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Many wave propagation problems involve discontinuous material properties. We propose 
to solve such problems by non-overlapping domain decomposition combined with the 
method of difference potentials (MDP). The MDP reduces the Helmholtz equation on 
each subdomain to a Calderon’s boundary equation with projection on the boundary. 
The unknowns for the Calderon’s equation are the Dirichlet and Neumann data. Coupling 
between neighboring subdomains is rendered by applying their respective Calderon’s 
equations to the same data at the common interface. Solutions on individual subdomains 
are computed concurrently using a direct solver. Our method proves to be insensitive 
to large jumps in the wavenumber for transmission problems, as well as interior cross-
points and mixed boundary conditions, which may be a challenge to many other domain 
decomposition methods.

© 2021 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The Helmholtz equation governs the propagation of time-harmonic waves. In many applications, the propagation medium 
involves material discontinuities, i.e., surfaces across which the wave speed or equivalently, the wavenumber, undergoes a 
jump. We propose to solve such problems by non-overlapping domain decomposition methods (DDMs), where material 
discontinuities coincide with interfaces between subdomains. The rationale is that the solution to the Helmholtz equation 
loses regularity at the surfaces with material discontinuities, and to maintain existence and uniqueness, the PDE itself must 
be accompanied by additional interface conditions. Most frequently, the latter require continuity of the solution and its flux 
across the interface (although many other choices are available). At the same time, the core idea of the DDMs is to partition 
the domain into smaller, simpler subdomains thus creating subproblems coupled to one another along their interfaces. 
The coupling is rendered via the additional conditions, called transmission conditions, that approximate the true interface 
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conditions required by the PDE. One may therefore expect that the DDMs will provide a framework for accommodating the 
material discontinuities along the interfaces.

The original development of DDMs for the numerical solution of PDEs did not focus on material discontinuities. It 
was rather motivated by the need for parallel implementation in order to alleviate the growth of the computational cost 
for large propagation domains. Coupling between subdomains is resolved in DDMs by an iterative process that alternates 
between directly solving a localized approximation of the subproblem and updating the resulting boundary conditions using 
parameterized transmission conditions [13,28,38]. The convergence rate of this iterative process is heavily dependent on 
the transmission conditions, the choice of which is still a highly active research area [4,22,37]. Typically, accounting for the 
global behavior in the boundary update step — where the transmission conditions are utilized — leads to more expensive 
updates but fewer iterations for convergence. On the other hand, localized approximations in the transmission conditions 
tend to result in faster updates but more iterations.

Material discontinuities may adversely impact the convergence of DDM iterations and thus present an additional chal-
lenge for the numerical solution of the Helmholtz equation. This is especially true when the jumps in the wavenumber 
are large (strong discontinuities) and/or when several interfaces meet at one point. The latter scenario is encountered fre-
quently and referred to as interior cross-points in the DDM literature. Strong discontinuities and interior cross-points require 
a special case-by-case treatment in the traditional DDM framework, see, e.g., [9,10,16,18,25].

In this paper, we address the issue of coupling between subdomains by imposing the exact interface conditions and 
circumventing the iterative process altogether. In addition to letting the wavenumber be discontinuous across interfaces, we 
allow the boundary conditions on different segments of the boundary to have different type (mixed boundary conditions). 
The global behavior of the solution is accounted for by enforcing the continuity of the solution and its first normal derivative 
at the interfaces, while solutions on individual subdomains are approximated with high order accuracy and computed 
concurrently using a direct solver.

Our approach relies on the method of difference potentials (MDP). Originally proposed by Ryaben’kii [30,31], the MDP 
can be interpreted as a discrete version of the method of Calderon’s operators [8,34] in the theory of partial differential 
equations. The MDP reduces a given PDE from its domain to the boundary. The resulting boundary formulation involves an 
operator equation (Calderon’s boundary equation with projection (BEP)) with both Dirichlet and Neumann data in the ca-
pacity of unknowns. Once the BEP has been solved, the solution on the domain is reconstructed using Calderon’s potential. 
Therefore, the MDP allows one to parameterize solutions on the domain using their boundary data. This proves very conve-
nient for a domain decomposition framework. Indeed, once the original domain has been partitioned into subdomains, the 
Calderon’s boundary equations for individual subdomains are naturally coupled with the appropriate interface conditions 
that are also formulated in terms of the Dirichlet and Neumann data [24]. This yields an overall linear system to be solved 
only at the combined boundary.

The computation of the discrete Calderon’s boundary projections is performed ahead of time and in parallel. In the 
simplest case where all subdomains have the same shape and the wavenumber is uniform, the operators are computed for 
one subdomain and then reused. If the wavenumber jumps between subdomains and/or the subdomains differ in shape, 
then additional operators need to be computed. However, new boundary conditions, including mixed, do not require that 
Calderon’s projections be recomputed [6]. As the method enforces the proper interface conditions exactly, its performance is 
not affected by the presence of even strong material discontinuities and/or interior cross-points, which is in sharp distinction 
with many traditional DDMs. The structure of the decomposition, e.g., strip-type vs. checkerboard-type, does not affect the 
performance either.

In [15], a domain decomposition approach based on difference potentials was applied to solving a chemotaxis model; it 
enabled adaptive grid refinement in one of the two subdomains. Other non-iterative domain decomposition methods include 
[26,27], where the decomposition is applied to a finite element discretization of the vector Helmholtz equation.

The outline of this paper is as follows: In Section 2, we introduce DDMs for the Helmholtz equation. Section 3 establishes 
the representative subdomain and covers the necessary information to implement the MDP, ending with the modifications 
necessary to combine the MDP with DDM. Details for a practical implementation are outlined in Section 3.5 and the com-
plexity of the method is discussed in Section 3.6. In Section 4, numerical results are presented to validate the algorithm, 
corroborate the claims of complexity from Section 3.6, and explore the practical limits of the method. Finally, in Section 5
we provide a summary and propose directions for future research.

2. Domain decomposition

Domain decomposition methods were first introduced by Schwarz [33] to prove the existence and uniqueness of solutions 
to the Poisson equation over irregularly shaped domains. The original Schwarz algorithm used overlapping decompositions 
(Fig. 1), but was later extended to non-overlapping decompositions (Fig. 2) by Lions [20]. In this paper, we focus on non-
overlapping subdomains. Accordingly, we begin with providing a brief overview of non-overlapping DDMs including the 
original method by Lions for the Poisson equation and subsequent adaptation by Després for the Helmholtz equation. For a 
more rigorous introduction to DDMs, including proofs of convergence and calculation of convergence factors, see [13,17,28,
38].
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Fig. 1. The classical DDM example. An irregular domain composed of two shapes, decomposed into two overlapping subdomains.

Fig. 2. Basic non-overlapping decomposition of a domain � (with boundary ∂�) into two subdomains, �1 and �2. A fictitious boundary, �, is introduced 
to indicate the separation between subdomains, and ni is the outward unit normal vector of �i on �.

2.1. Non-overlapping formulation

Consider the Poisson equation over a rectangular domain � ⊂ R2 with boundary ∂� (see Fig. 2a). Then the following 
Dirichlet boundary value problem (BVP) can be posed:{

�u = f in �

u = 0 on ∂�
(1)

Consider a partitioning of � that splits the domain into two subdomains, �1 and �2, by introducing an artificial interface 
� = �1 ∩ �2 as in Fig. 2b. The BVP (1) can be reformulated over the new subdomains individually:{

�u1 = f in �1

u1 = 0 on �1 ∩ ∂�
(2a)

{
�u2 = f in �2

u2 = 0 on �2 ∩ ∂�
(2b)

{
u1 = u2, on �
∂u1
∂n1

= − ∂u2
∂n2

on �
(2c)

where the interface conditions (2c) guarantee that the combined solution of (2) coincides with that of (1):{
u1 = u, in �1

u2 = u, in �2

Conditions other than (2c) can be formulated on � so that the resulting combined problem is well-posed, but its solution 
will be different from the solution of (1).

There are two separate interface conditions in (2c). They apply to both subproblems (2a) and (2b) at the same time 
and couple them together. However, each subproblem (2a) or (2b) considered independently, i.e., with no connection to 
the other one, is not fully specified and cannot be solved on its own because it is missing boundary conditions on �. To 
enable the individual solvability, one needs to provide these boundary conditions. Yet unlike in (2c), one cannot specify 
more than one boundary condition on � for either of the two standalone problems (2a) or (2b), as that would result in an 
overdetermination. In other words, when solving (2a) one cannot specify both u1 and ∂u1

∂n1
on �, and likewise for (2b).

To avoid the overdetermination and still allow for separate solution of individual subproblems, P.L. Lions proposed to use 
one Robin boundary condition [20], formed as a linear combination of the two continuity conditions (2c). For any pair of 
constants (p1, p2) ∈R2, this transmission condition yields the following combined formulation in lieu of (2):⎧⎪⎨

⎪⎩
�u1 = f in �1

u1 = 0 on �1 ∩ ∂�(
∂

∂n + p1

)
u1 =

(
∂

∂n + p1

)
u2 on �

(3a)
1 1
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⎧⎪⎨
⎪⎩

�u2 = f in �2

u2 = 0 on �2 ∩ ∂�(
∂

∂n2
+ p2

)
u2 =

(
∂

∂n2
+ p2

)
u1 on �

(3b)

Each of the two subproblems (3) is individually well-defined in the sense that the third equation in either (3a) or (3b) can 
be interpreted as a Robin boundary condition on � for u1 or u2, respectively, with the right-hand side of the respective 
equation providing the data. However, the relation of the combined formulation (3) to the original BVP (1) requires an 
additional analysis.

Lions conducted this analysis in [20]. He replaced the combined formulation (3) with the iteration:⎧⎪⎪⎨
⎪⎪⎩

�u(n+1)
1 = f in �1

u(n+1)
1 = 0 on �1 ∩ ∂�(

∂
∂n1

+ p1

)
u(n+1)

1 =
(

∂
∂n1

+ p1

)
u(n)

2 on �

(4)

⎧⎪⎪⎨
⎪⎪⎩

�u(n+1)
2 = f in �2

u(n+1)
2 = 0 on �2 ∩ ∂�(

∂
∂n2

+ p2

)
u(n+1)

2 =
(

∂
∂n2

+ p2

)
u(n)

1 on �

(5)

and proved that this iteration converges to the solution of (1) as n increases. The rate of convergence depends on the choice 
of the parameters p1 and p2. As the next iteration n + 1 for each subproblem only relies on the other subproblem’s current 
iteration n, the subproblems can be solved in parallel to one another, a highly desirable trait for DDMs. The proof given in 
[20] extends to an arbitrary number of subdomains.

2.2. Helmholtz adaptation

Complications arise when applying (5) directly to the Helmholtz equation. Consider the following BVP over the domain 
from Fig. 2a:{

�u + k2u = f in �

u = 0 on ∂�
(6)

To guarantee well-posedness of (6), i.e., to avoid resonances, −k2 may not be an eigenvalue of the underlying Laplace 
problem. However, when considering a decomposition such as the one in Fig. 2b with the Lions transmission condition, it is 
non-trivial to know that −k2 will always remain outside the spectrum of the corresponding Laplace subproblem. For more 
elaborate decompositions, establishing the well-posedness of individual subproblems may only become more problematic. 
This issue was addressed in [12] where Després proposed the use of Lions’ transmission condition with p1 = p2 = ik (where 
i = √−1). This choice yields the following subproblems (cf. (3)):⎧⎪⎨

⎪⎩
(� + k2)u1 = f in �1

u1 = 0 on �1 ∩ ∂�(
∂

∂n1
+ ik

)
u1 =

(
∂

∂n1
+ ik

)
u2 on �

(7a)

⎧⎪⎨
⎪⎩

(� + k2)u2 = f in �2

u2 = 0 on �2 ∩ ∂�(
∂

∂n2
+ ik

)
u2 =

(
∂

∂n2
+ ik

)
u1 on �

(7b)

Després’ transmission condition shifts the spectrum of the operator to the complex domain, guaranteeing that resonant fre-
quencies are avoided on each subproblem (7a) or (7b). It does so at the cost of introducing complex values into the problem, 
but for many applications, this is computationally not an issue. An iterative procedure similar to (5) can be employed for 
(7), and Després showed in [12] that it will converge.

