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ABSTRACT. Radar interferometry is an advanced remote sensing technology
that utilizes complex phases of two or more radar images of the same target
taken at slightly different imaging conditions and/or different times. Its goal
is to derive additional information about the target, such as elevation. While
this kind of task requires centimeter-level accuracy, the interaction of radar
signals with the target, as well as the lack of precision in antenna position and
other disturbances, generate ambiguities in the image phase that are orders of
magnitude larger than the effect of interest.

Yet the common exposition of radar interferometry in the literature often
skips such topics. This may lead to unrealistic requirements for the accuracy
of determining the parameters of imaging geometry, unachievable precision of
image co-registration, etc. To address these deficiencies, in the current work
we analyze the problem of interferometric height reconstruction and provide
a careful and detailed account of all the assumptions and requirements to the
imaging geometry and data processing needed for a successful extraction of
height information from the radar data. We employ two most popular scatter-
ing models for radar targets: an isolated point scatterer and delta-correlated
extended scatterer, and highlight the similarities and differences between them.

1. Introduction. The acronym RADAR stands for RAdio Detection And Rang-
ing. Nowadays, it is used as a plain word rather than acronym, because radar
technology has become extremely widespread and common. The original radars
were not designed as imaging instruments. Their imaging capacity has been in-
troduced later. Very often it involves the synthesis of aperture, when the radar
antenna mounted on an airplane or satellite emits a series of signals from different
locations along the flight path (or orbit), and the image is obtained by processing
the resulting series of returns, i.e., signals reflected off the target.

An image obtained by an Earth-observing synthetic aperture radar (SAR) ap-
proximately reconstructs the ground reflectivity. The latter is the capacity of the
target to reflect the microwave signals emitted by the radar. The technique that
combines two SAR images of the same scene and uses the phase difference between
them to extract additional information is called interferometry. SAR interferom-
etry (sometimes called InSAR) and polarimetric SAR interferometry (PollnSAR)
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are rich in applications. In particular, these techniques help produce digital eleva-
tion maps and estimates of the aboveground biomass; they can reconstruct vertical
structure of the vegetation layer and are also used for subsurface remote sensing,
monitoring of glacier movement, change detection, and moving target identification
[1, 34, 8, 24, 29, 27, 31, 25].

Mathematically, standard SAR images can be represented as convolution of the
ground reflectivity function with the kernel that depends on the parameters of the
imaging system and determines its key properties, such as resolution [11, 19, 6, 7].
However, extension of this convenient representation to interferometric imaging may
be less than straightforward due to the specifics of the current exposition of SAR
interferometry in the literature. First and foremost, the discussion of accuracy
of the relevant parameters often appears vague, especially as it applies to system
geometry. For example, given the image phase one can compute the elevation of the
scatterer, but that may require knowing the coordinates of the antenna accurate to
a fraction of the wavelength. In reality, however, the antenna location accuracy is
orders of magnitude worse. Previous publications on extending the mathematical
approach from plain SAR imaging to radar interferometry include [7, 39, 40]. In
this work, we aim at addressing the issues that may still require attention.

Accordingly, the objective of the current paper is to provide a thorough account
of radar interferometry via the convolution-based imaging operators developed for
plain SAR. We restrict our analysis to the so-called cross-track interferometry, which
is used primarily for building the elevation maps. In order to provide a detailed
account of imaging geometry, we use the asymptotic analysis. We also formulate
the accuracy requirements for the various parameters involved. For isolated point
scatterers, we employ a deterministic framework, while for extended scatters a sto-
chastic framework is used under the assumption of a delta-correlated reflectivity.
Finally, we analyze the technique of wavenumber adjustment (often called spec-
tral range filtering) that helps improve the interferogram coherence. In doing so,
we emphasize the differences between applying it to point scatterers and extended
scatterers.

Section 2 provides a concise account of radar interferometry as traditionally pre-
sented in the literature. Section 3 introduces the framework of convolution-type
imaging operators. Deficiencies of the traditional presentation of radar interfer-
ometry are summarized in Section 4. In Section 5, we analyze the interferometric
imaging of isolated point scatterers using the operator framework of Section 3 and
thus remedy the deficiencies identified in Section 4. In Section 6, we employ imag-
ing operators for radar interferometry of extended scatterers and pay particular
attention to the subject of interferometric coherence introduced in Section 6.1, as
well as the wavenumber adjustment procedure. The problem of height retrieval for
a vertically localized distributed scatterer is considered in Section 6.2. Section 6.3
compares the wavenumber adjustment procedure for extended scatterers against
that for isolated point scatterers. Section 7 provides the concluding remarks. Fi-
nally, in the Appendix A we analyze the interferometric coherence in the Fourier
space.

Note that plain SAR reconstructs the ground reflectivity as a function of two hor-
izontal coordinates: range (normal to the antenna flight path and also referred to as
cross-track) and azimuth (parallel to the flight path and known as along-track). The
synthesis of aperture provides resolution in the azimuthal direction. At the same
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time, radar interferometry is usually analyzed in the vertical cross-track plane. Al-
though this ignores certain aspects of the InSAR signal processing, in particular,
when the antenna beam is not orthogonal to the orbit [24, Section 2.5.5], we will
be leaving the consideration of InSAR imaging in the full three-dimensional geom-
etry outside the scope this work. Specifically, this means that after the individual
SAR images are obtained, the subsequent interferometric processing operates with
image coordinates in the cross-track direction. Accordingly, we use the term “radar
interferometry” rather than InSAR or PolInSAR whenever this does not lead to
misunderstanding.

2. Traditional account of radar interferometry. A standard radar image is
built by processing the interrogating signals emitted and received by the antenna
after traveling to the target, getting reflected, and traveling back. Usually, the
transmit and receive locations of the antenna coincide. Radar interferometry com-
bines two radar images to extract additional information about the target. The
most popular interferometric setup is the cross-track interferometry where a pair of
images is acquired from two antenna locations that correspond to two slightly dif-
ferent incidence angles, see Fig. 1. Cross-track configurations can be realized using
either a pair of antennas (single-pass interferometry) or a single antenna passing
close to its original trajectory at a later time (repeat-pass interferometry). In this
section, we present the main relations of the cross-track interferometry as can be
found in the literature [1, 8, 24, 31, 16], except that we use our own system of
notations that proves instrumental for the subsequent analysis.

Interferometry takes plain radar images as input. A procedure for obtaining
those images is typically left out of discussion in the interferometric literature. For
this reason, we postpone the description of this procedure until Section 3.

Let v = v(z) be a complex-valued ground reflectivity function, where z denotes
spatial coordinates. Let the antenna be located at @ and let R, = |z — x| be the dis-
tance between x and z. A key assumption needed for developing the interferometric
framework is that for a given z we can obtain the following quantity:

(1) LI(z) = Lv(z) +2-21R, /A,

where ) is the signal wavelength and Z denotes the argument of a complex number.
The first term on the right-hand side of (1) is the complex argument, i.e., phase,
of the ground reflectivity at z, while the second term represents the accumulation
of phase over the signal round-trip travel distance between the antenna and the
target. We formally associate the expression on the right-hand side of (1) with the
complex argument of the image, ZZ(z), even though the image Z(z) itself is yet
undefined (see Section 3 for its definition). For the rest of this section though, we
will only need the complex argument /Z(z).

Suppose that /Z(z) can be obtained for two different antenna locations z(®)

and (V| called master and slave, that correspond to travel distances Rgo) and

9), respectively, see Fig. 1. Then, we can introduce the phase difference 1y, as

follows:
(2) Yor(2) & 27O (2) — 22V (2) = 2 27(R© — RW) /.

Clearly, 101(2z) can be expressed as

voi(z) = LT (2)19(2)),
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where the complex quantity

(3) q(z) =T (2)10(2)

is called the interferogram. For the purpose of height retrieval (i.e., building the
elevation map), interferogram phase v¢p1(z) = Zq(z) in (2) represents the data,
while the difference between the signal travel distances, R,(ZO) — Ril), is related to
the unknown elevation at z by geometric considerations. We should note that
as the experimental complex-valued interferogram is represented by a pair of real
numbers (see Section 3.2 for more detail), the value of its complex phase g; can
be reconstructed only accurate to an additive term of 27n, where n is integer. At
the same time, the range of variation of Rio) — Rgl) over a single image may require
choosing different values of n for ¢p;(z) in different parts of the image (i.e., for
different values of z). This procedure is called phase unwrapping, and we briefly
discuss it in Section 5.4.

slave A
antenna ( )

master :13(1)
antenna é») .
terrain ...
w(o) I I .““‘
: / "0"
H T
/ h(z)
/7 !
7 S
ST
/

FIGURE 1. Traditional presentation of geometry for radar inter-
ferometry in the vertical cross-track plane. Points z and T are on
the same circle centered at z(®) (dashed line).

