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Abstract
A photonic crystal ring resonator (PCRR) is a micro-scale optical device that combines a closed-loop waveguide with a 
light input and output. PCRRs are constructed with periodically placed scattering rods where the exclusion of rods is used to 
form the path of a waveguide. We simulate PCRRs numerically using a non-iterative domain decomposition approach that 
is insensitive to jumps in material properties, in particular, those between the scattering rods and surrounding medium. To 
approximate the governing Helmholtz equation, we use a compact fourth-order accurate finite difference scheme combined 
with the method of difference potentials (MDP). The MDP renders exact coupling between the decomposition subdomains 
and maintains high-order accuracy for non-conforming boundaries/interfaces on regular grids.

Keywords Scattering rods · Periodic lattice · Helmholtz equation · Method of difference potentials · Exact coupling 
between non-overlapping subdomains · High-order accurate compact finite difference schemes

1 Introduction

A waveguide is a structure that allows the propagation only 
in a particular direction, such as sound passing through an 
instrument or air ducts. In optics, a ring resonator (Fig. 1a) 
is a closed-loop waveguide paired with a light input and 
output. The ring’s geometry determines certain resonant fre-
quencies that propagate from the input, around the ring, and 
out at the output. Because non-resonant frequencies will not 
propagate into and around the ring, the ring resonator acts 
as a filter where a range of frequencies is the input into the 
system, only allowing the resonant frequencies to propagate 
to the output channel.

These resonators are used in a variety of optical applica-
tions, notably in fiber-optic cables. Recent applications are 
in the field of biosensing [1, 2], where ring resonators are 
integrated into micro-scale electronics, and an example of a 
dual-ring sensor is presented and analyzed in [3]. Unfortu-
nately, such integrated waveguide ring resonators are known 
to suffer exponential propagation losses with the reduction 
of the ring radii. That sets a practical lower limit on the 
radius of the ring at a few micrometers [1], though work in 
[4, 5] suggests that the use of smart materials may be another 
way to alleviate this limitation.

For such micro-scale applications, photonic crystal ring 
resonators (PCRRs) offer a promising alternative, proving 
less sensitive to size-dependent losses [1]. PCRRs are con-
structed with periodically placed scattering rods where the 
exclusion of rods is used to form the path of the waveguide 
(e.g., Fig. 1b), with the rods themselves serving as a dis-
crete alternative to a continuous wall. As a signal propagates 
through the waveguide, the rods refract and transmit the sig-
nal. This allows the signal to propagate down the open chan-
nels and into the central ring resonator in the usual fashion. 
Resonant frequencies can be tuned with the radius of the 
ring, as well as the size, material, and placement of the rods. 
Additionally, the periodic lattice of PCRRs can be struc-
tured with different symmetries (e.g., square, hexagonal, 
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octagonal, etc...) [6] depending on the application. A more 
advanced PCRR structure for a multifunctional logic gate is 
proposed and analyzed in [7] which explores certain nonlin-
ear effects (Kerr nonlinearity) that arise as the structure (and 
applications) become more intricate.

Simulating the actual three-dimensional structure is 
costly, so two-dimensional simulations are commonly used 
as a surrogate for testing the efficacy of different arrange-
ments of rods [1]. In the frequency domain, simulations 
involve solving the Helmholtz equation:

where k represents the wavenumber and is piecewise 
defined, representing the material properties of the back-
ground (typically air) or the rods individually. Due to the 
composite nature of the geometry of PCRRs, finite element 
methods have been the traditional solution method [8, 9]. 
These involve sophisticated grids with high refinement levels 
to accurately resolve the space around each rod, leading to 
costly simulations.

Alternatively, the structure of the PCRR suggests the use 
of a domain decomposition method (DDM), where each rod 
is handled in its own subdomain (see Fig. 2). Two known 
roadblocks for common iterative DDMs are cross-points 
(points where more than two subdomains meet) and dis-
continuous wavenumbers, both of which will be present in 

Δu + k2u = f

straightforward decompositions of a PCRR. Recent DDMs 
have found ways to mitigate these issues [10, 11], often 
through the use of context-dependent preconditioners or 
(computationally expensive) auxiliary variables. In our 
paper [12], we present a non-iterative DDM that is inher-
ently insensitive to both cross-points and discontinuous 
wavenumbers. This insensitivity is due to the underlying 
use of the method of difference potentials (MDP) [13].

Rather than iteratively updating and matching boundary 
data along the interfaces, our method solves for all of the 
boundary and interface data simultaneously. The MDP ben-
efits from the speed and convenience of a high-order finite 
difference method built on a regular, structured grid, even in 
the case of non-conforming geometries (such as the circular 
rods). Additionally, the MDP utilizes pre-computed opera-
tors that are built for a particular domain and unique for a 
given wavenumber. After the operators have been computed 
once they can simply be reused with new source or boundary 
data, assuming the geometry and wavenumber remain the 
same. In the context of DDMs, this property allows the same 
operators to be used for subproblems with the same shape 
and wavenumber. Our proposed decomposition of a PCRR 
only involves two kinds of subdomains—an empty square 
and a square with a rod, see Fig. 2. By computing only two 
sets of operators, we obtain the pre-computed information 
for hundreds of subdomains for free.

Fig. 1  Examples of ring resona-
tor waveguides

Fig. 2  Depiction of how a 
PCRR is built from a small set 
of basic subdomains (building 
blocks)
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Summary of methods and results
In this work, we have developed, implemented and 

tested an efficient numerical method for simulating the 
monochromatic waves in PCRRs with high-order accu-
racy. Its key advantage is the capacity to easily modify the 
structure of the resonator, which is achieved by having a 
large-scale numerical model assembled from duplicates 
of a small number of distinct elements that are pre-com-
puted ahead of time. This is enabled by a non-iterative 
domain decomposition technique that we have previously 
constructed [12]. Our domain decomposition technique 
employs the method of difference potentials [14].

Outline of the paper
Section 2 provides a review of the various components 

used in our method: Absorbing boundary conditions, 
domain decomposition, and a fourth-order finite differ-
ence method. Section 3 briefly explains how to construct 
the auxiliary problems and operators (difference poten-
tials and extension) that incorporate the scattering rods. 
In Sect. 3.3 specifically, we review the construction of the 
core linear system and explain how to resolve interface 
and absorbing boundary conditions. Section 4 provides 
two kinds of numerical results: error analysis (Sect. 4.1) 
and PCRR simulations (Sect. 4.2). Finally, in Sect. 5 we 
summarize the current developments and propose direc-
tions for future work.

2  Preliminaries

Consider the Helmholtz equation over a domain Ω ⊂ ℝ
2 

with boundary �Ω : 

 where the operator B defines the boundary condition given 
on �Ω . It is well-known that solving () numerically is prone 
to many potential difficulties: possible non-uniqueness (reso-
nances), artificial reflections from outgoing waves, loss of 
regularity at material interfaces, and the pollution effect [15, 
16], to name a few.

In this section, we provide a brief introduction to sev-
eral components of our method that address our approach 
to the difficulties listed above. In Sect. 2.1, we address 
the choice of absorbing boundary conditions which per-
mit simulated waves to propagate outward toward infin-
ity. Section 2.2 introduces the fundamental terminology, 

(1a)Δu + k2u = f , in Ω

(1b)Bu = �, on �Ω

notation, and concepts that we use for the domain decom-
position. Finally, in Sect. 2.3 we present and justify the 
finite difference method that provides the underlying dis-
cretization on the grid.

2.1  Absorbing boundary conditions

When simulating a PCRR, waves continue propagating 
toward infinity when they leave the domain of interest, 
contributing no reflections back into the domain of inter-
est. Traditionally, this effect is modeled by the Sommerfeld 
radiation condition [17]

where r =
√
x2 + y2  . This exact boundary condition is 

imposed at infinity, making it ill-suited for use in computa-
tional methods. Instead, we introduce an approximation of 
(2) called an absorbing boundary condition (ABC) at the 
edge of the domain. The simplest example of such an ABC 
is obtained by enforcing (2) on the boundary of the domain 
(rather than at infinity):

where n represents the outward normal direction with 
respect to �Ω . By its nature as an approximation, an ABC is 
inexact and will produce artificial reflections at the bound-
ary which travel back into the domain of interest. A better 
quality ABC generates fewer reflections.

Various approaches have been taken to produce ABCs 
that reduce the artificial reflections, see approaches by 
Engquist and Majda [18], Hagstrom and Hariharan [19], 
and Bayliss et al. [20, 21] (see [22] for a cohesive review of 
these and other methods). Under certain conditions, several 
of these conditions have been shown to be equivalent, mak-
ing the appropriate choice highly context-dependent. We 
consider the second-order ABC developed by Engquist and 
Majda [18]:

where �
��

 represents differentiation with respect to the tan-
gential coordinate. The normal and tangential coordinates 
used in (3) conveniently translate into Cartesian coordinates 
when the condition is set on the edge of a square, unlike the 
polar coordinates used to derive many other ABCs. Details 
of how we implement (3) within our method can be found 
in Sect. 3.3.1.

