 3D numerical simulations, we consider the test problem described in Appendix A. Define the test solution as 
(A.3) with a compactly supported source term (A.5) on the ball of radius ε=3.0 generated by the speed c(x, y, z) =1. The 
smooth function S in (A.2) is given by S(t) = sin12 (

πt/4
)
χ(0,∞) , the central point is (x0, y0, z0) =(0, 0, 0), the order of the 

smooth step function (A.4) is m =12, the translation is t0 =1, and the multi-index is β=(1, 0, 0).
By construction, the test solution is zero for a short time initially, and then it starts radiating from the origin outward. 

The shift t0 =1 guarantees the initial data are zero and the source term is zero in the beginning. Then, the test solution 
provides continuous output to the sponge layer and the multi-index β = (1, 0, 0) generates asymmetry with the test solution 
to further test the capabilities of the sponge layer.

5.2. Nonnegative function p(x, y, z)

The nonnegative function p(x, y, z) is a linear combination of univariate functions. The construction is simple and avoids 
any special considerations in the corner regions of the sponge layer. Given the computational domain [−l, l]3 and the sponge 
layer thickness dl, define the nonnegative function

p(x)(x) =

⎧⎪⎨
⎪⎩

p0s((x − l + dl)/dl) if l − dl < x ≤ l,

0 if −l + dl ≤ x ≤ l − dl,

p0s((dl − l + x)/dl) if −l ≤ x < −l + dl,

(21)

where p0 > 0, the shape function is s(ξ) = 1
2 + arctan (α(2ξ−1))

2 arctan (α)
for ξ ∈ [0, 1], and α=5. Then, we define the nonnegative 

function

p(x, y, z) = p(x)(x) + p(y)(y) + p(z)(z),

where the univariate functions are defined in (21). In principle, the shape function s(ξ) can be any smooth increasing 
function satisfying 0 ≤ s(ξ) ≤ 1 where s(0) =0 and s(1) =1. For example, we could use the smooth shape function s(ξ) =
exp (1 − 1/ξ) for ξ ∈ (0, 1], which satisfies 0 = dk s

dξk (0+) for k = 0, 1, 2, . . . However, we observed that the results are fairly 
insensitive to the shape of the profile. So, we will only present the results for the arctangent damping profile. For more 
details on this smooth shape function and how smooth damping profile affects the performance of a perfectly matched 
layer see [18].

5.3. 3D solver

To advance the time marching scheme, we need to solve a modified Helmholtz equation (8). This equation is solved 
by a multigrid method. See [22] for several fourth order compact discretizations of the modified Helmholtz equation on a 
uniformly discretized cube. The results presented here used the Padé approximation. For the multigrid method, we utilize 
V-cycles, Gauss-Seidel iterations, full weighting, tri-cubic interpolation, and standard coarsening for the cycle type, smoother, 
restriction operator, prolongation operator, and construction of the coarse grids, respectively. See [22] for a short summary of 
the multigrid method and application to the modified Helmholtz equation. See [24,3] for a thorough description of multigrid 
methods. Because the modified Helmholtz operator is symmetric and negative definite, the multigrid converges very rapidly.

5.4. 3D results

We now investigate the absorption properties of the sponge layer on various grids. We stress again that, there is no 
compact fourth order PML and so we are not able to compare the number of added variables needed by the compact 4th 
order sponge layer with a corresponding PML.

The error that we calculate at each time step is quantified using either the discrete L2 norm or else the ∞ norm. The 
discrete L2 error on the upper time level is given by

errorL2(tn+1) =
√

h3
∑

(xi ,y j ,zk)∈�vac

(un+1(xi, y j, zk) − utrue(xi, y j, zk, tn+1))2,

and the infinity error on the upper time level is given by

error∞(tn+1) = max(xi ,y j ,zk)∈�vac |un+1(xi, y j, zk) − utrue(xi, y j, zk, tn+1)|,
where h is the uniform grid size in space, utrue is the test solution described in Section 5.1, and �vac is the computational 
domain without the sponge layer. The overall error is calculated as the supremum of either errorL2(tn+1) or error∞(tn+1)
10
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Fig. 4. Error history of the 3D test solution where p0 =1.0, the computational domain is the cube [−15.0, 15.0]3, and the sponge layer thickness is allowed 
to vary. A uniform 257 × 257 × 257 grid with size h =30/256 and constant time step ht =297/2560 were utilized for each graph.

