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Abstract
Faraday rotation (FR) affects the low-frequency transionospheric radar by cre-
ating cross-talk between polarizations. The baseline part of FR can be com-
pensated for by applying an appropriate linear transformation—rotation with
a known FR angle. Yet the differential Faraday rotation (dFR), which is a
frequency-dependent part of FR, persists and introduces distortions into the
observations. We build a simplified model with two polarimetric scattering
channels that allows us to evaluate the effect of dFR on the accuracy of PolIn-
SAR reconstruction. We also assess the severity of distortions due to dFR for
the future BIOMASS mission and several other spaceborne radar systems.

Keywords: synthetic aperture radar, ionosphere, differential Faraday rotation,
polarimetric radar interferometry

(Some figures may appear in colour only in the online journal)

1. Introduction

Standard synthetic aperture radar (SAR) imaging produces two-dimensional maps of the target
reflectivity. The lack of a third dimension is due to the imaging geometry with an aperture that
typically is a segment of a straight line (see, e.g., [1–3]). When the reflectivity function of
a target is three-dimensional, the standard SAR collapses this function across the slant plane,
which is a plane passing through the target and the aperture. Yet, 2D images yield a satisfactory
representation of the geometric features of a scatterer that is flat or nearly flat, e.g., a patch of
the Earth’s surface. The literature on SAR is vast and includes many well-known sources,
e.g., [3–8]. Among the more mathematical publications that may, in particular, make use of
microlocal analysis, we mention [9–15] in addition to [3].
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Interferometric SAR, or InSAR, is a first step towards obtaining a third coordinate in the
radar image. For a scatterer that is two-dimensional but not flat, InSAR can supplement SAR
by providing an elevation map [1, 2]. This is achieved by combining the complex-valued SAR
images obtained from two apertures that correspond to two different slant planes and analyzing
the phase difference between these images. Most often, InSAR involves apertures that are
parallel or almost parallel, yielding two slightly different incident angles. Such technology has
been used to build global digital elevation maps (DEMs) in satellite-based radar missions such
as SRTM [16] and TanDEM-X [17]. A mathematical perspective on SAR interferometry is
presented in our recent paper [18].

The need to extend the SAR imaging capacity to essentially three-dimensional targets, e.g.,
a vegetation-covered terrain, gave rise to more sophisticated technologies. In some experi-
ments, more than 10 apertures were combined [19] to resolve details in the direction across the
slant plane. Such setups are rare and expensive. By contrast, polarimetric radar interferometry
(PolInSAR) [20–22] can extract multiple parameters of a three-dimensional scatterer using
one pair of apertures. For example, by exploiting the difference in reflectivities and correlation
properties between the ground and vegetation at different polarizations, PolInSAR retrieves
the ground topography and average height and thickness of the vegetation layer covering the
Earth’s surface (modeled as a scattering volume above the ground).

Any cross-talk between the polarimetric channels of a radar system violates the PolInSAR
assumptions and reduces its reconstruction accuracy. Differential Faraday rotation (dFR) in
the Earth’s ionosphere, see [23, 24], has been shown to be a potential source of such cross-
talk for satellite-based radar systems. This effect is very small for the previously mentioned
C/X-band SRTM and TanDEM-X missions because of their relatively high carrier frequency.
However, the need for ground and foliage penetration necessitates the use of the radar systems
with a much lower frequency. For example, the central frequency of the future BIOMASS radar
[25, 26] is many times lower than those used in the past global radar DEM missions. It then
makes sense to estimate the effect of dFR on both currently active and future systems.

Faraday rotation (FR) is rotation of the polarization plane of a linearly polarized electro-
magnetic signal propagating in a magnetized plasma, such as the Earth’s ionosphere. Its effect
on spaceborne SAR imaging has been studied by many authors [27–34]. In particular, FR can
help obtain the total electron content (TEC) in the ionosphere, which is the electron concen-
tration integrated in the vertical direction. In turn, dFR is due to the dependence of the FR
angle on the frequency. Hence, for a pulsed radar with a certain bandwidth, dFR will always
be present. The effect of dFR on the ‘plain’ polarimetric SAR has been analyzed in [23, 24,
35, 36], and a mitigation method for this effect, called the polarimetric matched filter (PMF),
has been proposed in [23].1 On the other hand, to the best of our knowledge the effect of dFR
on polarimetric SAR interferometry has not been studied previously.

In this work, we assess the effect of dFR on PolInSAR reconstruction with no PMF miti-
gation. We operate in a simplified setting that uses only two polarimetric scattering channels
but still captures the most significant features of a popular PolInSAR reflectivity model called
random volume over ground (RVoG) [21]. Our formulation also includes additive noise and
allows for the exact reconstruction of the parameters of interest—ground elevation and height
and thickness of the scattering volume above ground (e.g., vegetation layer)—in the case where
there is no dFR. When the same reconstruction procedure is applied to the simulated data that

1 As opposed to interferometric SAR, plain SAR does not combine multiple (complex-valued) images for the purpose
of deriving and using their phase difference.
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Figure 1. Organization of sections 3–7 that provide the background material for
section 8.

are subject to dFR, discrepancies are observed between the reconstruction outcome and origi-
nal parameters used for generating the data. These discrepancies yield a quantitative measure of
the effect of dFR on PolInSAR reconstruction. The rationale behind this approach is the same
as the one we have used previously for assessing the effect of ionospheric dispersion on conven-
tional SAR imaging [37–39]—consider the data subject to dispersion, apply the reconstruction
that does not take the dispersion into account, and quantify the resulting discrepancies.

In section 2, we summarize the most important new findings of the current work. In
sections 3–7, we review the necessary background, namely, the conventional SAR imaging,
radar interferometry (InSAR), PolInSAR, spaceborne polarimetric SAR (with no interferom-
etry), and the effect of dFR on the latter, see figure 1. Section 8.1 defines a simplified RVoG
model that is subsequently used for the analysis of PolInSAR reconstruction. In section 8.2,
we consider a reduced noiseless formulation. In section 8.3, we introduce a PolInSAR recon-
struction for the case with noise and no dFR. In section 8.4, we apply the reconstruction from
section 8.3 to the simulated data with dFR, and evaluate the resulting discrepancies (errors)
numerically. The discussion in section 9 shows where the proposed approach can be refined,
and section 10 provides the conclusions.

A note about the terminology is in order. The significance of synthetic aperture in SAR
imaging is that it provides the azimuthal resolution (along the track). At the same time, the
analysis of both plain and PolInSAR is usually conducted in the cross-track plane. In this work,
we do not consider the effects due to the synthetic aperture. For this reason, we use the term
‘radar interferometry’ instead of more common abbreviations InSAR and PolInSAR whenever
this would not lead to misunderstanding.

2. Summary of findings

We have developed a quantitative methodology for estimating the effect of dFR on PolInSAR
in spaceborne imaging. Our methodology involves a simplified RVoG model and an analytic
approach to its inversion. The key factors that determine the magnitude of the said effect can
be partitioned into several groups:

• Radar system parameters: carrier frequency and bandwidth (section 3 and appendix A).
• Geophysical parameters: Earth’s magnetic field and electron density in the ionosphere

(section 6).
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Figure 2. Schematic for radar imaging and interferometry. Annuli of widthΔR = πc/B,
see (5), represented by the bands centered about yua and yyb are highlighted. All focusing
locations, e.g., ya or yb, are on the reference slant line between the satellite and the origin.

• Interferometric parameters: angle Δθ and wavenumber κ (section 4).
• Properties of the imaged terrain: ground topography, height and thickness of the scat-

tering volume above the ground, ratios of scatterer reflectivities in different polarimetric
channels, and the level of noise (sections 5 and 8).

