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Abstract
In radar imaging, stochastic target models are routinely used to describe distrib-
uted scatterers. In such models, the reflectivity of a target or clutter is a realization 
of a stochastic process with certain autocorrelation properties. While most targets 
reflect the impinging electromagnetic radiation instantaneously, some targets with 
complicated geometry and/or material composition may exhibit delayed scattering. 
Detecting such delays will provide valuable data for target identification. However, 
the scattering delay can be confused with the signal propagation delay, and this dif-
ference is sometimes rather subtle. Due to the stochastic nature of the radar data, 
the classification errors are inevitable. The misclassification rate depends on the 
parameters characterizing the radar system, imaging scene, and observation settings. 
A convolutional neural network is applied to the problem of discrimination between 
the instantaneous and delayed targets in synthetic aperture radar images. A trained 
neural network demonstrates the discrimination quality commensurate with that of 
the benchmark maximum likelihood-based classifier.

Keywords Radar imaging · Dispersive targets · Classification · Convolutional neural 
network

1 Introduction

A radar interrogates its target by having a series of electromagnetic pulses bounce 
off it and then processing the scattered responses. Various radars perform vari-
ous tasks, such as detection, tracking, classification, and imaging. Imaging radars, 
in particular, generate maps of the target reflectivity. They do so by measuring the 
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travel delay, which is the signal round-trip time between the radar antenna and the 
target. The delay times are subsequently converted into distances in image coordi-
nates using the signal propagation speed (i.e., the speed of light). Two-dimensional 
images are obtained by synthetic aperture radars (SAR), where the antenna is 
mounted on a moving platform (aircraft or satellite). A SAR sensor interrogates the 
target from a number of consecutive locations along the flight path and applies a 
coherent signal processing algorithm to the resulting set of reflected signals [5, 6, 
10, 16].

Most targets reflect the impinging electromagnetic radiation instantaneously. 
Other targets exhibit scattering delay which may be due to their material composi-
tion or shape (e.g., presence of cavities) [1, 3, 4, 7]. The ability to detect the scatter-
ing delay is valuable because it may provide important information for target clas-
sification and identification. However, the increase in the signal travel time can often 
be incorrectly attributed to a longer travel distance. When this happens, the image 
acquires artifacts: certain details in the image do not correspond to any physical 
object and rather appear as implications of a mismatch between the signal process-
ing assumptions and the actual physics of signal propagation and scattering.

A signal processing technique for the detection of a delayed target return has 
been proposed in [7] and further developed in [11]. It builds a coordinate-delay 
SAR (cdSAR) image, which is an approximate reconstruction of the scene reflec-
tivity as a function of the spatial coordinates and scattering delay. The discrimi-
nation between the propagation and scattering delay is based on the assumption 
that whereas for a given target, the propagation delay is a function of the antenna 
position, the scattering delay is not because it is defined by the internal properties 
of the target, as illustrated in Fig. 1. Using the same coherent signal processing 
procedure as applied to the set of reflected signals in SAR, one can separate the 

Fig. 1  Three-dimensional geometry of SAR imaging. A delayed scatterer is schematically shown as hav-
ing an internal cavity where the multi-path reflection (blue arrows) of the incoming signal (black arrows) 
leads to scattering delays. Linear dimensions and angles are not to scale
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constant (scattering) and variable (propagation) parts of the total delay, although 
this separation is not as good as resolution of the standard SAR images [11]. To 
discriminate between the instantaneous and delayed targets in cdSAR images, a 
maximum likelihood (ML)-based classifier has been developed, and its perfor-
mance evaluated in numerical experiments [11, 12].

In the meantime, convolutional neural networks (CNNs) have emerged 
as a powerful tool for the fast and accurate classification of image data. Typi-
cally, CNNs are used in a supervised learning paradigm that requires a large 
set of input–output pairs, where the input is the image and the output is its true 
class [14]. While training the network typically requires a lot of computational 
resources, application of a trained network to a single input is very inexpensive, 
contrary to solving the optimization problem for a given input in the ML-based 
classification. Besides, the statistical model of cdSAR images and targets used 
in [11, 12] can easily produce large sets of simulated images of different types. 
Those sets can be used for training the network, and hence, it makes sense to try 
and employ CNNs as an alternative to the ML-based classification for fast dis-
crimination between the instantaneous and delayed targets.