Fig. 5. Error history of the 3D test solution where dl =6.0, the computational domain is the cube [−15.0, 15.0]3, and p0 is allowed to vary. A uniform 
257 × 257 × 257 grid with size h =30/256 and constant time step ht =297/2560 were utilized for each graph.

over all time levels. Since our multigrid method uses standard coarsening, we always discretize the computational domain 
using a (N + 2) × (N + 2) × (N + 2) grid where N =2 J − 1 for some integer J . We use a uniform grid size h =2l/(N + 1)

and uniform time step ht = 99h/100 in all of the simulations. As a consequence, the convergence rate is measured using 
the quantity

convergence rate = error2h/errorh/log (2.0).

To increase the absorption in the sponge layer, we consider the parameter p0 and the thickness of the sponge layer 
dl. Fig. 4 shows the error history where p0 =1 and the thickness of the sponge layer varies on the computational domain 
[−15.0, 15.0]3. Between t =0 and t =6, all the curves coincide because the test solution (A.3) hasn’t had enough time to 
penetrate the sponge layer. When t > 20.0, the remaining artificial reflections from the sponge layer have had enough time 
to reenter the interior region and pollute the solution. Clearly, as the sponge layer thickness increases, the error decreases. 
On the other hand, Fig. 5 shows the error history when dl =6.0 and p0 of (21) is allowed to vary on the computational 
domain [−15.0, 15.0]3. When t ≈ 10.0, the plots deviate from one another since the test solution is beginning to penetrate 
the sponge layer. Between t=10.0 and t=20.0, it is evident that as p0 increases, the error grows. So, there doesn’t appear 
to be any advantage to increasing p0 beyond 1.0.

Fig. 6 shows the overall error when the thickness dl is fixed and p0 varies for several values of dl on the computational 
domain [−15.0, 15.0]3. One can see that changing p0 carries only a very small benefit. When dl ∈ {2.0, 4.0, 6.0}, doubling p0
from 1 to 2 reduces the error. Unfortunately, increasing p0 beyond 2.0 produces no additional reduction in the overall error. 
When dl ∈ {8.0, 10.0}, increasing p0 beyond 1.0 produces no benefit whatsoever since the error increases as p0 increases. 
We emphasize that, regardless of the value of p0, increasing the thickness of the layer always decreases the error. Hence, 
instead of trying to optimize the pair (p0, dl), we set p0 =1 and then choose the best sponge thickness dl to produce the 
desired level of accuracy.
11
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Fig. 6. Error versus p0 of the 3D test solution on [−15.0, 15.0]3 for various sponge thicknesses dl. A terminal time of 40.0, uniform 257 × 257 × 257 grid 
with size h =30/256, and constant time step ht =297/2560 were utilized for each simulation.

Fig. 7. Error history of the 3D test solution for �vac =[−8.0, 8.0]3, p0 =1, and varying sponge layer thickness dl on a 257 × 257 × 257 grid. For each case, 
the uniform grid size is h =(16+2dl)/256 and uniform time step is ht =99h/100 for a total of 900 time steps.

In our previous simulations, the computational domain was fixed and the thickness was allowed to vary. Then, we 
observed that increasing the thickness of the sponge layer decreased the error. However, this comes at the expense of 
shrinking the vacuum region, �vac. We now consider the case where �vac is fixed and p0 = 1, while the sponge layer 
thickness varies. If the sponge layer is too thin, it will produce noticeable spurious reflections. Increasing the thickness 
of the sponge layer will decrease these spurious reflections. However, as we increase dl while keeping the �vac and the 
grid dimension fixed, the discretization error of the fourth order compact scheme will increase because the grid size will 
increase. Therefore, we need to consider both these effects when choosing dl.