A common way of retrieving the elevation from the computed value of R,(ZO) — R,(zl)

is as follows. Let D be the distance between the master and slave platforms, D =
|21 — (0] see Fig. 1. For airborne and spaceborne radars, we typically have:

(4) D<R®, D<«<RM,
The law of cosines for the triangle Az(® (1) 2 reads (see Fig. 1):
(R)? = D* + (R)? = 2DRY cos B(z).
Denote d = RS’) — R,(zl). Substituting
(Rg()))2 B (RS))Q = d(R© + RY) = 2RV d — &2,

we get:
d?> —2R™Wd — D? + 2DRY cos f(z) = 0.
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Solving this equation with respect to d and introducing

D

z

see (4), we have:
d=RD [1 —V1+g2— QQCOS,@(Z)]

~ ROt (14 14  goos(e) — L cost5(2) + 01a")]

(6) ~ R [g cos B(z) — %gz sin? B(z)].

The last line of (6) is obtained by dropping all the terms of order three and higher
with respect to the small parameter g = D/ RY) defined in (5), and after the zeroth
order terms have canceled. If we choose to drop the quadratic term as well, we
arrive at the linearization:

(7) RO — RM ~ Dcos B(z).
Substituting (7) into (2), we obtain:

4m
(8) Yo1(z) = TD cos 3(z).

Next, if H is the altitude of the master antenna, then the elevation of the point z
is

(9) h(z) = H — R cosb(z),

where 6(z) is the angle of incidence, i.e., the angle between z — 29 and the negative
vertical direction, see Fig. 1. If the positions of the two antennas are fixed, we have:

(10) 0(z) + B(z) = const.
Consider two particular cases. First, let the point z be located above the ground
level, and let the circle that passes through z and is centered at () intersect the

horizontal line h = 0 at a certain point T' so that Rio) = R(Ig) = const, see Fig. 1.
From (8)—(10), we obtain:

(11) o1 _ dipor 08 _4m Dsinf(z)
Oh | g g B Oh|por_po A R sinf(z) | r©—r®
Linearization of 11 (z) around T, combined with (11), yields:
4 DJ_
12 — Yo (T ‘ ~2 Py :
( ) (’(/JOI(Z> 1pOl( )) R£0>:R(IE)) A R%g) Sln@( T) (Z) Rﬁo):Rgf))

where
D, = Dsin B(T)
is often called the perpendicular baseline, see Fig. 1. Once the left-hand side of (12)
is known, one can find the elevation h(z) of the scatterer at point z, see Fig. 1.
Another particular case corresponds to taking h(z’) = h(T) = 0, as shown in

Fig. 2. In this case, the distance RS)) between z(°) and 2’ is no longer constant. To
analyze the variation of the interferogram phase 1y, with respect to the horizontal
coordinate s, see Fig. 2, we differentiate the relation

Htan6(z') = R sin0(T) +s(2')
—_—
const
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FIGURE 2. Calculation of the flat Earth phase in cross-track radar
interferometry. The points z” and T have zero elevation, and both
circles are centered at (9.

and obtain:
o1 _ dtpo1 90
(13) s h(z')=h(T) ; dp 0s h(z")=h(T)
_ 4m Dsin (2') cos? 0(2")
A H h(z’):h(T).

Hence, a counterpart to (12) for the case where 2z’ and T have the same elevation
is

(19 (o(z) - v (1) L Am Dycos(T)

h(z)=h(T) A RY 5(z)

h(z")=h(T)

The right-hand side of (14) is called the flat Earth phase as it yields the variation
of the interferometric phase as the scatterer moves in the horizontal direction, see
Fig. 2.

Formulae (12) and (14) relate the increments of the interferometric phase with
the coordinates of a point in the target area. When this point is neither at the
same distance from x(®) (like z in Fig. 1) nor at the same elevation as T (like
z' in Fig. 2), formulae (12) and (14) are combined to produce the overall phase
difference. Then, to determine the elevation from the interferometric phase, the flat
Earth phase must be eliminated. This can be done by calculating the horizontal
shift s(z’) from, e.g.,

(15) s(2') = \/(RD)? — H2 — R sin6(T)

and then substituting s(z’) into (14).

An alternative approach to eliminating the flat Earth phase [8] is to set the
wavelength of the slave image A; slightly different from that of the master image A
so that the projections of the two wavenumbers on the horizontal plane are equal:

(16) ksinf(T) = kW singM(T).
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In formula (16), k¥ = 27/\, k) = 27/X;, and 61 is the incidence angle for the
slave antenna, see Fig. 2. Accordingly, formula (2) is modified as follows:

RO Ru))

Jon(2) S LTz k) — 2T (21 k) = 2 2n
Y

(17)
= 2(kRV) — k; RW).
Introduce the interferometric angle A8 = §(T) — 6 (T). For |Af| < 1, we can

write: sin ") ~ sin @ — cos § - Af. Hence, condition (16) is satisfied up to first order
in Ad if we take

A6
1) —
(18) K k(l * tan@(T))
From (18), we derive with the help of (2) and (17):
~ Ad

19 = —9 =" RM
( ) 1[)01(2) QZ}OI(Z) tanH(T) Rz
Then, formulae (11) and (13) are modified as follows:

877/;01 _ o1 _ A6 8R§1)
20) Oh |go_go  Oh |po_po tan@(T) Oh REO):R(;))’

9o o1 A0 9RY)
05 |pn=n(ty 95 |n(z)=h(T) tan6(T) Os |, _p(m)

To calculate the partial derivatives on the right-hand side of (20), we employ (9)

and the law of cosines for the triangles Az z™M 2z and Az@zM) 2’ (see Figs. 1

and 2):

oRL" R 99 _ 909RY
Oh |go_por 00 Oh|po_por — Oh OB |go_po
B 1 RY) Dsin B(z)
R sin 0(z) rY R =R
(21) _ Dsinﬁ( )
51n6(z) RS}J):R;‘”’

22) oR.) R} sme( ) — Dsin (0(T) + B(T)) + s

s h(z')=h(T) RS) h(z')=h(T)

Then, assuming that the displacements |h| and |s| are sufficiently small, e.g.,

h
IRV
Ry’ Ry

we obtain from (20)-(22):
(23a) o _ Hau (14+0(A0)),

oh RO —R® oh R =R
(23b) o _ Hau - O(AF).

s h(z")=h(T) s h(z")=h(T)
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This yields the following approximation:
47 D 1

(24) bo1(z) = Por (T) = N 2D sino(T)
T S11

h(z) - (14 O(AW)).

Equation (24) is similar to (12). However, unlike in (12), the point z in (24) is no
longer restricted to the circle R = R(ﬁ). This is an implication of (23b). After
dropping O(A#), we can use (24) to calculate the elevation h(z) from the difference
of interferometric phases.

3. Mathematical treatment of radar imaging.

3.1. Formation of the image. Following [19, Chapter 2], we specify the radar
interrogating signal as a narrow-band linear chirp (frequency modulated waveform)
with the carrier frequency wg, bandwidth B, duration 7, and rate a > 0:

(25) 2ar = B<wy and Bt > 1.

Using the notation y_ for the characteristic function of the interval [—7/2,7/2):

26) () - {1, tel-1/2,7/2],

0, otherwise,
we can write the expression for the chirp as follows:
(27) P(t) = A(t)e ™0t where A(t) = XT(t)e_th.

We will associate the wavelength A that appears in (1) with the central (or carrier)
frequency of the chirp (27): A = 2wc/wg, where ¢ is the speed of light (a con-
stant). Note that the expression in (27) is complex-valued; for an interpretation,
see Section 3.2 below.

Let the antenna be a point source located at @ (which may be either of the two
locations, (®) or () in Fig. 1). The incident field u' is the field emitted by the
antenna that is excited by the pulse P(t) of (27). u' satisfies the constant-coefficient
inhomogeneous wave equation:

(1 0?
c? ot?
Solution to equation (28) is given by the retarded potential:
1 P{t—|z—=z|/c)
A7 |z — x| '

(28) - A)ui(t, z) = 6(z — z)P(t).

(29) ul(t, z) =

Let n = n(z) be the refractive index of the target material, which means that
the propagation speed in the target region is ¢/n(z). In vacuum, n(z) = 1. The
overall field u = u(t, z) satisfies the variable-coefficient wave equation (cf. equation
(28)):

(30)

2 2
n?(z) 0
( e A)u(t, 2) = 6(z — x)P(t).
It is convenient to represent v as the sum: v = u' + u®, where the term u® is solely
due to the deviation of the propagation speed from c¢ in the target area (i.e., if

there were no deviation: n(z) = 1 everywhere, then we would have u = u' and
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u® = 0). The contribution u® = u°(t, z) to the total field is called the scattered
field. Subtracting equation (30) from (28), we get:
2 2
- = A)us(t, z) = %ﬁ%(u’ +u®).

The first Born approximation [19, Section 2.1.1] (also referred to as single scattering
or weak scattering approximation) suggests that the term «® on the right-hand side
of this equation can be dropped, provided that the variation of the refractive index
is small and the scattered field is also small compared to the incident field:

1 02 1 —n?(z) 0%u!
(?ﬁ c? ot
Substituting (29) on the right-hand side of (31) and taking into account that the
envelope A(t) in (27) varies much slower than the fast carrier oscillation e~  we
obtain:

(31) - A)us(t, 2) =

(52— )t )~ L P U2 —alfe)
c? ot? 2 47 |z — x|
Then, the scattered field at the receiver &’ € R? is given by the Kirchhoff integral:
(32) u(t,z') ~ /V(z, z, 2" )P(t — |z — x|/c— |z — 2’| /c)dz,
where
n?(z) —1 w3
33 ) = 0 .
(33) v(z 2, a) 2 16m%|z — z||z — @]

For typical imaging geometries, the emitting and receiving antennas  and x’ are
located at a large distance ~ R from the target, where R is much larger than
the characteristic size of the target area that determines the extent of variation of
z under the integral in (32). Consequently, the variation of the denominator in
v(z,z,x') is small (see (33)), and since the numerator n?(z) — 1 is small in its
own right (what enables the first Born approximation), we can replace |z — | and
|z — 2’| in v(z, z, ") with the same constant quantity R. We can also assume that
the emitting and receiving locations coincide, which is common. Then,

. n*(z) -1 w?
(34) u(t,x) ~ / 2 622 P(t—2|z —x|/c)dz.
v(z)

The function v(z) under the integral in (34) is called the ground reflectivity function.