The goal of this work is to compare the capacity of the two classification meth-
ods (ML-based and CNN-based) to discriminate between the coordinate-delay 
radar images of instantaneous and delayed targets for different values of the sys-
tem and target parameters. Additionally, we will explore the ability of these meth-
ods to generalize to the parameter values beyond those that they have been con-
figured (or trained) for.

Note that conventional SAR provides image resolution in the directions called 
range and cross-range [6, 16]. For a linear antenna trajectory, these are the dis-
tance to the trajectory and the coordinate along the trajectory, respectively, while 
the localization in the third coordinate involves some external considerations, 
such as that all scatterers are located on a certain plane [10, Chapter 7], e.g., the 
Earth’s surface. A standard two-dimensional SAR image usually corresponds to a 
small patch of this plane and is expressed in terms of the range and cross-range 
coordinates. As an extension of the standard SAR, cdSAR images are functions 
of the two spatial coordinates and, additionally, the delay time (i.e., three dimen-
sions in total). In this work, we consider imaging restricted to a plane normal 
to the antenna trajectory. This leaves just one spatial coordinate, i.e., range, and 
the delay time, so the images are two-dimensional. This simplification still pre-
serves the main challenge of the discrimination, as will be seen in Sect. 2. At the 
same time, antenna locations outside the aforementioned plane cannot be ignored 
because this is what enables the discrimination between the scattering and propa-
gation delay. In what follows, we will use the term “range-delay image” for the 
latter type of two-dimensional radar images.

Section  2 presents the key details about the physical imaging model that is 
used to generate the data, while a more thorough description can be found in [11, 
12]. A brief exposition of the ML-based classification method is given in Sect. 3. 
Section  4 describes the CNN-based classification approach, including the net-
work architecture and the training methodology. Section 5 presents the results of 
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the CNN-based classification and their comparison with the ML-based method. 
Finally, Sect. 6 outlines the conclusions.

2  Essentials of the Range‑Delay Radar Imaging

2.1  Scatterer Models and Image Statistics

For the purposes of discrimination between the propagation and scattering delay, 
we use the models of delayed and instantaneous targets, background, and noise 
developed and used in [11, 12]. To make this text self-sufficient, we present below 
the mathematical relations used to build the data for this publication with a small 
amount of comments.

The geometry of the imaging assumes the antenna trajectory in the form of an 
arc of a circle rather than a straight line, so the range direction is given by the radius 
drawn toward the middle point of this arc, see Fig. 1. The antenna coordinates are 
given by x = (x1, x2, x3) = (−R sin � cos�,−R sin � sin�,R cos �) , where � defines a 
point on an arc of a circle with the angular extent �T : |𝜑| ≤ 𝜑T∕2 ≪ 1 , and � is the 
incidence angle. The delayed and instantaneous targets are located at za = (0, sa, 0) 
and zb = (0, sb, 0) , respectively, such that for sb > sa , the delayed return from za can 
interfere from the instantaneous return from  zb . For R ≫ max(|sa|, |sb|) , the differ-
ence between the signal travel delays for these two targets is

see [11], i.e., depends on the antenna location. In (1), c is the speed of light, and the 
factor 2 is due to the two-way travel. However, this dependence is weak for small � : 
cos� ≈ 1 − �2∕2 , so if a single target at za exhibits a constant scattering delay equal 
to �t(0) in addition to the immediate return, the distinction from the configuration 
with two targets described by (1) may be not strong enough to be detectable.