2.3. Cross-points and material discontinuities

The methods outlined in Section 2.2 are the foundation of most modern DDMs for the Helmholtz equation, and have 
been improved upon in recent years. For example, quasi-optimal convergence rates have been achieved by optimizing the 
choice of transmission conditions with the so-called “square root operator” [5]. However, while this leads to convergence in 
fewer iterations, it generally requires more expensive iterations.
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Fig. 3. Example domains (solid boundary) and a reasonable choice of auxiliary domain (dotted boundary) for each.

Work has also been done recently on the resolution of interior cross-points. The interior cross-points are points where 
more than two subdomains meet, and they pose no issues at the continuous level of the formulation. Yet the cross-points 
are known to adversely affect the accuracy and convergence of DDMs if no special care is exercised for the discretization. 
In [16], several methods are discussed for resolving these cross-points for elliptic problems, and [25] provides an extension 
of the quasi-optimal method from [5] that accounts for interior cross-points. In Section 4, we demonstrate how the issue 
of cross-points is resolved intrinsically by our method, with no special consideration. Unlike most other methods (see, e.g., 
[9,10,18]), our method enforces the interface conditions exactly and thus is completely insensitive to the interior cross-
points by design.

Material discontinuities and the associated transmission/scattering problems provide a natural venue for the application 
of DDMs, but they require special care in the high-contrast, high-frequency regime (see, e.g., [4]). Similar to the case of 
cross-points, our method is insensitive to large jumps in the wavenumber, as discussed further in Section 4.2.

3. Method of difference potentials

To introduce the Method of Difference Potentials [31], consider the inhomogeneous Helmholtz equation with a general 
(constant-coefficient) Robin boundary condition

�u + k2u = f (8a)

αu + β
∂u

∂n
= φ (8b)

over the domain � ⊂ R2 depicted in Fig. 2a, as well as its decomposition depicted in Fig. 2b. In a similar manner to 
traditional DDMs, we split the problem into two separate subdomains as in (2), and encounter the same issue of needing 
to enforce continuity of the solution and its flux over the interface �.

The key role of the MDP is to impose the required interface conditions on �. The MDP replaces the governing differential 
equation, the Helmholtz equation (8a), on the domain with an equivalent operator equation at the boundary (Calderon’s 
boundary equation with projection [8,34]). Unlike the case of the classical boundary integral equations (BIEs), the reduction 
from the domain to the boundary with the help of Calderon’s operators is universal. It is not tied to any specific boundary 
conditions and also not limited to constant coefficients. Also unlike in BIEs, Calderon’s operators work with actual physical 
sources as opposed to artificial densities, such as that of a single- or double-layer potential. The well-posedness of Calderon’s 
boundary formulation is inherited automatically from that of the volumetric boundary-value problem. The Calderon’s BEP 
is formulated with respect to the Cauchy data of the solution, i.e., the boundary trace of the solution itself (Dirichlet data) 
and its normal derivative (Neumann data). The reduction to the boundary is done independently for individual subdomains 
�1 and �2 (see Fig. 2b). Then, the resulting boundary equations with projections on the neighboring subdomains share the 
Dirichlet and Neumann data as unknowns at the common interface �, which directly enforces the continuity of the solution 
and its flux. For the remaining parts of the boundaries, ∂�1\� and ∂�2\�, the boundary equations with projections are 
combined with the boundary condition (8b), which is also formulated in terms of the Cauchy data of the solution. Altogether, 
the MDP solves a coupled problem on the combined boundary of all subdomains. Nonetheless, the Calderon operators for 
individual subdomains are computed independently and in parallel.

Indeed, the operators are computed with the help of an auxiliary problem, which is formulated for the same governing 
equation, but on a larger auxiliary domain. The auxiliary problem must be uniquely solvable and well-posed. Otherwise, 
the auxiliary problem can be arbitrary, and is normally chosen so as to enable an easy and efficient numerical solution. In 
particular, the auxiliary domain would typically have a simple regular shape; some examples are shown in Fig. 3. Given that 
for domain decomposition one needs to compute the Calderon operators separately for individual subdomains, we embed 
each subdomain within its own auxiliary domain, see Fig. 4, and solve the resulting auxiliary problems independently. When 
the subdomains have the same shape and the wavenumber is also the same, we can reuse the computed operators. The 
choice of an auxiliary domain, as well as details of how to efficiently account for identical subdomains, is discussed in 
Section 3.2.1.

In this section, we introduce the MDP and apply it in the framework of DDM. For a detailed account of the theory 
and derivation of the MDP, see [31]. For additional details on handling more complicated boundary conditions, general 
geometries, and variable coefficients, see [6,7,23,24].
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Fig. 4. The auxiliary domain setup for our problem with the domain decomposition from Fig. 2b.

Here is a roadmap for the rest of the section.

• Fourth order accurate finite difference scheme for the Helmholtz equation (Section 3.1).
• MDP for a single domain with no decomposition (Section 3.2).

– Auxiliary problem for computing Calderon’s potentials and boundary projections (Section 3.2.1).
– Definition of difference potentials and boundary projection operators and equivalence of the finite difference 

Helmholtz equation to a discrete boundary equation with projection (Section 3.2.2).
– Extension operator that relates the Cauchy data of the continuous solution at the boundary and the density of the 

difference potential on the grid (Section 3.2.3).
– Representation of the Cauchy data at the boundary as a truncated spectral (Chebyshev) expansion with undetermined 

coefficients (Section 3.2.4).
– Construction of a linear system with respect to the Chebyshev undetermined coefficients by substituting the spectral 

expansion into the boundary equation with projection via the extension operator (Section 3.2.5).

• MDP-based decomposition in the case of two subdomains (Section 3.3).

– Combined system of two boundary equations with projection for two subdomains (Section 3.3.1).
– Taking into account the boundary conditions using the previously introduced spectral representation of the data at 

the boundary (Section 3.3.2).
– Taking into account the interface conditions in the spectral form by identifying and equating the respective Cheby-

shev expansion coefficients on the two sides of the interface (Section 3.3.3).
– Solution of the resulting overdetermined linear system with respect to the unknown Chebyshev coefficients in the 

sense of least squares (Section 3.3.4).

• MDP-based decomposition in the case of more than two subdomains (Section 3.4).
• Summary of the algorithm (Section 3.5).
• Computational complexity of the algorithm (Section 3.6).

3.1. Finite difference scheme

The MDP can be implemented in conjunction with any finite difference scheme as the underlying approximation, in-
cluding the case of complex or non-conforming boundaries [24]. High-order schemes are known to reduce the pollution 
effect for the Helmholtz equation [1,2,11]. Further, compact schemes require no additional boundary conditions beyond 
what is needed for the differential equation itself. Therefore, we have chosen to use the fourth-order, compact scheme for 
the Helmholtz equation as presented in [19,35]:

1

h2

(
um+1,n + um−1,n + um,n+1 + um,n−1 − 4um,n

)
+ 1

6h2

[
um+1,n+1 + um−1,n+1 + um+1,n−1 + um−1,n−1 + 4um,n

− 2
(
um+1,n + um−1,n + um,n+1 + um,n−1

)]
(9)

+ k2

12

(
um+1,n + um−1,n + um,n+1 + um,n−1 + 8um,n

)
= fm,n + 1

12

(
fm+1,n + fm−1,n + fm,n+1 + fm,n−1 − 4 fm,n

)
The scheme in (9) uses a nine-node stencil for the left-hand side of the PDE and a five-node stencil for the right-hand 
side (see Fig. 5), with uniform step size in both directions (�x = �y = h). In the case where the PDE is homogeneous, 
the right-hand side stencil is unnecessary as f ≡ 0. Additionally, (9) was derived for a constant value of the wavenumber 
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Fig. 5. The stencils for the compact scheme given in (9).

k. For our purposes this is sufficient, because while the domain � may have a piecewise-constant k, we assume that the 
decomposition is such that each �i has constant k. One could also consider a sixth-order scheme for constant [39] or 
variable [36] wavenumber k, or a fourth-order scheme for a more general form of the Helmholtz equation with a variable 
coefficient Laplace-like term and wavenumber [7]. However, for the scope of this paper we will focus on the piecewise 
constant k case.

3.2. Base subdomain

For simplicity, we will first illustrate our approach for the case of identical subdomains. In this case, we can define all 
the components of the MDP on one base subdomain, and allow copies of that base subdomain to be translated and rotated 
into the appropriate position for any given concrete example. Considering the model domain from Fig. 2, a logical choice of 
base subdomain is a square. Throughout Section 3.2, we will refer to the base subdomain simply as � with boundary 	, 
where � is a 2 × 2 square centered at the origin.

Then, we will consider a more general setting where different subdomains can have different values of the wavenum-
ber k, including large differences between neighboring subdomains that will allow us to demonstrate the performance of 
the method for strong material discontinuities. Treating the partitions into subdomains of different shape, including non-
rectangular shapes, presents no substantial difficulty either. It will be the subject of a future work.

3.2.1. Auxiliary problem
The auxiliary problem (AP) is needed for computing the Calderon’s potentials and projections. It defines an inverse to 

the discrete Helmholtz operator. This inverse can be thought of as generalization of the convolution with the fundamental 
solution in the classical potential theory. The AP is formulated on a larger auxiliary domain �0 ⊃ �. It should be uniquely 
solvable and well-posed, and should admit an efficient numerical solution. Otherwise, the AP can be arbitrary [31], and our 
specific choice is made for the reason of convenience.

Let L be the Helmholtz operator: Lu def= (� + k2)u, and �0 be a square with side length 2.2. We formulate the AP by 
supplementing the inhomogeneous Helmholtz equation on �0 with homogeneous Dirichlet conditions on the y-boundaries 
and local Sommerfeld conditions on the x-boundaries:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Lu = g, (x, y) ∈ �0

u = 0, y = ±1.1
∂u
∂x + iku = 0, x = 1.1
∂u
∂x − iku = 0, x = −1.1

(10)

The choice of Sommerfeld-type conditions on the x-boundaries makes the spectrum of the AP (10) complex, guaranteeing 
that there is no resonance for any real wavenumber k. Hence, the AP (10) has a unique solution u for any right-hand side g . 
It should be noted that, although similar in form to the Després condition from Section 2.2, the Sommerfeld-type conditions 
in (10) do not serve any transmission-related purpose, as they exist solely on the auxiliary domain and not on the physical 
boundary 	 = ∂�.

To discretize the AP (10), we first replace the operator L with the left-hand side of the scheme (9):

1

h2

(
um+1,n + um−1,n + um,n+1 + um,n−1 − 4um,n

)
+ 1

6h2

[
um+1,n+1 + um−1,n+1 + um+1,n−1 + um−1,n−1 + 4um,n (11a)

− 2
(
um+1,n + um−1,n + um,n+1 + um,n−1

)]
+ k2

12

(
um+1,n + um−1,n + um,n+1 + um,n−1 + 8um,n

)= gm,n
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Fig. 6. Cartesian grid sets N0 and M0 for the stencils from Fig. 5. The larger overall square represents �0; the smaller square in the middle with solid 
boundary is � with ∂� = 	.

To maintain the overall accuracy of the solution, the boundary conditions also need to be approximated to fourth-order. For 
the y-boundaries this is trivial, as the boundary nodes can directly be set to zero, i.e. for m = 0, ..., M set

um,0 = um,N = 0 (11b)

The following discretization of the Sommerfeld-type conditions was derived for the variable coefficient Helmholtz equation 
in [7] and simplified for the constant coefficient case in [6]:(

uM,n − uM−1,n

h
− 1

6h

(
uM,n+1 − uM−1,n+1 + uM,n−1 − uM−1,n−1 − 2

(
uM,n − uM−1,n

))− k2h

24

(
uM,n − uM−1,n

))

+ ik

(
uM,n − uM−1,n

h
+ h2k2

8
uM− 1

2 ,n +
uM− 1

2 ,n+1 − 2uM− 1
2 ,n + uM− 1

2 ,n−1

2

)
= 0

(11c)(
u1,n − u0,n

h
− 1

6h

(
u1,n+1 − u0,n+1 + u1,n−1 − u0,n−1 − 2

(
u1,n − u0,n

))− k2h

24

(
u1,n − u0,n

))

− ik

(
u1,n − u0,n

h
+ h2k2

8
u 1

2 ,n +
u 1

2 ,n+1 − 2u 1
2 ,n + u 1

2 ,n−1

2

)
= 0

(11d)

Conditions (11c) and (11d) were derived under the assumption that the right-hand side is compactly supported, i.e., the 
governing equation is homogeneous near the boundary. In our current setting, the grid function gm,n will be specified on 
the interior grid nodes, m = 1, ..., M − 1 and n = 1, ..., N − 1, and will be zero on the outermost grid nodes.