The goal of radar imaging is to reconstruct the reflectivity function v(z) given the
scattered field u®(¢, ¢), i.e., invert (34) and obtain v(z) while interpreting u*(¢, z) as
the data. The inversion is rendered by application of a matched filter to the received
signal. The matched filter Pgy; is a complex conjugate of the antenna signal (27):

R

(35) Pa(t,y) = P(t —ty) = XT(t - ty)eiw‘)(t_ty)'*'m(t_ty)Qa
where
2z —y| _ 2R,
36 ty, = — <1 — Y
(36) y= =

Accordingly, the image is expressed as

(37) I(y) = / Pass () (1, @) dt = / P( —@)usa,m) dt.

c
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The function I(y) approximates v(z) of (34), see Section 3.3. The spatial argument
y is often referred to as focusing location (or focusing parameter). The difference
in notations between I(y) of (37) and Z(z) of Section 2 is intentional, see Sections
3.3 and 5.1.

Substituting (34) into (37), we obtain the integral imaging operator:

(39) 1) = [ Wy.2)(z) d.

Its kernel W (also called the point spread function, or PSF) is given by
2R, 2R,

(39) W(y,z)-/P( —T)P(t— - )dt.

It can be shown (see [19, Section 2.6]) that W depends only on the difference of its
two arguments y and z (via the difference of the distances R, and R,):

W(y,z)=W(y —z)=W(Ry, — R,).

Hence, formula (38) reduces to a convolution:

(40) f@wa/ww—zquz=mww@>

Substituting (25)—(27) into (39), we express the PSF W as a function of one scalar
argument:

) . B
(41) W(l) = e~ 2wol/e . (1) = e=20l/¢ . 1 5inc (?l),

where | = R, — R, and sincx = sinz jg the spherical Bessel function of order 0.

The central portion of the sinc(-) in (41) between its first negative and first positive
Zero: B%l = 4, is referred to as its main lobe; the portions of the sinc(-) between

its subéequent zeros to the left and right from the origin are called the sidelobes.

3.2. Complex-valued signal and image. Most of the functions introduced in
Section 3.1, including the emitted signal P(t) in (27), scattered field u®(¢, ") in (32),
and image I(y) in (37), are complex-valued. The motivation for using the com-
plex form can be seen, e.g., in the convenience of expressing the phase of P(t) as
ZP(t) = —x (t) - (wot + at?). Yet these functions represent, or are proportional
to, certain physical values, such as the electric field intensity or antenna voltage,
that are intrinsically real-valued. The procedure of converting the band-limited
real-valued data (e.g., the real part of P(t) given by (27)) to the complex form
along with stripping the carrier frequency is called the quadrature demodulation,
see [10, Section 4B.1] or [27, Section 1.3]. In essence, the real and imaginary part
of the demodulated function are obtained by multiplying the original real-valued
signal by two copies of the carrier sinusoid with a shift of 7/2 between them, fol-
lowed by integration. Throughout this work, we assume that this procedure stands
behind all complex-valued functions, possibly with the subsequent restoration of
the high-frequency term, such as e~*ot or €2, In addition, we note that the
reference values of permittivity of real-world materials are often complex-valued,
which represents the phase shift at reflection and refraction. This justifies the use
of complex-valued functions on both sides of (32), including the cases where the
first Born approximation formula (33) for v is not valid.
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3.3. Convergence. To analyze in what sense the image I approximates the reflec-
tivity v, we consider a simplified one-dimensional version of (40) (recall, k = <2 ):

By — .
(42) Ip(y) = /WB(y —z)-v(z)dz = T/sinc (M)e*mk(-”*z)y(z) dz,
c
where the subscript “B” indicates that the imaging kernel (PSF) corresponds to
the specific value of the chirp bandwidth B, see formula (25).

Proposition 1. For a fized chirp rate, @ = const, the image Ig(y) given by (42)
converges weakly as B — 0o to a constant multiple of the reflectivity function v(y).

Proof. Following [20] and [19, Section 7.2], we first modify the image Iz by multi-
plying both sides of equation (42) with the exponential factor e2¥¥:

Zp(y) = Ip(y)e*™ = T/sinc (73(?}6_ Z)>e2ikzl/(2’) dz.

Next, let ¢(y) be a Schwartz test function. Then,

| zswstnay = [+ [sne (FL=) 001 p(y)ay
(43) -
= /T/sinc (M)gp(y)dye%kzy(z)dz.

c
The dy (i.e., interior) integral on the second line of (43) is the Fourier transform

in y of the product sinc (M)gp(y) taken at the (spatial) frequency k = 0.

Consequently,
. By —z TC, _ins N
(44) T/SlnC (7@ ))w(y)dy =7—1|e X25 * (k) ,
C B c k=0
because

> . B —z —iK TC _ikz
/700 sinc (7@0 ))e Ydy = B X%(“)

On the right-hand side of the previous equation, x 55 (-) is the characteristic function

defined in (26). Also in (44): ¢(k) = [ gp(y)e‘ikydy. Since 7 = £ (see formula
(25)), we obtain:

r [sine (BE=) o)y = 22 [ p(@an tn— e 9

c 200 J_ E k=0
) B
_ e 5 iezge = € [ 7 56 0i6%
(45) % 700@(5))@(5)6 € = o~ J@(E)e d¢
2 B 2
1 c .
— T 7 p)eas — Tog(2), as B — oo,
o 27 B «

where we took into account that x,5(+) is an even function. The last line in (45)

implies that 7 sinc (M) converges weakly to %66@ — z) as the bandwidth B
of the chirp increases.
Therefore, substituting (45) into (43) we have:

> m2c ;
(46) / Ip()e(y)dy — T/ezlkzy(z)cp(z)dz, as B — oo.

— 00
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Equation (46) means that Zp(y) — const - v(y)e?* as B — oo in the sense of
distributions. As Zp(y) = Ip(y)e**¥, we conclude that Ip(y) — const - v(y) as
B — oc. O

3.4. Point scatterer. In reality, the bandwidth B cannot become arbitrarily large.
On the contrary, most imaging radars are narrow-band, and their bandwidth is a
small fraction of the carrier frequency so that B/wg < 1 (see formula (25)). There-
fore, the result of Proposition 1 never fully applies in practice, and the image re-
mains an “under-converged” approximation of the original reflectivity. The specific
form of v that allows one to see most intuitively the difference between the original
reflectivity and its image is that of an isolated point scatterer.

The point scatterer is introduced formally, taking advantage of the fact that
the convergence established by Proposition 1 holds for a broader class of functions
v, Schwartz distributions, than those for which the first Born approximation of
Section 3.1 is valid.

Let us first change the integration variable in formula (34) for convenience:

Wt z) = /y(z)P(t %R /c)dz.
Then, the point scatterer at a given fixed location z is defined as
(47) v(z2) =1y0(z — 2).
This yields the scattered field:

(48) us(t, iL‘) = V()P(t _ QRZ/C)

and the image:

(49 ) = et B e (5 Fa )
C

In the vertical cross-track plane (see Fig. 1), the main lobe of the sinc in (49)
specifies an annulus of central radius R, and thickness 2Ag (see Fig. 3), where
me
IR

The absolute value |I(y)| of the image (49) as a function of Ry — R, has a global
maximum at Ry, — R, = 0. The distance from this maximum to the first zero of
the sinc is precisely Ar of (50). It is commonly accepted that two point scatterers
located further away than Ag from one another can be told apart on the image,
while those closer than Ay cannot because their respective maxima may appear
indistinguishable. Therefore, the quantity Agr of (50) is referred to as resolution
(range resolution in full-fledged SAR, see [19, Section 2.6]).

The notion of resolution implies that not only y = z, but any other point within
the ring-shaped shaded area in Fig. 3:

(50) Ag =

Ry =Rl _

(51) Ry~ R <A & B

K

for example, y = 2’ or y = 2" (see Fig. 3), can be associated with the point
scatterer of type (47) that yields the image I(y) of (49). With no information on
elevation, all such points remain indistinguishable. Knowledge of elevation h reduces
the ambiguity and restricts the possible location of the scatterer to a horizontal line

INVERSE PROBLEMS AND IMAGING VoOLUME 16, No. 1 (2022), 119-152



MATHEMATICS OF RADAR INTERFEROMETRY 131

FI1GURE 3. The annulus in the vertical cross-track plane due to the
main lobe of the sinc in (49). It is centered at « and has central ra-
dius R,. Its thickness 2Ag is defined by the system bandwidth B,
see formula (50). Vertical localization of radar targets can be per-
formed using either interferometry or external information about
the elevation.

segment of length ~ 2Ag.! The elevation h can be inferred from interferometry

or otherwise from some external considerations, e.g., that all scatterers lie on the
horizontal line h = 0.