The scatterer models employed in our study are based upon an extension of the 
stochastic speckle model [13, 18]. Each such model can be expressed using a univer-
sal delta-correlated circular Gaussian [2, 8, 9] coordinate-delay process �(t

z
, z) and a 

deterministic modulating function  f (t
z
, z):

�(t
z
, z) is the reflectivity function, t

z
 is the scattering delay, and z is the scatterer coor-

dinate with z3 = 0 , see Fig. 1. The target type is defined by the modulation function; 
in particular, we will be using the following three formulations: 

1. fb(tz, z) = �b�(tz)—instantaneous speckled background with the average inten-
sity �2

b
;

2. ft(tz, z) = �t�(z) ⋅ �0≤t
z
≤tmax

—delayed point scatterer at the origin of coordinates 
( sa = 0 , see Fig. 1) and maximum delay tmax , where �

D
 denotes the characteristic 

function of the domain D;

(1)�t(�) =
2

c

(
|zb − x(�)| − |za − x(�)|

)
≈

2

c
sin �(sb − sa) cos�,

(2)�(t
z
, z) = f (t

z
, z) ⋅ �(t

z
, z), where ⟨�(t�

z
, z�)�(t

z
, z)⟩ = �(t�

z
− t

z
)�(z� − z),
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3. fs(tz, z) = �s�(tz)�(z1) ⋅ �0≤z2≤smax
—instantaneous scatterer with the support on the 

z2-axis between 0 and smax , see Fig. 1.

The total reflectivity is realized by one of the two scenarios:

where �1 and �2 are two different realizations of the stochastic process �(t
z
, z) defined 

in (2). The detection of the delayed target is understood as a discrimination between 
the two models of target reflectivity in (3).

A typical frequency-modulated radar pulse with the central frequency  �0 , 
duration � , and bandwidth B can be formulated as

Radar imaging can be considered as a linear operator acting on the reflectivity func-
tion �(t

z
, z) and producing an image I(t

y
, y) , which is an approximation to the reflec-

tivity function derived from the scattered radar signals. As it was mentioned in the 
Introduction, the scatterers are assumed to be located at a certain horizontal plane 
that we define as z3 = 0 ; accordingly, in what follows, we assume y3 = 0 in the argu-
ment of I. The imaging operator relating �(t

z
, z) and I(t

y
, y) is of convolutional type 

[11]:

The expression for the kernel in (4) is

where k∥ = �0 sin �∕c , sinc � =
sin �

�
,

and

We are considering range-delay images, i.e., always take y1 = 0 in the argument of 
I(t

y
, y) (note that the support of ft and  fs does not extend beyond z1 = 0 ). This leaves 

just two arguments of I: delay t
y
 and range y2 . It is convenient to use the following 

dimensionless coordinates:

(3)

�s-model(tz, z) = �b(tz, z) + �s(tz, z)

= fb(tz, z)�1(tz, z) + fs(tz, z)�2(tz, z),

�t-model(tz, z) = �b(tz, z) + �t(tz, z)

= fb(tz, z)�1(tz, z) + ft(tz, z)�2(tz, z),

P(t) = e−i�0te−iBt
2∕(2�)

⋅ �|t|≤�∕2.

(4)I(t
y
, y) = ∫

∞

0

(

∬ �(t
z
, z)W(t

y
− t

z
, y − z) dz1 dz2

)
dt

z
.

(5)W(t
y
, y;t

z
, z) = e−2i�0T

⋅�
(
(k∥�T (y1 − z1), k∥�

2
T
(y2 − z2)

)
⋅ sinc (BT),

(6)T =
y2 − z2

c
sin � +

t
y
− t

z

2
,

(7)�(v1, v2) = ∫
1∕2

−1∕2

e2iv1seiv2s
2

ds.
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such that I ≡ I(� ,�).
We assume that the intervals of delays and coordinates in the expressions for  ft 

and  fs , respectively, are related by ctmax∕2 = smax sin � (cf. (1) and (6)). Introduce

Using (2)–(9), it is possible to obtain the second-order statistics of partial images, 
i.e., the images due to the reflectivity functions �b , �s , and �t in (3). We present these 
expressions in the following concise form:

where the index � ∈ {b, s, t} denotes the one of the three scatterer types used in (3). 
The dimensionless functions H� normalized such that max |H�| ≈ 1 and the normali-
zation coefficients K� are expressed as follows [12]:

and

where

Note that on the left hand side of (10), we have taken one and the same value of � in 
the arguments of I. The reason is the rapid decay of sinc (BT) in (5) on its argument 
that allows us to consider I(� ,�) and I(� �,� �) uncorrelated given |� − � �| ≥ � , see 
[11, 12] for more details. Revisiting formula (1) and the subsequent discussion, we 
note that the instantaneous target at  zb and a “ghost” of the target at  za due to the 
scattering delay equal to �t(0) , see Fig. 1, have the same value of � ; this relation is 
called the range-delay ambiguity, and the condition � = const defines what we will 
call an ambiguity line in the range-delay plane.