We define the discrete operator L(h) as the application of the left-hand side of (11a), allowing the discrete AP to be 
expressed as L(h)u = g subject to the boundary conditions from (11b), (11c), and (11d). The right-hand side g of the 
discrete AP can be arbitrary. Similar to the continuous AP (10), the finite difference AP (11) has a unique solution u for any 
g = {gm,n}. This solution u defines the inverse operator G(h): u = G(h) g .

In particular, the right-hand side g in (11a) may be defined as

gm,n = B(h) fm,n
def= fm,n + 1

12

(
fm+1,n + fm−1,n + fm,n+1 + fm,n−1 − 4 fm,n

)
(12)

where B(h) represents the application of the stencil from the right-hand side of the scheme (9) to the source term f of the 
Helmholtz equation (8a). We emphasize that G(h) is defined for any grid function g , not just those of the form g = B(h) f
as in (12). In Section 3.2.2, we introduce the discrete Calderon’s potentials and projections as solutions to the AP obtained 
by applying G(h) to specific source terms that are not in the form B(h) f (see equation (13)).

The discrete AP (11) can be solved for any g by a combination of a sine-FFT in the y-direction and a tridiagonal solver 
in the x-direction. Note that, the use of the optimal log-linear solver presents no loss of generality as we have specifically 
formulated the discrete AP so that it would allow for an efficient numerical solution. The boundary conditions of the AP 
(11b), (11c), and (11d) that enable the application of this solver are set at the auxiliary boundary ∂�0 and impose no 
limitations for computing the Calderon’s projections at the physical boundary 	 = ∂�.

3.2.2. Grid sets and difference potentials
Let N0 be a Cartesian grid on �0 with uniform step size h in both the x− and y−directions. Let M0 ⊂N0 be the set of 

nodes strictly interior to �0, i.e., not on the boundary (see Fig. 6). Define M+ = M0 ∩ � as the nodes that are interior to 
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Fig. 7. Grid sets M+ , N+ , M− , N− , and γ . The larger overall square represents �0; the smaller square in the middle with solid boundary is � with 
∂� = 	.

the original domain �, and the exterior nodes as M− = M0\M+ . Let N+ be the set of nodes needed to apply the 3 × 3
stencil from Fig. 5(left) to every node in M+ , and similarly let N− be the same for M− (see Figs. 7a and 7b). Finally, we 
define the grid boundary γ = N+ ∩N− as the discrete analogue of the original problem’s boundary 	 = ∂� (see Fig. 7c). 
Consider a grid function ξγ specified on the discrete boundary γ . We can then define the difference potential with density ξγ

as

PN+ξγ
def= w − G(h)

(
L(h)w

∣∣
M+
)

, where w =
{

ξγ on γ

0 on N0\γ (13)

The operation L(h)w
∣∣
M+ in (13) represents first applying the operator L(h) to the grid function w , then truncating the result 

to the grid set M+ . The difference potential PN+ξγ is a grid function defined on N+ (hence the notation). By design, it 
satisfies the homogeneous finite difference equation L(h)(PN+ξγ ) = 0 on M+ . The difference potential (13) truncated to 
the grid boundary γ defines the discrete boundary projection operator Pγ :

Pγ ξγ
def= (PN+ξγ )

∣∣
γ

≡ T r(h)(PN+ξγ ) (14)

The projection Pγ given by (14) has the following key property:

Theorem 1 (Ryaben’kii). A grid function ξγ satisfies the difference boundary equation with projection

Pγ ξγ + T r(h)G(h) g = ξγ (15)

if and only if there is a solution u on N+ to the finite difference equation (11a) such that ξγ is the trace (truncation) of u on the grid 
boundary γ , i.e., ξγ = T r(h)u.

The operator T r(h) in equation (15) is the same truncation to γ (or, equivalently, trace on γ ) as introduced first in 
equation (14). The proof of Theorem 1 (as well as that of the projection property, P 2

γ = Pγ ) can be found in [31, Part II, 
Chapter 2]. If the BEP (15) holds on γ , then the solution u on N+ is reconstructed by means of the discrete generalized 
Green’s formula:

u = PN+ξγ + G(h)g (16)

In particular, the discrete right-hand side g in equations (15) and (16) may be given by (12): g = B(h) f . Then, the discrete 
BEP (15) equivalently reduces the fourth order accurate discrete approximation of the Helmholtz equation Lu = f from the 
grid domain N+ to the grid boundary γ . It will be convenient to specifically study the case where the governing equation 
is homogeneous, i.e. f ≡ 0. In this case, the BEP (15) reduces to

Pγ ξγ = ξγ (17)

and we have

Corollary 2. A grid function ξγ satisfies the homogeneous difference BEP (17) if and only if there is a solution u on N+ to the finite 
difference equation L(h)u = 0 such that ξγ is the trace of u on the grid boundary γ , i.e., ξγ = T r(h)u.
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Similar to (15) and (16), solutions of the BEP (17) can be used to reconstruct the corresponding solution u on N+ in the 
form of the difference potential (13):

u = PN+ξγ (18)

3.2.3. Equation-based extension
In order for u from (16) to approximate the solution of (8a) on N+ , the grid density ξγ must be related, in a certain way, 

to the trace of the solution u at the continuous boundary 	. This relation is expressed by the extension operator. Consider a 
pair of functions defined on 	: ξ	 = (ξ0, ξ1)

∣∣
	

. One can interpret ξ0 and ξ1 as the Dirichlet and Neumann data, respectively, 
of some function v = v(x, y) on �0:

(ξ0, ξ1)
∣∣
	

=
(

v,
∂v

∂n

)∣∣∣∣
	

This function v can be defined in the vicinity of 	 as a truncated Taylor expansion, with ρ representing the shortest distance 
(with sign) from the point of evaluation to 	:

v(x, y)
def= v|	 + ρ

∂v

∂n

∣∣∣∣
	

+ ρ2

2

∂2 v

∂n2

∣∣∣∣
	

+ ρ3

6

∂3 v

∂n3

∣∣∣∣
	

+ ρ4

24

∂4 v

∂n4

∣∣∣∣
	

(19)

The definition (19) of the new function v(x, y) is not complete until the higher order normal derivatives are provided. 
These can be obtained using equation-based differentiation applied to the Helmholtz equation (8a), where we assume v is 
a solution and v and ∂v

∂n are known analytically on 	. When the domain � is a square, the outward normal derivatives on 
	 can be interpreted as standard x− or y−derivatives (or their negative counterparts), depending on which portion of the 
boundary one is considering.

For example, let the right side of the square be x = X = const. Then, the outward normal derivative becomes the positive 
x−derivative, and by rearranging (8a), we immediately get an expression for the second x-derivative evaluated along 	:

∂2 v

∂x2
(X, y) = f (X, y) − ∂2 v

∂ y2
(X, y) − k2 v(X, y) (20)

In this arrangement, v(X, y) can be replaced with the known ξ0(y), and ∂2 v
∂ y2 (X, y) can be replaced with its second tangen-

tial derivative, ξ ′′
0 (y). The third and fourth derivatives can also be obtained by first differentiating (8a) with respect to x, 

then subsequently replacing v(X, y) with ξ0(y), ∂v
∂x (X, y) with ξ1(y), and ∂2 v

∂x2 (X, y) with the right-hand side of (20). This 
process yields the following expressions:

v(X, y) = ξ0(y) (21a)

∂v

∂x
(X, y) = ξ1(y) (21b)

∂2 v

∂x2
(X, y) = f (X, y) − ξ ′′

0 (y) − k2ξ0(y) (21c)

∂3 v

∂x3
(X, y) = ∂ f

∂x
(X, y) − ξ ′′

1 (y) − k2ξ1(y) (21d)

∂4 v

∂x4
(X, y) = ∂2 f

∂x2
(X, y) − ∂2 f

∂ y2
(X, y) − k2 f (X, y) + ξ

(4)
0 (y) + 2k2ξ

(2)
0 (y) + k4ξ0(y) (21e)

We reiterate that, all functions in formulae (21) are functions of a continuous argument (not grid functions) and accordingly, 
their derivatives are conventional derivatives rather than finite differences. The expressions in (21) can be substituted into 
(19) to calculate the values of v(x, y) near the right side of �. Similar derivations can be used to compute v(x, y) near 
other sides of the square, keeping in mind that the outward normal derivative on the left and bottom sides of the square 
correspond to the negative x− and y−derivatives, respectively.

The function v = v(x, y) can be constructed starting from any pair of functions (ξ0, ξ1) defined on 	 by means of 
substituting (21a)-(21e) into the Taylor expansion (19). Then, sampling v only on the grid boundary γ , we define the 
extension operator Ex that for a given pair of continuous functions (ξ0, ξ1) on 	 yields a discrete function ξγ on γ :

ξγ = Ex(ξ0, ξ1)
def= v

∣∣
γ

As seen in (21), the operator Ex depends on the source term f . Hence, Ex is an affine operator:

Exξ	 = Ex(H)(ξ0, ξ1) + Ex(I) f (22)
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Fig. 8. Construction of the extension operator near the corner.

where Ex(H) represents its homogeneous (i.e., linear) part that only depends on (ξ0, ξ1), and Ex(I) is the inhomogeneous 
part that accounts for the source term from (8a).

Note that, for most nodes in γ , such as nodes b, b1, c, c1, and d in Fig. 8, the shortest distance to the continuous 
boundary 	 is defined unambiguously and the application of the Taylor formula (19) is straightforward. For nodes in exterior 
quadrants near the corners, such as node a in Fig. 8, the operator Ex is constructed as follows. The normal ρa from a ∈ γ
is dropped on the extension of a side of the square. The Taylor formula (19) remains the same as before, but the data at 
the foot of the normal ρa , which does not rest on the boundary 	 proper, are obtained by extending the function (ξ0, ξ1)

outward along the corresponding segment of 	. In the actual implementation of our algorithm, the functions on 	 that 
need to be extended are Chebyshev polynomials (see Sections 3.2.4 and 3.2.5). To obtain the data the foot of the normal ρa , 
a polynomial defined on a given side of the square is merely considered on an appropriate larger interval.

We also emphasize that, although the formulae for the normal derivatives (21) were derived using the Helmholtz equa-
tion, ξ	 = (ξ0, ξ1) does not need to represent the Cauchy data of a solution u to (8a) in order to apply the operator Ex. 
However, if ξ	 does correspond to a solution u: ξ	 = (

u, ∂u
∂n

)∣∣
	

, then ξγ = Ex ξ	 approximates this solution near 	 with 
fifth-order accuracy with respect to the grid size h, specifically at the grid nodes of γ .

Theorem 3 (Reznik). Let u be a solution to equation (8a) on � in the homogeneous case, f ≡ 0, and let ξ	 be the trace of u along the 
continuous boundary 	 such that ξ	 = (u, ∂u

∂n

) ∣∣
	

. Let ξγ = Exξ	 and let PN+ξγ be the difference potential with density ξγ defined 
by formula (13). Let p be the order of accuracy of the finite difference scheme L(h)u = 0. Then, as the grid N0 is refined, the difference 
potential PN+ξγ converges to the solution u (on the grid N+) with the rate of O(hp) provided that the order of the Taylor’s formula 
(19) is equal to p + q, where q is the order of the differential operator L.

The proof of Theorem 3 can be found in [29], as well as in [31, Part III, Section 1.4]. Since the Helmholtz equation is 
second-order, Theorem 3 suggests that the fourth-order Taylor’s formula (19) can be used for constructing the extension 
operator in conjunction with a second-order accurate finite difference scheme L(h)u = 0. However, the scheme (9) that 
we are using is fourth-order accurate. Hence, according to Theorem 3, one may need a sixth-order Taylor’s formula for 
the extension operator. Yet in practice, it has repeatedly been observed [6,23,24] that while sufficient, the bound given by 
Theorem 3 is not tight, and the order of the Taylor’s formula can be taken equal to the order of the finite difference scheme 
alone. Our use of a fourth-order Taylor’s formula (19) is corroborated by the numerical simulations in Section 4.