Our analysis shows that the effect of dFR on PolInSAR reconstruction for the existing high
frequency spaceborne SAR systems (X-, C-, and L-band) is negligible. For the contemplated
P-band BIOMASS system (a lower carrier frequency) this effect is also small, but more border-
line. For the future spaceborne SAR systems that may operate on low frequencies, the effect of
dFR may be stronger and the need for developing and implementing the appropriate corrections
will have to be evaluated in each specific case.

3. Conventional radar imaging

The exposition of all radar modalities in the current work is done in the cross-track plane,
as common for interferometry (see the note at the end of section 1). Accordingly, all spatial
coordinates are considered two-dimensional—one horizontal coordinate s (ground range) and
one vertical coordinate h (elevation). For convenience of presentation, we will also be using
the slanted coordinates (u, v) (see figure 2). A full physical setting would also involve a third
coordinate, along-the-track or azimuthal, and the synthesis of aperture along this coordinate,
that we do not consider hereafter. Note also that spatial dimensions other than 2 or 3 present
no practical interest and are therefore not discussed in the radar literature.

Following [39, chapter 2], we specify the SAR interrogating signal as a narrow-band linear
chirp (frequency modulated signal) with the carrier frequencyω0, bandwidth B, duration τ , and
rate α = B/2τ > 0 (see appendix A). We also assume that scattering at the target is weak and
employ the first Born approximation2. Then, the SAR image I = I(y) is given by convolution

2 Conventional SAR reconstruction requires linearity with respect to the unknown ground reflectivity. A model for
linearized scattering that is not necessarily weak is proposed in [40], see also [39, chapter 7].
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of the unknown ground reflectivity ν = ν(z) with the imaging kernel W:

I(y) =
∫

W(Ry − Rz)ν(z)dz, (1)

where z ∈ R2 is the location in the target region, y ∈ R2 is the focusing location, and Rz and
Ry are the signal travel distances between those respective locations and the spaceborne SAR
antenna. In figure 2, the location of the antenna can be associated with either x(1) or x(2). The
kernel W in (1) is known as the point spread function:

W(Ry − Rz) = e−2ik(Ry−Rz)τ sinc

(
B(Ry − Rz)

c

)
, (2)

where k = ω0/c, c is the speed of light, and sinc ξ = sin ξ/ξ. The integration in (1) is performed
over the entire space R2. Therefore, no integration limits are specified.

A point scatterer of strength ν0 at the location z is given by a singular reflectivity:

ν(z′) = ν0δ(z′ − z), (3)

where δ(·) is the Dirac delta function3. The image (1) of the point scatterer (3) is

I(y) = ν0 · τ exp[−2iω0(Ry − Rz)/c]sinc

(
B

Ry − Rz

c

)
. (4)

In the two-dimensional coordinate space z (one horizontal and one vertical coordinate, see
figure 2), the main lobe of the sinc function in (4) specifies an annulus of central radius Ry and
thickness

ΔR =
πc
B
. (5)

In the SAR literature, the quantity ΔR given by (5) is called the range resolution. It provides
a key spatial scale for the analysis of SAR imaging. This scale is fully determined by the
properties of the imaging system (specifically, the bandwidth B of the interrogating waveform)
and is not related to the properties of the target.

The absolute value |I(y)| of the function (4) has a single maximum at Ry = Rz. However,
locating it with the accuracy much better than ΔR is considered problematic in practical situa-
tions where the contributions from other scatterers, as well as noise, are present. As the radius
of the annulus given by the main lobe of the sinc in (4) is very large, in the vicinity of the
target it can be replaced with a band of width ∼ΔR, as in figure 2. SAR imaging with kernel
(2) cannot tell between different targets within such a band.

While the function I = I(y) defined by (1) is a function of two arguments, y ∈ R2, a con-
ventional SAR image in the cross-track plane is interpreted as one-dimensional. Indeed, as the
radar does not distinguish between the targets within a given grey band shown in figure 2, all
those targets are collapsed onto one slant reference line v = 0. Hence, all focusing locations,
such as ya or yb in figure 2, belong to this line, i.e., yva = 0 and yvb = 0.

3 The assumption of weak scattering does not hold for the reflectivity function (3). A justification for the use of singular
reflectivity (3) is given in [18, sections 3.3 and 3.4].
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4. Radar interferometry

Consider the reflectivity ν(z) in the form of a Gaussian white noise [6]:

〈ν(z′)ν(z)〉 = σ2(z)δ(z′ − z), (6)

where 〈. . .〉 denotes statistical averaging. In practice, it is replaced with spatial averaging over
a patch of terrain where σ2 varies insignificantly and can be considered constant.

Assumption. Hereafter, we will be assuming that the size ΔP of the averaging patch where
σ2 ≈ const is much larger than the resolution scale ΔR given by (5): ΔP 	 ΔR.

The foregoing assumption is not guaranteed automatically, as the two scales are unrelated:
ΔR is determined by the imaging system andΔP is a characteristic of the target. The separation
of scales ΔP 	 ΔR is rather an independent requirement for the chosen mathematical model
to be applicable. In many practical scenarios it holds.

Radar interferometry involves two antenna locations as shown in figure 2: x(1,2) = (−R +
x(1,2)

u , x(1,2)
v ). They define the interferometric angle Δθ:

θ1 ≈ θ − x(1)
v

R
, θ2 ≈ θ − x(2)

v

R
, Δθ = θ1 − θ2. (7)

To reconstruct the scatterer elevation, we build a complex-valued interferogram as in [18].
For the image I(y) ≡ I(y; x,ω0, B), we first introduce its alternative form:

I(y; x,ω0, B) = I(y; x,ω0, B) exp(2iω0Ry/c)

needed to eliminate the fast phase exp(−2iω0Ry/c). As in section 3, all focusing locations
satisfy yv = 0 (see figure 2). Then, the interferogram is formed according to

Q(y) ≡ Q(y; x(1), x(2),ω1,ω2, B̃)
def
=
〈
I(y(1); x(1),ω1, B̃)I(y(2); x(2),ω2, B̃)

〉
, (8)

where the images from the two antennas must be co-registered [41] so that

|y(1) − y| � ΔR, |y(2) − y| � ΔR.

As in (6), statistical averaging 〈. . .〉 on the right-hand side of (8) is replaced with spatial averag-
ing over a region of size ΔP. The central frequencies ω1, ω2 and bandwidth B̃ of the sub-bands
in (8) are chosen as

ω1

c
= k1 = k − Δk

2
,

ω2

c
= k2 = k +

Δk
2

, B̃ = B − |Δk|c, (9)

where Δk = k Δθ
tan θ

and Δθ = θ1 − θ2 is the interferometric angle defined in (7), |Δθ| � 1.
This choice of sub-bands is called the wavenumber adjustment or range spectral filtering [18].

For the imaging kernel (2), scatterer (6), and interferometric parameters satisfying (9), the
interferogram (8) can be expressed as follows [18]:

Q(y) = exp(iΦQ)

(
τ B̃
B

)2 ∫
exp[−iκh(z)]sinc2

(
B̃(Ry − Rz)

c

)
σ2(z)dz, (10)

6
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where κ is called the interferometric wavenumber:

κ = 2k
Δθ

sin θ
, (11)

and h(z) is the elevation of the point z above the horizontal plane h = 0 (see figure 2). The
quantity ΦQ in (10) is the common interferometric phase:

ΦQ = 2k

(
−
(
x(2)

u − x(1)
u

)
+

(
x(2)
v

)2 −
(
x(1)
v

)2

2R

)
+Δk(2R − x(1)

u − x(2)
u ). (12)

The key role of the wavenumber adjustment (9) is that it has eliminated the dependence of the
interferometric phase in the integrand of (10) on the horizontal coordinate [18, 42, 43].

The uncertainties in the platform positions, most importantly—x(1)
u and x(2)

u on the right-
hand side of (12), may easily exceed the radar wavelength, yielding the absolute error values
of ΦQ significantly larger than π [18]. Nonetheless, in the following procedure the unknown
common phase ΦQ cancels, allowing one to retrieve the relative scatterer elevation.