(8)
� =

B

�0

k∥y2 + B
t
y

2
,

� =
B

�0

k∥y2 − B
t
y

2
,

(9)�max =
Btmax

2
=

B

�0

k∥smax.

(10)
⟨
I�(� ,�)I�(� ,�

�)
⟩
= �2

�
K�H�(� ,� ,� �).

(11)

Hb(� ,� ,� �) =�
(
0, �

� − � �

2

)
,

Ht(� ,� ,� �) =�
(
0, �

� + �

2

)
�
(
0, �

� + � �

2

)
1

� ∫
�max

0

sinc 2(� − �
z
) d�

z
,

Hs(� ,� ,� �) =
1

� ∫
�max

0

sinc 2(� − �
z
)�

(
0, �

� + �

2
− ��

z

)
�
(
0, �

� + � �

2
− ��

z

)
d�

z
,

Kb =
�0

Bk∥

1

k∥�T

⋅ �2, Kt =
2

B
�, Ks =

�0

Bk∥
�,

(12)� = �2
T

�0

B
.
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In addition to (10)–(11), we introduce In as yet another type of partial images to 
represent the noise term. This is done by allowing � = n in (10) and formally setting

leaving the value of �2
n
Kn to be specified in (14) below.

The relative scatterer intensities, or contrasts, are defined as follows:

In this work, we always take qs = qt and pn = 0.5.

2.2  Sampled Range‑Delay Images and the Metadata

The discrimination between target types will be performed using sampled images. 
This means defining a set of arguments for the image, i.e., a set of pairs {(�j,�j)} 
describing the image sampling points.

Besides the sampling points, a complete description of the data includes the 
values of parameters �max , � , pn , and q. Using these values, we can calculate three 
covariance matrices for the random vectors Ib(�j,�j) , Is(�j,�j) , and It(�j,�j) , respec-
tively, using (10)–(14), whereas the covariance matrix for  In(�j,�j) is a diagonal 
matrix scaled with �2

n
Kn . In particular, if among the sampling points we have M dis-

tinct values of � , i.e., {�m, 1 ≤ m ≤ M} , then formula  (10) yields the covariance 
matrices �m� , � ∈ {b, s, t} , for all sampling points on the ambiguity line defined 
by �m , 1 ≤ m ≤ M [12].

The sampling pattern used in this work is a 32 × 32 rectangular grid in (� ,�)

-coordinates, with � = (−4… 27) ⋅ � and � = (−15… 16) ⋅ � . In the range-delay 
plane, this pattern is shown in Fig. 2 together with the supports of ft and fs for the 
specified value of �max . This pattern provides the data in the form suitable for both 
discrimination methods considered in this work, see Sects. 3 and 4.

The covariance matrix �� is obtained by stacking all �m� , m = 1…M , diago-
nally such that, according to our previous discussion, the entries of �� correspond-
ing to different �m are zeros. Ensembles of multivariate zero-mean normal random 
vectors are then generated using these matrices: each such vector is a realization of 
a sampled partial image I� . Depending on the scenario in (3), the partial images are 
combined as either 

or

 The vectors � with entries of Qj given by the left-hand sides of  (15) represent 
sampled range-delay radar images. This way, the aforementioned four ensembles 

(13)Hn(� ,� ,� �) = 0 if� ≠ � �, and Hn(� ,� ,� �) = 1 if � = � �,

(14)pn =
�2
n
Kn

�2
b
Kb

, qs =
�2
s
Ks

�2
s
Ks + �2

b
Kb + �2

n
Kn

, qt =
�2
t
Kt

�2
s
Kt + �2

b
Kb + �2

n
Kn

.