Fig. 7 shows the error history of the test solution on a 257 × 257 × 257 grid for various sponge thicknesses where 
�vac =[−8.0, 8.0]3 is fixed. All error profiles for t < 9.0 have a similar shape. The solution hasn’t had enough time to 
penetrate the sponge layer so there can’t be any reflection errors, which means the overall error is due solely to the 
discretization error. After t ≈ 10.0, the error for each dl rises due to the spurious reflections from the layer back into �vac. 
Then, the error flattens. The thicker the layer, the slower the error grows and the smaller its value is for large times. 
This indicates that the sponge layer is absorbing more effectively as the thickness of the layer increases. However, when 
increasing the sponge layer thickness from dl =6.0 to dl =7.0, the improvement in the error becomes marginal. This suggests 
that the reduction in the reflection error has been balanced by the growth in the discretization error. If we further increase 
the thickness of the sponge layer while holding �vac fixed, the increase in the discretization error will exceed the decrease 
in the reflection errors.

In Fig. 8, we let �vac =[−8.0, 8.0]3 be fixed while the sponge layer varies in thickness for several different grids. In-
creasing the thickness of the sponge layer steadily decreases the error until the minimum error is reached at some optimal 
thickness. Beyond this optimal thickness, the additional increase in the discretization error due to a larger domain and 
hence, coarser grid, outweighs the decrease in the reflection error. Grids with higher dimension require a thicker layer to 
reach the optimal value of the error. Table 1 is a companion to Fig. 8 and lists the settings which produce the optimal error 
for each grid depicted in Fig. 8.
12



A. Kahana, F. Smith, E. Turkel et al. Journal of Computational Physics 460 (2022) 111161
Fig. 8. Error of the 3D test solution for �vac =[−8.0, 8.0]3, p0 =1, and varying sponge layer thickness dl on several grids. Given the (N +2) ×(N +2) ×(N +2)

grid, the uniform grid size is h =(16+2dl)/N+1 and the uniform time step is ht =99h/100. We use a total of 225, 450, and 900 time steps on the 65 × 65 × 65, 
129 × 129 × 129, and 257 × 257 × 257 grid, respectively. In space, we utilize the infinity norm.

Table 1
Optimal parameters of the 3D test solution for �vac=[−8.0, 8.0]3 and the same settings as in Fig. 8.

Grid Optimal thickness Grid in vacuum region Error

65 × 65 × 65 1.50 59 × 59 × 59 1.320e-02
129 × 129 × 129 5.50 77 × 77 × 77 1.886e-03
257 × 257 × 257 10.00 113 × 113 × 113 3.344e-04

Fig. 9. Error history of the 3D test solution on [−20.0, 20.0]3 for dl =14.0 for various grid dimensions. Given the (N + 2) × (N + 2) × (N + 2) grid on the 
computational domain, the uniform grid size h = 40/(N + 1), and the uniform time step ht = 99h/100.

Based on the previous observations, to do a proper grid refinement study one needs a sufficiently thick layer to damp 
the artificial reflections on the finest grid. However, this thickness will greatly exceed the optimal thickness on coarser grids 
so that on those grids the discretization error will dominate. As the grid is refined, once can expect convergence with the 
rate O (h4).

To demonstrate fourth order convergence, we consider the test problem on [−20.0, 20.0]3 with dl =14.0. Fig. 9 shows 
the error history of the test problem on a 65 × 65 × 65, 129 × 129 × 129, and 257 × 257 × 257 grid. Table 2 demonstrates 
that fourth order convergence is indeed met on the three grids.

6. Conclusions

We have applied a damping layer to the time dependent acoustic wave equation in both two and three dimensions. 
We have adapted the previously developed compact fourth order accurate finite difference schemes for the wave equation 
to computing the solutions on exterior regions. To truncate the unbounded domain of the solution, we have extended the 
damping layer suggested by Sochacki et al. [23] to fourth order accuracy in both space and time. This requires only the 
13
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Table 2
Convergence of the 3D test solution on [−20.0, 20.0]3 for dl =14.0. Given a (N + 2) × (N + 2) × (N + 2) grid on the computational 
domain, the uniform grid size h = 40/(N + 1), and the uniform time step ht = 99h/100.