Let za and zb be two points on the scattering surface (see figure 2) that are farther apart from
one another than ΔP and suppose that the terrain elevation is (nearly) constant in the vicinity
of each of these points so that we approximately have:

σ2(z) = σ2
aδ(h(z) − ha) and σ2(z) = σ2

bδ(h(z) − hb). (13)

Then, we obtain from (10):

Q(yb)
Q(ya)

=
σ2

b

σ2
a

exp[−iκ(hb − ha)]. (14)

Consequently, the elevation difference between the focusing locations ya and yb is

hb − ha = −∠
(
Q(yb)/Q(ya)

)
κ

,

where ∠ is the argument of a complex number (complex phase). As 0 �
∣∣∠ (

Q(yb)/Q(ya)
)∣∣ <

π, the reconstructed height difference may not exceed a certain threshold:

|hb − ha| < π
sin θ

2kΔθ
=

λ sin θ

4Δθ
(15)

equal to one half of the ambiguity height (i.e., a change in elevation that changes the interfer-
ometric phase by 2π, see, e.g., [44, 45]). In practice, elevations larger than the threshold (15)
are reconstructed using the technique of phase unwrapping, see, e.g., [4, 7, 46]. Hereafter, we
will assume that condition (15) and its equivalents are always met.

5. Polarimetric radar interferometry

PolInSAR seeks to reconstruct the dependence of σ2(z) on h from the values of the interfero-
gram Q(y) of (8) at different polarizations. Consider

σ2(z) ≡ σ2(zu, h(z)), (16)

7
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Figure 3. Geometric parameters of ground topography and vegetation layer in the RVoG
model as given by (21). A band of width Δ̃R = πc/B̃ is highlighted (B̃ is defined in (9)).
For all scatterer coordinates z within this band, we use the same value of the interfer-
ogram Q(y) ≡ Q(yu). The purple and blue curves illustrate F0(ξ; η) and η−1F1(ξ; η),
respectively, see (41), for small η and ξ = B̃(yu − zu)/c.

where σ2 varies slowly on the sale of ΔP as a function of zu. Yet sinc2
(

B̃(Ry−Rz)
c

)
under the

integral (10) varies on the scale of Δ̃R = πc/B̃ ∼ ΔR and over the distanceΔP 	 ΔR it decays
substantially. Therefore, for the coherence (10) we have (see [2] or [18] for detail):

Q(y) ≈ exp(iΦQ)VQ

∫
exp(−iκh)σ2(yu, h)dh, (17)

where

VQ =

(
τ B̃
B

)2 ∫
sinc2

(
B̃s sin θ

c

)
ds. (18)

To reconstruct the dependence of σ2(yu, h) on h for a given yu, PolInSAR uses a parame-
terized form of σ2(yu, h) and exploits the measurements of Q on multiple polarizations tradi-
tionally denoted by w, so that the data are Q(y, w).4 The most popular PolInSAR model, called
RVoG [21], includes two statistically independent terms that represent the ground and volume
(i.e., foliage) scatterers:

ν(z, w) = νGr(z, w) + νVol(z, w), 〈νGr(z, w)νVol(z, w)〉 = 0. (19)

Additionally, we assume that νGr and νVol in (19) individually satisfy (6) and (16):

〈νGr(z′, w)νGr(z, w)〉 = σ2
Gr(z, w)δ(z′u − zu)δ

(
h(z′u) − h(zu)

)
,

〈νVol(z′, w)νVol(z, w)〉 = σ2
Vol(z, w)δ(z′u − zu)δ

(
h(z′u) − h(zu)

)
,

(20)

4 In this section, polarization w is interpreted as merely an additional variable that both the reflectivity and image
depend on. A more physics-aware treatment of polarization is given in section 6.
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and consider the following parametrization of the dependence of σ2
Gr and σ2

Vol in (20) on h:

σ2
Gr(z, w) = σ2

g(zu, w)δ
(
h − hg

)
,

σ2
Vol(z, w) = σ2

v(zu, w)
1
D
χD

(
h − hg − hv

)
.

(21)

In formulae (21), hg = hg(zu) describes the ground topography, hv = hv(zu) and D = D(zu)
denote the local elevation and thickness of the volume scatterer (foliage layer), see figure 3,
and the characteristic function χD of the interval [−D/2, D/2] is defined as follows:

χD(h) =

{
1, h ∈ [−D/2, D/2],

0 otherwise.

On a neighborhood of yu of size ΔP, we drop the dependence of D, hg, hv, σ2
g, and σ2

v on
zu as those quantities can be considered constant. We also drop the argument y from Q(y, w)
and ignore the difference between yu and zu because |yu − zu| � Δ̃R � ΔP. PolInSAR aims to
retrieve hv, D, and hg near yu from the measurements of Q(w) for several different w.

Let IGr(w) and IVol(w) be the image components due to νGr and νVol, respectively:

I(w) = IGr(w) + IVol(w). (22)

Then, (19) implies that Q(w) = QGr(w) + QVol(w), where, similar to (8),

QGr(w) =
〈
IGr(w; x(1), . . .)IGr(w; x(2), . . .)

〉
,

QVol(w) =
〈
IVol(w; x(1), . . .)IVol(w; x(2), . . .)

〉
.

Next, we introduce the image intensities

T (1)(w) =
〈∣∣I(w; x(1), k1, B̃)

∣∣2〉 , T (2)(w) =
〈∣∣I(w; x(2), k2, B̃)

∣∣2〉 , (23)

and assume that T (1)(w) ≈ T (2)(w) = T(w), because the imaging conditions for the two
antennas are basically equivalent. Similarly to (17), one can derive:

T(w) = VQ

∫
σ2(h)dh. (24)

The total coherence and coherences of individual image components are defined as follows:

γ(w) =
Q(w)
T(w)

, γGr(w) =
QGr(w)
TGr(w)

, γVol(w) =
QVol(w)
TVol(w)

. (25)

Substituting (21) into (17) and (24) and changing the variable: h′ = h − hg, we can explicitly
calculate the individual coherences in (25):

γGr = exp[i(ΦQ − κhg)]γg, where γg =

∫
exp(−iκh′)δ(h′)dh′ = 1, (26a)

γVol = exp[i(ΦQ − κhg)]γv, whereγv =
1
D

∫ hv+D/2

hv−D/2
exp(−iκh′)dh′

= exp(−iκhv)sinc(κD/2). (26b)

9
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Figure 4. Loci of polarimetric coherence γ(w) on the complex plane. The straight line
passing through exp(iΨQ) and exp(iΨQ)γv is given by formula (27), while the interval
marked ‘RVoG’ corresponds to 0 < mmin � m(w) � mmax < ∞. The interval marked
‘SNR’ (which stands for signal to noise ratio) corresponds to formula (67) in appendix
C for 0 < SNRmin � SNR(w) � SNRmax < ∞.

The quantity κ = 2kΔθ/ sin θ is defined in (11). In turn, using (19)–(21) and (26) we obtain:

γ(w) = exp(iΨQ)
γv + m(w)
1 + m(w)

= exp(iΨQ)

(
γv +

m(w)
1 + m(w)

(1 − γv)

)
(27)

(see appendix B or, e.g., [46]), where

ΨQ = ΦQ − κhg and m(w) =
σ2

g(w)

σ2
v(w)

. (28)

The quantity m(w) in (28), by design, is a non-negative real number. Formula (27) can be
visualized by a straight line on the complex plane, see figure 4. Each point on the interval
between exp(iΨQ) and exp(iΨQ)γv corresponds to a certain value of m(w), 0 � m(w) < ∞.

PolInSAR obtains exp(iΨQ) and γv using relations (27) for different w. Then, the
ground topography hg, up to a constant reference elevation, is derived from ΨQ using (28),
while the average height hv and thickness D of the layer are found from ∠γv and |γv|,
see (26b).