(15a)Qj = Is-model(�j,�j) = Ib(�j,�j) + In(�j,�j) + Is(�j,�j).

(15b)Qj = It-model(�j,�j) = Ib(�j,�j) + In(�j,�j) + It(�j,�j).
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of generated Gaussian random vectors give rise to two sub-ensembles of sampled 
images, one for the s-model and one for the t-model, with the same value of con-
trast: qs = qt.

In the discrimination problem, a single vector � resulting from either  (15a) 
or  (15b) serves as data, whereas {(�j,�j)} , � , and �max are the known metadata. 
The goal is to determine which of the two scenarios in  (15) has produced this 
data vector. The shaded areas in Fig.  2 display one level of the normalized 
expectations for |Is|2 and |It|2 , see  (10). In general, an increase in � squeezes 
these shaded areas toward the respective coordinate axes, thus improving the 
separation between the statistics of  Is and  It [11, 12]. Similarly, an increase 
in �max also makes the two statistics more distinct. However, as the data are mul-
tivariate normal, any vector � can result from either of the two models with 
a nonzero probability density. Hence, misclassifications will always take place, 
and we will evaluate the performance of a classifier by the average misclassi-
fication rate demonstrated on the two aforementioned sub-ensembles. Note 
that although the patterns due to fs and  ft , see (3), are easily distinguishable in 
Fig. 2, the discrimination in realistic situations involving a single realization of 
the random processes described by  (10) and  (15), including the homogeneous 
background Ib and noise In , may become complicated, as illustrated in Fig. 3.

Fig. 2  The sampling pattern used for the discrimination between ft and  fs in the range-delay radar 
images. The ambiguity lines (long dashes) correspond to the minimal and maximal values of � , see (8), 
in the sampling pattern, in this case � = −4� and � = 27� (not to be confused with the parameter 
�
max

= 16� that characterizes the scatterers)
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Fig. 3  Intensities for range-delay images generated according to  (15). The left column of plots corre-
sponds to the instantaneous target, whereas the right column corresponds to the delayed target. The rug-
ged appearance of the images is due to the speckle. In the absence of the speckle, the level curves of 
image intensities would mostly have the slope of 1 and −1 in the left and right column, respectively, see 
also the plots of Hs and Ht in Fig. 2 (note that according to  (8), the coordinate axes in these plots are 
rotated by 45◦ with respect to Fig. 2)
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3  Maximum Likelihood Based Classifier

The true values of the intensities �2
b
 , �2

s
 , �2

t
 , and �2

n
 (see the definitions of fb , fs , 

and  ft on page 3), as well as the choice of model in (15) are unknown to the clas-
sifier. Accordingly, we consider the matrices

as functions of these unknown intensities, i.e.,

see also (10). For each data vector � , we define the likelihood functions as the 
Gaussian probability densities:

The classification based on the maximum likelihood principle is realized via the fol-
lowing comparison:

The model yielding the larger of the two maxima in (17) assigns its type to the vec-
tor � . If this turns out to be the t-model, we declare that the underlying target con-
tains a delayed component (see (3)).

4  CNN Method

The convolutional neural network (CNN) takes as input a 2 × 32 × 32 real-valued 
array representing a 32 × 32 complex-valued image, see  (15) and Figs. 2 and 3. 
The output is a probability score between 0 and 1 for an image to be due to the 
s-model. If the computed score is less than 0.5, then the underlying scatterer is 
classified as a t-model, otherwise as an s-model.

The network architecture is shown in Fig. 4. The convolutional layers employ 
the standard 3 × 3 kernels. Each convolutional layer is followed by batch nor-
malization [15], a “Leaky ReLU” nonlinear activation function, and dropout [19] 
with rate 0.5. Batch normalization is used for improving the speed, performance, 
and stability of the CNN, “Leaky ReLU” introduces nonlinearity, and dropout 
is an easy method for preventing overfitting. The two-dimensional output of the 
first fully connected layer was used to monitor the learned decision boundary. 
The final fully connected layer is followed by a “sigmoid” activation function 