(2)lim
r→∞

√
r
�
�

�r
− ik

�
u(x, y) = 0

(
�

�n
− ik

)
u = 0, on �Ω

(3)Bu
def
= ik

�u

�n
− k2u −

1

2

�2u

��2
= 0
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2.2  Decomposition formulation

The decomposition of the PCRR relies on two fundamental 
building blocks: an empty square and a square that contains 
a circle (Fig. 2). The empty square building block can be 
visualized in Fig. 3, where a larger (rectangular) domain 
Ω is split into two identical subdomains Ω1 and Ω2 by an 
interface Σ . The formulation of the Helmholtz BVP () can 
then be expressed as 

 where the wavenumbers k1 and k2 characterize the material 
properties in Ω1 and Ω2 , respectively. Note that subprob-
lems (4a) only have boundary conditions defined along their 
exterior edges, leaving them underdetermined. The two con-
ditions of (4b) provide the necessary conditions along the 
interface Σ to ensure the solution of () on each subdomain 
matches that of (), i.e.,

Although other transmission conditions can be used in place 
of (4b), we note that the solutions obtained in the respec-
tive subdomains would no longer match their corresponding 
parts of the global solution to ().

The second building block, the square that contains a cir-
cle (henceforth referred to as the “rod subdomain”) is itself 

(4a)

{
Δu1 + k2

1
u1 = f , in Ω1

Bu1 = �, on Ω1 ∩ �Ω

{
Δu2 + k2

2
u2 = f , in Ω2

Bu2 = �, on Ω2 ∩ �Ω

(4b)

{
u1 = u2, on Σ
�u1
�n 1

= −
�u2
�n 2

, on Σ

{
u = u1 in Ω1

u = u2 in Ω2

treated as a decomposition into two pieces: the circle itself 
and the rest of the square outside of the circle (see Fig. 4). 
In this decomposition, the interface Σ is the circle.

Physically, the rod subdomain is used to model parts of 
the PCRR where the scattering rods exist and create mate-
rial discontinuities. Therefore, when reformulating () over 
the rod subdomain Ωj we allow k to change as it crosses the 
circle, i.e., 

 Note that, the subproblem (5b) does not have a boundary 
condition explicitly associated with it, and that the entirety 
of the boundary condition (1b) is associated with (5a). 

(5a)
{

Δu1 + k2
1
u1 = f in Ωj,1

Bu1 = � on �Ωj

(5b)
{
Δu2 + k2

2
u2 = 0 in Ωj,2

(5c)

{
u1 = u2, on Ωj,1 ∩ Ωj,2
�u1
�n 1

= −
�u2
�n 2

, on Ωj,1 ∩ Ωj,2

Fig. 3  The interface Σ is 
introduced to split Ω into two 
subdomains, Ω1 and Ω2 . The 
vectors n1,n2 denote the out-
ward normal direction along Σ 
for Ω1 and Ω2 , respectively

Fig. 4  Decomposition of the 
rod subdomain into two of 
its own subdomains such that 
Ωj = Ωj,1 ∪ Ωj,2 . The dotted 
circle is not part of �Ωj

Fig. 5  Example of how various parts of a composite domain are 
labeled when considered as part of the same decomposition
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Instead, the boundary information for (5b) is provided solely 
by the transmission conditions (5c). If k1 = k2 , this subprob-
lem becomes mathematically equivalent to the empty subdo-
main case [12], so we generally assume k1 ≠ k2.

For decompositions that incorporate both kinds of sub-
domains, we follow the notation introduced in Fig. 5. Inter-
faces between two separate squares Ωi and Ωj are labeled Σi,j . 
Thus, Σi,j and Σj,i are equivalent and can be used interchange-
ably. Within a rod subdomain Ωj , the circular interface is 
simply denoted Σj . The decomposition of Ωj remains consist-
ent with Fig. 4, where Ωj = Ωj,1 ∪ Ωj,2.

2.3  Finite difference scheme

The MDP can be implemented in conjunction with any finite 
difference scheme as the underlying approximation, even in 
the case of complex or non-conforming boundaries. High-
order schemes are effective in combating the well-known 
pollution effect [16, 23, 24], generally achieving higher 
accuracy with coarser discretizations. Compact schemes 
do not require additional boundary conditions beyond those 
supplied with the differential equation itself. Therefore, we 
have chosen to use the fourth-order, compact scheme for the 
Helmholtz equation as presented in [25, 26]

(6)

1

h2

(
um+1,n + um−1,n + um,n+1 + um,n−1 − 4um,n

)

+
1

6h2

[
um+1,n+1 + um−1,n+1 + um+1,n−1

+um−1,n−1 + 4um,n

− 2
(
um+1,n + um−1,n + um,n+1 + um,n−1

)]

+
k2

12

(
um+1,n + um−1,n + um,n+1

+um,n−1 + 8um,n
)

= fm,n +
1

12

(
fm+1,n + fm−1,n

+fm,n+1 + fm,n−1 − 4fm,n
)

The scheme (6) uses a 9-point stencil for the left-hand 
side of the PDE and a 5-point stencil for the right-hand side 
(see Fig. 6) with uniform step size in the x− and y− direc-
tions ( Δx = Δy = h ). Additionally, (6) was derived with the 
assumption of a constant wavenumber, k. This assumption 
suffices for us because we assume that the decomposition 
yields subdomains that each have their own constant value of 
k. One could also consider a sixth-order scheme for constant 
[27] or variable [28] wavenumber, or a fourth-order scheme 
for a more general form of the Helmholtz equation with a 
variable coefficient Laplace-like term and wavenumber [29]. 
However, for the scope of this paper we will focus on the 
case of piecewise constant k.

3  Method of difference potentials

In this section, we introduce the method of difference poten-
tials in the context of the rod subdomain. The individual 
pieces of the formulation have been more rigorously intro-
duced and explored in previous works [13, 30–35], and the 
case of the empty subdomain is covered in [12]. Our inten-
tion with this section is to present these individual pieces 
within a unified framework as they relate to the decomposi-
tion of the PCRR. The following sections are intended to 
only provide the definitions relevant to the current paper. 
Many of the equations and definitions are direct extensions 
of the work in [12] and are presented here without discussion 
or justification. Refer to [12] and the citations therewithin for 
a more complete presentation of the material.

3.1  Auxiliary problems

Computing the Calderon’s potentials and projections 
requires setting an appropriate auxiliary problem (AP), 
which serves to define an inverse to the discrete Helmholtz 
operator. The AP is formulated on an auxiliary domain 
that contains the physical domain as a subset. It should be 
uniquely solvable and well-posed, and should admit an effi-
cient numerical solution. Otherwise, the AP can be arbitrary 
[13] and our specific choice is made for the reason of con-
venience. We start by briefly introducing the auxiliary prob-
lem for the empty subdomain [12] to show how the same AP 
can be used for part of the rod subdomain that is exterior to 
the circle ( Ωj,1 in Fig. 4). Additionally, we introduce an AP 
for the interior of the circle in the rod subdomain.

Let Ωj be a square with side length 2L, centered about 
the origin. Define the auxiliary domain Ω0,𝜀1 ⊃ Ωj to be the 
square of side length 2(L + �1) for some small 𝜀1 > 0 (Fig. 7, 
practical choices for �1 are discussed in Sect. 4). Consider 
the following auxiliary problem:Fig. 6  The stencils for the compact scheme given in (6)
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The AP (7) is defined for any right-hand side (RHS) g. 
The Sommerfeld-like conditions on x−bounds are chosen 
to ensure the AP is well-posed by shifting the spectrum of 
the subproblem to the complex plane, ensuring resonance 
is avoided for any real wavenumber kj . The Dirichlet condi-
tions on y−bounds permit an efficient numerical solution by 
means of a sine-FFT in y−direction paired with a tridiagonal 
solver.