Different physical mechanisms of scattering about the ground and foliage lead to different
behavior of σ2

g and σ2
v as they depend on the polarization w. Hence, different polarizations w

yield different values of γ(w) via equations (27) and (28). On the other hand, the coherence
γ(w) represents the data for inversion. Indeed, in (25) γ(w) is derived from the interferogram
Q(w) and intensity T(w), which can be interpreted as observable quantities. Therefore, one can
build a straight line fit on the complex plane for the values of γ(w) that correspond to several
different polarizations w (see figure 4). Then, according to (27), one of the two intersections
of this line with the unit circle |γ| = 1 shall be associated with exp(iΨQ).

However, this procedure alone does not allow one to reconstruct that value of γv that
is needed for obtaining the parameters of the volume scatterer. Indeed, even with exp(iΨQ)
known, each value of w used in (27) introduces a new unknown, m(w). Hence, there is still not
enough equations to retrieve γv. For this reason, subsequent steps of inversion that ultimately
yield the parameters of the vegetation layer rely on various physical considerations regarding
σ2

g(w) and σ2
v(w) [42, 47]. This leads to systems of nonlinear equations with multiple unknowns

(e.g., six equations with six unknowns in [21]) that we do not study here. In section 8, we pro-
vide specific examples of how one may retrieve the value of γv in the framework of a simplified
RVoG model. PolInSAR with noise is considered in appendix C.

10
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Figure 5. (a) FR for a signal with no frequency modulation. (b) dFR for a linear
frequency modulated signal (chirp), see appendix A.

6. Spaceborne polarimetric radar imaging

The electromagnetic field is vector-valued. The polarization specifies the configuration of the
electric and magnetic field vectors when radar signals are transmitted and received, as well as
when they interact with the target. Hereafter, we rely on the account of polarization given in
[23]. A broader scope can be obtained from [8, 42, 48] or the classical sources [49–52].

Radars typically use linearly polarized signals. Each signal, incident or reflected, is a linear
combination of the horizontal (H) and vertical (V) polarizations, which gives rise to a 2 × 2
scattering (or reflectivity) matrix S:(

Esc
H

Esc
V

)
(t, z) = S(z) ·

(
Einc

H

Einc
V

)
(t, z), where S(z) =

(
νHH(z) νHV(z)
νVH(z) νVV(z)

)
. (29)

FR is a slow rotation of the polarization plane of a linearly polarized radar pulse in the iono-
sphere, see figure 5. FR is due to the phenomenon of double circular refraction in a magnetized
plasma [52]. Namely, a linearly polarized signal can be represented as a linear combination of
two opposite circular polarizations. In a magnetized ionospheric plasma, those two circular
polarizations propagate with slightly different speeds. The difference in propagation speeds
leads to accumulation of the phase difference between the two circularly polarized signals as
they propagate. The phase difference, in turn, results in a rotation of the polarization plane
when the original linearly polarized signal is reconstructed from two circular polarizations.
The effect of FR on a monochromatic plane wave with frequencyω can be described by means
of the rotation matrix (see also figure 5(a)):

R(ϕF) =

(
cos ϕF sin ϕF

− sin ϕF cos ϕF

)
. (30)

The rotation angle in formula (30) is given by (see, e.g., [51–53])

ϕF ≡ ϕF(ω) = − R
2c

ω2
peΩe cos β

ω2
, whereω2

pe =
4πNee2

me
, Ωe = −e|H0|

mec
. (31)

In (31), ωpe and Ωe are the electron plasma frequency and gyrofrequency, respectively, me and
−e are the mass and charge of the electron, Ne denotes the electron number density in the
ionosphere, H0 is the magnetic field of the Earth, β is the angle between the wave propagation
direction and H0, and R is the propagation distance.

11
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The FR angle ϕF in (30) depends on the frequency ω via (31). The instantaneous frequency
ω = ω(t) of the chirp varies between ω0 − B/2 and ω0 + B/2, see appendix A. Hence, the
FR angle also varies across the chirp bandwidth, a phenomenon known as dFR. Due to dFR,
a linearly polarized chirp becomes ‘twisted’ after passing through a magnetized plasma, see
[23] and figure 5(b).

The propagation of radar signals in the ionosphere is affected by the dispersion of electric
permittivity in the plasma, and one needs to take it into account when building the image (see
[37, 38] or [39, chapter 3]). The resulting polarimetric channels are convenient to arrange as
entries of a 2 × 2 matrix Y that is called the intermediate image (cf equation (29)):

Ymn(y) =
∫

exp[iω0(t − 2Ry/vph)]A′
2(t, y)usc

mn(t)dt, m, n ∈ {H, V}, (32)

where the scattered field usc
mn(t) = Esc

m (t, x) corresponds to the emitted polarization n and
the chirp envelope A′

2(t, y) = χ′
τ−2δτ (t − 2Ry/vgr) exp[−i(α+ 2δα)(t − 2Ry/vgr)2] accounts

for the round-trip propagation. This envelope, the phase and group velocity vph and vgr,
and variations of chirp parameters δτ and δα due to the ionosphere are introduced in
appendix A.

Next, the mean rotation angle is defined using (31): ϕ∗
F = ϕF(ω0), and the rotation matrices

R(−ϕ∗
F) are applied to Y of (32), which yields a 2 × 2 polarimetric image matrix I:5

I(y) = R(−ϕ∗
F) · Y(y) · R(−ϕ∗

F). (33)

The mean rotation angle in (33) creates a mismatch between the actual FR angle and ϕ∗
F:

ΔϕF ≡ ΔϕF(t, z) = ϕF
(
ω(t − 2Rz/c)

)
− ϕ∗

F. (34)

In [23], we have introduced and analyzed a mitigation technique for the mismatch, called the
PMF. We will not be considering the PMF hereafter, as our goal is rather to assess the effect
of dFR on PolInSAR when standard processing is used.

The polarimetric imaging operator is given by (cf formula (1))

I(y) =
∫

W(y, z) · ν(z)dz, (35)

where (cf equation (29))

I = (IHH, IHV, IVH, IVV)T, ν = (νHH, νHV, νVH, νVV)T,

and the 4 × 4 matrix W is defined as follows:

W(y, z) = exp[−2ik(Ry − Rz)]
∫

A

(
t − 2Ry

c

)
A

(
t − 2Rz

c

)
V(ΔϕF)dt. (36)

In (36), ΔϕF(t, z) is given by (34) and the matrix V is

V(φ) =

⎛
⎜⎜⎝

cos2 φ − cos φ sin φ cos φ sin φ −sin2 φ
cos φ sin φ cos2 φ sin2 φ cos φ sin φ
− cos φ sin φ sin2 φ cos2 φ − cos φ sin φ

−sin2 φ − cos φ sin φ cos φ sin φ cos2 φ

⎞
⎟⎟⎠ . (37)

5 During the signal round-trip between the spaceborne antenna and the target, the FR angle doubles rather than cancels
(see [23, 54] or [39, chapter 5]).
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Equation (36) is derived in [23, section 3.3]. It incorporates the original pulse envelope A rather
than the modified envelope A (see appendix A) because, according to [39, section 3.11], if one
properly takes the ionospheric dispersion into account, the resulting image is basically the
same as it would have been in the truly dispersionless case. Therefore, the effect of dFR on
spaceborne polarimetric imaging is fully accounted for via the matrix V(ΔϕF) in (36).