Grid domain Grid vacuum region Error Conv. rate CPUTIME (sec.)

65 × 65 × 65 21 × 21 × 21 5.436e-01 —- 65.2
129 × 129 × 129 39 × 39 × 39 3.824e-02 3.83 1281.0
257 × 257 × 257 79 × 79 × 79 2.140e-03 4.16 19255.6

addition of one variable per grid point within the layer. Thus, one can use a larger layer than the PML but still not have 
more degrees of freedom. In addition, we have used improved stretching function. In terms of CPU times, the additional term 
put adds only a negligible overhead compared with utt and the calculation of the Laplacian. Moreover, we have thoroughly 
analyzed the stability of our fourth order accurate scheme as applied to the damped wave equation in the layer. It turns 
out that the addition of the sponge layer does not reduce the allowable time step for stability. At the same time, a PML 
usually requires a smaller time step. This smaller step is then required in the entire domain and not just the PML adding 
considerably to the cost of the PML approach. Computations demonstrate that one needs the same order of accuracy in an 
absorbing layer (PML or sponge) as in the interior in order to preserve the global accuracy. We again stress that we were 
not able to construct a stable compact fourth order approximation for the PML equations. Preliminary results show that this 
increase may be slightly greater than linear.

A final advantage of the sponge layer approach is that it is straightforward to apply to a large range of equations. 
Constructing a PML for the elastic equations or other physical systems is nontrivial. As we have remarked developing a 
compact fourth order accurate PML for the wave equation in second order form is very nontrivial. This becomes even more 
difficult for the elastic equations or Maxwell’s equations. On the other hand, developing the sponge layer and extending it 
to higher order is much easier.
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Appendix A. Generating compactly supported test problems

Consider the wave equation with a point source

∂2u

∂t2
− c2�u = δx(x − x0)δy(y − y0)δz(z − z0)S(t) (x, y, z, t) ∈R3 × (0,∞) (A.1)

where the wave speed is constant, the initial conditions are zero, δξ (ξ) is the one dimension Dirac delta function, and 
(x0, y0, z0) ∈R3 is the location of the point source. A solution to (A.1) is given by

u(x, y, z, t) = S(t − t0 − r/c)

4πr
with r =

√
(x − x0)2 + (y − y0)2 + (z − z0)2, (A.2)

which is singular at (x, y, z) = (x0, y0, z0). We generate a smooth solution which resembles (A.2) without the singularity at 
(x0, y0, z0) using the strategy shown in [20, Section 8.2].

Consider a general solution of the form

uTest
m,ε(x, y, z, t) = Dβ

(
φm(r/ε)S(t − t0 − r/c)

4πr

)
, (A.3)

where the multi-index β = (β1, β2, β3), the derivative Dβ = ∂
β1
x ∂

β2
y ∂

β3
z , and the smooth step function
14
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φm(x) =

⎧⎪⎨
⎪⎩

0 if x ≤ 0,

xm+1 ∑m
k=0

(m+k
m

)(2m+1
m−k

)
(−x)k if 0 < x < 1 ,

1 if x ≥ 1.

(A.4)

This satisfies dkφm

dxk (0+) = 0 = dkφm

dxk (1−) for k = 1, . . . , m. By construction, φ(r/ε)/r = O(rm) as r ↓ 0, which implies (A.3)
is smooth in a neighborhood of (x0, y0, z0) provided m is sufficiently large. In addition, (A.3) is equal to (A.2) on the 
complement of the ball of radius ε centered at (x0, y0, z0) if β = (0, 0, 0). Finally, the smooth test solution (A.3) satisfies 
the constant speed wave equation, where the source term

F Test
m,ε (x, y, z, t) � Dβ

(
cφ′

m(r/ε)S ′(t − t0 − r/c)

2πεr
− c2φ′′

m(r/ε)S(t − t0 − r/c)

4πε2r

)
(A.5)

is compactly supported in space on the ball of radius ε centered at (x0, y0, z0) ∈ R3 and t0 is chosen sufficiently large to 
guarantee that the initial data is zero.
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