3.2.4. Spectral representation of the boundary data
Consider a system of basis functions, {ψ j}, and the following two sets of pairs

ψ
(0)
j = (ψ j,0

)
, ψ

(1)
j = (0,ψ j

)
, j = 1, ...,∞ (23)

Recall that we denote the boundary data by ξ	 = (ξ0, ξ1), where ξ0 represents the Dirichlet data and ξ1 represents the 
Neumann data. Denote by 	∗ any smooth section of 	 (i.e., any one side of the square), and let its boundary data be 
ξ	∗ = (

ξ∗
0 , ξ∗

1

)
. For all simulations in this paper, we take {ψ j} as Chebyshev polynomials defined on 	∗ and introduce the 

expansion:

ξ	∗ = (ξ∗
0 , ξ∗

1

)=
∞∑
j=1

c(0)
j ψ

(0)
j +

∞∑
j=1

c(1)
j ψ

(1)
j (24)

where c(0)
j and c(1)

j , j = 1, 2, . . ., are the respective Chebyshev coefficients. The infinite series (24) can be truncated after a 
finite number of terms to provide an approximation of ξ	∗ . The number of terms M∗ is typically taken so as to make the 
truncated terms negligible with respect to the accuracy attainable on the grid:

ξ	∗ =
M∗∑

c(0)
j ψ

(0)
j +

M∗∑
c(1)

j ψ
(1)
j (25)
j=1 j=1
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Fig. 9. Labeling of the sides of 	 (helps define the linear system in Section 3.2.5).

For smooth boundary data, the Chebyshev expansion (24) converges rapidly [32, Section 3.1.3] and thus the number of terms 
M∗ in the truncated sum (25) can be small. The specific values of M∗ that we used in our simulations are presented in 
Section 4.

The spectral representation (25) can be extended to apply to all four sides of the square 	 by combining the correspond-
ing basis functions. Consider the labeling of the sides in Fig. 9, and the following definition of the expanded set of basis 
functions � j :

� j+(i−1)M∗ =
{

ψ j on 	i

0 otherwise
for i = 1, ...,4 (26)

Every element of � in (26) is defined on the entire 	, while each ξ	i has a series expansion independent of the others. 
Then, similar to (23) we define the following pairs:

�
(0)
j = (� j,0

)
, �

(1)
j = (0,� j

)
, j = 1, ..., M

where M = 4 · M∗ , and write the expansion of ξ	 as

ξ	 =
M∑

j=1

c(0)
j �

(0)
j +

M∑
j=1

c(1)
j �

(1)
j (27)

Note that, the choice of the same system of basis functions for both the Dirichlet and Neumann data and for all four sides 
of the square is not a requirement, but it provides extra convenience for constructing the linear system in Section 3.2.5 and 
building the DDM extension in Section 3.3.

3.2.5. Linear system for one subdomain
Applying the extension operator (22) to the series representation of ξ	 in (27), we have:

Ex ξ	 = Ex(H)

⎛
⎝ M∑

j=1

c(0)
j �

(0)
j +

M∑
j=1

c(1)
j �

(1)
j

⎞
⎠+ Ex(I) f

=
M∑

j=1

c(0)
j Ex(H) �

(0)
j +

M∑
j=1

c(1)
j Ex(H) �

(1)
j + Ex(I) f (28)

Setting ξγ = Ex ξ	 and substituting it into the BEP (15) with g = B(h) f yields:

Pγ ξγ = ξγ − T r(h)G(h)B(h) f

Pγ Ex ξ	 = Ex ξ	 − T r(h)G(h)B(h) f

Pγ

⎛
⎝ M∑

j=1

c(0)
j Ex(H) �

(0)
j +

M∑
j=1

c(1)
j Ex(H) �

(1)
j + Ex(I) f

⎞
⎠

=
M∑

j=1

c(0)
j Ex(H) �

(0)
j +

M∑
j=1

c(1)
j Ex(H)�

(1)
j + Ex(I) f − T r(h)G(h)B(h) f

M∑
c(0)

j Pγ Ex(H) �
(0)
j +

M∑
c(1)

j Pγ Ex(H) �
(1)
j + Pγ Ex(I) f
j=1 j=1
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=
M∑

j=1

c(0)
j Ex(H) �

(0)
j +

M∑
j=1

c(1)
j Ex(H) �

(1)
j + Ex(I) f − T r(h)G(h)B(h) f

By collecting similar terms, we obtain the following system of linear algebraic equations

M∑
j=1

c(0)
j (Pγ − Iγ )Ex(H) �

(0)
j +

M∑
j=1

c(1)
j (Pγ − Iγ )Ex(H) �

(1)
j

= (Iγ − Pγ )Ex(I) f − T r(h)G(h)B(h) f (29)

where Iγ represents the identity operator in the space of grid functions ξγ defined on γ . While equations (29) hold at the 
nodes of the grid boundary γ , the unknowns in system (29) are not grid unknowns; they are rather the coefficients c(0)

j

and c(1)
j , j = 1, 2, . . . , M , of the Chebyshev expansion on 	 of the Dirichlet and Neumann data of the continuous solution. 

System (29) can be written in matrix form:

Q c = F (30)

where the matrix Q = [Q (0), Q (1)
]

is given by

Q =
[
(Pγ − Iγ )Ex�

(0)
1 , ... , (Pγ − Iγ )Ex�

(0)
M ,︸ ︷︷ ︸

Q (0)

(Pγ − Iγ )Ex�
(1)
1 , ... , (Pγ − Iγ )Ex�

(1)
M︸ ︷︷ ︸

Q (1)

]
(31)

This matrix has dimension |γ | × 2M where |γ | is the number of nodes in the grid boundary γ . The column vector

c = [c(0)
1 , ... , c(0)

M , c(1)
1 , ... , c(1)

M ]
≡ [c1, ... , cM︸ ︷︷ ︸

c(0)ᵀ

, cM+1, ... , c2M︸ ︷︷ ︸
c(1)ᵀ

]ᵀ (32)

in equation (30) is a vector of unknowns with dimension 2M , while the vector F has dimension |γ | and represents the 
inhomogeneous part of the problem:

F = (Iγ − Pγ )Ex(I) f − T r(h)G(h)B(h) f (33)

The first M columns of Q in (31) form the sub-matrix Q (0) and correspond to the coefficients {c(0)
j } in (32), while columns 

M + 1 through 2M form Q (1) and correspond to {c(1)
j }.

Note that, the solution to (30) is not unique, as system (30) is derived from the discretized governing differential equation 
L(h)u = B(h) f with the help of the BEP (15), and does not take into account any boundary conditions. Therefore, we 
interpret system (30) as a core component of the multi-subdomain decomposition algorithm, rather than a system to be 
solved in its own right. The decomposition algorithm is described in Section 3.3 for the case of two subdomains and 
subsequently extended in Section 3.4 to the case of a larger number of subdomains. For a discussion about implementing 
boundary conditions and completing the MDP algorithm in the single domain case, see [6,7,23,24,31].

3.3. Extension to two subdomains

We reconsider the problem of solving (8) over a partitioned domain as in Fig. 2b.

3.3.1. Combined system of two BEPs
Let 	(i) represent the boundary of �i , and let each 	(i) be composed of its four sides as in Fig. 9, so that 	(i, j) denotes 

side j of 	(i) . Further, define a new set of indices, B , to be the indices of 	(i, j) that correspond to the boundary edges. 
According to Fig. 9, for the two-domain case this yields B = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 4)}, as well as its comple-
ment B� = {(1, 4), (2, 3)} for the indices corresponding to both sides of the interface �. Let all grid sets and operators from 
Section 3.2 be defined for �1 and �2, independently. Partition and index the matrix Q and the unknown column vector c
with the following notation:

Q (i,∗,l) = [ Q (i,1,l) Q (i,2,l) Q (i,3,l) Q (i,4,l)
]

c(i,∗,l) = [c(i,1,l)ᵀ c(i,2,l)ᵀ c(i,3,l)ᵀ c(i,4,l)ᵀ ]ᵀ
For Q (i, j,l) , the indices i ∈ {1, 2} and j ∈ {1, 2, 3, 4} denote those columns corresponding to the basis functions defined to be 
non-zero over 	(i, j) . The index l ∈ {0, 1} distinguishes between the Dirichlet and Neumann data (compare to the notation 
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Q (0) and Q (1) in Section 3.2.5). The use of c(i, j,l) similarly identifies the coefficients of the corresponding basis functions 
over 	(i, j) in either the Dirichlet or Neumann case. The independent linear systems for �1 and �2 can then be written as

Q (1,∗,∗)c(1,∗,∗) = F (1) and Q (2,∗,∗)c(2,∗,∗) = F (2) (34)

where Q (i,∗,∗) = [
Q (i,∗,0) Q (i,∗,1)

]
and c(i,∗,∗) = [

c(i,∗,0)ᵀ c(i,∗,1)ᵀ ]ᵀ . Note that, the construction of Q (i,∗,∗) , i ∈ {1, 2}, 
is identical to that of (31) over a single subdomain. Equivalently, the independent linear systems (34) can be expressed 
simultaneously as the block-diagonal system[

Q (1,∗,∗) 0
0 Q (2,∗,∗)

][
c(1,∗,∗)

c(2,∗,∗)

]
=
[

F (1)

F (2)

]
(35)

Similar to (30), the solution to (35) is not unique because it is derived only from the discrete BEP (15) combined with (12)
for each subdomain and does not account for the boundary condition (8b). Additionally, since � has been decomposed into 
�1 and �2, an interface condition is needed to account for the lack of a boundary condition along �.

Note that, while the boundary value problem (8) on the composite domain shown in Fig. 2b assumes the same value 
of k throughout the entire �, it is very easy to generalize equations (34) to the case where �1 and �2 have different 
wavenumbers. That would require computing Q (1,∗,∗) for the wavenumber k1 and computing Q (2,∗,∗) for the wavenumber 
k2, which is done by solving two similar yet different discrete APs (11).

3.3.2. Boundary conditions
To account for the boundary conditions, consider one 	(i, j) (for (i, j) ∈ B). Substitute the series representation at the 

boundary (25) into the boundary condition (8b) for both u and ∂u
∂n . Expand the right-hand side of (8b) as φ =∑M∗

m d(i, j)
m ψm

using the same basis functions as in (23). Then,

α

⎛
⎝ M∗∑

m=1

c(i, j,0)
m ψm

⎞
⎠+ β

⎛
⎝ M∗∑

m=1

c(i, j,1)
m ψm

⎞
⎠=

M∗∑
m

d(i, j)
m ψm (36)

Assuming that the basis functions ψm are orthogonal, we derive from (36):

αc(i, j,0)
m + βc(i, j,1)

m = d(i, j)
m , for m ∈ {1, ..., M∗} (37)

The M∗ equations (37) can be obtained for each index pair in B , adding a total of 6M∗ extra equations. Note here that the 
sets of equations obtained for each 	(i, j) are independent from one another, allowing greater flexibility in the boundary 
condition (8b). For example, the definitions of α and β in (8b) can be piece-wise constant:

α = α(i, j) β = β(i, j)

where α(i, j) and β(i, j) are constants that can assume different values on different segments of the boundary 	(i, j) as long as (
α(i, j), β(i, j)

) �= (0, 0) for any pair (i, j) ∈ B . This generalization allows for both Dirichlet (α(i, j) = 1, β(i, j) = 0) and Neumann 
(α(i, j) = 0, β(i, j) = 1) conditions as particular cases. The equations being added by (37) are sparse compared to the rest 
of (35), which can be taken advantage of computationally, see Section 3.3.4. Further information on implementing mixed 
boundary conditions, as well as extending this process to include variable coefficient Robin conditions, can be found in [6].

3.3.3. Interface conditions
The standard interface conditions require continuity of the solution and its flux across the interface (see equations (2c)). 