Let Ωj be a rod subdomain (Fig. 4) such that the bound-
ary �Ωj is again a square with side length 2L and is cen-
tered about the origin, and let the circle inside the rod 
subdomain Ωj,2 have radius R. Further, let the material 
discontinuity be characterized by the following definition 
of the wavenumber kj:

The rod subdomain requires the definition of two auxil-
iary problems. The first of these APs is equivalent to (7) 
and accounts for the solution inside of Ωj,1 . Note that even 
though kj has a discontinuity, this AP still uses the constant 
value assigned to Ωj,1 , i.e., 

The second AP handles the interior of the circle and 
requires its own auxiliary domain. Let 𝜀2 > 0 be given and 
define Ω0,�2 to be a square of side length 2(R + �2) so that 
Ω0,𝜀2 ⊃ Ωj,2 . The second AP is formulated on Ω0,�2:

(7)

⎧
⎪⎪⎨⎪⎪⎩

Lju ≡ (Δ + k2
j
)u = g (x, y) ∈ Ω0,�1

u = 0 y = ±(L + �1)
�u

�x
+ ikju = 0 x = L + �1

�u

�x
− ikju = 0 x = −L − �1

kj =

{
kj,1 (x, y) ∈ Ωj,1

kj,2 (x, y) ∈ Ωj,2

(8a)

⎧⎪⎪⎨⎪⎪⎩

Lj,1u ≡ Δu + k2
j,1
u = g (x, y) ∈ Ω0,�1

u = 0 y = ±(L + �1)
�u

�x
+ ikj,1u = 0 x = L + �1

�u

�x
− ikj,1u = 0 x = −L − �1

Figure 8 depicts both auxiliary domains, Ω0,�1 and Ω0,�2 
in relation to their respective subdomains. The Helmholtz 
operators Lj,1 = (Δ + k2

j,1
) and Lj,2 = (Δ + k2

j,2
) of the rod 

subdomain APs (8a) and (8b) are discretized using the 
left-hand side of the finite difference scheme (6) with the 
discrete counterparts denoted by L(h)

j,1
 and L(h)

j,2
 , respectively. 

In order to preserve the overall accuracy of the scheme, 
the boundary conditions from the APs also need to be 
discretized to fourth-order. The Dirichlet conditions on y−
bounds are trivial as the boundary nodes simply are set to 
zero, i.e., for a discretization with M + 1 nodes in the x−
direction and N + 1 nodes in the y−direction, set 

For the conditions on the x−bounds, we use the following 
discretization, derived for the variable coefficient Helmholtz 
equation in [29] and simplified for the constant-coefficient 
case in [35]:

(8b)

⎧
⎪⎪⎨⎪⎪⎩

Lj,2u ≡ Δu + k2
j,2
u = g (x, y) ∈ Ω0,�2

u = 0 y = ±(R + �2)
�u

�x
+ ikj,2u = 0 x = R + �2

�u

�x
− ikj,2u = 0 x = −R − �2

(9a)um,0 = um,N = 0, m = 0, ...,M

(9b)

(uM,n − uM−1,n

h

−
1

6h

(
uM,n+1 − uM−1,n+1 + uM,n−1 − uM−1,n−1

−2
(
uM,n − uM−1,n

))

−
k2h

24

(
uM,n − uM−1,n

))

+ ik

(
uM,n − uM−1,n

h
+

h2k2

8
u
M− 1

2
,n

+
u
M− 1

2
,n+1 − 2u

M− 1

2
,n + u

M− 1

2
,n−1

2

)
= 0

Fig. 7  Auxiliary domain Ω0 surrounding an empty subdomain Ωj

Fig. 8  Auxiliary domains Ω0,�1 and Ω0,�2 depicted containing their 
respective domains. Ωj can be an empty or rod subdomain
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 The discrete APs for the rod subdomain can now be 
expressed as L(h)

j,1
u(h) = g(h) and L(h)

j,2
u(h) = g(h) , subject to the 

discrete boundary conditions (). Since (8a) and (7) are basi-
cally the same, L(h)

j,1
u(h) = g(h) also discretizes (7). Like their 

continuous counterparts () (and (7)), the discrete APs have 
unique solutions for any right-hand side g(h) . Indeed, each of 
these APs can be solved directly by a combination of the 
FFT in the y direction and tridiagonal elimination in the x 
direction. The resulting solutions define the inverse opera-
tors G(h)

j,l
 : u(h) = G

(h)

j,l
g(h) for l = 1, 2 . By design, the operators 

G
(h)

j,l
 apply to an arbitrary g(h) . If f represents a physical source 

function, see equation (1a), then

where B(h) denotes the application of the right-hand side 
stencil from (6). However, for constructing the difference 
potentials the operators G(h)

j,l
 will need to be applied to the 

right-hand sides g(h) other than (10) as well, see Sects. 3.2 
and 3.3.

(9c)

(u1,n − u0,n

h

−
1

6h

(
u1,n+1 − u0,n+1 + u1,n−1 − u0,n−1 − 2

(
u1,n − u0,n

))

−
k2h

24

(
u1,n − u0,n

))

− ik
(u1,n − u0,n

h

+
h2k2

8
u 1

2
,n +

u 1

2
,n+1 − 2u 1

2
,n + u 1

2
,n−1

2

)
= 0.

(10)
g(h) = B

(h)f
def
= fm,n +

1

12

(
fm+1,n

+fm−1,n + fm,n+1 + fm,n−1 − 4fm,n
)

3.2  Difference potentials and operators

In this section, we start by defining the grid sets that serve as 
discrete analogs for the various parts of the rod subdomain. 
These grid sets are used to define the difference potential, 
which is the key operator and discrete analog to the Calde-
ron’s operator. The difference potential in turn defines the 
boundary projection operator. Following the example of 
[12, 31, 35], we also present the equation-based extension 
operator that links the continuous data to the discrete nodes 
as well as the spectral representation of the solution at the 
boundary. Throughout this section, we are only considering 
a single rod subdomain Ωj . As such, the subscript indices are 
simplified and restricted to l ∈ {1, 2} to indicate whether the 
grid set or operator is constructed for Ωj,1 or Ωj,2 , dropping 
the first index j altogether.

Let ℕ0
l
 be a uniformly spaced Cartesian grid over Ω0,�l 

and 𝕄0
l
⊂ ℕ

0
l
 be the set of nodes that sit strictly inside of ℕ0

l
 

(i.e., excluding the outermost layer). The nodes of �0
l
 that sit 

inside of the physical domain Ωl are �+
l
= �

0
l
∩ Ωl , and the 

exterior nodes are �−
l
= �

0
l
∩ Ω∁

l
 (the complement of Ωl ). 

Note that specifically, the nodes of �+
1
 lie inside the bounda-

ries of the square and outside the circle (Fig. 9a), while the 
nodes of �+

2
 fall inside the circle itself. Let ℕ+

l
 ( ℕ−

l
 ) consist 

of the nodes obtained when applying L(h)

l
 to the nodes of �+

l
 

( �−
l
 ). The sets ℕ+

l
 and ℕ−

l
 are depicted in Fig. 9b, c. Then ℕ+

l
 

and ℕ−
l
 will have a set of overlapping nodes near the bound-

ary of Ωl . This set of nodes is �l = ℕ
+
l
∩ ℕ

−
l
 , and is referred 

to as the discrete boundary.
In order to simplify notation, the index l will also be 

dropped. Many of the definitions and results in Sect. 3.2 are 
defined identically for both parts of the subdomain, so grid 
sets and operators should be interpreted as consistent within 
their particular subdomain.

Fig. 9  Depictions of several grids sets. For each, ℕ0 is the underlying mesh of grid nodes
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3.2.1  Difference potentials and projections

Consider a grid function �� specified on the discrete boundary 
� . We then define the difference potential with density �� as

The difference potential (11) truncated to the grid boundary 
� defines the discrete boundary projection operator P�

where the operator Tr(h) refers to trace (truncation) of the 
grid set to its associated boundary � . The projection P� given 
by (12) has the following key property:

Theorem 1 (Ryaben’kii) A grid function �� satisfies the dif-
ference boundary equation with projection (BEP)

if and only if there is a solution u on ℕ+ to the finite differ-
ence equation L(h)u = g such that �� is the trace of u on the 
grid boundary � , i.e., �� = Tr(h)u.