The ambiguity in the location of the scatterer implies that one cannot accurately
recover the complex argument of the reflectivity from formula (49). Indeed, as
B < wy (see (25)), the phase of the image (49) makes many revolutions in-between
:EAR:

Ar

wo
52 e

In the one-dimensional setting of Section 3.3, the image of a point scatterer
obtained by the radar system with bandwidth B is (cf. formula (49))

By — :
Ip(y) = voWa(y — 2) = vo7 sinc (7@ 2) )e’mk(y’z).

c
According to Proposition 1, Ig(y) — const - vgd(y — z) weakly as B — co. In
simple words, for larger B the central lobe of the sinc(-) becomes narrower and taller

and “approaches” the Dirac é-function (see the discussion right after equation (45)).

4. Deficiencies of the traditional account of interferometry. The traditional
treatment of radar interferometry (Section 2) has enabled many successful applica-
tions (Section 1). Yet no thorough mathematical analysis of this subject is available
in the literature. Extension of the approach of Section 3 along the lines of Section 2
may be hampered by the lack of rigor in deriving formulae (12), (14), (24) or their
equivalents. That may lead to an ambiguous interpretation of the various terms in
interferometric relations and unrealistic requirements for the imaging system.

LGeometrically, there will be two segments that are symmetrical about the vertical axis passing
through the antenna location, but one of them is eliminated by knowing the direction of the antenna
beam (e.g., it can be the positive direction of the s-axis in Fig. 3).
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1. Image co-registration. The values of Z(M)(2) and Z(9)(2) in the interfero-
gram (3) must correspond to the same spatial location z. However, these two
images are taken by different devices and/or at different times. Thus, they
must be co-registered first. As the actual images are functions of y, see (40),
the co-registration must be performed w.r.t. y. The best achievable accuracy
of the existing co-registration techniques is a few percent of the resolution size
[36, 35, 23, 15]. Therefore, if a certain image feature corresponds to y© on
the master image and y(" on the slave, we may have:

(53) 1y@ —yM] > 1072Ag.

As the typical relative bandwidth B/wg is also about a few percent [32],
formulae (49), (52), and (53) indicate that misregistration can introduce phase
errors greater than 7.

2. Antenna location. The travel distances RS” and Ril) in equation (2) de-
pend on the coordinates of the antenna, and subsequent geometric calculations
based on (2) involve those coordinates. Yet the errors in determining the loca-
tion of the antenna are typically much larger than the wavelength. Although
laser systems can yield a centimeter-scale accuracy in orbital measurements,
the accuracy of the routinely provided trajectory data is on the order of one
meter or worse [41, 13, 38]. Given a typical radar wavelength between a few
centimeters and a meter, such accuracy is insufficient to calculate the propa-
gation phase accurate to a small fraction of 7.

3. Linearization of distances. Formula (7) is a linear approximation of the

true expression for Rio) — RS), which is given by the first line of (6). From the
third line of (6), we see that the neglected terms are about g = %(20). With

D ~ 1km and R,(ZO) ~ 103km7 this evaluates to about 0.5m. For an X-band
radar with the wavelength ~3c¢m, this accuracy is insufficient, as it will lead
to errors > 7 in equation (8). A justification of why the terms ~ R%; in (6)
can be disregarded is usually missing in the literature. ’

4. Missing data for height reconstruction. Consider equation (12) that
yields the scatterer elevation h. The difference of interferometric phases on
its left-hand side provides the data. However, this left-hand side may vanish
if the points z and T are sufficiently close to one another in the sense of (51).
In that case, they may correspond to the same focusing location, i.e., appear
indistinguishable:

(0) _ 7(0) — 7(0)(,,(0)
(54) I'(z) =1"(T) = I'""(y""),

Then,

(55) (vo1(z) — wm(T))‘ = ZL[I0(2)1O(2)] - [IO(T)I(T)] = 0.

R{V=R{
A necessary condition for the first line of (54) to hold is \R,(ZO) — R(Ig)\ < Ag;
it is always satisfied because for the master image Rio) = R(jg) (see Fig. 1). A

necessary condition for the second line of (54) to hold is |R9) - R(;)| < ARg.

Using (21), we see that it is true as long as h(z) < Agr(A#)~!, because

Al =~ ﬁ. For common configurations, Ag(A#)~! evaluates to about several
T
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kilometers. The elevations lower than that may appear indiscernible because
the left-hand side of (12) will be equal to zero, see (55).

5. Reference location and master/slave asymmetry. The elevation h ob-
tained via (12) or (24) is elevation above the reference point T (see Fig. 1).
The latter, in turn, is defined with respect to the master antenna at x(®) (:1:(0)
is at altitude H above T'). The effect of swapping the master and slave an-
tenna between (9 and (! should be investigated. Predicting the magnitude
of this effect for formula (17) is not trivial.

6. Flat Earth phase removal. Two approaches have been introduced in Sec-
tion 2 for the flat Earth phase removal. The first method, which is based on
formulae (14), (15), is straightforward. The second one is given by (16)—(24);
it reveals some limitations if considered for an interferometric pair produced
by identical radar systems. In particular, the frequency adjustment of real
systems is usually limited by the available bandwidth, and via (18), this trans-
lates into an upper limit on the interferometric angle: |Af| < tan6 - B/wy.
No physical interpretation of this effect has been proposed; in particular, it is
not clear whether the target properties play any role.

The analysis of interferometric radar imaging in Section 5 addresses the defi-
ciencies outlined in items 1 through 5. It builds upon the mathematical framework
for radar imaging developed in Section 3 and does not involve any unrealistic as-
sumptions. We treat both antennas in the same fashion and thoroughly analyze the
approximation accuracy in geometric calculations. Item 6 is addressed in Section 6.
In particular, we show that the procedure of wavenumber adjustment described
by (16)—(24) is most helpful when dealing with extended scatterers, whereas for iso-
lated point scatterers, the standard approach to flat Earth phase removal based on
(14), (15) is more relevant.

5. Radar interferometry for point scatterers.

5.1. Radar image and interferometric phase. Similarly to Section 3.3, let us
redefine the image I(y) given by (40) as follows:

(56) I(y) = I(y)e* oo/,

On the right-hand side of (56), the original image I(y) is merely multiplied with a
known function of y. In particular, the image of a point scatterer (49) becomes:
- R, —R
(57) T(y) = vp - T o=/ gine (BM)
c

— 2mc)).
= %)

Expression (57) was used in [1]. For the complex phase of (57) we have (A
(58) ZI(y) = Lug+2 - 27R. /A,

The right-hand sides of equations (58) and (1) coincide. Therefore, the entire right-
hand side of (1) can be obtained by evaluating the complex argument of Z(y).
Moreover, as the right-hand side of (58) does not depend on y, it can be evaluated
for any y on the left-hand side. As such, no precise co-registration of the images
ZO)(y) and Z(W(y) is required. This addresses item 1 in Section 4. Indeed, even
if a certain feature z corresponds to different y(©) and y™) on the two images, we
still have according to (58) (cf. formulae (2), (3)):

(59) 2q(z) = Z[ZO(yO) IO (y V)] =2 2x(RY — RM) /A,
The role of co-registration is further discussed in Section 6.1 and Appendix A.
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Of course, for the previous conclusions to hold, the contribution from any other
scatterers to Z(y) should be negligible. For example, suppose that there are two
point scatterers located at T and z’ (see Fig. 2):

(60) v(z) =vrd(z) +1pd(z — 2').

(0)

Let yg’ and y’(o) satisfy (51) for the master antenna:

RO — RY| < Ar, R — RY)| < Ag.
To use formula (14) for the target (60), we must have similarly to (58):
61) 22O~ Lvp+2-20RO /N, 22Oy V) & 2+ 2 20RD A,
If the two scatterers are sufficiently far from each other:
(62) IRY — R > Ag,

then one may expect that relations (61) will hold because the “cross-contamination,”
i.e., influence of vy and 1) on I(O)(y'(o)) and Z(©) (yr), respectively, will be small
due to attenuation by the sinc function in (57). The same is true for the slave
antenna.

5.2. Interferogram phase in slant coordinates. We will replace the analysis
of Section 2 with a symmetric and more consistent derivation that employs the
slanted frame of reference shown in Fig. 4. The slant and cross-slant coordinates
are denoted by u and v, respectively, so that, e.g., z = (24, 2, ). The angle between
the negative u-axis and vertical direction is = const. A reference point T = (0, 0)
is specified in the target area. Instead of the master and slave antennas (see Fig. 1),
we consider two coequal antennas in the vicinity of R = (— R, 0), where R = counst is
the reference travel distance. The antenna locations in the slant coordinates are
) = ( — R+ xq(}),xg,l)) and (2 = ( — R+ xq(f),mg,z)). This setup removes the
asymmetry pointed out in item 5 of Section 4. We also consider two point scatterers
2z, and zp.