These two conditions can be enforced by equating the series representations of the Dirichlet data along 	(1,4) and 	(2,3) , as 
well as setting the series representation for the Neumann data of 	(1,4) equal to the negative of that for 	(2,3):

M∗∑
m=1

c(1,4,0)
m ψm =

M∗∑
m=1

c(2,3,0)
m ψm (38a)

M∗∑
m=1

c(1,4,1)
m ψm = −

M∗∑
m=1

c(2,3,1)
m ψm (38b)

As with the boundary conditions in Section 3.3.2, the use of identical systems of Chebyshev polynomials {ψ j} (orthogonal 
basis functions) along each side is exploited to obtain the following two sets of equations for each m ∈ {1, ..., M∗}:

c(1,4,0)
m − c(2,3,0)

m = 0 (39a)

c(1,4,1)
m + c(2,3,1)

m = 0 (39b)

The 2M∗ additional equations (39) supplement system (35) along with boundary conditions (8b) expressed in the form (37).
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Alternative interface conditions can be chosen and implemented in a similar fashion. For example, if ui is the solution to 
the subproblem on �i , then for constants a(0), a(1), b(0), b(1) and smooth functions η(0), η(1) , a class of interface conditions 
can be defined as follows on the interface 	(1,4) = 	(2,3):

a(0)u1 + b(0)u2 = η(0) a(1) ∂u1

∂n1
+ b(1) ∂u2

∂n2
= η(1) (40)

The basic interface conditions (2c) correspond to a(0) = −b(0) = 1, a(1) = b(1) = 1, and η(0) = η(1) ≡ 0 in (40). Any interface 
conditions (40) can be accounted for by following the same steps as in (38) and (39). The only addition is to let η(0) =∑M∗

m=1 η
(0)
m ψm and η(1) =∑M∗

m=1 η
(1)
m ψm be the expansions of η(0) and η(1) . This yields

a(0)c(1,4,0)
m + b(0)c(2,3,0)

m = η
(0)
m

and

a(1)c(1,4,1)
m + b(1)c(2,3,1)

m = η
(1)
m

as the conditions for the coefficients. By allowing linear combinations and inhomogeneities in the interface conditions, a 
wider set of situations such as jumps over the interface in the solution, its flux, or both can be accounted for. In this paper, 
for simplicity, we only consider the case where the solution and its flux are continuous on �.

3.3.4. Solving the overall system
By supplementing the system (35) with the equations derived in (37) and (39), the complete system can be expressed 

as a new matrix equation

Q c(∗,∗,∗) = F (41)

where the dimension of Q is (2|γ | + 8M∗) × 16M∗ . Again, we emphasize that while the number of equations in (41)
corresponds to the number of nodes in the grid boundary, the unknowns c(∗,∗,∗) in system (41) are not grid unknowns. 
They are the coefficients of the spectral expansion (Chebyshev) of the continuous solution and its normal derivative at the 
boundaries of all subdomains. The system (41) is overdetermined and can be solved by minimizing the �2 norm ‖Q c(∗,∗,∗) −
F‖2 through traditional least squares methods, e.g., a QR-factorization. The least squares solution exists and is unique. 
Moreover, as the grid is refined the �2 residual of system (41) converges to zero with the design rate of the scheme O(h4). 
This convergence takes place because although (41) is solved weakly, the original boundary value problem (8), from which 
(41) is ultimately derived, has a classical solution.

Rather than adding equations (37) and (39) to the system, these conditions can instead be resolved through substitution 
and the elimination of unknowns. For the boundary conditions in the form (37), first consider the case where (8b) reduces 
to a Dirichlet boundary condition (i.e., α = 1, β = 0). In this case, the coefficients c(i, j,0) (for (i, j) ∈ B) are obtained directly 
when expanding the right-hand side of (8b), eliminating those coefficients from the larger linear system. The coefficients 
in c(i, j,0) are multiplied by the corresponding columns of Q (i, j,0) , then subtracted over to the right-hand side of (35). If 
(8b) reduces to a Neumann boundary condition (i.e. α = 0, β = 1), the same process is followed but for c(i, j,1) and Q (i, j,1) . 
In either case, this process eliminates 6M∗ unknowns from the system (M∗ unknowns for each (i, j) ∈ B) leaving 10M∗
unknowns rather than the original 16M∗ unknowns.

When (8b) does not reduce to a Dirichlet or Neumann condition (α �= 0 and β �= 0), we can still eliminate unknowns by 
means of substitution. Consider (37), and rearrange the terms to solve for either c(i, j,0)

m or c(i, j,1)
m :

c(i, j,1)
m = 1

β
d(i, j)

m − α

β
c(i, j,0)

m (42)

From (42), the 1
β

d(i, j)
m terms can be multiplied by the corresponding columns of Q (i, j,1) and subtracted to the right-hand 

side, while the α
β

c(i, j,0)
m terms can be combined with their like terms from the original system (35). Similar to the Dirichlet 

and Neumann cases, 6M∗ unknowns are eliminated from the system.
The interface conditions (39a) can be accounted for by adding the respective columns, Q (1,4,0)

m and Q (2,3,0)
m , and eliminat-

ing one of the coefficients, c(1,4,0)
m or c(2,3,0)

m . As these conditions exist for m ∈ {1, ..., M∗}, resolving the interface conditions 
this way eliminates M∗ unknowns from the system. Following the same process for (39b) (subtracting columns instead of 
adding) eliminates an additional M∗ unknowns.

In the case where (37) and (39) are included as supplemental equations, the overall system has dimension (2|γ | +
8M∗) × 16M∗ . If the conditions are resolved, the dimension is 2|γ | × 8M∗ , which enables faster solution. The solution 
vector c(∗,∗,∗) is used to reconstruct ξ	(1) and ξ	(2) through the series representation (25) for each subproblem. In turn, ξ	(1)

and ξ	(2) are extended to their respective grid boundaries, as described in Section 3.2.3. Finally, a fourth-order accurate 
approximation to the unique solution of (8) is obtained by applying (16) to the resulting ξγ (1) = Exξ	(1) and ξγ (2) = Exξ	(2) . 
These approximations collectively provide an approximation of the global solution to (8) on the overall domain �.
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Fig. 10. Examples of domains that have a valid N-subdomain decomposition.

3.4. Extension to N subdomains

The extension to N subdomains is a natural extension of the two-subdomain case. Consider (8) over a domain � that is 
split into N subdomains, whose interfaces are full edges of the squares (see Fig. 10). Returning to the triple index notation 
used in Section 3.3, let the first argument vary from 1 to N , rather than stopping at 2, and let all grid sets and operators 
from Section 3.2 be defined independently for each �i . To build the matrix for the linear system, combine the Q (i,∗,∗) from 
each subdomain in a block-diagonal style. The vectors of unknowns and right-hand sides from each subdomain are simply 
appended to create the following system:⎡

⎢⎢⎢⎣
Q (1,∗,∗) 0 0 0

0 Q (2,∗,∗) 0 0

0 0
. . . 0

0 0 0 Q (N,∗,∗)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

c(1,∗,∗)

c(2,∗,∗)

...

c(N,∗,∗)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

F (1)

F (2)

...

F (N)

⎤
⎥⎥⎥⎦ (43)

The matrices Q (i,∗,∗) on the diagonal of (43) may correspond to the same wavenumber or different wavenumbers. In 
the latter case, computing Q (i,∗,∗) for a new wavenumber requires a new discrete AP (11). To generalize the handling of 
boundary and interface conditions, extend the definition of the set B

B =
{
(i, j)

∣∣	(i, j) ∩ ∂� �= ∅
}

(44)

so that |B ∪ B�| = 4N . If (i, j) ∈ B , then 	(i, j) has an associated boundary condition specified by (8b) and the process 
described in Section 3.3.2 can be applied for each (i, j) ∈ B to obtain the necessary supplemental equations. If (i, j) ∈ B� , 
then 	(i, j) is an interface, requiring the process from Section 3.3.3 to determine the supplemental equations. Adding these 
equations yields the N subdomain version of (41):

Q N c(∗,∗,∗) = F N (45)

where Q N and F N represent the matrix from the left-hand side of (43) and the vector of the right-hand side, respectively, 
after being supplemented with boundary and interface condition equations. Similar to (41), the unknowns c(∗,∗,∗) in system 
(45) are not grid unknowns; they are the coefficients of the Chebyshev expansion of the continuous solution at the boundary. 
The structure of the decomposition (see examples in Fig. 10) determines how many equations correspond to boundary 
conditions as opposed to interface conditions, but there will always be 4N M∗ equations added to (43) (M∗ equations for 
each 	(i, j)). As in Section 3.3.4, these equations can often be resolved with substitution and elimination to reduce the cost 
of solving the linear system.

3.5. Implementation details

In this section, we provide the important implementation details of the proposed algorithm, which are further justified 
in Section 3.6. We assume that all the subdomains are squares of the same size, as in Fig. 10. We allow different values of 
k on different subdomains so that in (8a) we assume that the wavenumber k is piece-wise constant over �, and constant 
on any given �i . Consider the following summary of the algorithm:

1. For i = 1, 2, . . . , N , consider the subdomain �i :

(a) Define the auxiliary problem (10), as well as the grid sets and operators from Section 3.2.2.
(b) For j = 1, 2, . . . , M:

Compute (Pγ − Iγ )Ex�
(0) and (Pγ − Iγ )Ex�

(1) .
j j
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(c) Compose the matrix Q (i,∗,∗) according to (31). Q (i,∗,∗) is the left-hand side of (30).
(d) Compute Pγ Ex(I) f and T r(h)G(h)B(h) f to form F (i) according to (33). F (i) is the right-hand side of (30).

2. Solve the system (45) in the sense of least squares and obtain c(∗,∗,∗):

(a) Assemble the system (43) using the matrices Q (i,∗,∗) and vectors F (i) from step 1.
(b) Resolve the boundary conditions and interface conditions either as supplemental equations or as in Section 3.3.4. 

Form the system (45).
(c) Compute the QR-factorization of the matrix on the left-hand side of (45): Q N = Q R .
(d) Compute c(∗,∗,∗) = R−1 Q ∗ F N where Q ∗ is the conjugate transpose of Q .

3. For i = 1, 2, . . . , N , consider the subdomain �i :

(a) Use c(i,∗,∗) obtained in step 2(d) and the series representation (25) for each 	(i, j) to reconstruct the boundary data 
ξ	(i) .

(b) Extend ξ	(i) to the grid boundary γ (i) using Ex given by (22): ξγ (i) = Exξ	(i) .
(c) Apply (16) to ξγ (i) derived in step 3(b) to obtain a local, fourth-order approximation to the solution u on the subdo-

main �i .

The local solutions are then assembled to collectively provide a global approximation of the solution u on �. Note that, 
the entirety of steps 1 and 3 can be distributed on parallel processors for each subdomain. Once the algorithm has been 
run, the structure of the method allows several problem variations to be solved more economically because they do not 
affect terms that have already been computed in specific parts of steps 1 and 2.

The first part of the algorithm that requires special consideration is step 1(b), which involves multiple solutions of the 
AP (11). The results of step 1(b) form the matrix Q (i,∗,∗) in step 1(c). However, Q (i,∗,∗) does not need to be recomputed 
every time the algorithm is run. As long as the subdomains have the same shape and the same basis functions are used 
throughout the problem, the only factor that distinguishes Q (i,∗,∗) from Q ( j,∗,∗) is the wavenumber k on �i and � j . 
Therefore, Q (i,∗,∗) can be reused for any subdomain � j such that the value of k is shared across both �i and � j . The cost 
to construct Q (i,∗,∗) should only be accrued once for each unique value of k across all subdomains. If k is uniform across 
�, then we have Q (i,∗,∗) = Q ( j,∗,∗) for all i, j ∈ {1, ..., N}, and the linear system (30) is only built once, regardless of the 
number of subdomains. Further, as long as each Q (i,∗,∗) is saved after being computed, it can be reused in future problems 
for subdomains with the corresponding value of k, thus allowing the algorithm to run without constructing any Q (i,∗,∗)

matrices. In this sense, we consider Q (i,∗,∗) to be pre-computed, thereby separating the cost of its construction from the 
run-time complexity of the algorithm.

In step 2(c), a QR factorization is used to find the least squares solution of the matrix equation (45). The cost of QR 
factorization grows as the number of subdomains increases (see Section 3.6). However, once the factorization has been 
performed, changes to the right-hand sides of (8a) and (8b) (i.e., f and φ, respectively) do not affect the left-hand side 
of (45). Thus, for a series of problems where only f and φ vary, the cost of the QR factorization is only accrued on the 
first problem, effectively sharing its cost between such problems. Examples of the time saved in such cases are reported in 
Section 4. Further, in the case where φ changes while f remains the same, step 1(d) can also be reused, thus starting the 
algorithm from step 2(d) and saving the cost of applying G(h) in step 1(d).

If the type of boundary condition is changed on a given 	(i, j) by changing the piecewise-constant values of α or β on 
the left-hand side of (8b), then the algorithm can begin at step 2(a). However, in practice we do not exploit this case for 
time savings as step 2(a) is relatively inexpensive to compute.

Let us finally note that, the condition number of the matrix Q N on the left-hand side of (45) may, in principle, depend 
on the total number of subdomains N , as well as the structure of decomposition, e.g., strip-type vs. checkerboard-type, see 
Fig. 10. Yet if there is a dependence, in our implementation it did not affect either the accuracy of the computed solution 
or performance of the algorithm. In particular, in Section 4.1 we report that the cost of QR factorization of the matrix Q N
(step 2(c)) scales even slower than theoretically predicted in Section 3.6. This obviates the need for any preconditioners.