The proof of Theorem 1 (as well as that of the projection 
property, P2

� = P� ) can be found in [13, Part II, Chapter 2]. 
If the BEP (13) holds for �� on � , then the solution u can be 
reconstructed on ℕ+ by means of the discrete generalized 
Green’s formula:

3.2.2  Equation‑based extension

In order to guarantee the grid function �� in (14) accurately 
represents the continuous boundary data of the solution, we 
use an extension operator. For a given boundary Γ (either 
Γ = �Ω1 or Γ = �Ω2 ), consider a pair of functions (�0, �1) 
defined along Γ . One can consider these two functions as the 
Dirichlet and Neumann data, respectively, of some underlying 
function v = v(x, y) on Ω0:

Near Γ , the function v can be expanded into a truncated Tay-
lor series, where � represents the (unsigned) distance from 
the point of evaluation to the nearest point on Γ:

(11)

P
ℕ+��

def
= w − G

(h)
(
L
(h)w||𝕄+

)
, where w =

{
�� on �
0 on ℕ0��

(12)P���
def
=
(
P
ℕ+��

)||� ≡ Tr(h)(P
ℕ+�� )

(13)P��� + Tr(h)G(h)g = ��

(14)u = P
ℕ+�� + G

(h)g

(�0, �1) =
(
v,

�v

�n

)
⏐⏐⏐⏐⏐⏐⏐Γ

(15)

v(x, y)
def
=v ⏐Γ +�

�v

�n

⏐⏐⏐⏐⏐⏐⏐Γ
+

�2

2

�2v

�n2
⏐⏐⏐⏐⏐⏐⏐Γ

+
�3

6

�3v

�n3
⏐⏐⏐⏐⏐⏐⏐Γ

+
�4

24

�4v

�n4
⏐⏐⏐⏐⏐⏐⏐Γ

Discussion and results pertaining to the number of terms 
included in this expansion can be found in [12, 31, 35], and 
trace back to formal results by Reznik [30, 36].

When the functions �0 and �1 are given, the first two terms 
of (15) can be computed directly. For the higher-order deriva-
tive terms, formulas can be produced by using equation-based 
differentiation applied to the Helmholtz equation (1a), where 
we assume v is a solution and v and �v

�n
 are known analytically 

on Γ.
For example, when Γ is the right side of a square (where 

x = X is constant), the outward normal derivative coincides 
with the positive x−derivative. By substituting v = �0 and 
�v

�n
= �1 , we can obtain the following sequence of formulas 

(see [12] for details on this derivation):

Such formulas can also be obtained for the other sides 
of a square by substituting the boundary coordinates and 
appropriately identifying the outward normal derivatives, 
for example on the left side the outward normal derivative 
coincides with the negative x−derivative.

Additionally, when considering the rod subdomain there is 
a circular piece of the boundary that requires its own exten-
sion. Using the same general expansion (15), we recast the 
Helmholtz equation (1a) in polar coordinates (r, �):

Consider the case of the interior of the rod so that the 
outward normal derivative coincides with the positive r−
derivative (at r = R a constant). The functions �0 and �1 then 
depend on � and the following equations are obtained (as 
in [35]):

(16)

v(X, y) = �0(y)

�v

�x
(X, y) = �1(y)

�2v

�x2
(X, y) = f (X, y) − ���

0
(y) − k2�0(y)

�3v

�x3
(X, y) =

�f

�x
(X, y)

− ���
1
(y) − k2�1(y)

�4v

�x4
(X, y) =

�2f

�x2
(X, y)

−
�2f

�y2
(X, y) − k2f (X, y)

+ �(4)
0
(y) + 2k2�(2)

0
(y) + k4�0(y)

1

r

�u

�r
+

�2u

�r2
+

1

r2
�2u

��2
= f
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where �(4)
0
(�) represents the fourth derivative of �0(�) with 

respect to � . Note that when considering the circle from 
outside the rod, the outward normal derivative will instead 
coincide with the negative r−derivative.

The expressions from either (16), (17), or their appro-
priate analogs can be substituted into (15) to construct 
v = v(x, y) from any pair of functions (�0, �1) defined on Γ . 
Sampling this function v only at nodes of the grid bound-
ary � defines the extension operator Ex that gives the grid 
function ��:

As seen in (16) and (17) the extension operator depends on 
the source term f. The constribution from the source term 
makes Ex an affine operator:

Ex
(H) (homogeneous) operator acts only on the input func-

tions (�0, �1) , while the Ex(I) (inhomogneous) operator is 
dependent on the source function f from the original prob-
lem (1a).

We emphasize that although (1a) was used to construct 
the expressions of (16) and (17), �Γ = (�0, �1) does not 
need to represent the Cauchy data of a solution u to (1a) 
in order to apply the operator Ex . However, if �Γ does 
correspond to the trace of a solution u, i.e., �Γ =

(
u,

�u

�n

)
⏐⏐⏐⏐⏐⏐⏐Γ

 , 
then �� = Ex�Γ approximates u with fifth-order accuracy 
near Γ with respect to the grid size, specifically at the 
nodes of ��.

(17)

v(R, �) = �0(�)

�v

�r
(R, �) = �1(�)

�2v

�r2
(R, �) = f (R, �) −

1

R
�1(�) −

1

R2
���
0
(�) − k2�0(�)

�3v

�r3
(R, �) =

�f

�r
(R, �)

−
1

R

�2v

�r2
(R, �) +

1

R2
�1(�)

+
2

R3
���
0
(�) −

1

R2
���
1
(�) − k2�1

�4v

�r4
(R, �) =

�2f

�r2
−

2

R3
�1(�)

+
(
2

R2
− k2

)
�2v

�r2
(R, �) −

1

R

�3v

�r3
(R, �)

+

(
k2

R2
−

6

R4

)
���
0
(�) +

5

R3
���
1
(�)

−
1

R2

(
�2f

��2
(R, �) −

1

R2
�(4)
0
(�)

)

�� = Ex(�0, �1) = v|�

Ex�Γ = Ex
(H)(�0, �1) + Ex

(I)f

3.2.3  Spectral representation at the boundary

Following the example of our previous work [12] we define a 
series representation of the boundary data, with the additional 
consideration of the central circle. Consider the breakdown of 
the boundary Γ in Fig. 10. For each Γi , choose a set of Mi basis 
functions {�j}

Mi

j=1
 such that each �j is supported only on its 

corresponding Γi.
Generally speaking, each set {�j}

Mi

j=1
 can be chosen indepen-

dently. For this particular setup, we use Chebyshev polynomi-
als along the square edges Γ1, ...,Γ4 and Fourier basis func-
tions around the central circle boundary Γ5 . To further simplify 
equations later on, we take each Chebyshev basis to have the 
same dimension, Mc , and pick the Fourier basis along Γ5 such 
that M5 = |{�j}

Mr

−Mr
| = 2Mr + 1 . Given these specifications, 

we can define a larger set of basis functions {Ψj} such that

where M = 4Mc + 2Mr + 1 . Using the basis functions {Ψj} 
defined in (18), consider the following pairs:

For boundary data of the form �Γ = (�0, �1) , the pairs defined 
in (19) allow the components �0 and �1 to be expanded indi-
vidually. Note that the set of functions used to define �(0)

j
 

could be different from those used to define �(1)

j
 , but for 

simplicity we use the same sets. Assume the boundary data 
of the solution we seek is given in the form �Γ =

(
u,

�u

�n

)||Γ , 
then that data can be expressed as the following series 
representation

where c(0)
j

 and c(1)
j

 are the unknown expansion coefficients of 
the Dirichlet and Neumann data, respectively. For smooth 
boundary data, the Chebyshev and Fourier expansions con-
verge rapidly, making the truncated terms of the expansion 
negligible with respect to the accuracy attainable on the grid 
for relatively small values of Mc and Mr.

(18)

{
Ψj

}M

j=1
= {�j}

Mc

j=1
∪ {�j}

Mc

j=1
∪ {�j}

Mc

j=1
∪ {�j}

Mc

j=1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Γ1,...,Γ4

∪ {�j}
Mr

−Mr

⏟⏟⏟
Γ5

(19)�
(0)
j

= (Ψj, 0), �
(1)
j

= (0,Ψj), j = 1, ...,M

(20)�Γ =

M∑
j=1

c
(0)
j
�

(0)
j

+

M∑
j=1

c
(1)
j
�

(1)
j

Fig. 10  Breakdown of the por-
tions of Γ in the rod subdomain
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The series (20) is defined in relation to the subdomain Ωj,1 
(as in Fig. 10). One could similarly define a series representa-
tion of the solution at the boundary of Ωj,2 as well, but instead 
we remark that along Ωj,1 ∩ Ωj,2 (i.e., the circle) we know that 
uj,1 = uj,2 and �uj,1

�n j,1
= −

�uj,2

�n j,2
 , allowing the portion (18) cor-

responding to Γ5 to be reused when considering Ωj,2 . This 
notion is utilized and further explained in Sect. 3.3.2.