7. The effect of dFR on polarimetric imaging

Linearization of ϕF(ω) about ω0 in (34) yields:

ΔϕF ≈ η
1
τ

(
t − 2Rz

c

)
, where η = −ϕF(ω0)

2B
ω0

. (38)

Substituting (38) into the integrand of (36), we obtain the imaging kernel matrix:

W = exp[−2ik(Ry − Rz)]

⎛
⎜⎜⎝

V0 −V1 V1 −V2

V1 V0 V2 V1

−V1 V2 V0 −V1

−V2 −V1 V1 V0

⎞
⎟⎟⎠ . (39)

The entries of the matrix W are functions of two variables: ξ = B(Ry − Rz)/c and η:

V0(ξ; η) =
τ

2
(sinc ξ + F0(ξ; η)) , V1(ξ; η) =

τ

2i
F1(ξ; η), V2(ξ; η) =

τ

2
(sinc ξ − F0(ξ; η)) ,

(40)

where

F0(ξ; η) =
1
2

(sinc(ξ − η) + sinc(ξ + η)) and

F1(ξ; η) =
1
2

(sinc(ξ − η) − sinc(ξ + η)) . (41)

One can see that as η → 0 (or as ϕF → 0, see (38)), the matrices in (37) and (39) become diag-
onal, and the matrix imaging operator in (35) transforms into a set of scalar imaging operators
acting on individual reflectivity channels, see (1).

The L2 norms of the matrix entries in (39) were computed in [23]. For small η, we have:

‖V1‖2
2(η)

‖V0‖2
2(η)

≈ η2

12
,

‖V2‖2
2(η)

‖V0‖2
2(η)

≈ η4

80
. (42)

The asymptotic expressions (42) work well up to |η| � 1. We see that for |η| � 1, the leading
off-diagonal terms of W are due to V1. In addition, for |η| � 1 one can derive:

F0(ξ; η) ≈ 1
τ

V0(ξ; η) ≈ sinc ξ and F1(ξ; η) =
2i
τ

V1(ξ; τ ) ≈ −η sinc′ ξ. (43)

The behavior of F0(ξ; η) and F1(ξ; η) of (43) is schematically shown in figure 3.
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Table 1. Notation for the simplified RVoG model (44).

Traditional notation New notation Ground reflectivity Volume reflectivity

HH C σ2
C,g σ2

C,v

HV or VH X 0 σ2
X,v

VV Not represented — —

8. Polarimetric interferometry in the presence of dFR

8.1. A simplified RVoG model

To understand the effect of dFR on PolInSAR, we first build a simplified model that would still
support the key properties of polarimetric geophysical observations. Our analysis will focus
on one of the most popular PolInSAR tasks, namely, the reconstruction of parameters of the
aboveground vegetation layer.

In the RVoG model, see (19)–(21), one specifies the reflectivities of the ground, σ2
g(w),

and volume, σ2
v(w), for at least two different values of w. Hereafter, we will associate different

values of w with different polarimetric scattering channels. Moreover,we introduce a simplified
polarimetric setting in this section that involves only two different channels: one co-polarized
channel (denoted by w = C) and one cross-polarized channel (denoted by w = X). Using the
traditional notation of section 6, these channels can be interpreted as shown in table 1.

Accordingly, the reflectivity of the scatterer in these two channels is given by

σ2
C(h) = σ2

C,gδ(h − hg) + σ2
C,v

1
D
χD(h − hg − hv), (44a)

σ2
X(h) = σ2

X,v
1
D
χD(h − hg − hv). (44b)

The physical rationale behind the model (44) is as follows. Scattering from the ground con-
tributes only to the co-polarized channel, C, see (44a), because the asymptotic models sup-
ported by observations indicate that the ground contribution to the cross-polarized scattering is
very small [42, 55, 56], hence,σ2

X,g = 0. At the same time, ground reflectivity may dominate the
radar return on HH-polarization, which could be explained by the ground-trunk double-bounce
mechanism [19, 57]. Therefore, we exclude the VV channel from subsequent consideration.
For the foliage, the microscopic reflectivity models [42] yield comparable values for the co-
polarized and cross-polarized channels, so we employ two separate constants, σ2

C,v an σ2
X,v, to

describe the volume reflectivity in these two channels.
Altogether, equation (44) represent a further simplification of the model (21).
Recall that the cross-talk between the interferometric channels due to dFR is described by

the off-diagonal entries of the imaging kernel (39). This effect is controlled by the value of the
parameter η = −ϕF(ω0) · 2B/ω0, see (38). In the interferometric setting, due to the sub-band
selection as in (9), we introduce

η̃ = η · B̃
B
. (45)

Sub-banding also shifts the central frequencies of the two frequency bands:

ϕ∗(1)
F = ϕF(ω1), ϕ∗(2)

F = ϕF(ω2), (46)
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where ω1 and ω2 are defined in (9). The mean rotation angles (46) will be used for building
the corresponding intermediary images in (33) instead of ϕ∗

F = ϕF(ω0). Note also that the last
column and last row of the matrix (39) will not be used because the VV channel is not included
in the simplified RVoG model presented in table 1.

Interferometric coherences in the case of cross-talk due to dFR can be obtained similarly to
(26). Assuming |η| < 1 (thus, |η̃| < 1), see [23], we can use (42) and drop the terms ∝ V2 in
the matrix (39). We additionally assume that the reflectivities in the channels C and X do not
correlate6. Then, using the reflectivity model (44), imaging model (35), and definitions (8) and
(23), we obtain the complex interferograms QC, QX and intensities TC, TX:

QC = exp(iΨQ)
(
VQ0(σ2

C,g + σ2
C,vγv) + 2VQ1σ

2
X,vγv

)
,

QX = exp(iΨQ)
(
VQ0σ

2
X,vγv + VQ1(σ2

C,g + σ2
C,vγv)

)
,

TC = VQ0(σ2
C,g + σ2

C,v) + 2VQ1σ
2
X,v + N2,

TX = VQ0σ
2
X,v + VQ1(σ2

C,g + σ2
C,v) + N2.

(47)

In formulae (47), ΨQ is defined in (28), N2 is the intensity of noise defined in appendix C, and
(cf equation (18))

VQ0 ≡ VQ0(η) =
∫

|V0(B̃s sin θ/c; η̃)|2 ds,

VQ1 ≡ VQ1(η) =
∫

|V1(B̃s sin θ/c; η̃)|2ds,

(48)

where V0(ξ; η) and V1(ξ; η) are given in (40)–(43). As in section 5, we assume in (47) that

the intensities of the two images are the same and use TC and TX instead of
√

T (1)
C T (2)

C and√
T (1)

X T (2)
X . The coefficient 2 in the expressions for QC and TC in (47) reflects the fact that

the notation X represents two actual polarimetric channels, see table 1, each affecting the C
channel via cross-talk due to dFR.

From (47), we can obtain the interferometric coherences in the specified channels similarly
to (25), and, additionally, the cross-channel intensity ratio:

γC =
QC

TC
, γX =

QX

TX
, M =

TC

TX
. (49)

In (47), exp(iΨQ) is unknown as discussed after equations (27) and (28). The determination
of exp(iΨQ) is equivalent to the reconstruction of the local elevation. Another parameter to
be retrieved is γv that carries the information about the mean elevation hv and thickness D of
the scattering volume above ground (the vegetation layer), see (26b). We will consider the left-
hand sides in (49) as the data for inversion. Note that σ2

C,g, σ2
C,v, σ2

X,v, and N2 are also considered
unknown, so there are not enough equations to determine all the unknowns. Nonetheless, the
ground topography and geometry of the vegetation layer can be reconstructed in certain special
cases, as we discuss below.