3.6. Complexity

The complexity of the algorithm depends on two main factors: Solving the discrete AP (11), i.e., applying the operator 
G(h) , and computing the QR-factorization of Q N from (45). Further, the applications of G(h) include the pre-computed 
construction of Q (i,∗,∗) and the run-time steps 1(d) and 3(c) of the algorithm. We emphasize that our algorithm provides 
the exact solution of the discrete Helmholtz problem, as opposed to the traditional DDMs that are typically iterative. Due 
to the non-iterative nature of our method, a direct comparison of its complexity to that of the conventional DDMs is poorly 
defined and not explored in this paper. We, however, provide a thorough analysis of the complexity of our method as it 
depends on the various parameters of the discretization.

First, consider applications of G(h) . This operator is only applied to individual subdomains, so let n be the number of 
grid nodes in one direction in the discretization of an auxiliary domain. Recall from Section 3.2.1 the choice of boundary 
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conditions for the y-boundaries in (10) and the requirement that k be constant on �i . These choices allow the discrete 
AP to be solved with a combination of a sine-FFT in the y-direction and a tridiagonal solver in the x-direction, yielding 
a complexity of O(n2 log n). This is the contribution of one application of G(h) , but G(h) gets applied many times over the 
course of the method. In particular, the construction of any Q (i,∗,∗) requires 8M∗ applications of G(h) — one for each column 
— giving the construction of Q (i,∗,∗) a complexity of O

(
M∗n2 log n

)
. In the worst-case scenario where every subdomain has 

a unique value of k, the construction of all N of the distinct Q (i,∗,∗) matrices is O
(
N M∗n2 log n

)
. However, it is important 

to note that the columns of Q (i,∗,∗) are independent of one another, allowing the construction of Q (i,∗,∗) to be distributed 
to a number of parallel processors up to the horizontal dimension of the matrix. Furthermore, G(h) is also applied twice to 
every subdomain to construct the right-hand side of (43), and an additional application is required in (16) to obtain the 
final approximation. These 3N applications contribute O(Nn2 log n) to the overall complexity.

The cost of the QR-factorization of Q N from (45) is the other main contribution to the method’s complexity. Assuming 
that (45) is formed by resolving the boundary and transmission conditions as discussed in Section 3.3.4, the dimensions 
of Q N are N|γ | × 4N M∗ . Note that |γ | is roughly proportional to n because γ only contains those nodes closest to the 
boundary of the subdomain, see Fig. 7c. The QR-factorization of a matrix depends linearly on the first dimension and 
quadratically on the second, giving our QR-factorization a complexity of O

(
(Nn)(N M∗)2

)
, or equivalently, O

(
N3n(M∗)2

)
. 

Further, M∗ is typically kept constant for a given collection of problems (the selection of M∗ is discussed in Section 4), so 
we consider the cost to be O

(
N3n

)
. When the number of subdomains is large, it is beneficial to avoid repeating the QR-

factorization when possible as discussed in Section 3.5, which leaves us with the O
(
N2n

)
operation of multiplying R−1 Q ∗

by the source vector F N .
Combining the costs of solving the AP and computing the QR-factorization gives the method an overall complexity of 

O
(
N3n + Nn2 logn

)
. For comparison, consider a simplified situation: let � be a square, and let N = N2

d such that there are 
Nd subdomains along each side of �, allowing the complexity to be rewritten as O

(
nN6

d + n2N2
d log(n)

)
. Consider solving 

(8) over this � with a finite-difference method and without domain decomposition. If the wavenumber is constant and 
uniform, and the boundary conditions on either the x− or y-boundaries are homogeneous Dirichlet conditions, then we can 
directly use the FFT-based solver mentioned earlier. This domain has nNd nodes in each direction, so the complexity of this 
method would be O

(
(nNd)

2 log(nNd)
)
. This complexity is better than that of the proposed method. Yet we stress that the 

FFT-based solver is only applicable in this simplest case, and is inflexible in terms of boundary conditions and variation of 
the wavenumber. In order to relax the requirements on the wavenumber and boundary conditions, we would need to resort 
to an LU or similar factorization to invert the finite difference operator with a complexity of O

(
((nNd)

2)3
) = O

(
(nNd)

6
)
. 

This approach can capture a wide range of boundary conditions and a variable wavenumber, but it is still ill-suited to cases 
with piecewise-constant k, as the global solution loses regularity at the interfaces. In those simple cases where all methods 
apply, the FFT- and LU-based solvers provide lower and upper bounds for the expected performance of our method. However, 
unlike these two methods, our method extends naturally to more complex domain shapes and boundary conditions.

4. Numerical results

In this section, we present numerical results corroborating the fourth-order convergence of the method, as well as the 
theoretical computational costs as discussed in Section 3.6. For all the test cases, we consider the Helmholtz equation (8)
where the wavenumber k is constant on any given �i but piecewise constant over �. The coefficients α and β from (8b) are 
piecewise constant on each 	(i) such that each is constant on any given subdomain edge, 	(i, j) . However, for convenience 
in presentation, most examples use a uniform boundary condition across the entire ∂�.

In all the test cases, we choose the domain � such that it can be split into N identical, square subdomains �i , whose 
interfaces are all full edges. Each �i has side length 2 and every corresponding auxiliary domain is a square with side length 
2.2. For consistency, we always let �1 be centered at the origin. Two particular domain shapes that provide convenient and 
systematic settings for analysis are a long duct and a large square. The duct is a strip-type decomposition where �i+1
extends from �i in the positive x-direction, allowing us to directly observe various behaviors of the method with respect 
to the number of subdomains N . On the other hand, a square domain will be decomposed into N = N2

d subdomains as 
discussed in Section 3.6, where �1 is again centered at the origin, and acts as the “bottom-left” corner of � (see Fig. 15), 
with N − 1 subdomains extending in both the positive x− and y−directions. This domain gives us less direct control over N
itself, but it provides a framework to observe the method’s performance in the presence of an increasing number of interior 
cross-points (checkerboard-type decomposition).

All auxiliary problems are solved using the fourth-order accurate compact finite difference scheme (9) on a series of 
Cartesian grids, starting with n = 64 cells uniformly spaced in each direction and progressively doubling n with each re-
finement. The number of basis functions M∗ used in the expansion of ξ	(i, j) is generally chosen grid-independent [23], such 
that the boundary data are represented to a specified tolerance that is smaller than the error attainable on the given grids. 
Further increasing M∗ offers little to no benefit in the final accuracy of the method as we are still limited by the accuracy of 
the finite difference scheme. It has even been observed that selecting M∗ too large can have adverse effects on the overall 
accuracy [6], particularly on coarse grids. In this event, it is sufficient to simply reduce M∗ for the coarse grids, a practice 
that we indicate in the relevant results.
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Table 1
Grid convergence and time (in seconds) to apply G(h) to solve the discrete 
AP for the single subdomain base case. The test solution is e

i k√
2
(x+y)

with 
k = 13, the Robin boundary conditions are defined by α = β = 1 in (8b), 
and M∗ = 40.

n Error Rate G(h) time Ratio

64 1.05e−03 – 0.0064 –
128 6.42e−05 4.04 0.0083 1.30
256 3.94e−06 4.03 0.042 5.07
512 2.47e−07 4.00 0.186 4.44

1024 1.53e−08 4.01 0.824 4.44
2048 9.89e−10 3.95 3.430 4.17

There are two kinds of test problems in this section: those with a known exact solution, and those without a known 
solution. For the test cases with a known solution, the source term and boundary data are derived by substituting the solu-
tion into the left-hand side of (8a) and (8b), respectively. In this case, the error is computed by taking the maximum norm 
of the difference between the approximate and exact solution on the grid N+ (across all subdomains). The convergence 
rate is then determined by taking the binary logarithm of the ratio of errors on successively refined grids. In general, these 
test cases either have a uniform wavenumber throughout the domain, or are posed across a small number of subdomains 
in order to simplify the derivation of an exact solution.

On the other hand, when we want to specify the boundary conditions, source function, or piecewise constant wavenum-
ber, we do not necessarily have an exact solution available and therefore cannot compute the error directly to assess the 
convergence. Instead, we introduce a grid-based metric where we compare the approximations on the shared nodes of suc-
cessively refined grids. For a grid with n ×n nodes, we denote the corresponding approximation by u(h)

n . Because of how the 
grids are structured, the nodes of the n

2 × n
2 grid are a subset of those in the n × n grid, so we can compute the maximum 

norm of the difference between these approximations, ‖u(h)
n − u(h)

n
2

‖∞ , on the nodes of N+ from the n
2 × n

2 grid. Similar to 
the first case, we can then estimate the convergence rate by considering the binary logarithm of the ratio of these maxi-
mum norm differences on successive grids. The new convergence metric does not evaluate the actual error. If, however, the 
discrete solution converges to the continuous one with a certain rate in the proper sense, then this alternative metric will 
also indicate convergence with the same rate regardless of whether the continuous solution is known or not and so it is 
convenient to use when the true solution is not available.

All of the computations in this section were performed in MATLAB (ver. R2019a) and used the package Chebfun [14]
to handle all Chebyshev polynomial related operations. The QR-factorizations were performed using MATLAB’s built-in 
‘economy-size’ QR-factorization.

4.1. Uniform wavenumber

In order to evaluate the complexity of the solver, we start with the case of one subdomain �. We use the homoge-

neous test solution u = e
i k√

2
(x+y)

with wavenumber k = 13, M∗ = 40, and Robin boundary conditions defined by α = 1 and 
β = 1 in (8b). The results in Table 1 corroborate both the fourth-order convergence rate of the overall method and the 
computational complexity of solving the discrete AP. As discussed in Section 3.6, for a grid with n nodes in each direction, 
the FFT-based solver should have a complexity of O(n2 logn), which produces the scale factors of approximately 4 in the 
right-most column of Table 1 as n is doubled. Note that Table 1 also corroborates the same complexity for the construction 
of Q from (30) (or equivalently, Q (i,∗,∗) from (43)) because the dominating cost of constructing Q is the application of G(h)

for every basis function in the subdomain. Note that, the G(h) timings will remain approximately constant for any number 
of subdomains N (up to the available number of processors), with only small increases due to the overhead incurred by 
parallel communication.

Next, we consider cases where � can be decomposed into two or more subdomains, under the simplifying assumption 
that k is uniformly constant throughout �, sharing the same value on every �i . This case is the simplest to consider because 
every �i will use the same Q (i,∗,∗) , removing the need to compute a new Q (i,∗,∗) for every possible value of k in a given 
problem. Tables 2–5 display the grid convergence for several examples that were derived from known test solutions. Note 
that for each of these tables, changing the test solution only affects the source and boundary data, which means Q N from 
(45) and its QR-factorization remain the same for all three test problems. Hence, for each of Tables 2–5, the QR-factorization 
is only computed once (during the first case) and is reused for the second and third cases, allowing those problems to be 
solved at a reduced cost.