3.3  Linear system

Consider a rod subdomain Ωj = Ωj,1 ∪ Ωj,2 with Γ = �Ωj,1 . Let 

u be a solution to () over Ωj and let �Γ =
(
u,

�u

�n

)
⏐⏐⏐⏐⏐⏐⏐Γ

 be the trace 
of the Dirichlet and Neumann data of the solution at the 
boundary. Let �� be given by applying Ex operator to the series 
representation (20) of the solution at the boundary of Ωj,1:

The right-hand side of (21) can then be substituted into the 
discrete BEP (13) for Ωj,1 . After rearranging terms, the fol-
lowing system is obtained:

where the coefficients c(0)
j

 and c(1)
j

 are the unknowns and I� 
represents the identity operator on � . Letting F represent the 
right-hand side of (22) allows this equation to be expressed 
more compactly as

where Q and c have the following forms:

(21)

�� ∶= Ex �Γ = Ex
(H)

(
M∑
j=1

c
(0)
j
�

(0)
j

+

M∑
j=1

c
(1)
j
�

(1)
j

)
+ Ex

(I)f

=

M∑
j=1

c
(0)

j
Ex

(H)
�

(0)

j
+

M∑
j=1

c
(1)

j
Ex

(H)
�

(1)

j
+ Ex

(I)f

(22)

M∑
j=1

c
(0)
j
(P� − I� )Ex

(H)
�

(0)
j

+

M∑
j=1

c
(1)
j
(P� − I� )Ex

(H)
�

(1)
j

= (I� − P� )Ex
(I)f − Tr(h)G(h)

B
(h)f

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
F

(23)Qc = F

(24)

Q =
[
(P� − I� )Ex�

(0)

1
, ... , (P� − I� )Ex�

(0)
M
,

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Q(0)

(P� − I� )Ex�
(1)

1
, ... , (P� − I� )Ex�

(1)
M

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Q(1)

]

c =[c(0)
1
, ... , c

(0)
M

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
c(0)⊺

, c
(1)

1
, ... , c

(1)
M

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
c(1)⊺

]⊺

where the dimensions of Q are ⏐ � ⏐ ×2M . In addition 
to (23), consider the contributions from the rod, Ωj,2 . Let 
Γr = �Ωj,2 and repeat the steps above for the boundary data 
�Γr

 to obtain a separate system corresponding to the scat-
tering rod:

In (25), cr represents the coefficients of the expansion of 
the boundary data along the circle Γr and Fr is an analog 
to the right-hand side of (22) when the discrete boundary 
is �r instead of � . The matrix Qr =

[
Q(0)

r
,Q(1)

r

]
 has a form 

similar to Q from (24), with dimensions ⏐ �r ⏐ ×
(
4Mr + 2

)
 . 

The expansions of the Dirichlet and Neumann data along Γr 
each use 2Mr + 1 Fourier basis functions since Γr contains 
only the circular boundary of the rod.

Note that the solutions of (23) and (25) are not unique 
because the BEPs (13) were derived only from the Helm-
holtz equation (1a). Additional equations are needed to sup-
plement the system and make the solution c unique, although 
the exact nature of these conditions depends on the context. 
Section 3.3.1 explains how to derive such equations from 
local ABCs given on the exterior edges of �Ωj,1 . When an 
edge of �Ωj,1 creates an interface with another subdomain, 
conditions can be derived as in [12]. In Sect. 3.3.2, we 
explain how to use the interface conditions between Ωj,1 and 
the rod Ωj,2.

3.3.1  Resolving the local ABCs

Consider the second-order Engquist-Majda ABC (3):

Our goal is to substitute the series representations of the 
Dirichlet and Neumann data into (26). Without loss of gen-
erality, consider the series representation of the boundary 
data along one side of the exterior of the square subdomain 
and pass it into condition (26):

The formulation does not include a direct substitution for 
tangential derivatives (only the solution and its normal 
derivative). Instead, the second tangential derivative �

2

��2
 is 

passed onto the basis functions and computed directly.
Along the edge of the square, tangential derivatives of the 

Chebyshev basis functions {�l}
Mc

1
 correspond to standard 

(25)Qrcr = Fr

(26)ik
�u

�n
− k2u −

1

2

�2u

��2
= 0

(27)

ik

(
Mc∑
l=1

c
(1)

l
�l

)
− k2

(
Mc∑
l=1

c
(0)

l
�l

)
−

1

2

�2

��2

(
Mc∑
l=1

c
(0)

l
�l

)
= 0

Mc∑
l=1

(
ikc

(1)

l
− k2c

(0)

l

)
�l −

1

2

(
Mc∑
l=1

c
(0)

l

�2

��2
�l

)
= 0
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derivatives with respect to the argument. Given the Cheby-
shev coefficients of a function (i.e., {c(0)

l
} ), the coefficients 

of the second derivative (i.e., {dl} ) can be computed with the 
following formula, adapted from [37]:

The needed coefficients, {c(0)
l
} are unknown, so the formula 

is instead applied to each basis function individually to con-
struct a matrix A =

[
Ai,j

]
 that represents the second deriva-

tive of the sum:

where row l of A corresponds to the coefficients of the sec-
ond derivative of �l , and A∗,j indicates column j of A. Sub-
stituting (28) into (27) yields:

Orthogonality of the Chebyshev basis tells us that for each of 
l = 1, ...,Mc , we get a condition that relates the coefficients:

The conditions of (29) are coupled due to the third term, 
preventing them from being handled individually. Instead, 
consider them together as a matrix equation

The relationship between c(0) and c(1) in (30) provides Mc 
supplemental conditions for system (23). This process is 

aldl = 2 ⋅

∞∑
j=1

j ⋅ (l + j) ⋅ (l + 2j) ⋅ c(0)
l+2j

, al =

{
2, l = 0

1, l > 0

(28)

�2

��2

Mc∑
l=1

c
(0)

l
�l =

Mc∑
l=1

c
(0)

l

�2

��2
�l

=

Mc∑
l=1

c
(0)
l

(
Mc∑
j=1

Al,j�j

)

=

Mc∑
l=1

Mc∑
j=1

c
(0)
l
Al,j�j

=

Mc∑
j=1

�j

(
Mc∑
l=1

c
(0)
l
Al,j

)

=

Mc∑
j=1

(
A∗,j

)⊺
c
(0)�j

Mc∑
l=1

(
ikc

(1)

l
− k2c

(0)

l

)
�l −

1

2

(
Mc∑
l=1

(
A∗,l

)⊺
c
(0)�l

)
= 0

Mc∑
l=1

(
ikc

(1)

l
− k2c

(0)

l
−

1

2

(
A∗,l

)⊺
c
(0)
)
�l = 0

(29)ikc
(1)
l

− k2c
(0)
l

−
1

2

(
A∗,l

)⊺
c
(0) = 0

(30)
ikc(1) − k2c(0) −

1

2
A⊺
c
(0) = 0⃗

−
(
k2I +

1

2
A⊺

)
c
(0) + ikc(1) = 0⃗

repeated for each side of the subdomain that contains an 
appropriate ABC.

It is well-known that matrices such as A in (30) can lead 
to poor conditioning, particularly when used in spectral 
solvers [38]. This problem more readily manifests itself in 
the presence of higher-order tangential derivatives (such as 
those that appear in higher-order Engquist-Majda ABCs). 
The numerical results we present in Sect. 4.1 suggest that 
such poor conditioning is avoided, for practical purposes, in 
the second-order condition we have chosen.

3.3.2  Resolving interface conditions along the rod

Let Γ5 ⊂ 𝜕Ωj,1 be the circle from the boundary of Ωj,1 (as in 
Fig. 10) and Γr = �Ωj,2 . Consider the following expansions 
of the boundary data along Γ5 and Γr , respectively:

Note that � (0)

l
=
(
�l, 0

)
 and � (1)

l
=
(
0,�l

)
 , as well as our 

choice that along these circles, the basis functions {�l}
Mr

−Mr
 

are Fourier basis functions. Recall the interface conditions 
(5c) between two Ωj,1 and Ωj,2 and substitute the series rep-
resentations of the Dirichlet and Neumann data from (31) 
into the interface conditions (5c):

By moving terms to the same side, factoring out basis func-
tions, and exploiting the orthogonality of the Fourier basis 
functions, we obtain conditions for each l = −Mr, ...,Mr that 
couple together systems (23) and (25):

4  Numerical results

In this section, numerical results are presented that demon-
strate the performance of our method. The first part, Sect. 4.1, 
focuses on smaller, simpler examples that explore the dis-
cretization error of the method as well as the reflection error 

(31)

�Γ5
=

Mr∑
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c
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(0)
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+
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(1)

5,l
�

(1)
l
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=
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(0)
r,l
�

(0)
l
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(1)
r,l
�

(1)
l
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(0)

5,l
�l =

Mr∑
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r,l
�l
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l=−Mr

c
(1)

5,l
�l = −
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c
(1)
r,l
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(0)

5,l
− c

(0)
r,l

= 0

c
(1)

5,l
+ c

(1)
r,l
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introduced by the absorbing boundary condition. Section 4.2 
demonstrates more complex examples that are designed to 
more accurately represent a real PCRR. Demonstrative simu-
lations are shown for linear waveguides (Sect. 4.2.1) as well 
as PCRR add/drop filters (Sect. 4.2.2).