A simple example of PolInSAR reconstruction can be obtained from a bare-bone model

VQ1 = 0, N2 = 0, and σ2
C,v = 0. (50)

6 Note that the observations [6, 56] show high correlation between the co-polarized channels in the reflection from the
ground. It does not affect the model (44) since it contains only one co-polarized channel.
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Assumptions (50) make the polarimetric channels decoupled and affected only by one compo-
nent of the scatterer, namely, ground and foliage affect the C and X channels, respectively. As
a result, the first two expressions in (49) yield:

γC = exp(iΨQ), γX = exp(iΨQ)γv. (51)

Relations (51) can be considered as the extreme cases of (27) for m(w) = ∞ and m(w) = 0,
respectively. The reconstruction of the vegetation layer parameters from the data γC and γX in
this case can be performed easily with the help of (26):

ΨQ = ∠γC, (52a)

hv = − 1
κ
∠γv = − 1

κ
∠γX

γC
, (52b)

D =
2
κ

sinc−1 |γv| =
2
κ

sinc−1

∣∣∣∣γX

γC

∣∣∣∣ , (52c)

where sinc−1(ζ) is the inverse function to ζ = sinc ξ for 0 � ζ � 1. We see that hv will not
exceed the height ambiguity threshold specified in (15), and D � hv/2 by design, see figure 3.

Of course, the reconstruction (52) cannot reveal any effect due to dFR because the latter
requires a nonzero value of the parameter VQ1 in (47), whereas in (50) we have VQ1 = 0.
To understand the role of dFR, we consider two more realistic scenarios where the polari-
metric channels do not decouple (σ2

C,v �= 0): noiseless (see section 8.2) and with noise (see
section 8.3). In each of these scenarios, one can obtain a quantitative assessment of the effect
of dFR on PolInSAR reconstruction, and in section 8.4 we perform the corresponding analysis
for the more comprehensive case that involves noise.

8.2. Noiseless PolInSAR

In this scenario, we make two simplifications regarding system (47) and (49). First, we
introduce the ratios between the reflectivity values in table 1 as follows:

A =
σ2

C,v

σ2
X,v

, μ =
σ2

C,g

σ2
X,v

, (53)

and assume that the quantity A is known, i.e., we do not need to reconstruct it using PolIn-
SAR. The rationale is that A in (53) can be measured experimentally in a variety of practical
conditions. Second, we remove the noise term by setting N2 = 0. In addition, we introduce the
quantity q to characterize the magnitude of the dFR effect:

q =
VQ1

VQ0
≈ 1

12
η̃2, (54)

see (42), (45), and (48). As a result, we obtain the following expressions for the coherences
and cross-channel intensity defined in (49):

γC = exp(iΨQ)

(
1 +

A+ 2q
μ+A+ 2q

(γv − 1)

)
,

γX = exp(iΨQ)

(
γv +

qμ
1 + q(μ+A)

(1 − γv)

)
,

M =
μ+A+ 2q

1 + q(μ+A)
.

(55)

16



Inverse Problems 38 (2022) 045010 M Gilman and S Tsynkov

The first two equations in (55) resemble (27). Each of the two yields a complex value on the
segment of a straight line between exp(iΨQ) and exp(iΨQ)γv (see figure 4). Compared to (51),
the points γC and γX would shift towards each other starting from the points exp(iΨQ) and
exp(iΨQ)γv, respectively.

Setting q = 0 in equation (55) corresponds to dropping dFR from consideration:

γC = exp(iΨQ)

(
1 +

A
μ+A (γv − 1)

)
,

γX = exp(iΨQ)γv,

M = μ+A.

(56)

As long as A �= 0, system (56) is not equivalent to the simplified model based on (50). Given
the left-hand sides γC ∈ C, γX ∈ C, and M ∈ R as the data, equation (56) can be solved for
γv ∈ C, ΨQ ∈ R, μ ∈ R, and A ∈ R. This is trivial if the data are obtained using the same
reduced model (56). However, if on the left-hand side of (56) we substitute the data that account
for dFR, i.e., the data generated by (55) with q �= 0, then the quantities γ ′

v, Ψ′
Q, μ′, andA′ found

by solving (56) will, generally speaking, differ from those used in (55) when generating the
data γC, γX, and M.7 The resulting discrepancy can be used to quantify the effect of dFR on the
noiseless PolInSAR inversion. We, however, do not derive these estimates and rather proceed
directly to a more comprehensive case that includes noise.

8.3. PolInSAR with noise

Similarly to section 8.2, we assume that the quantity A defined in (53) is known. To introduce
PolInSAR with noise, we consider N2 > 0 and in the meantime, take q = 0. Instead of using
a polarization-dependent SNR as in appendix C, we will parameterize the noise term in (47)
with the help of

ng =
N2

VQ0σ2
C,g

= const. (57)

Then, for the quantities defined in (49) we have:

γC = exp(iΨQ)
μ+ γvA

μ+A+ ngμ
, (58a)

γX = exp(iΨQ)
γv

1 + ngμ
, (58b)

M =
μ+A+ ngμ

1 + ngμ
. (58c)

Equation (58b) is equivalent to (67), except that it uses different notation, see (44), (53), and
(57). This is not surprising because in the absence of dFR, the imaging operator W of (35) is
diagonal, so the X channel is due entirely to the volume scatterer, see (44).

The inversion is done as follows. With the left-hand sides of (58) considered as data, we
solve this system for the unknown γv, ΨQ, μ, and ng. As γv is complex-valued, this yields a

7 Solution of system (56) includes the value of A that, as indicated previously, can be obtained by experimental mea-
surements and does not need to be reconstructed by dFR. If (56) is solved with the data that have dFR, the mismatch
between the resulting A′ and true A also shows the effect of dFR on PolInSAR.
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total of 5 real-valued unknowns. Equations (58a) and (58b) are also complex-valued, making
the number of equations equal to the number of unknowns. The key step in finding a closed
form solution is to eliminate γv from equations (58a) and (58b) and extract exp(iΨQ):

exp(iΨQ) =

(
1 +

A
μ

+ ng

)(
γC − γX

A
M

)
. (59)

We obtain ΨQ as ΨQ = ∠
(
γC − γXAM−1

)
because 1 +Aμ−1 + ng ∈ R. After that, the first

equation of (28) yields the ground topography hg. Taking the absolute value on both sides of
(59) yields:

1 +
A
μ

+ ng = |Γ|−1, where Γ = γC − γX
A
M
. (60)

Equations (60) and (58c) are solved as a system for μ and ng; from the physical considerations,
both values should be non-negative. Finally, from (58b) we derive:

γv = γX
|Γ|
Γ

(1 + ngμ) (61)

and using (26b), obtain (cf formulae (52b) and (52c)):

hv = − 1
κ
∠γv and D =

2
κ

sinc−1 |γv|. (62)

The resulting quantities hg, hv, and D are the geophysical characteristics of interest of the
vegetation-covered terrain, see figure 3. We should emphasize that this inversion is exact as
long as there is no dFR (q = 0) and the observables γC, γX, and M obey (58).

8.4. The effect of dFR on PolInSAR inversion

To quantify the effect of dFR on PolInSAR with noise, system (58) should be solved with the
data γC, γX, and M that account for dFR. To generate such data, we specify some physically
meaningful values of q > 0, γv, ΨQ, A, and μ. As far as the noise, one particular choice may
be ng = 0, in which case the subject-to-dFR data are obtained according to (55).8 Otherwise,
we may have ng > 0 as well, as in the following system that is obtained from (47) and (49)
without simplifications:

γC = exp(iΨQ)
μ+ γv(A+ 2q)

μ+A+ 2q + ngμ
,

γX = exp(iΨQ)
γv + q(μ+Aγv)

1 + q(μ+A) + ngμ
,

M =
μ+A+ 2q + ngμ

1 + q(μ+A) + ngμ
.

(63)

The system (63) reduces to (55) and (58) for ng = 0 and q = 0, respectively.
We invert the data that account for dFR as in section 8.3, see formulae (59)–(62). We will use

primes to denote the output of this inversion, e.g., Ψ′
Q and γ ′

v. In doing so, we may expect some
discrepancies: Ψ′

Q �= ΨQ and/or γ ′
v �= γv, because the reconstruction in section 8.3 assumes

8 The first equation of (55) implies, in particular, that |γC| < 1, which means that the co-polarized channel is
decorrelated.
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q = 0. The effect of dFR on PolInSAR will be characterized precisely by the magnitude of
those discrepancies. For the actual examples that we present, they are computed numerically.
In section 9, we briefly describe an even more comprehensive scenario that may be considered
an alternative to what we do here for the purpose of assessing the effect of dFR on PolInSAR.