�s-model = �b +�n +�s and �t-model = �b +�n +�t

�s-model = �s-model(�
2
b
, �2

n
, �2

s
) and �t-model = �t-model(�

2
b
, �2

n
, �2

t
),

(16)

ps-model(�;�2
b
, �2

n
, �2

s
) =

1√
det(2��s-model)

exp
�
−

1

2
��(�s-model)

−1�

�
,

pt-model(�;�2
b
, �2

n
, �2

t
) =

1√
det(2��t-model)

exp
�
−

1

2
��(�t-model)

−1�

�
,

(17)max
𝜎2
b
,𝜎2

n
,𝜎2

s

ps-model(�;𝜎2
b
, 𝜎2

n
, 𝜎2

s
) ≶ max

𝜎2
b
,𝜎2

n
,𝜎2

t

pt-model(�;𝜎2
b
, 𝜎2

n
, 𝜎2

t
).
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to constrain the CNN outputs to between 0 and 1. For discrimination, the CNN 
outputs are rounded (i.e., to 0 for outputs < 0.5 and 1 for outputs ≥ 0.5 ). Binary 
cross-entropy is used as an objective function to train the CNN model.

A separate CNN is trained for each combination of values of � and �max , see 
Sect. 2.2. In order to facilitate the comparison with the ML-classifier of Sect. 3, each 
training set contains images corresponding to different values of contrast q, see (14). 
Unless specifically stated otherwise, we use 10  values of  q uniformly spread 
between 0.0 and 0.9. For each contrast, the training set contains 2000 images gen-
erated using each of the two models in (15). The resulting set of 40,000 images is 
randomly partitioned into 80% training and 20% validation sets. The CNN is trained 
for a total of 100 epochs with a batch size of 64 using the Adam [17] optimizer with 
default values. The model parameters that result in the best validation accuracy are 
saved. Note that no augmentations (e.g., flips, rotations, additional noise) are applied 
to the data during training.

5  Results and Discussion

Our goal for this study is to compare the performance of CNN-based classification 
against the ML-based approach that we consider a benchmark. To evaluate perfor-
mance of the two methods, 400 t-model and 400 s-model images are generated for 
each value of contrast from 0.0 to 0.9, totaling 8000 test images per each combina-
tion of � and �max . The ML-based and CNN-based classifiers are applied to each 
image, and the quality of discrimination is evaluated for each method and each con-
trast by averaging the misclassification rates shown on s-model and t-model sub-
ensembles, see Sect. 2.2.

Besides comparing the classification performance, we also explored the ability of 
the classification methods to adapt to missing training data or incorrect metadata. In 
particular, the value of the parameter �max characterizes the length of an instantane-
ous scatterer or the maximum delay of a dispersive scatterer, see (9). The formula-
tion of maximum likelihood procedure assumes that this parameter is known, i.e., 
no optimization w.r.t. �max is made in (17). Similarly, a CNN is trained on a dataset 

Fig. 4  Convolutional neural network architecture for classification of coordinate-delay radar images. 
White blocks indicate inputs and outputs, orange blocks indicate convolutional layers with associated 
size and number of filters, blue blocks indicate strided convolutional layers that downsample by a factor 
of 2, and green blocks indicate fully connected layers with associated number of neurons
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generated with a fixed value of �max , see Sect. 4. At the same time, in a remote sens-
ing paradigm, it may be justified to consider all parameters of the target unknown, 
including �max . One way of addressing this discrepancy is to change the formula-
tions of the classification procedures, in particular, extend optimization in  (17) to 
include the parameter �max for the ML-based method and include samples with dif-
ferent values of �max into the training dataset for the CNN-based method. We leave 
these options for future studies. Instead, we explore the ability of the two methods 
to generalize: for the ML-based classifier, this means that the values of �max (and, 
hence, functions H� and matrices �s/t-model , see  (10) and  (16), respectively) at the 
classification stage, see (17), will be different from those used for dataset generation, 
see (15), whereas for the CNN-based classifier, the matrices �s/t-model used to gener-
ate the training and validation datasets will be different from those used to generate 
the test dataset. This study is described in Sect. 5.1.