For the results of this section, domains are constructed from 
collections of empty and rod subdomains (see Sect. 2.2), with 
interfaces between neighboring squares handled as discussed 
in [12]. The sides of each square have a length of 2 and the rods 
have a radius of 0.37 (this selection is explained in Sect. 4.2). 
Every subdomain is discretized independently by grids con-
sisting of (n + 1) × (n + 1) nodes, with n = 2m , in order to 
take full advantage of the efficiency of the Fourier transform 
used in the AP solver. Once the entire configuration of interest 
(such as a PCRR of Sect. 4.2) is assembled from elementary 
blocks—squares with or with no rods, one obtains a system of 
linear algebraic equations with respect to the unknown coef-
ficients of expansions (20) along the boundaries of all subdo-
mains. Those include interfaces between neighboring squares, 
rod interfaces, and outer boundaries where the ABCs are set 
(Sect. 3.3.1). This system is solved in the sense of least squares 
with the help of QR-factorization, see [12] for detail.

Throughout these results, two kinds of errors are used to 
discuss convergence. First, we consider errors in the traditional 
sense:

In this case, u(n) refers to the solution computed using n × n 
grid nodes per subdomain and u is the true solution (when 
such a function can be derived). When a true solution can-
not be derived, we instead assess the grid convergence by 
evaluating the norm of the difference between two succeed-
ing approximate solutions obtained on a sequence of refined 
grids:

Proper grid convergence in the sense of (32) clearly implies 
(33). Additionally, if (32) is characterized by a certain con-
vergence rate, then the rate characterizing (33) will be at 
least as fast.

4.1  Preliminary simulations

In order to evaluate the discretization error of the method and 
the reflection error introduced by the local ABC, an exact 
solution needs to be constructed for reference. For simplic-
ity, the discretization and reflection errors are only computed 
directly in the rod subdomain for cases where the wavenumber 
is constant between the rod and the rest of the subdomain (i.e., 
k1 = k2 = k).

Consider the Green’s function:

(32)‖u(n) − u‖∞ → 0 as n → ∞

(33)‖u(n) − u(2n)‖∞ → 0 as n → ∞

where k is the wavenumber from (1a) and H(1)

0
 is the Hankel 

function. It is well-known that (34) satisfies the 2D Helm-
holtz equation with the point-source f (x, y) = �(x, y) and the 
Sommerfeld radiation condition (2). However, the singu-
larity at the origin of the Hankel function makes G(x, y) 
ill-suited for numerical evaluation. Therefore, we instead 
consider a smoothed variation obtained by the following 
process: 

1. Take the x−derivative of the fundamental solution 
( Gx =

�G

�x
 ). This will make the resulting test solution 

anisotropic, i.e., more generic than a centrally symmet-
ric solution.

2. Construct a function, �(r) , which is equal to 0 at r = 0 , 
equal to 1 when r ≥ R , and is sufficiently smooth in 
0 < r < R . We use R = 1

2
 and require 5 vanishing deriv-

atives at each endpoint, i.e., �(d)(0) = �(d)(R) = 0 for 
d = 1, ..., 5.

3. Multiply the smoothing function by the differentiated 
fundamental solution to obtain a new solution u = Gx�.

This function urad = Gx� is a solution to the homogene-
ous Helmholtz equation (i.e., f ≡ 0 ) outside the radius 
of R = 1

2
 . Inside that radius, the source function f can be 

derived by plugging urad into the Helmholtz equation and 
taking its derivatives analytically:

For this paper, the derivatives in (35) were computed with 
the diff command from the symbolic computation toolbox 
in MATLAB. The function urad and its corresponding source 
function f can be seen in Fig. 11, and urad is used throughout 
Sects. 4.1.1 and 4.1.2 as a reference solution. The simula-
tions of Sects. 4.1.3 and 4.2 are driven by the same source 
term f from (35).

4.1.1  Discretization error

To evaluate the discretization error introduced by the method, 
we compare the computed solution to the (exact) derived solu-
tion, urad = Gx� . This is done on a domain composed of an 
empty subdomain and a rod subdomain (see Fig. 12), where the 
empty subdomain is centered about the origin. The Dirichlet 
boundary conditions and source function (35) are computed 
directly from the exact solution urad . Table 1 demonstrates that 
the method achieves the design fourth-order convergence rate 
of the underlying finite difference method for a variety of 
wavenumbers.

(34)G(x, y) =
i

4
H

(1)

0
(k
√
x2 + y2)

(35)f =
�2

�x2
(Gx�) +

�2

�y2
(Gx�) + k2Gx�
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4.1.2  Reflection error

Similar to the discretization error, evaluation of the reflec-
tion error requires an exact solution for comparison. The 
function urad serves as the exact solution here as it did in 
Sect. 4.1.1, and the source term is provided by (35). At the 
outer boundary, the second-order Engquist-Majda absorb-
ing boundary conditions (3) are applied to approximate the 
outgoing waves.

The reflection error is a property of the chosen boundary 
conditions and therefore independent of the grid discretiza-
tion. An example of this can be seen in the grid convergence 
analysis of Table 2, where the method appears to be con-
verging as expected (fourth-order) on coarser grids before 
the convergence levels off. This is the point at which the 
reflection error dominates the discretization error. Due to the 
choice of a high-order finite difference method, we generally 
expect this trade-off from discretization error to reflection 
error to happen at relatively coarse grids.

It is worth noting that the wavenumber chosen for Table 2 
(and Fig. 13) is higher than the other choices throughout 
Sect. 4. For smaller wavenumbers, the reflection error domi-
nates the discretization error even at the coarser grid levels 
(see Table 3). In fact, [18] provides the following approx-
imation for the amplitude of reflected waves (denoted b) 
when using second-order Engquist-Majda absorbing bound-
ary conditions:

where a is the amplitude of the incident wave and � is the 
angle of incidence. The expression (36) is maximized when 
� = �

4
 , which occurs at the corners of the domain (visualized 

in Fig. 13. With this choice of � , (36) reduces to

Roughly speaking, (37) tells us that the amplitude of the 
reflection error will be around 3% of the amplitude of the 
incident wave. To confirm this, the reflection error is evalu-
ated across several domains for k = 10 and presented in 
Table 3.

(36)b ≈ a
|||||
cos(�) − 1

cos(�) + 1

|||||

2

(37)b ≈ a
|||||
cos( �

4
) − 1

cos( �
4
) + 1

|||||

2

⟹ b ≈ (0.0294)a

Fig. 11  Real part (left) and imaginary part (center) of the function urad , and the real part of the corresponding derived source function f (right), 
all plotted for the wavenumber k = 3

Fig. 12  Depiction of the domain 
used in Table 1

Table 1  Discretization 
error ‖u(n) − u‖∞ and rate of 
convergence to the true solution 
u = G

x
� with k = 5, 10, and 15

Dirichlet boundary conditions and source function are derived from the solution

n k = 5 k = 10 k = 15

Error Rate Error Rate Error Rate

64 1.22e−04 – 9.14e−04 – 4.86e−01 –
128 7.53e−06 4.02 5.69e−05 4.01 2.11e−03 7.84
256 4.25e−07 4.15 3.65e−06 3.96 1.28e−04 4.04
512 2.83e−08 3.91 2.27e−07 4.00 8.01e−06 4.00
1024 1.64e−09 4.11 1.43e−08 3.99 5.01e−07 4.00
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Note that the lack of convergence in Table 3 confirms that 
the reflection error is not dependent on the grid discretiza-
tion. By comparing Table 3 with Table 1, it is clear that the 
discretization error for this solution is notably smaller than 
the reflection error. Further, note the improved performance 
as the size of the domain is increased. The reflection error is 
expected to decrease as the domain grows larger (and as the 
amplitude of the solution decreases), and this is confirmed 
in Table 3.

Tables 2 and 3 indicate that the reflection error prevents 
the computed solution from converging to the true solution, 
urad . The grid convergence, however, still takes place, albeit 
to a different solution that is subject to reflections from the 
artificial outer boundary due to boundary condition (26). 
This is corroborated by the data in Table 4 that shows con-
vergence in the sense of (33).