In turns out that the reconstructed geophysical parameters given by (60)–(62) are not
affected by the presence of noise in the full system (63) as compared to (55). In particular,
for the data calculated according to (63), we have (cf formulae (59) and (60)):

Γ′ = exp(iΨQ)
μ+ q(2γv −Aμ−A2γv)

μ+A+ 2q + ngμ
.

The only appearance of ng in the previous expression is in the denominator, and since the latter
is a real number, the value of exp(iΨ′

Q) = Γ′/|Γ′| does not depend on ng. Similarly, it can be
shown that formula (61) yields

γ ′
v = exp[i(ΨQ −Ψ′

Q)]

× (1 −A) (γv + q(μ+Aγv))
1 + q(μ+A) − (μ+A+ 2q) + |μ+ q(2γv −Aμ−A2γv)| ,

and this expression does not depend on ng either. Hence, in our results below, the data are
obtained by the noise-free formulae (55).

The effect of dFR manifests itself via systematic reconstruction discrepancies, or errors, in
the ground topography and vegetation layer properties, i.e., its average elevation and thickness.
The magnitude of the effect depends on several groups of parameters. One group includes the
radar system parameters, such as its carrier frequency and bandwidth, see appendix A. Another
group consists of the ionospheric parameters that define the FR, such as the local magnetic
field and electron concentration, see (31). Yet the third group of parameters are related to radar
interferometry. It includes the interferometric wavenumber κ (which, in turn, is defined by
the interferometric angle Δθ, see (11)) and the parameters of the scatterer: ΨQ, γv, μ, A, etc,
see sections 5 and 8.1. Eventually, these parameters are combined into the coefficients and
unknowns of systems (55) and (58).

For our simulations, we take the ionospheric and imaging parameters as in [23], namely,
the TEC of 50 TECU, |H(0)| = 0.5 Gs, and parallel propagation. For interferometry, we set
B̃/B = 0.85. Substituting this into (9) and (15), we obtain Δθ ≈ 0.007 rad and the ambiguity
height of about 60 m, respectively.

Figure 6 displays the reconstruction errors as functions of γv (see (26b)). Figure 6(a) illus-
trates the errors in ΨQ, which characterize the effect of dFR on the derived ground topography,
see (28). Figure 6(b) presents the reconstruction error for the complex coherence of the volume
scatterer, while the effect on the elevation and thickness of the foliage layer is illustrated by
figures 6(c) and (d), respectively. However, the last two of these metrics have anomalies in the
vicinity of the origin, whereas the underlying error in the complex coherence (panel (b)) has
no such irregularities. From the inversion formulae (61) and (62) we determine that the errors
can be particularly high when the value of |γX| in (55) is small, because small |γX| implies
small |γv|. We exclude this anomalous behavior by setting a threshold ζ = 1/2 on the value
of |γv| when calculating an error metric. In particular, if f (α, γv) is any of the error metrics
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Figure 6. Reconstruction errors according to section 8.4, as functions of (Re γv, Im γv).
The true value of exp(iΨQ) is shown by a black dot. (a) Ψ′

Q −ΨQ; (b) |γ ′
v − γv|; (c)

∠(γ ′
v/∠γv); (d) |γ ′

v/γv| − 1. The dashed circle corresponds to the threshold value ζ in
(64). The effect of these errors on the topography and parameters of the vegetation layer
(see figure 3) can be calculated using (62) and the first equation of (28).

shown in figure 6 and α denotes any parameter other than γv, then we use the threshold ζ in
the following definition of the error function fα:

fα(α; ζ) = max
ζ�|γv|�1

| f (α, γv)|. (64)

The value of ζ = 1/2 corresponds to the radius of the dashed circles in figure 6.
In figure 7, we show how the reconstruction errors depend on the parameter q of (54) that

controls the magnitude of the dFR effect for two different values of the parameter A. These
errors are defined according to (64) and characterize the reconstruction ofΨQ, hv, and D. Addi-
tionally, in figure 7 we show the values of q for three spaceborne radar systems considered in the
literature [23, 25, 58], with the ionospheric parameters as in [23]. An arbitrarily chosen error
threshold of 0.3 (or 30%) is also shown on the plots. Errors above this level can be considered
significant for most applications. Additional error plots for the values of q that correspond to the
BIOMASS satellite are given in figure 8. We see that in most cases, the error level is below the
chosen threshold. For other existing SAR satellites that operate on higher frequencies (C-band
or X-band) the effect of dFR will be even weaker (the corresponding vertical lines in figure 7
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Figure 7. Reconstruction errors as per section 8.4 vs q of (54) for two different val-
ues of the parameter A, see (44). The three colored curves represent the error (64) for
the quantities displayed in panels (a), (c) and (d) of figure 6, which correspond to the
reconstruction of ΨQ, hv, and D, respectively, see (62) and the first equation of (28). The
dashed vertical line ‘Hi-res P-band’ corresponds to the system described in [23]. The
BIOMASS and ALOS-2 systems are described in [25, 58], respectively. The upper limit
on the value of q is set by the condition that the reconstructed values of μ and ng are
non-negative, see section 8.3.

Figure 8. Dependence of the reconstruction errors as per section 8.4 on μ (left) and A
(right). The value of q = 0.0017 corresponds to the BIOMASS system.

would be further to the left) because the FR angle is inversely proportional to the square of the
frequency, see equation (31).

9. Discussion

The goal of this article is to introduce the dFR into the context of PolInSAR. The reflectivity
and data collection models presented by equations (44) and (47), respectively, are specifically
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Figure 9. Same as in figure 6, but for Aout �= Ain as in section 9.

designed for this purpose. Although they exhibit many features of the standard RVoG model
[42] that is used for reconstructing the properties of the vegetation layer from PolInSAR obser-
vations, they also are a result of multiple simplifications that may hamper the inversion if
applied to real-life data.

For example, suppose that the dependence of foliage reflectivity on polarization that is char-
acterized by the value of A in (44) is known only approximately rather than exactly. The effect
of this uncertainty can be explored in the following scenario.

(a) Data are generated as in section 8.3, see (58), with A = Ain.
(b) Inversion is performed according to (59)–(62), but with A = Aout �= Ain.

Figure 9 shows the resulting reconstruction errors for the case where the values of Ain and
Aout differ by about 8%. The error magnitude is comparable to that in figure 6. Besides, the
actual reflectivity measurements in SAR are subject to speckle [6], and the foliage layer itself is
highly irregular, so achieving the accuracy of 10% or better for the parameterA cannot be guar-
anteed. A possible approach to correct this situation is to consider the value of A as unknown
and increase the number of equations by including the measurements from additional polar-
izations. In this case, the reconstructed value of A will be specific to the particular location.
However, this would make the analysis of the inversion more difficult.
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We may also consider an alternative approach to evaluation of the effect of dFR on PolIn-
SAR reconstruction, assuming a limited knowledge about dFR. As in the case of uncertainty
in the value of A, we can introduce an error in the value of q that controls the magnitude of
dFR, see (54), at the reconstruction step of the following scenario.

(a) Data are generated using (47) and (49) with certain nonzero values of q and ng. Hence,
both dFR and noise are assumed present, see (54) and (57), as in section 8.4.

(b) Inversion is performed using the same formulation as for the data generation, but with a
different value of the parameter that represents dFR, i.e., q′ �= q. The value of n′

g should

be chosen to satisfy the condition that the reconstructed value of eiΨ′
Q is on the unit circle

on the complex plane (i.e., that Ψ′
Q is real). It is likely that n′

g �= ng.