In terms of adaptation to different target contrasts, CNN-based method is different 
from the ML-based method in that in the latter, the target contrast is not part of the 
configuration of the classifier; rather, its value can be retrieved from the argument of 
the maximum in (17). Since no meaningful comparison between the two classifica-
tion methods can be seen in this case, Sect. 5.2 presents the results on adaptation to 
missing/incorrect values of target contrast only for the CNN-based classifier.

5.1  Classification Performance with Matching and Mismatching Metadata

Figure 5 plots the average misclassification rates for the ML-based and CNN-based 
classifiers for � = 0.6 and two different values of �max : 8� and 16� . The upper left 
and bottom right plots illustrate the cases where the value of �max used for train-
ing/configuration of a classifier matches that of the test dataset, whereas the upper 
right and bottom left plots correspond to the cases where these values are different. 
The latter cases illustrate the ability of the classifier to generalize, i.e., perform with 
incorrect metadata.

Both methods demonstrate better performance with the larger value of �max = 16� 
as compared to �max = 8� ; this result is expected. We also observe that the discrim-
ination quality shown by the two methods is very close in all four cases. This is 
a remarkable result given a significantly different nature of the CNN-based classi-
fier as compared to the ML-based classifier. Both methods demonstrate a reason-
able adaptation capability; however, the incorrect metadata reduces the classification 
quality (observe that the plots in each “off-diagonal” panel in Fig. 5 are higher than 
those in the “diagonal” panel in the same row).

In turn, Fig.  6 plots the average misclassification rates for the ML-based and 
CNN-based classifiers for �max = 8� and two different values of � : 0.4 and 1. The 
arrangement of panels in Fig. 6 is similar to that of Fig. 5. For the upper left and 
bottom right plots, we see that the quality of classification is better for the larger 
value of � , as expected. Similarly to Fig. 6, we observe that the performance of the 
two classifiers is very close. We also see that in one of the two adaptation cases, 
namely, the bottom left plot, the performance of the CNN-based classifier is signifi-
cantly better than that of the ML-based classifier, whereas in the second case (the 
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upper right plot), the two classifiers demonstrate similar adaptation performance. In 
all cases, the adaptation performance is inferior to that shown with the correct meta-
data; the same effect was also observed in Fig. 5. Note that the adaptation scenarios 
illustrated by Fig. 6 are not realistic because, unlike �max in Fig. 5, the parameter � 
characterizes the radar system and should be considered known with a good accu-
racy, see (12).

5.2  Adaptation of CNN to Different Target Contrasts

Figure 7 demonstrates the performance for the CNN-based classifier trained on the 
contrasts 0.0, 0.1, and 0.2, other parameters being similar to Fig. 5. We can see that 
the discrimination quality has decreased with respect to the baseline case shown in 
Fig. 5, especially for higher contrasts. At the same time, training on the three highest 
contrasts, see Fig. 8, as well as a single contrast of 0.4, see Fig. 9, yields very little 
to no loss in the discrimination quality for all contrasts.

6  Conclusions

We have successfully applied the convolutional neural networks (CNNs) to the prob-
lem of discrimination between the instantaneous and delayed scatterers in radar 
images as presented in [11, 12]. The quality of the CNN-based classification is very 
close to that demonstrated by the benchmark maximum likelihood-based classifier. 
Both classifiers can generalize, i.e., operate with incorrect metadata or missing train-
ing data, although sometimes with a moderate loss of performance.

It should be emphasized that the results obtained in this work have been achieved 
using the standard CNN architecture, in particular, the most popular 3 × 3 convolu-
tional kernels, see Fig. 4. At the same time, the images used in this study are highly 
anisotropic, in particular, the correlation between the neighboring pixels in the same 
row is much stronger than that across the rows, see Fig. 3. This characteristic fea-
ture of the range-delay radar images is due to the properties of the imaging ker-
nel (5), see also the discussion following (11). In our future studies, we will attempt 
to increase the discrimination quality by adjusting the CNN architecture to the prop-
erties of the data. Another possible direction of future research is combining the two 
classification methods, e.g., by including the output of the ML-based classifier [such 
as the arguments of the maxima in (17)] into the data for the CNN-based classifier.
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