We will assume that both antennas are located near R while both scatterers are
near T (see Fig. 4) so that

|m(1),R|N |m(2),R‘NE @NE @Ne
R ’ R " R " R ’
where ¢ < 1 is a small parameter (cf. (5)). Applying the Taylor expansion to the
Pythagorean formula, we approximately calculate the travel distances:

Rgla) Zua — x’gbl) (Zva - Igl))z 3
| @)
- R + % spr T (%),
Rg%z) -1 + Zua — $g2) (Z'Ua - 155;2))2 + O( 3)
R R 2R? =)

and similarly for RS)) and be) that correspond to the scatterer at z, = (2up, 2ub)-

It is important to estimate the truncated part in formulae (63) because, as we saw
in item 3 of Section 4, the linearized expression (7) may be insufficiently accurate.
Consider a spaceborne radar with R ~ 103km and take, say, ¢ = 10~3. This allows
for the baseline |£(?) — 21| and scene size max |z| of up to 1km, which is acceptable
for both quantities. Then, the terms neglected in (63) are ~ Re3 ~ 1mm, i.e., much
smaller than the wavelength.
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i — 2V] p

" (1 )
R = (_R7 O)/
N ZAND

OIS R

2 = 2{1)|

FIGURE 4. Radar interferometry with two coequal antennas. All
coordinates are specified in the slant reference frame (u,v). To
illustrate formula (88), note that I1 + Iz = zyp — 2Zyq.

Let R&) and Rg,Za be the focusing distances close to R,(ZZ) and Rii), respectively,

in the sense of (51). According to Section 5.1, we build the interferogram as follows
(see (59)):

_ 1 1 2 2
(64) ga = TW(RUHT(RY)),

where neither Z() (Rg(lla)) nor Z?) (Rgfa)) are supposed to have any other contributions
besides those from z,. Then, we substitute (63) into (57) and (64) and dropping
the @(63) terms derive the phase of the interferogram:

@ _ L

) = o= h(RE) - RY) = 8, 2k
where

(:EE,Z))z o (3&}1))2
(66) D, = 2k(_(x5§) 0 4 - )

The interferogram g, in (65) is the data, and it is essential to remember that
the real and imaginary part of each of the two images in (64) are two independent
values determined from the antenna measurements, see Section 3.2. For a complex
number defined this way, its complex phase is known only accurate to an additive
term of 2wn, where n is integer. For example, we can assume that |1, < 7. On the
right-hand side of (65), only the last term depends on z,, while ®, is determined
by the antenna coordinates (1) and z(® that may contain errors much larger than
the wavelength (see item 2 in Section 4):

exac 2
(67) (xf) - 537(})) = (wf) - w&l))( ¥ +1n, where |n]> A= %
Substituting (67) into (66), we get:
(68) Py = ‘I’E]exaCt) + ¢, where |¢|> .
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Consequently, the error ¢ due to ®, could be much larger than the magnitude of
the data t,, which makes the accurate determination of z,, from equation (65)
impossible.

However, we can cancel ®, and reduce the effect of the corresponding errors by
considering another point scatterer located at z, = (zyp, 2up), such that (cf. (62))

(69) IRE) — RG> Ar and  [RZ) — RY)| > Ag.

The separation (69) yields both interferograms, ¢, and ¢, in the form (64), as per
the discussion in Section 5.1. Then, computing ) as in (65) and subtracting v,
from it:

’L/)b — Yq 2) . .7}1(;2) - xq()l)

(10) St = (R - RY) - (RE - RE) = -

2% (z'ub - Zva)~

The term z$? — z{" on the right-hand side of (70) is prone to the same absolute
errors as in (67). However, their magnitude as compared to the wavelength no
longer matters because

wb - dja 1
—R 2k (2) (1)’

Ty — Ty

(71) Zub — Zva =

and the relative error on the right-hand side of (71) will obviously be ~ ﬁ
This addresses the role of inaccuracies in antenna position, as per item 2 of Section 4.

A counterpart of (71) in the traditional framework is formula (12) of Section 2.
However, for (71) to hold, we require the separation (69) so as to avoid the possible
degeneration that may lead to missing data for elevation retrieval in (12). This
addresses item 4 of Section 4.

It is easy to see that conditions |¢),| < 7 and |¢p] < 7 (see the discussion
following (66)) also impose a restriction on the range of reconstructed values of

Zub — Zpa 10 (71). We discuss this problem in Section 5.4.

5.3. Removal of flat Earth phase. In topographic applications of radar inter-
ferometry, the topographical height h as a function of the horizontal coordinates is
reconstructed from the received radar signals. Formula (70) allows one to use the
interferogram to obtain the cross-slant distance between the two point scatterers,
Zub — Zva. This, however, is not sufficient for deriving h = h(s). Indeed, considering
the relation between the upright (s, h) and slanted (z,, z,) coordinates,

h = z,sinf — z, coso,

(72) § = 2z, cos0 + z,sin 6,

we can recast the top line of (72) for two scatterers, a and b, as follows:
(73) hy — ha = (Zob — Zva) SINO — (Zuh — Zua) COSO.

For height retrieval, only the term (z,, — zyq) on the right-hand side of (73) can
be derived immediately from the interferometric data, see (71). Yet to obtain the
height information, we have to evaluate the term (z,p — 2yq) as well. This can be
done by dropping the quadratic terms in (63) and using the focusing parameters,
for example:

) (o= 200) = (R — B = (D) — ),
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see Fig. 4. Then, formula (73) becomes:

oY =Ya W _ p)
hy — he = TN sinf — (R, — Ry, )cost
(75) 7ism00 7¢)7%AﬂRﬁ_R$)
TN AN tan 0 ’

flat Earth phase

where Af = (xq(?) —xq(,l)) /R. The flat Earth phase in (75) was previously introduced
in equation (14).

Note that unlike for deriving (70), dropping the O(g?) terms in (63) to obtain
(74) is acceptable. Indeed, according to (51), the second approximation in (74)
introduces the error of about the resolution size:

RS — RU)|+|RY — RY| ~ Ag.

For an X-band system with wg = 27 - 10GHz (A = 3¢m) and B/wy = 1%, we
have Ag ~ 1.5m, see (50). At the same time, with R ~ 103km and ¢ = 1073,
the quadratic terms in (63) are ~ %REQ ~ 0.5m, i.e., three times smaller than
ARg. Thus, approximation (74) may introduce the total error of about Ag into the
calculated elevation. Clearly, antenna 2 could have been used instead of antenna 1
for obtaining the approximation (74) and computing the elevation (75).

Another way to eliminate the term (zyp — zyq) from (73) is to adjust the carrier
frequencies of the two satellites (cf. formula (16)). Accordingly, we extend the
framework of Section 5.2 to the case where the wavenumbers k; and ks of the two
imaging systems are related by

(76) k‘l sin 91 = ]{?2 sin 92.

In formula (76),
(1) (2)

Ty Ty
and 6y ~ 60 — R

are the incidence angles for antennas 1 and 2, respectively. We are aiming to
satisfy (76) with first order in €, while for phase calculations we will still be using
formulae (63) that are quadratic in e. To symmetrize relation (18), we introduce

91%9—

@ _ @
Ty — Ty Af
7 N = ——7—, Ak=k—:
(77) R 7 tan6’
so that given |Af| ~ ¢ <« 1 and |Ak| < k, condition (76) is satisfied for
Ak Ak
(78) klzk—7, k2:k+7.

In actual systems, rather than changing the carrier frequencies, one can extract
two sub-bands of the original frequency band [wo — g, wo + g] (see formulae (26),

(27)):

(79a) [W1—§7w1+§} and |:W2_§7wg+§:|,
where

(79b) wi = kic and ws = kac,

and

(79c) B =B — |Ak|c.
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The condition B > 0 requires
(79d) |Ak| < B/e & |wi —ws| < B.
To generate a sub-band image using the chirp (25)—(27), one applies a modified

matched filter Pﬁ]t(t, y). M wy < wy; <wp+ %, this filter is given by (cf. formulae
(35), (36)):

(80) IBﬁlt (t, y) = ei(i)xf_(t — fy)eiwl (tffy)+ia(t*t~y)2’
where 2 2
5 w1 — Wo ~ 2R, w1 —wp 5 w2 — w?
p— _— t [—— ~ir v (P _ Yo —w1
T T O[ 9 Y c 20[ , 4a
Application of the filter (80) to signal (48) results in (cf. equation (49)):
7 . _p) _ p)
(81) I(l)(R(yl)§ kl) =1 %e_QZkl(Re(ll)_Rgl)) sinc (BM) .
C

The image I (y) is built similarly, but using the second sub-band in (79a). Then,
defining
(82)

IWRY; k) = f(l)(Rg(/l)§ k‘l)e%klR;U and f(z)(R,S/Q)% ko) = f<2)(R§,2); k1)€2ik2R’f‘2>

y
as in (56), we construct the interferograms as follows (cf. equation (64)):

(83)  Gu=IWRY: k)T (RY:ks) and G = IO (RY); k) I (R ko).
For interferogram phases, we obtain from (83) using (63), (65), (66), (77), and (78):

o = LG40 = 2k RE) — I RL)) = 2K(RE) — RL)) + AR(RE) + RY))

84a

(Ba) _ Yo + Ak(RZ) + RY) = &, + AE(2R + 22,0 — 2V — 2?)) — 2kA02,,
and

i) By = 23y = 2(kaRY) — ky RG)) = 2k(R2) — RU)) + Ak(RY) + RY)

— ¢y + Ak(RZ) + RUY) = &, + Ak(2R + 224 — () — 2(2)) — 2kA0z,

(cf. equation (17)). Note that in (84), we have dropped the O(g?) terms in the
expansions of all distances when multiplied by Ak, because |Ak|/k ~ e, see (77).
Similarly to (65), formulae (84) contain large phase errors due to the terms

(85) ®, + Ak(2R — () — 2(?).