Table 2 shows the grid convergence of the case with two subdomains, which uses the example domain given in Fig. 2
with basic Robin boundary conditions defined by α = 1 and β = 1 in (8b). By comparing the grid convergence of the first test 
case in Table 2 to that of Table 1, we can see that including the domain decomposition does not affect the convergence rate 
of the method, and also has very little effect on the error itself. The second and third test solutions are both inhomogeneous, 
and clearly still converge with the designed rate of convergence.
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Table 2
Grid convergence for three test solutions over a two-subdomain � where �1 is centered at the origin and the 
interface with �2 is at x = 1. A uniform wavenumber k = 13 is used in both subdomains, M∗ = 40, and the Robin 
boundary condition is uniformly defined by α = β = 1 in (8b). Errors marked with ∗ are computed with M∗ = 20.

n e
i k√

2
(x+y)

e
−1

1−(x2+y2 ) sin4(πx) sin(π y)

Error Rate Error Rate Error Rate

64 8.52e−03 – 7.93e−04∗ – 1.37e−03 –
128 5.15e−04 4.05 3.16e−06∗ 7.97 8.32e−05 4.04
256 3.12e−05 4.05 2.18e−07 3.86 5.13e−06 4.02
512 1.91e−06 4.03 1.34e−08 4.03 3.19e−07 4.01

1024 1.20e−07 4.00 8.31e−10 4.01 2.00e−08 4.00
2048 7.37e−09 4.02 5.18e−11 4.00 1.26e−09 3.99

Table 3
Grid convergence and QR-factorization timing for three test solutions where � is a long duct of N = 24 subdo-
mains. �1 is centered at the origin and each subsequent �i is attached horizontally in the positive x-direction. A 
uniform wavenumber k = 13 is used in all subdomains, M∗ = 40, and the Robin boundary condition is uniformly 
defined by α = β = 1 in (8b). The ratios of QR times demonstrates linear complexity with respect to the grid 
dimension n. Errors marked with ∗ were computed with M∗ = 20. Note that the QR-factorization does not need 
repeated for the ∗ cases, as their factorizations can be extracted directly from the existing factorization in each 
case.

n QR Time Ratio e
i k√

2
(x+y)

e
−1

1−(x2+y2 ) sin4(πx) sin(π y)

Error Rate Error Rate Error Rate

64 3.23 – 3.89e−02 – 8.34e−04∗ – 1.07e−03 –
128 6.58 2.00 8.08e−04 5.59 4.29e−06∗ 7.60 6.38e−05 4.07
256 13.50 2.05 4.85e−05 4.06 6.10e−07 2.81 3.95e−06 4.01
512 28.91 2.14 3.01e−06 4.01 3.80e−08 4.00 2.46e−07 4.01

1024 60.13 2.08 1.89e−07 4.00 2.38e−09 4.00 1.54e−08 4.00
2048 108.77 1.81 1.39e−08 3.77 1.51e−10 3.98 1.02e−09 3.91

Table 4
Grid convergence for three test solutions where � is a large square comprising of 3 subdo-
mains in each direction (checkerboard-type decomposition), and the bottom left subdomain is 
centered at the origin. A uniform wavenumber k = 13 is used in all subdomains, M∗ = 40, and 
the Robin boundary condition is uniformly defined by α = β = 1 in (8b). Errors marked with 
∗ are computed with M∗ = 20.

n e
i k√

2
(x+y)

e
−1

1−(x2+y2 ) sin4(πx) sin(π y)

Error Rate Error Rate Error Rate

64 9.08e−03 – 8.63e−04∗ – 1.86e−03 –
128 5.76e−04 3.98 4.76e−06∗ 7.50 1.12e−04 4.06
256 3.63e−05 3.99 1.64e−07 4.86 6.92e−06 4.01
512 2.27e−06 4.00 1.02e−08 4.01 4.30e−07 4.01

1024 1.42e−07 4.00 6.39e−10 4.00 2.70e−08 4.00
2048 8.83e−09 4.01 4.01e−11 3.99 1.69e−09 3.99

In Table 3, we use the exact same test solutions, wavenumber, and boundary conditions as in Table 2, but on a larger 
scale with N = 24 subdomains extending in the positive x-direction from �1 (strip-type decomposition). On this larger 
scale, we can directly observe the O(N3n) complexity of the QR-factorization with respect to n, which was explained in 
Section 3.6 (see Table 6 for the complexity with respect to N). In the first two columns of Table 3, we see that as the grid 
dimension n is doubled, the time for the QR-factorization is approximately doubled as well.

The case of a large square domain is reported in Table 4, with the same three test solutions as previous tables. In 
this case, there is a subdomain that is entirely interior and therefore has no boundary condition given, as well as numerous 
cross-points where more than two subdomains meet at a single point. As can be seen in Table 4, the errors and convergence 
rate are unaffected by the presence of an interior subdomain and cross-points in this simple case, while more difficult cases 
are presented in Tables 10 and 11 in Section 4.2.

Table 5 displays the grid convergence for a problem with mixed boundary conditions (see also Fig. 11), showing that 
the method is robust enough to handle such boundary conditions without affecting its convergence rate. The domain, 
wavenumber, and test solutions in Table 5 are the same as in Table 2, saving the cost of two applications of G(h) (per 
subdomain) because F in the right-hand side of (43) does not need to be computed. As the type of boundary condition 
changed (i.e., α or β in (8b) changed) we need to recompute the QR-factorization for the first test solution, reusing it for 
the second and third test solutions.
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Table 5
Grid convergence for three test solutions over two subdomains with mixed boundary condi-
tions as indicated in Fig. 11. A uniform wavenumber k = 13 is used in both subdomains, and 
M∗ = 40. Errors marked with ∗ are computed with M∗ = 20.

n e
i k√

2
(x+y)

e
−1

1−(x2+y2 ) sin4(πx) sin(π y)

Error Rate Error Rate Error Rate

64 1.73e−03 – 2.08e−04∗ – 9.61e−04 –
128 1.05e−04 4.04 3.49e−06∗ 5.90 5.86e−05 4.04
256 6.55e−06 4.01 1.56e−07 4.49 3.62e−06 4.02
512 4.10e−07 4.00 9.69e−09 4.01 2.25e−07 4.01

1024 2.56e−08 4.00 6.06e−10 4.00 1.41e−08 3.99
2048 1.60e−09 4.00 3.79e−11 4.00 8.77e−10 4.01

Fig. 11. The mixed boundary condition for Table 5. The coefficients α and β are defined separately for each exterior edge of the subdomains.

Table 6
Timings for the QR-factorization (in seconds) on the 
2048 × 2048 grid. � is a long duct of N subdomains, 
and the test solution is u = e

i k√
2
(x+y)

with M∗ = 40 and 
k = 13 in all subdomains. The Robin boundary condition 
is defined by α = β = 1 in (8b).

N QR time Ratio

1 0.064 –
2 0.29 4.61
4 1.66 5.65
8 11.72 7.04

16 61.89 5.28
32 362.42 5.86

In Table 6, we can see how the timing for the QR-factorization grows with respect to the number of subdomains, N . 
Recall from Section 3.6 that the complexity of the QR-factorization should be O

(
N3n

)
, so as N is doubled we would expect 

to see the execution time of the QR-factorization increase by a factor of 8. However, as can be seen in Table 6, the execution 
time of the QR-factorization scales slower than its theoretical complexity would suggest, at least for the sizes of problems 
that we have tested.
The data in Table 6 indicate, in particular, that any potential dependence of the conditioning of system (45) on the total 
number of subdomains N does not hamper the performance of QR factorization and therefore, there is no need for using 
any preconditioners.

4.2. Piecewise-constant wavenumber — material discontinuities

We now focus on cases where k is piecewise-constant over � (with constant value ki over any �i ). New Q (i,∗,∗) matrices 
are needed for any new values of ki , but recall that we only need to compute Q (i,∗,∗) once for each unique ki . For the results 
in this section, it is assumed that any necessary Q (i,∗,∗) matrices were appropriately computed ahead of time.

Tables 7 and 8 show the grid convergence for the two-subdomain and four-subdomain cases, respectively. In both cases, 
the test solution is obtained by considering an incident wave, eik1 x in �1, and deriving the corresponding reflected and 
transmitted waves by enforcing continuity of the function and its normal derivative at each interface. This derivation can 
be found in Appendix A. Table 7 shows the results of taking k1 =5 and allowing jumps to k2, varying between 13, 20, 
and 40, with cross-sections of each of these solutions plotted in Fig. 12. The method maintains its fourth-order rate of 
convergence, even for the largest jump from 5 to 40, which creates a strong material discontinuity along the interface. It 
is worth pointing out here that as k2 is increased, we need to increase M∗ because more oscillatory solutions will require 
more basis functions to maintain high-order accuracy. In cases where M∗ ≥ 50, this causes a loss of accuracy on the coarsest 
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Table 7
Grid convergence for the two-subdomain test case with the incident wave u = eik1 x and Dirichlet boundary con-
ditions, as plotted in Fig. 12. The jump in wavenumber goes from k1 = 5 to the indicated value of k2, and M∗ is 
chosen separately for each case to ensure accuracy beyond that obtained on the finest grid. Errors marked with a 
∗ were computed with M∗ = 30.

n k1 = 5 k2 = 13 k1 = 5 k2 = 20 k1 = 5 k2 = 40
M∗ = 40 M∗ = 50 M∗ = 60

Error Rate Error Rate Error Rate

64 3.23e−02 – 8.81e−02∗ – 1.27e+01∗ –
128 1.98e−03 4.03 5.13e−03 4.10 1.08e−01 6.88
256 1.21e−04 4.04 3.13e−04 4.03 6.51e−03 4.06
512 7.59e−06 3.99 1.96e−05 4.00 4.03e−04 4.01

1024 4.69e−07 4.02 1.22e−06 4.01 2.52e−05 4.00
2048 3.09e−08 3.92 7.78e−08 3.97 1.57e−06 4.01

Fig. 12. Real part of the test solutions from Table 7. These solutions have no dependence on y, so cross-sections in the x-direction are plotted. In each plot, 
it is clear that the frequency of the plane-wave changes at the interface.

Table 8
Grid convergence for u = eikx over four subdomains 
(strip-type decomposition) with Dirichlet boundary con-
ditions, and wavenumbers k1 = 3, k2 = 5, k3 = 13, and 
k4 = 20. �1 is centered at the origin, and each subdo-
main extends in the positive x-direction, with M∗ = 50. 
The error marked with a ∗ was computed with M∗ = 30.

n Error Rate

64 2.02e−02∗ –
128 1.21e−03 4.08
256 7.38e−05 4.03
512 4.61e−06 4.00

1024 2.87e−07 4.01
2048 2.05e−08 3.80

Fig. 13. Real part of the test solution from Table 8. The solution has no dependence on y, so a cross-section is plotted. Each �i has a distinct wavenumber 
ki , with k1 = 3, k2 = 5, k3 = 13, and k4 = 20. Moving in the positive x-direction, the wavenumber and frequency increase, while the amplitude decreases.

grid, so M∗ is reduced only for the n = 64 grid in the relevant test cases. The four-subdomain case presented in Table 8
was derived similar to the two-subdomain case, but only for one test solution. The values of k on each subdomain in this 
example are k1 = 3, k2 = 5, k3 = 13, and k4 = 20, and the solution is plotted in Fig. 13. Even with four unique wavenumbers, 
it can be seen in Table 8 that the method still has fourth-order convergence.

Additionally, we point out the increase in error as k2 increases in Table 7. We attribute this increase to the pollution 
effect [3], because it appears consistent with our additional observations of the pollution effect for problems with uniform 
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Table 9
Grid convergence on the duct of N = 16 subdomains depicted in Fig. 14, various homogeneous boundary condi-
tions, and the source function from (46). The wavenumbers alternate between k = 5 and k = 40, and M∗ = 60.

n Dirichlet Neumann Robin

‖u(h)
n − u(h)

n
2

‖∞ Rate ‖u(h)
n − u(h)

n
2

‖∞ Rate ‖u(h)
n − u(h)

n
2

‖∞ Rate

256 1.51e−03 – 5.79e−04 – 3.50e−04 –
512 1.08e−04 3.81 7.54e−06 6.26 3.57e−06 6.62

1024 6.76e−06 3.99 4.62e−07 4.03 2.19e−07 4.03
2048 4.22e−07 4.00 2.90e−08 3.99 1.38e−08 3.99

Fig. 14. The decomposition used to compute Table 9 where the wavenumbers are alternating in each subdomain. �1 is indicated in the left-most subdomain 
with each subsequent subdomain being attached in the positive x-direction. Wavenumbers are assigned as k = 5 for gray subdomains and k = 40 in white 
subdomains.

Table 10
Grid convergence on a large square decomposed into N = N2

d subdomains and a checkerboard 
pattern for its wavenumber as depicted in Fig. 15. There are homogeneous Dirichlet boundary 
conditions and the source function is (46). The checkerboard wavenumbers are k = 5 (gray) 
and k = 40 (white), with M∗ = 60.

n N = 16 N = 25 N = 36

‖u(h)
n − u(h)

n
2

‖∞ Rate ‖u(h)
n − u(h)

n
2

‖∞ Rate ‖u(h)
n − u(h)

n
2

‖∞ Rate

256 8.54e−04 – 6.48e−03 – 4.31e−04 –
512 6.90e−05 3.63 7.45e−04 3.12 1.76e−05 4.61

1024 4.36e−06 3.98 4.90e−05 3.93 1.09e−06 4.01
2048 2.73e−07 4.00 3.06e−06 4.00 6.79e−08 4.01

Fig. 15. The 4 × 4 decomposition used in the first case of Table 10 where the wavenumbers are assigned in a checkerboard pattern, with k = 5 in the gray 
subdomains and k = 40 in the white subdomains.

wavenumbers (no jumps) that are comparable to k2. We therefore conclude that the method is not inherently sensitive to 
discontinuities in the wavenumber.