4.1.3  Inclusion of scattering rods

By allowing a change in the wavenumber between the rod 
and the rest of the subdomain (i.e., k1 ≠ k2 ), the refraction 
of a signal between two mediums can be simulated. We 
generally only consider the case of k1 < k2 which repre-
sents the case where the rod has a higher refractive index 
than its surrounding material. This formulation makes it 
difficult to compose an exact solution for reference to dem-
onstrate grid convergence, so convergence is considered as 

Fig. 13  Real parts of the computed solution approximating urad with 
k = 40 (left) and the error between the computed solution and urad 
(right), corresponding to Table 2. The domain is a 3 × 3 arrangement 

of empty subdomains, and each subdomain is discretized by a grid of 
512 × 512 nodes

Table 2  Absolute reflection 
error and convergence rate for 
a 3 × 3 arrangement of empty 
subdomains with k = 40 (see 
Fig. 13) and second-order 
Engquist-Majda absorbing 
boundary conditions along the 
exterior edges

n ‖u(n) − u‖∞ Rate

64 1.20e+02 –
128 4.38e+00 4.78
256 2.83e−01 3.95
512 1.76e−02 4.01
1024 1.76e−02 0.00
2048 1.76e−02 0.00

Table 3  Maximum absolute and 
relative reflection errors along 
the exterior edges of Ω

Computed for k = 10 for domains constructed from several arrangements of empty subdomains ( 1 × 1 , 
3 × 3 , and 5 × 5)

n 1 × 1 3 × 3 5 × 5

Absolute error Relative 
error (%)

Absolute error Relative 
error (%)

Absolute error Relative 
error (%)

64 2.37e−02 3.80 1.08e−02 3.30 7.91e−03 2.89
128 2.59e−02 4.16 1.12e−02 3.42 7.81e−03 2.85
256 2.59e−02 4.16 1.12e−02 3.43 7.81e−03 2.86
512 2.65e−02 4.25 1.13e−02 3.45 7.85e−03 2.87
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in (33). The domain is taken as in Fig. 12 with the source 
function (35) centered about the empty subdomain and 
second-order Engquist-Majda absorbing boundary condi-
tions along the exterior of the domain. The convergence 
rate in Table 5 is indicative of the design fourth-order 
convergence rate as discussed earlier and demonstrated 
in Tables 1 and 4.

4.2  PCRR simulations

In this section, we present and discuss two forms of simu-
lations associated with PCRRs. First is an isolated bus 
waveguide with a varying number of rows of scattering 
rods on either side of the channel. Second is the classic 
add-drop filter which can redirect a signal toward different 
output channels depending on the frequency.

As discussed in Sect.  4.1.2, the reflection error is 
expected to outweigh the discretization error, even at rel-
atively coarse grids. Therefore, results are only reported 
on a single grid (indicated for each simulation). Addition-
ally, we use a consistent setup scheme for determining 
the source function for each simulation (see Fig. 14). The 
source function f (from (35)) is placed between rows of 
scattering rods, such that one empty subdomain separates 
the source’s subdomain from the left edge of the domain. 

This way, the source can emulate an input signal that is 
primarily traveling from the left to the right.

The parameters for the simulations are chosen to reflect 
those used in [1, Chapter 13]. The descriptions of the pri-
mary parameters are as follows:

• a = Lattice periodicity, or the shortest center-to-center 
distance between two rods. Consequently, a is also the 
length of each side of the subdomains.

• r = Radius of the scattering rods. The ratio of the radius 
of the rods to the lattice periodicity (i.e., r/a) is an 
important factor in determining valid frequencies for the 
PCRR.

• nair, nrod = Refractive indices of the background (air) and 
scattering rods, respectively.

In [1, Chapter  13], the lattice periodicity is chosen as 
a = 540 nm and the radius of the rods is r = 100nm, resulting 
in a ratio of r∕a ≈ 0.185 . The refractive indices are selected 
to represent air ( nair = 1.00 ) and silicon ( nrod = 3.48 ). 
These parameters correspond to bus waveguides that sup-
port the near infrared wavelengths between approximately 
� = 1270 nm and � = 1780nm.

Table 4  Convergence analysis 
with respect to the self-
convergence metric from (33)

Domains are composed of varying arrangements of empty subdomains ( 1 × 1 , 3 × 3 , and 5 × 5 ), and the 
wavenumber is k = 10

n 1 × 1 3 × 3 5 × 5

‖u(n) − u
(2n)‖∞ Rate ‖u(n) − u

(2n)‖∞ Rate ‖u(n) − u
(2n)‖∞ Rate

64 4.09e−04 – 4.45e−04 – 6.17e−04 –
128 2.65e−05 3.95 2.84e−05 3.97 3.69e−05 4.06
256 1.82e−06 3.86 1.70e−06 4.06 2.26e−06 4.03
512 1.04e−07 4.13 1.09e−07 3.97 1.43e−07 3.98

Table 5  Convergence analysis with respect to the self-convergence 
metric from (33) for examples with scattering rods

The domain is depicted in Fig. 12, with wavenumber jumps indicated 
from k1 outside the rod to k2 inside the rod

n k1 = 1 k1 = 3

k2 = 3 k2 = 10

‖u(n) − u
(2n)‖∞ Rate ‖u(n) − u

(2n)‖∞ Rate

64 2.82e−01 – 6.84e−01 –
128 3.33e−04 9.73 2.54e−03 8.07
256 1.44e−05 4.53 6.56e−06 8.60
512 1.29e−06 3.48 3.57e−07 4.20

Fig. 14  An example of how the source function (35) is placed within 
a PCRR domain. The source is centered over one of the empty subdo-
mains such that one empty subdomain sits between the source’s sup-
port and the exterior boundary of the domain
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For the simulations in this paper, the parameters have 
been nondimensionalized. The lattice periodicity (and 
side length of subdomains) is 2. In order to maintain 
the ratio of the rod radius to lattice periodicity, we take 
r = 0.37 = 2 × 0.185 (hence the choice for the rod radius 
in the results of Sect. 4.1). The refractive indices provide a 
ratio for the wavenumbers we select, namely k2 = 3.48 × k1 . 
The background wavenumber k1 can then be derived by 
equating the ratio of the lattice periodicity to the desired 
wavelength from each example, i.e.,

Therefore, a physical wavelength of 1550nm approximately 
corresponds to a wavenumber of k1 = 1.08 . As our discre-
tization is fourth-order accurate, for this low value of the 
wavenumber the error due to the second-order Engquist-
Majda boundary condition becomes dominant already on 
fairly coarse grids, see Sect. 4.1.2.

For most of the figures in this section, we have chosen 
to present the imaginary part of the solution. The real part 
of the source function has a high degree of variation at the 
origin, causing the real part of the resulting solution to 
have abnormally high variation near the source. However, 
the imaginary part changes much more gradually near the 
source, forming a much smoother and visually interpretable 
image while still demonstrating the same qualitative behav-
iors as its corresponding real part.

4.2.1  Bus waveguides

Recall that a ring resonator is constructed from two bus 
waveguides and a ring-shaped waveguide (Fig. 1). For the 
specific case of a PCRR (Fig. 1b) the bus waveguide can be 
isolated to make its own domain as in Fig. 15.

(38)

(Physical)
a

�
=

k1a

2�
(Nondimensionalized)

540

�
=

2k1

2�
540�

�
= k1

From [1], it is known that the number of rows of scatter-
ing rods on either side of the open channel largely affects 
how efficiently the channel propagates waves. Gener-
ally speaking, increasing the number of rows of rods will 
decrease the amount of leakage from the waveguide at the 
expense of more computation time to account for more rods. 
By computing the solution in domains with varying numbers 
of buffer rows of rods, we can observe how the solution 
changes to determine how many rows are needed to capture 
the qualitative behavior.

In order to analyze the impact of buffer rows of rods, 
we assemble a sequence of simulations that represent bus 
waveguides with varying numbers of buffer rows. Each prob-
lem uses the same source function from (35) placed in the 
waveguide as described in Fig. 14, along with second-order 
Engquist-Majda boundary conditions along the exterior 
edges of the relevant subdomains. The domain of interest 
is a 1 × 15 assembly of empty subdomains with the corre-
sponding number of buffer rows of rod subdomains attached 
to both the top and bottom. The resulting computed solutions 
are collectively presented on the left side of Fig. 16. Note 
that the plots in Fig. 16 only represent the empty subdomains 
down the center of the domain.

The right side of Fig. 16 shows how the solution changes 
after each addition of a new buffer row of rod subdomains. 
The error is calculated as the absolute difference between 
two solutions within the empty subdomains, where the solu-
tion most clearly depicts a traveling wave. Notice that the 
signal is noticeably fuzzy in the first solution (top-left of 
Fig. 16), but becomes sharper when a second row of buffer 
rods is included. This difference is visualized in the first 
image of the right column, where it can clearly be seen that 
the difference between the two solutions grows toward the 
end of the domain. Although there is little visual difference 
between the cases of 2 and 3 buffers in the left column, the 
second error plot still shows a discernible change at the right 
end of the channel. Finally, the change when moving from 
3 to 4 buffer rows is even less than the previous case, and 
visually negligible when compared to the previous cases.