These errors can be expressed as in (67), (68). Moreover, similarly to (70), we can
reduce these errors by taking the difference between the two phases, i.e., subtracting

Vo from Uy

(86) Uy — e = 20k(2ub — Zua) — 2kA0 (20 — 2ua)-
Substituting (77) and (72) into (86), we obtain:
87 l[}b*wa: —AQ( . _Zubfzua)
(87) 2k (206 = Zva) tanf /°
With the help of Fig. 4, we can see that

_ _ Rub — Rua o hy — hq
(88) Zob — Zva = 11 + 12, where [ = g =
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Thus, (87) simplifies to

wb - '(/}a hb - ha
(89) 2k A sinf -
Formula (89) corresponds to formula (24) of Section 2 (see also Section 5.4).

In (89), unlike in (75), the difference of interferometric phases iy, — 9, is related
to the scatterer coordinates via only the elevation difference hy — h,. Thus, we have
demonstrated once again that the procedure of adjusting the wavenumbers (76)
removes the flat Earth phase from the interferogram, circumventing the need for
approximation (74). This, however, comes at a price of not using the entire signal
bandwidth (note B instead of B under the sinc in (81)), and since B < B, see (79¢),
the resolution size AR increases, see (50). As the two scatterers a and b have to
be sufficiently far apart, see (69), the deterioration of resolution also reduces the
quality of the elevation map obtained with the help of (89), because the quantity
hy — hg is attributed to a pair of locations. Besides, the sub-band processing by the
filter (80) is only possible if condition (79d) is satisfied, while the interferometric
formulation of Section 5.2 is free from this limitation.

In Section 6, we will discuss the extended scatterers and revisit the procedure of
adjusting the incident wavenumbers once again (see Section 6.3). This will address
item 6 of Section 4.

5.4. Phase unwrapping. Application of formulae (12), (24), (75), or (89) (as well
as (113) in Section 6) to experimental data has a limitation due to the 2r-ambiguity
of the complex phase of the interferogram (see the discussion following (66)). In
terms of the scatterer elevation, this corresponds to the following condition in (75)
and (89):

sin 6 Asinf
"2kA0 T AAG
The threshold on the right-hand side of (90) is half of what is known as height
ambiguity (i.e., the change in elevation that yields the variation of interferometric
phase by 27, see, e.g., [32, 24]). To measure the elevation increments exceeding
this threshold, one should be able to extend the interferogram phase ¢(y) = Zq(y)
beyond the interval [—m, 7] by adding multiples of 27 for certain values of y. This
procedure is called phase unwrapping. We do not consider it in this work and refer
the reader to [16, 31, 27] instead. Many phase unwrapping techniques originate from
the ideas formulated in [21]. These methods rely on smoothness of the interferogram
q = q(y) given by (64), y € R?, so that jumps in its complex phase equal to +27
can be identified and removed from the experimental data.

(90) |hy — hel| <

6. Interferometry for /-correlated extended scatterers. In this section, we
analyze the interferometric height reconstruction in the case of extended scatterers.
Such scatterers are characterized by reflectivity functions with non-singular support
(unlike in (47)). An important feature observed in actual radar images of extended
targets is speckle, i.e., strong and rapid variations of the amplitude and phase of
the image, which are due to the coherent nature of SAR imaging [22, 33]. An
object exhibiting speckle can often be thought of as a collection of individual point
scatterers that cannot be separated by the system due to its finite resolution size.
The corresponding phenomenological model of SAR imaging with speckle involves
interpreting v(z) as a random field with certain autocorrelation properties. Then,
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the image I(y), interferogram ¢(y), and its phase ¥(y) = Zq(y), become random
as well.

When the interferometry of extended scatterers is considered, equations (56)—(58)
acquire extra terms due to the aforementioned additional scatterers. These terms
can be thought of as noise that is called the baseline, or geometric, decorrelation:
the interferogram becomes more noisy as the angle between the incident directions
A increases, as will be seen from (108). Due to the same limitations on resolution
that are responsible for speckle, the return from unwanted scatterers cannot be
selectively suppressed. Still, the extent of this decorrelation can be reduced by
the wavenumber adjustment procedure that involves the imaging operator (40), as
demonstrated in Section 6.3. In the case of baseline decorrelation, this allows one to
use larger values of Af, which may be beneficial because it improves the sensitivity
of the interferometer, i.e., reduces |hy, — hq| for the same [, — 14|, see (89).

Controlling the level of interferogram noise? is essential not only because it intro-
duces random errors into the resulting elevations. Keeping the noise low is critical
since the phase unwrapping procedure mentioned in Section 5.4 relies on smooth-
ness of the interferogram. In reality, the experimentally obtained values of ¢(y) are
given on a discrete grid and contain noise. Excessive amount of noise in the in-
terferogram may hamper one’s ability to unwrap its phase and derive the height
information from the interferogram.

The relation between the randomness of the interferogram and the convolution-
based imaging operator presented in Section 3.1 is widely acknowledged in the
literature [42]. At the same time, full understanding of the origin of different terms
in the interferogram still requires a detailed analysis of the imaging geometry, simi-
larly to the case of individual point scatterers presented in Section 5. Additionally,
comparing the treatment of deterministic and stochastic cases in the same frame-
work helps explain the differences between the two approaches to the flat Earth
phase removal mentioned in item 6 of Section 4.

6.1. Interferogram and interferometric coherence. We will model the reflec-
tivity v(z) of an extended scatterer by a d-correlated circular Gaussian random field
[33]:

(91) (W(z)v(2)) = 0*(2)0(2" - 2),

where (...) denotes statistical averaging. Representation (91) turns the scattered
field (34) and radar image (37) into random functions as well.

A counterpart of the deterministic interferogram (64) for an extended scatterer
is

(92) Qy) = (TV(EDIZ?(RY)).
and the complex coherence is defined as
(98) 1) = W

(<|I(1)(R1(Jl))’2><|I(2)(R§,2))|2>)1/2'
In formulae (92) and (93),
RO = [y — M| RE = |y @),
2The sources of interferogram noise include the scatterer itself, as well as the signal processing
procedure, receiver noise, and irregularities of the propagation medium.
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and similarly to Section 5.1, the focusing parameters y") and y® for the two
antennas can be different due to co-registration errors, see (53). The argument y of
the interferogram Q(y) can be associated with either of the two focusing parameters.
In practice, statistical averaging in (92) and (93) is replaced with spatial averag-

ing under the assumption of ergodicity:

1 L

QU (y) = 5 DTV (W)T? (wy),
j=1

QP (y)
N / N /2’
(%Z |I(1)(yj)|2)1 2(%2 |I(2)(yj)|2)1 ’
Jj=1 j=1

where j enumerates sampling locations in a neighborhood of y. Smaller absolute
values of coherence ||, see (93), correspond to more noise in the experimentally
computed interferogram (94). In particular, the following inequality sets the lower
bound for the variance of the interferogram phase (see, e.g., [28, 1], [8, Section A.3],
and [24, Section 4.2.2]):

7 () =

exper — exper 2 2 1- V(y)2
(95) Var (£Q7P (y)) = ((£Q7P*" (y))?) — (£Q(y))* > N

With the help of (40), (41), (56), and (91), we obtain the following expression
for the interferogram of an extended scatterer:

Q) = R [ = RIW (R~ RE)o*(2) d2

(96) -
3 2 1

= /eQZk(Ri SRV (RD — RO)V(RP — R®)o%(2) dz,

where V(1) = 7sinc(Bl/c) is the envelope (i.e., slow part) of W(I) given by (41).
For the exponential function under the second integral in (96), we can write using
(63) and (77):

ezik(RgZLRg”) . e2ikzy (V¥ —z?)/R . e~ Amizy MO/

~ const(z) = const(z)

Since |Af| < 1, we can keep only the leading terms w.r.t. € in the arguments of V:

(97a) V(R - RM) =V —z.), VBY - RE) = V(P —z).
Furthermore, we will use the same “focusing slant coordinate” y,, in the slow factors
for the two radar systems, so that both envelopes are approximated as follows (see
Fig. 5):

(97b) V(yz(}) - Zu) ~ V(yz(f) —zu) 2V (Yu — Zu)a

For sufficiently accurate co-registration, see (53), the corresponding error in the
argument of the sinc function is small. Changing the variables (see Fig. 5):

(98) (2us 20) — (Z;, h) = (2u = Yu, h),

where h is given by (72), so that dz = dz, dh/sin 6, we transform (96) into
(99)

2 /
Q) = T % /e—Qiksﬁ%h</02(z;’h) sinc? (Bzm)e—mktﬁ%gz; dz&) dh,
c

sin 0
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where
Af
(100) Do =94 - 2]‘7%@ =y + Pp(yu),

and the dependence of the right-hand side of (99) on y, is via 2/, see (98). The
term ®, in formula (100) describes the ambiguity of the phase and is the same as
(66), while @y (yy) = —2kAby,,/ tan§ accounts for the flat Earth phase (cf. (75)).

h v

vegetation
layer

FIGURE 5. Interferometry of an extended vertically stratified scat-
terer. In the analysis of (106), V(z],) = 7sinc(Bz,,/c) is considered
as a function of z, =y, + 2, (cf. Fig. 3).