As we allow the test cases to become more complex in geometry and wavenumber distribution, it becomes more difficult 
to obtain analytic test solutions. Instead, we specify the boundary and source data directly, and calculate errors on shared 
nodes between subsequent resolutions of the grid. For simplicity, the source function is taken to be a “bump” function:

f (x, y) =
⎧⎨
⎩exp

(
−1

1
4 −(x2+y2)

)
x2 + y2 < 1

2

0, otherwise
(46)

In Table 9, we present an example of a long duct of N = 16 subdomains with a change in wavenumber at every interface, 
alternating between k = 5 and k = 40 (depicted in Fig. 14). The three cases in Table 9 represent homogeneous Dirichlet, 
Neumann, and Robin (α = β = 1) boundary conditions, respectively, and show that the method maintains its design rate of 
convergence for all three types of boundary conditions.

In Table 10, the domain is a large square decomposed into N = N2
d (cf. Section 3.6) subdomains, where the piecewise 

constant values of the wavenumber are defined in a checkerboard pattern with k = 5 and k = 40 as in Fig. 15, so that there 
is a strong material discontinuity along every interface. These examples combine the qualitative aspects of Tables 4 and 9, 
containing cross-points as well as a changing wavenumber at every interface (now in both the x− and y-directions). We 
emphasize that no special considerations were given to either material discontinuities or cross-points (interior or boundary), 
yet the method’s convergence does not suffer from their presence.
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Table 11
Grid convergence on a square domain decomposed into 
N = 9 subdomains with homogeneous Dirichlet bound-
ary conditions and the source function from (46). Each 
subdomain has a unique wavenumber as depicted in 
Fig. 16, and M∗ = 60.

n ‖u(h)
n − u(h)

n
2

‖∞ Rate

256 9.04e−05 –
512 3.14e−06 4.85

1024 1.89e−07 4.05
2048 1.20e−08 3.98

Fig. 16. Piecewise constant values of the wavenumber k for the example computed in Table 11.

Table 11 shows the final example, which returns to the case of a square domain decomposed into 3 × 3 subdomains, 
but with wavenumbers assigned as in Fig. 16. In this case, there is also a material discontinuity along every interface. In 
contrast to the configurations of Figs. 14 and 15, this example uses a different wavenumber in each subdomain (similar 
to Fig. 13). This is the costliest test case for the method, as Q (i,∗,∗) is different for every �i . Yet we can still use those 
Q (i,∗,∗) matrices computed for k = 5, 13, and 20 that were used for earlier examples. In Table 11, fourth-order convergence 
is clearly observed.

4.3. Further studies

Thus far, we have focused on domains that are either squares or ducts, making it straightforward to generate solutions 
that have no singularities so that the method converges with its design rate. Moving beyond simple square and duct decom-
positions will often introduce reentrant corners, an example of which is shown in the third plot of Fig. 10. Reentrant corners 
may cause a solution to develop a singularity on the boundary, which in turn can cause the method to lose its design rate 
of convergence. In order to observe this phenomenon, we introduce the “Block L” domain in Fig. 17 which contains one 
reentrant corner, and demonstrate the convergence obtained by our method under two different types of solutions.

Table 12 shows the grid convergence over the Block L domain. The first case is derived from the exact solution u =
e

i k√
2
(x+y)

, and the second case uses a homogeneous Dirichlet boundary condition with the source function (46). In the 
first case, the test solution contains no singularities, and as expected Table 12 reflects the design rate of convergence. This 
indicates that the reentrant corner itself is not an issue for our method. However, the solution in the second case develops a 
singularity, and the breakdown in the convergence rate in Table 12 is indicative of that. For Case 1, we are able to compute 
the error directly with the known test solution, but for Case 2 we compute the error on successively refined grids as 
described in the beginning of this section.

The breakdown of convergence in the second case is a result of the solution’s own singularity, rather than a shortcoming 
of the method. The resolution of singularities at reentrant corners with the MDP has been explored in [21]. The method can 
also handle general shaped subdomains but these fall outside the scope of this paper.

5. Conclusions

In this paper, we have adapted the method of difference potentials to solve a non-overlapping domain decomposition 
formulation for the Helmholtz equation. The key distinction between the proposed approach and most traditional DDMs 
is that we enforce the interface conditions exactly (more precisely, with spectral accuracy) and with no use of iterations. 
After solving for the spectral boundary data along all boundaries and interfaces, the direct solves for all subproblems can 
be distributed and performed concurrently. Unlike the conventional iterative non-overlapping DDMs, the proposed formula-
tion proves insensitive to strong material discontinuities, mixed/discontinuous boundary conditions, and cross-points in the 
domain. It also performs uniformly well regardless of the structure of decomposition, e.g., strip-type vs. checkerboard-type, 
including cases with strong material discontinuities along every interface. Numerical results corroborate the fourth-order 
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Fig. 17. The “Block L” domain decomposition used in Table 12. �1 is centered over the origin, with interfaces to �2 and �3 at x = 1 and y = −1, 
respectively. This configuration creates a reentrant corner at the point (x, y) = (1, −1).

Table 12
Grid convergence for the Block L case from Fig. 17 with Dirichlet boundary 
conditions and uniform wavenumber k = 13, with M∗ = 40. In Case 1, the 
boundary and source data are derived from the plane-wave u = e

i k√
2
(x+y)

, 
which results in fourth order convergence. In Case 2, the boundary data is 
zero, and the source function is given in (46). Case 2 develops a singularity 
at the reentrant corner and breaks down the convergence.

n Case 1 Case 2

Error Rate ‖u(h)
n − u(h)

n
2

‖∞ Rate

64 9.58e−04 – – –
128 6.03e−05 3.99 4.08e−06 –
256 3.76e−06 4.00 1.98e−06 1.04
512 2.35e−07 4.00 1.09e−06 0.86
1024 1.47e−08 4.00 1.02e−06 0.10
2048 9.80e−10 3.91 4.70e−07 1.12

convergence rate of the method in numerous situations, most notably for decompositions with cross-points and large jumps 
in the wavenumber between neighboring subdomains. Our formulation also allowed us to demonstrate different behaviors 
of the method, such as its performance on solutions with singularities and the method’s complexity with respect to the 
number of subdomains or grid dimension.

The overall cost of the method is composed of the individual subdomain solves and a global solve for the boundary/in-
terface data. A clear advantage of the MDP is that, regardless of the actual physical boundary conditions, it allows for the 
use of optimal log-linear solvers for individual subdomains. Therefore, the solutions on subdomains are computed very 
efficiently. Moreover, those direct subdomain solves can be parallelized on a number of processors up to the number of 
subdomains. The representation of the boundary/interface data employed by the proposed method is spectral rather than 
grid-based. Its dimension is low compared to the typical grid dimensions, and the cost of computing the boundary/interface 
data by QR factorization starts to dominate over the individual subdomain solves for the cases with more than N = 8 subdo-
mains. We emphasize that, it is precisely this global QR solve for the coefficients of the spectral expansion at the boundary 
that guarantees the uniform performance of the method for the cases with cross-points and strong material discontinuities. 
Moreover, once the QR factorization has been computed, new problems with variations in the source and boundary data 
can be solved at a substantially reduced cost by simply reusing the previously computed QR factorization. In other words, 
one QR factorization allows one to solve an entire class of similar yet not identical problems.

The framework that is laid out in this paper can be adapted and extended in numerous ways to broaden the applicability 
of the method. Briefly mentioned in Section 3.3.3, transmission conditions of the form (40) can be implemented trivially 
along every interface to account for more complex properties of the solution there, such as jumps in the normal deriva-
tive or solution itself. The method can be generalized to account for a smoothly varying wavenumber k = k(x, y) in each 
subdomain, although it may reduce the efficiency as the FFT-based solver would no longer be applicable. Base subdomains 
of a different shape could be included, such as those with piecewise-curvilinear boundaries, in order to account for more 
complex geometries.

Appendix A. Derivation of a function with piecewise constant wavenumber

Consider a domain � ⊂ R2 split into two subdomains, �1 and �2, as in Fig. A.18. Let each subdomain have its own 
corresponding wavenumber, k1 or k2, which we will assume is constant for simplicity in this derivation. We seek a function 
u ∈ C1(�) that incorporates the reflected and transmitted parts of an incident wave that starts in �1 and propagates toward 
the interface, located at x = 0 for simplicity.

Let u1 = eik1x be the incident wave in �1. When the wavenumber changes at the interface x = 0, u1 is partially reflected 
back into �1 and partially transmitted through to �2. The reflected wave has some amplitude R and travels in the opposite 
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Fig. A.18. The setup for deriving the reflected and transmitted parts of a one-dimensional incident wave hitting an interface in a domain composed of two 
subdomains.

Fig. A.19. The setup for deriving the reflected and transmitted parts of a one-dimensional incident wave hitting an interface in a domain composed of four 
subdomains.

direction of u1, giving us u2 = Re−ik1x . The transmitted part, on the other hand, will have its own amplitude T , traveling in 
the same direction as u1 and with the wavenumber k2, giving u3 = T eik2x . This allows us to write the function u as:

u(x, y) =
{

eik1x + Re−ik1x, x � 0

T eik2x, x � 0
(A.1)

The condition to enforce continuity of the function at the interface is

eik1x|x=0 + Re−ik1x|x=0 = T eik2x|x=0

=⇒ 1 + R = T (A.2)

and for continuity of the derivative we get(
∂

∂x
eik1x

)
|x=0 +

(
∂

∂x
Re−ik1x

)
|x=0 =

(
∂

∂x
T eik2x

)
|x=0

=⇒
(

ik1eik1x
)

|x=0 −
(

ik1 Re−ik1x
)

|x=0 =
(

ik2T eik2x
)

|x=0

=⇒ ik1 − ik1 R = ik2T

=⇒ k1(1 − R) = k2T

=⇒ 1 − R = k2

k1
T (A.3)

By combining (A.2) and (A.3), we can solve for R and T to get

R = k2

2k1
− 1

2
T = k2

2k1
+ 1

2
(A.4)

The values of R and T from (A.4) can be plugged into (A.1) to obtain the function u(x, y), defined across �.
For a larger case with four subdomains, consider the scenario depicted in Fig. A.19, with interfaces at x = x1, x2, and 

x3. This scenario is a direct extension of the two-subdomain case, and we can obtain a linear system by similarly enforcing 
continuity of the function and its derivative at each interface. For example, at the interface between �1 and �2 (i.e. x = x1) 
enforcing continuity of the function itself yields:

c1eik1x1 + c2e−ik1x1 = c3eik2x1 + c4e−ik2x1

which can be rewritten as

c1eik1x1 + c2e−ik1x1 − c3eik2x1 − c4e−ik2x1 = 0

By including the corresponding conditions for both the function and its derivative at all three interfaces, we get the following 
system of equations:
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c1eik1x1 + c2e−ik1x1 − c3eik2x1 − c4e−ik2x1 = 0

c3eik2x2 + c4e−ik2x2 − c5eik3x2 − c6e−ik3x2 = 0

c5eik3x3 + c6e−ik3x3 − c7eik4x3 − c8e−ik4x3 = 0

k1c1eik1x1 − k1c2e−ik1x1 − k2c3eik2x1 + k2c4e−ik2x1 = 0

k2c3eik2x2 − k2c4e−ik2x2 − k3c5eik3x2 + k3c6e−ik3x2 = 0

k3c5eik3x3 − k3c6e−ik3x3 − k4c7eik4x3 + k4c8e−ik4x3 = 0

Note that this only provides six equations for eight unknowns. As in the two-subdomain case, we can pick one of the waves 
to be the incident wave, and choose to set its amplitude to 1 for simplicity, so we can directly choose c1 = 1. Further, the 
boundary of � is not reflective, which means that c7eik4x does not reflect upon reaching the right boundary, leaving c8 = 0. 
This leaves six equations for six unknowns, which allows this problem to be solved uniquely.

The same process can be applied to the N-subdomain case. If we let the incident wave to be given in �1, then its 
reflection back into �1 has an undetermined amplitude. For �2 through �N−1, there are two waves traveling in opposite 
directions for which the amplitudes are also undetermined. Finally, there is no reflected wave in �N , so there is only one 
amplitude to solve for, yielding a total of 1 + 2(N − 2) + 1 = 2N − 2 unknowns. This scenario contains N − 1 interfaces, 
and each interface has two conditions: continuity of the function and continuity of the derivative. These conditions yield 
2(N − 1) = 2N − 2 equations, allowing us to solve for the 2N − 2 unknowns.
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