Ideally, the number of buffer rows would be taken to 
infinity (or at least arbitrarily high) to provide the best 

Fig. 15  One of the bus wave-
guides can be isolated and 
considered as its own domain
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approximation, but this is obviously impractical. Referring 
to the case of 2 buffers, ‖u‖∞ ≈ 0.3256 and the maximum 
error between the cases of 2 and 3 buffers is approximately 
0.0067. Adding an extra row of buffers only improves the 
accuracy by 2% . Given that the reflection error from the 
ABCs is around 3% , 2 buffer layers are chosen for the larger 
simulations of the next section.

4.2.2  PCRR add‑drop filter

The final set of simulations concern the functionality of a 
2D PCRR add-drop filter. The only new feature introduced 
for this structure is the ring resonator itself. The resonator 
is formed in a similar fashion as the bus waveguides from 
Sect. 4.2.1, with the difference that the channel formed by 
removing rods is now a square (note Figs. 1b, 2, and 15). 
Note that the shape of the ring will depend on the symmetry 
of the lattice of rods; alternative arrangements (such as a 
hexagonal resonator) can be found in [1].

Following the square lattice example from [1], a PCRR is 
constructed around a resonator with a 3 × 3 set of rods at its 
center (as in Fig. 15). Bus waveguides are appended to the 
top and bottom of the resonator with one set of rods separat-
ing the bus waveguides from the resonator. One extra row 
of rods is included on the top and bottom of the domain to 
prevent leakage (following the example set by Sect. 4.2.1) 
forming a 13 × 15 lattice of subdomains as in Fig. 17. The 
system is driven by the source function f from (35), placed as 

in Fig. 14, which simulates an input signal from the top-left 
port with a given frequency. The frequency is determined 
by the wavenumber k in the corresponding Helmholtz equa-
tion, and the relationship of this k to a physical wavelength 
is given in (38).

The main simulations of focus are presented in Figs. 18 
and 19. They represent two wavenumbers with qualitatively 

Fig. 16  (Left) Imaginary part of the solution for varying numbers of buffer rows of rods and (right) the absolute difference between a given solu-
tion and the preceding case. Plotted for k = 1.229 on a 129 × 129 grid for each subdomain

Fig. 17  The domain used for the PCRR simulations of Sect.  4.2.2. 
Solid lines denote interfaces between subdomains, and the source 
function is centered about the origin
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different behaviors in the PCRR. The first simulation, 
Fig. 18, represents a signal that is designed to pass through 
the device without being filtered. Some energy does spread 
throughout the domain, particularly through the channels, 
but this kind of leakage is to be expected given the use of 
discrete rods in place of continuous walls. The important 
piece, qualitatively speaking, is that the strength of the sig-
nal in the bottom bus waveguide is distinctly lower than in 
the top bus waveguide. For the second simulation, Fig. 19 

represents a signal that the PCRR is designed to filter 
through the ring resonator. It is demonstrating the expected 
behavior, which is for the strength of the signal to be greater 
at the bottom-left port than either port on the right side of 
the domain.

Figures 20 and 21 provide examples of some of the 
alternative behaviors that the PCRR can express as the 
wavenumber/wavelength go further outside of the intended 
window of use for the parameters. In Fig. 20, the signal 

Fig. 18  Example of a PCRR 
operating at an add-frequency 
corresponding to the wavenum-
ber k = 1.13 . Each subdomain 
is discretized by a grid of 
129 × 129 nodes
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drops from the top bus into the resonator, but not into 
the bottom bus. In Fig. 21, the signal is approximately 
as strong at the right end of the top bus as it is at the left 
end, but it enters the resonator just as in Fig. 20. These 
two examples demonstrate apparent deficiencies, which 
we believe to be attributed to the model as opposed to the 

method. A known problem for such PCRRs stems from 
the the fact that a square duct is used in place of a circle 
in the true ring resonator case, causing certain degenera-
tive behaviors [1, Chapter 13]. The known way to combat 
this is by introducing four additional scattering rods in 
the corners of the resonator such that they are equidistant 

Fig. 19  Example of a PCRR 
operating at a drop-frequency 
corresponding to the wavenum-
ber k = 1.08 . Each subdomain 
is discretized by a grid of 
129 × 129 nodes
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from the three rods that currently form the corner. Unfor-
tunately, these points are at the intersection of the build-
ing blocks, making this supplement incompatible with the 
framework in its current form. One potential solution is 
discussed in Sect. 5.

4.3  Time‑harmonic versus time‑dependent 
modeling

The simulations of waveguides and PCRRs in the current 
paper were conducted for the case of monochromatic waves 

Fig. 20  Example of a PCRR 
operating at a resonant fre-
quency corresponding to the 
wavenumber k = 1.17

Fig. 21  Example of a PCRR 
operating at a resonant fre-
quency corresponding to the 
wavenumber k = 1.303
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in the frequency domain, with the key governing equation 
being the Helmholtz equation (1a). Time-harmonic mod-
eling of nano-scale devices is quite common in the literature, 
see, e.g., [39, 40] as well as [41] for a more general setting. 
For our simulations, we have assumed a silicon-on-insulator 
(SOI) structure of the photonic crystal operating in a near 
infrared regime. The rod material in a SOI photonic crystal 
is non-dispersive. However, time-harmonic approach applies 
to the case of dispersive materials as well, see, e.g., [40], 
where a metal-insulator-metal (MIM) structure is studied 
and the dielectric permittivity obeys the Drude model. A 
key advantage of time-harmonic simulations is that they are 
less costly compared to full time-domain modeling. At the 
same time, their key restriction is that, the excitation that 
drives the system shall be a genuine continuous wave (CW), 
i.e., a single-frequency signal. In the case of a broadband 
excitation (as opposed to CW), time-domain computations 
are warranted. Time-domain simulations of nanostructured 
devices have been reported, e.g., in [4, 7]. While the meth-
odology of the current paper is designed for time-harmonic 
implementation, we note that, its core component, the 
method of difference potentials, applies to time-dependent 
problems as well and maintains high-order accuracy for non-
conforming geometries, see, e.g., [42]. In future, it may be 
beneficial to look into how to extend the currently proposed 
domain decomposition algorithm based on the MDP to the 
case of time-dependent (broadband) simulations.

5  Conclusions and future work

The goal of this paper is to expand the framework introduced 
in [12] for solving domain decomposition problems with the 
MDP, and to demonstrate the method’s ability to simulate 
2D photonic crystal ring resonators in the monochromatic 
case. To this end, the “rod subdomain” was introduced and 
the implementation of local absorbing boundary conditions 
was described using the second-order Engquist-Majda con-
ditions. Analysis of the discretization and reflection errors 
corroborated the design properties of the underlying finite 
difference method and ABCs. Those include high-order 
accuracy and non-deteriorating performance for non-con-
forming boundaries on Cartesian grids. Numerical simula-
tions demonstrated that the method is able to properly cap-
ture the intended behavior of the PCRR. A key advantage of 
the proposed method is that, it allows to easily modify the 
configuration of interest. For example, rows of rods can be 
added or removed as in Sect. 4.2.1 and other modifications 
can be implemented by merely changing the arrangement 
of elementary blocks (subdomains with and with no rods) 
without having to recompute the Calderon’s operators that 
pertain to those blocks.

To be able to capture sharper resonances and thus ena-
ble more accurate simulations of PCRRs by the proposed 
method, one direction for future work is to investigate how 
to incorporate scattering rods that do not fall in the center 
of the designed subdomains. For example, [1, Chapter 13] 
describes the addition of rods in the corners of the ring to 
improve the spectral selectivity. These particular locations 
fall on the corners of our existing subdomains and are not 
compatible with the method as presented here. One approach 
is to design larger “macro-blocks” that take the place of 
several subdomains at once, granting more freedom in how 
rods could be placed throughout that macro-block. Such an 
addition would increase the number of building blocks to be 
pre-computed, but could make the run-time computations 
more efficient.

Moving beyond the specific application of PCRRs, 
another future direction for the method as a whole is to 
change how the rod subdomain is handled. In its current 
form, the rod subdomain itself consists of two subdomains, 
with the transmission between the two subdomains being 
handled at the same time as the transmission between 
squares. If the operators for the two parts of the rod subdo-
main could be combined before run-time, then the dimen-
sion of the discrete BEP, and therefore the computation 
time of the QR-factorization (Sect. 4), could be reduced. 
The beneficial effect would continue to increase if multiple 
scattering objects were included within one subdomain. A 
subsequent extension of this idea could lead to a hierarchi-
cal domain decomposition algorithm. For example, one can 
build 2 × 2 macro-blocks out of 4 elementary subdomains 
by eliminating the interior interfaces ahead of time. Then, 
the resulting macro-blocks can be clustered further—in 2 × 2 
structures on the next level, etc. This hierarchical construct 
will enable substantial savings in the overall cost of QR-
factorization when solving for the coefficients of (20).
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