In geophysical applications, one often considers

(101) 0?(z) = o%(s,h) = o (h)o?(s),
where (cf. equations (72) and (98))
h z h Yu + 2.
_ ! _ u _ u u
s = sz h) = tanf 5@ tand sin 6

In formula (101), o2 (h) represents the vertical structure of the vegetation layer and

02 (s) accounts for the variation in the horizontal direction. The characteristic scale

of the latter is assumed much larger than that of the former, as well as than Ag,
see Fig. 5. Then,

(102) 02(s) = 02 (524, 1) ~ 0/ sin6),
and the two integrals in (99) separate:
™ ieg 2 2 2ik A% h
Qyy) = —¢ Qos(yu/sine)/oh(h)e_ st dh
sin ¢
!/
. /sin02 (%)e_%k%z@ dz.,.
c
For the denominator in the definition (93) of the coherence ~, we assume:
2 2
(Z0@EDI) ~ (22 @),
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because the imaging conditions for the two antennas are nearly identical. Thus,
to compute the denominator, we can repeat the procedure of (96)—(103) assuming
R;,l) = Rgf) and R,(zl) = Rg). Then, the coherence ~ factors into a product of the
volumetric and geometric terms:

(104) v= ,}/vol,}lgeom7
where
—2ik 80
(105) 'YVOl _ ,i®q fO'Q(h)e 2tksme
[ o?(h)dh
and
sinc 7"; e~ % Tan 0 %u (2
(106) geom 2 (B e-2ikelln=l 4y,
’y —

[ sinc? (BTZ;) dz!,

Formulae (105) and (106) highlight the differences between the interferometry of
point scatterers and extended scatterers. In the expression (105) for y'°! the
elevation-dependent phase (cf. (70)) is calculated for a range of elevations and
weighted with o7 (h). In turn, under assumptions (102), the numerator of expres-
sion (106) for v8°°™ contains the flat Earth phase (cf. (75)) weighted with the square
of the point spread function V(z,), see (41).

6.2. Height retrieval for a vertically localized distributed scatterer. If the
scatterer is localized in the vertical coordinate:

(107) o2 (h) = 026(h — ho)

(this form is used to represent the reflectivity of a hard surface, e.g., bare soil, at
elevation hg), then formula (105) yields 40! = ¢i®@e~2ikhosis . Hence, there is no
decorrelation due to the vertical structure of the scatterer (107): |yl = 1.

The term ~&8°°™ yields decorrelation even in the case (107). Indeed, using

: ; T,
sinc?(ak)e™™ dk = — tri —,
a 2«

where the triangle function is defined as

: 1- |SC‘, |’l," < 17
triz = .
0, otherwise,

we calculate y8°°™ according to (106) and obtain:

. [ Wo A6
1 geom __ t (7 )
(108) K "\ B tans
Altogether, for the vertically localized scatterer (107), we have:
) . A6
(109) N = ¢1Q o= 2ikho 55ty (%tan0>'

Expressions (108) and (109) demonstrate a well-known effect of geometric decor-
relation in surface scattering [42]:
wo AG )
B tan6/’
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Namely, to keep the two radar images correlated, one must ensure |y| > 0, which
sets the upper bound for the interferometric angle A6:

wo |A] _

110 <
(110) B tan6

B
1 & |Af] < —tané.
Wo

At the same time, as long as condition (110) is satisfied, we have /vy = /7"°! because
/~gem = (. In turn, formula (105) indicates that y'°! contains an elevation-
dependent phase that can be used in the interferometric elevation retrieval, similarly
to the case of isolated point scatterers considered in Sections 2 and 5.

The procedure for height retrieval from the interferogram (92) (or (94)) is similar
to that for point scatterers. To enable variation of surface elevation, we introduce
a slow dependence of hg in (107) on the slant coordinate: hg — ho(z,). In other
words, we will assume that hg is constant on the scale of up to

(111) max |y; — yjr| > A,
VY

where y; and y; are the sampling points in the averaging procedure (94), but allow
ho to vary on larger scales of its argument. Then, formulae (100) and (105) yield:

Al Ab

(112) Ly(yu) = é'yVOl(yu) =&, — 2ky, — — 2k

tané sin&ho(yu)’

where we can write hg = ho(y,) because hy is constant on the scale (111). Similarly
to Section 5.2, we take two values of the coordinate, y,q and yup, such that |y, —
Yup| > max|y; — y;/|. The term @, is eliminated by subtracting the two phases
from one another (cf. equation (70)):

Yub — Yua hO(yub) - hO(yua)
YY) — Z£Y(Yua) = — 2kAI——— — 2kAD -
V(o) Y (Yua) tan 6 sin 6

hO(yub) - hO(yua)
sin 6

= Orpp (Yub) — Prp (Yua) — 2kA0

Then, the difference in elevations can be expressed as follows (cf. formula (75)):
(113)
sin 6
ho(yub) — ho(Yua) = N ((ZV(yub) - 4’7(yua)) - ((I)pr(yub) - (I)pr(yua)))~

Finally, the flat Earth phase terms ®g, on the right-hand side of (113) can be
explicitly computed according to (100) (see also Section 5.4).

For the interferometry of isolated point scatterers (Section 5.1), the key relation
(58) was obtained from the point scatterer model (47) provided that this scat-
terer was sufficiently isolated, see (62). Similarly, formulae (112) and (113) are
derived under several assumptions about the extended scatterer, including (91),
(101), (107), and the properties of hg(z,). These two scatterer models can be
thought of as opposite extremes from the standpoint of the horizontal localization
of the scatterer. Yet for each of them, the sensitivity of the resulting interfero-
gram to focusing coordinates, registration and trajectory errors, etc., appears low
(see Section 4). Other scatterer models can also be used for the analysis of radar
interferometry [30, 20, 17, 26], but they are considerably less common.

While formula (113) allows one to find the difference in elevations via /y = Zy"°!,
the term ~#%°™ in (104) increases the variance of the result, as described by (95).
This has a detrimental effect on interferometric performance. The geometric decor-
relation is reduced if the scatterer is localized in both the vertical and horizontal
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direction. For example, if we take o7 (h) as in (107) and
(114) o2(s) ~ e~ (550%™ where A< 1< ¢/B,

(which contradicts the earlier assumptions about the scale of variation of o2 used
in (102)), then it can be shown that for interferometric angles satisfying (110), the
decorrelation will be very small [14]. The reflectivity model in (114) is not equivalent
to that of a point scatterer. For surface scatterers not satisfying (114), the geometric
decorrelation can be reduced using the procedure described in Section 6.3.

6.3. Wavenumber adjustment for an extended scatterer. As suggested in
[18], one can use sub-band images (see (79)—(81)) to eliminate the geometric decor-
relation described by (108). The imaging kernels in (96) are modified as follows:
W (1) — W) =e My (),
WE(1) — W (1) = e 2Ry (1),

where
i . /Bl\ - . B
(115) V(1) = Tsinc <?>, B = B — |ka — ki]c, T=T15,

see (79¢) and (97). If we assume 02(z) = o2 (h)oZ(s) as in (101), then the new
expression for the complex interferogram takes the following form (cf. equation

(103)):
Qya) = (T (RIHID(RED) )
(116) -

./
_ T %o 2 : 2 —2ik B p g1 . 9 (Bzu) ,
gt s (yu/sm9)/ah(h)e " dh /smc p dz,,,

where, similarly to (85),
(117) do =d, + Ak(2R — () — z(?),

and @, is defined in (66). Unlike in (103), the second integral in (116) does not
have a complex exponential in the integrand. For the interferometric coherence, we
obtain (cf. formula (104)):

~vol ~geom

Y=,
where (cf. equations (105) and (106))

(118) ﬁ/VOl _ ei(@Q—<I>Q),yvol and ,?geom _ {17 |w1 - w2| < B,
0, otherwise.

With the help of (77), we can see that (118) offers an improvement over (108):
A8eom > ~8°om which means that the noise level in the interferogram has been re-
duced. For the vertically localized scatterer considered in Section 6.2, this reduces
the variance of the elevation computed by (113). When the scatterer is not local-
ized in the vertical direction, increasing the geometric coherence leads to a more
accurate estimation of the volumetric term from observations (e.g., to be used in
PolInSAR algorithms). Yet along with increasing the coherence, wavenumber ad-
justment increases the resolution size Ag, because B < B, see (115) and (50). If
we take one sample per resolution element, this can decrease the number of terms
in the spatial averaging formula (94) and hence increase the variance of Q%Pe,
see (95). The full analysis of this effect is outside the scope of the current work.
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As demonstrated in Section 5.3, wavenumber adjustment removes the depen-
dence of the interferometric phase on the horizontal coordinate, see (89). Compar-
ing the effect of the adjustment on the interferometry of extended scatterers vs.
that of point scatterers, we notice that for the former, the complex exponential is
removed from the integrand in (106). When condition (79d) is met, this eliminates
the decorrelation caused by the presence of multiple scatterers within the main lobe
of V(z1,), see Fig. 5. Of course, it does not mean that one can selectively suppress
the returns from some of these scatterers and thus restore the conditions leading

o (57). At the same time, for the case of an isolated point scatterer, using (57) in
(92) and (93) with no ensemble averaging always yields |y| = 1 regardless of condi-
tion (79d). Hence, if one chooses to apply the wavenumber adjustment procedure
to point scatterers, condition (79d) becomes a deterrent as compared to the more
straightforward approach to flat Earth phase removal given by (75). Additional in-
sight into wavenumber adjustment can be gained by considering it in the Fourier
domain, as outlined in Appendix A.