While this scenario may look more realistic than that of section 8.4, it contains additional
parameters, and each of its two steps is more complicated than before. We can expect that the
results of simulation will be more difficult to characterize and interpret. Notwithstanding of
that, this scenario is still based on the simplified system (47) that does not take into account
one of the polarimetric channels and, for this reason, will need further generalization to be able
to accommodate the real data.

Other venues of improvement for the model used in this work include:

• Taking into account the second co-polarized channel, VV, see (47) and table 1.
• In the current model, the only source of decorrelation outside the RVoG model (21) and

(26) is the additive noise terms N2 in (47). However, in the case where the two images in
the interferometric pair are acquired at different times, there is another important mech-
anism of decorrelation known as temporal decorrelation, which is due to the evolution
of the scatterer between the two acquisition times. Obviously, changes of local weather
and/or season affect the foliage scatterer by modifying its shape, density, water content,
etc. Arguably, the ground scatterer may be considered less susceptible to variation under
the same circumstances. The noise terms in model (47) will not capture this effect, whereas
a more appropriate model describing this situation can be found in [59].

The main reason behind choosing the polarimetric model as simple as (47) is that it enables,
for the first time, the evaluation of an entirely new physical effect, the dFR, in the context as
complex as PolInSAR, see figure 1. In the original RVoG formulation, see (21) and (26), the
PolInSAR system of equations presents a substantial challenge for inversion, requires addi-
tional considerations, and gives a limited analytic support for interpretation of the results of
inversion [42]. Yet the RVoG model itself is also a simplification because it assumes (among
other things) that the density of the scatterers in the vegetation layer is constant over the vertical
coordinate, whereas the actual density functions are more complicated and depend on the forest
type (see, e.g., [42, 57]). At the same time, the simplified systems (55) and (58) still possess the
main characteristics of a polarimetric system in that they describe multiple channels, contain
multiple types of scatterers, and use complex coherences as the data. Overall, the model we
have chosen appears to strike a proper balance between the transparency, interpretability, and
fidelity, and its results can be used as a benchmark for more comprehensive and sophisticated
PolInSAR formulations.

10. Conclusions

For spaceborne Earth observation radars, dFR (section 6) introduces systematic errors into the
ground topography, as well as the parameters of the vegetation layer (scattering volume above
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ground), reconstructed by PolInSAR. The magnitude of these errors depends on the character-
istics of the radar system and the state of the Earth’s ionosphere. Using a simplified polarimetric
model, we have shown that for the existing X-, C-, and L-band spaceborne systems, these errors
can be disregarded. For the contemplated P-band BIOMASS system, these errors are also small,
but more borderline, see figures 7 and 8. However, for future systems that may combine even
lower frequencies with high bandwidth, this result will need to be re-evaluated using a more
comprehensive model, and approaches to mitigation of the dFR-induced errors should be intro-
duced and analyzed. One possible approach to mitigation could involve the application of the
PMF [23] that very substantially reduces the cross-channel contamination in plain polarimetric
SAR imaging.
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Appendix A. Linear chirps

SAR interrogating waveforms are linear frequency modulated pulses (chirps):

P(t) = A(t) exp(−iω0t),

where the slowly varying envelope is given by

A(t) = χτ (t) exp(−iαt2)

and the characteristic function χτ of the interval [−τ/2, τ/2] is

χτ (t) =

{
1, t ∈ [−τ/2, τ/2],

0, otherwise.

The carrier frequency ω0, bandwidth B, duration τ , and rate α > 0 of the chirp are related by

2ατ = B � ω0 and Bτ 	 1.

The instantaneous frequency of the chirp is obtained by differentiating P(t) with respect to t
inside the support of A(t):

ω(t) = ω0 + 2αt = ω0 +
B
τ

t, |t| � τ

2
.

When the chirp P(t) emitted by a point source at x propagates through the ionospheric plasma,
its propagation becomes dispersive and not equivalent to pure retarded potentials:

P′(t, y) = K(Ry)A′(t, y) exp[−iω0(t − Ry/vph)],
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where Ry = |y− x|, K(Ry) accounts for the geometric decay in 3D, and

A′(t, y) = χ′
τ−δτ (t − Ry/vgr) exp[−i(α+ δα)(t − Ry/vgr)2],

where

δτ =
B
ω0

Rz

c

ω2
pe

ω2
0

and δα = α
δτ

τ
.

The phase and group velocity are given by

vph =
√
ω2

pe + k2c2/k and vgr = kc2/
√
ω2

pe + k2c2,

where for typical radar frequencies we have ω2
pe � k2c2.

Appendix B. Coherence on the complex plane

Consider a pair of random complex variables, a1 and a2, with 〈|a1|2〉 = 〈|a2|2〉 = a2, where a
is real. Take another such pair, b1 and b2, with 〈|b1|2〉 = 〈|b2|2〉 = b2. The coherence within
the pairs is defined by

γa =
〈a1a2〉(

〈|a1|2〉〈|a2|2〉
)1/2 =

〈a1a2〉
a2

, γb =
〈b1b2〉(

〈|b1|2〉〈|b2|2〉
)1/2 =

〈b1b2〉
b2

.

Suppose that there is no correlation between the pairs:

〈a1b1〉 = 〈a1b2〉 = 〈a2b1〉 = 〈a2b2〉 = 0,

and consider the sums c1 = a1 + b1 and c2 = a2 + b2. The coherence between c1 and c2 will
be given by

γc =

〈
(a1 + b1)(a2 + b2)

〉
(
〈|a1 + b1|2〉 〈|a2 + b2|2〉

)1/2 =
〈a1a2〉+ 〈b1b2〉

a2 + b2
= γa

a2

a2 + b2
+ γb

b2

a2 + b2
. (65)

Relation (65) shows that on the complex plane, γc is located on the segment of a straight line
connecting the points γa and γb.

In the context of section 5, we can associate c1 and c2 with I(y; x(1), . . .) and I(y; x(2), . . .),
respectively, see equations (8) and (22), a1 and a2 with the contributions to these images due to
the ground, i.e., IGr, and b1 and b2 with the contributions due to the volume IVol. Accordingly,
(65) with the help of (26) leads to (27).

Appendix C. Polarimetric radar interferometry with noise

Noise that affects the PolInSAR reconstruction may be due to the receiver, the evolution of
the target when the two acquisitions are made at different times (temporal decorrelation),
misregistration, etc [22]. To account for noise, we modify equation (22) as follows:

I(w; x(1)) = IGr(w; x(1)) + IVol(w; x(1)) + N(1),

I(w; x(2)) = IGr(w; x(2)) + IVol(w; x(2)) + N(2).
(66)
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The noise terms N(1) and N(2) in (66) are circular Gaussian, which is similar to the rest of the
terms, and satisfy〈

N(1)N(2)
〉
= 0,

〈
|N(1)|2

〉
=

〈
|N(2)|2

〉
= N2,

where N2 is noise intensity. As a result, we have:

γ(w) =
VQ

(
σ2

g(w)γGr + σ2
v(w)γVol

)
VQ

(
σ2

g(w) + σ2
v(w)

)
+ N2 ,

where VQ is defined in (18). Then, we introduce the signal-to-noise ratio (SNR):

SNR(w) =
VQ

(
σ2

g(w) + σ2
v(w)

)
N2

and rewrite the expression for γ(w) in the form that resembles (27):

γ(w) = exp(iΨQ)
γv + m(w)
1 + m(w)

· SNR(w)
1 + SNR(w)

.

For the special case m(w) = 0, the previous formula reduces to

γ(w) = exp(iΨQ)γv ·
SNR(w)

1 + SNR(w)
. (67)

As the fraction on the right-hand side of (67) is real, γ(w) lies on the segment of a straight line
on the complex plane that connects the origin with exp(iΨQ)γv, as shown in figure 4.
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