7. Conclusions. We have presented a mathematical overview of the cross-track
radar interferometry. The use of imaging operators allowed us to identify several
issues that often lack attention in the traditional accounts of the area. The most
important contributions of the current work are:

e To build the interferogram, one needs to use a modified form of the SAR image
given by (56). This form is different from the “output of the matched filter”
that is typically considered in the mathematical analysis of SAR imaging, as
explained in Section 5.1.

e The absolute phase of the interferogram contains a number of ambiguous
terms that cannot be evaluated with the accuracy required for interferometry.
Some of these ambiguities are due to insufficient accuracy, e.g., errors in an-
tenna coordinates and misregistration of the original images. Others involve
systematic errors, such as those that result from dropping the higher order
terms in the far-field approximation (7). At the same time, the difference
between the interferometric phases calculated for different points on the im-
age has the level of these ambiguities significantly reduced so that the result
appears sufficiently accurate for the purpose of height retrieval.

e The case of isolated point scatterers is the easiest for the analysis of radar
imaging and interferometry. Yet it does not fully manifest the significance of
wavenumber adjustment (aka spectral range filtering) that is of key impor-
tance for radar interferometry of extended scatterers.

e Wavenumber adjustment is a signal processing tool designed for coherence
control in the case of extended scatterers. In the Fourier domain (see Appen-
dix A), this procedure can be interpreted as suppressing the returns from the
parts of the reflectivity spectrum that do not contribute to both images at
the same time.

e The analysis of wavenumber adjustment assumes a d-correlated extended scat-
terer. Its conclusions cannot be easily extended to other autocorrelation mod-
els, in particular, that of isolated point scatterers.

Additional topics related to radar interferometry that could also benefit from the

analysis based on imaging operators include:

e Interferometry of the targets with reflectivity in-between the extremes of a
point scatterer and J-correlated scatterer. One such example is the model

INVERSE PROBLEMS AND IMAGING VoOLUME 16, No. 1 (2022), 119-152



MATHEMATICS OF RADAR INTERFEROMETRY 147

(114); additional examples can be found, e.g., in [20, 17]. These cases may
also cover the so-called persistent scatterers, see, e.g., [14, 9, 12, 4].

e Polarimetric target models in the context of reconstruction of the vertical
profile of reflectivity known as PolInSAR [8].

e Wavenumber adjustment in the case of reflectivity functions that do not con-
form to the factorized model (101) (a variable ground slope is considered in
24, 5)).

Appendix A. Wavenumber adjustment in the Fourier domain. Formula
(110) establishes a condition for partial coherence of two radar images of an ex-
tended scatterer. A common interpretation of this condition involves the analysis
of spatial frequencies (see, e.g., [16, Section 4.6]). For a radar operating at the cen-
tral frequency wp, bandwidth B, and incident angle 6, the spatial frequencies ! of
the incident pulse observed on the horizontal target plane are

o o B s DY
The backscattering is enabled by Bragg resonances (see [19, Chapter 7] and [20, 3,
37, 2]), where for each x' from the interval (119) there must be a corresponding

spatial frequency k = —2k' in the spectrum of reflectivity. Hence, the spectral
interval of v involved in the scattering is

B\ sinf B\ sinf
(120) _ Q(wo n —) <K< —2(w0 _ —) .

2 c 2 c

When the incidence angle changes by A#, the center of the interval (120) gets shifted
by

(121) Ak = —2AK' = —2wq cos OAf/c.

For the two images to be correlated, the corresponding frequency intervals (120)
for 6 = 0y and 6 = 6, must overlap, where Af = 61 — 03, see (77). From (119)
and (121), it is easy to see that the condition for overlap is given by (110):

B
(122) |Af] < — tan.
wWo

The foregoing argument helps justify the wavenumber adjustment procedure as
in (76) and (16). To further corroborate it, we will repeat the analysis of Section 6.3
in the Fourier domain for the case o7 (h) = 02d(h), see (107). The locus of all y
and z will be the line h = 0. In addition, the variation of the horizontal coordinate
will be restricted to the first Fresnel zone: |s| < v/AR. This allows us to use the
linearized distances (cf. equations (63)):

Ty (14)?
Rs%R u ~ du T Juv T
y T Yy — Ty — Y R+ 5R
(20)?

or Y Sine(l - Rf;ne)’

where (— R+, x,) are the slanted coordinates of an antenna, see Fig. 4. Hereafter,
the subscript “s” corresponds to the one-dimensional scatterer A = 0. In particular,
ys is the horizontal coordinate of the focusing point. Let ( = z,/(Rtan@). Using
(123), we rewrite the imaging formula (40) as follows:

(124) L) = [ Wl = s s,

(123)

=R—x,+

INVERSE PROBLEMS AND IMAGING VoOLUME 16, No. 1 (2022), 119-152



148 MIKHAIL GILMAN AND SEMYON TSYNKOV

where W(s) = W (ssin6(1 —)) and W(-) is given by (41). Subsequently, we will
use the Fourier representation for W(s):

1 ~ .
(125) Ws(s) = —/Ws(f-ﬁ)ems dk,
2T
where
1 —1iKS _ CcT .
(126) WS(H/) = /WS(S)e ds = WmX2B sin9/c(l</ + 2k Sll’le(l — C))7

and X2B§in0/c(') is the characteristic function of the interval [—%ﬂe, %‘10],

see (26). In (126), similarly to (121)-(122), we have neglected the modification
of the bandwidth due to the interferometric angle.
We assume that the reflectivity function satisfies

(127) (vs()vs(s)) = 026(s" — s).

Expressing the imaging kernels for both antennas via (125) and (126), substituting
the results into (124), and using (127), we obtain:

- 2 2 ;
M, OV 72) (@Y _ Ts T in(yP—y M)
(128)  (I{V(yiIP (y*)) 27r(7rBsin9) /e

(k + 2ksing(1 — ¢M))

(k4 2ksinf(1 — C(z))) dk.

'XQBsiné‘/c XQBsinO/c

When condition (122) is satisfied, the two characteristic functions in the integrand
of (128) overlap, and by centering the integration interval, we derive:

(129) (LM (MNP ()

_ cﬁ( cT )Qeimc(y@)—y(.l)) 2Bsin 6 sine (Bsin 9(y§2) — ygl)))
~ 27 \"Bsing B . :
where
M 4@
(130) e = —~2sind(1 - %)

and (cf. (79c¢))
B =max{B — k|¢") — ¢@],0} = max{B — |Ak|c,0}.
The phase of the interferogram can be computed from (129) with the help of
(56):
2Q(ys) = £(THWHTAW2)) = 2h(RE — RYY) + re(y® — V)

ygl) + ng)

g5 IS N\ _ @

2 ) @
where @, fpp(s) = —2Akssiné corresponds to definition (100) given y, = y,sinf.
At the same time, the magnitude of the coherence || can be calculated using (128)
and the following expressions for the intensities of individual images:

=®,+ (Y = (ksin oy +y@) = &, + @S,mp(

0'2 CT

2
<’I\§1)(y£1)>|2> = ﬁ(ﬂ-BSHla) /XQBsinﬂ/c(K: + 2/€Sin91) d/i7

2 2
<|I§2)(y§2))‘2> — ;TST(WBZ;0> /XQBSiIIQ/C(Ii-I-QkSiHQQ)dK.
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Formulae (131) imply that
2 22Bsinf
(1) (1) 2> :< (2) (42 2> _ is( cr )
132)  (IOEM)) = (IOG)7) = = (rpag) —
According to (128), as the separation between 6; and 6y increases, the absolute

value of the correlation between the two images decreases and ultimately becomes
zero. At the same time, the denominator in (93) remains constant. Substituting

(129) and (132) into (93) and assuming that co-registration guarantees B Sin0|y§2) —
y§1)|/c < 1, we obtain:

eom B
(133) Iy| = ~8%om = —=

)

sy

which is equivalent to (108) given that |Af| = |02 — 61| < 1 (see (77)). In other
words, whenever 6; # 05 (which is a necessary condition for interferometry), we
have |y| < 1.

On the other hand, if we apply the wavenumber adjustment procedure (76)—(79):

Ak Ak
klzk_Tv k2:k+77
where (see (77))
(2) (1)
Ty — Ty AO
Al = T and Ak = km,

then the imaging kernels for individual antennas are given by (cf. formula (126))

Wig(l) K) = Tl . - . K+ 2k sinfy),

(134) = (5] B Sin&XQB S”“G/C( ' 1)
W® (k) = 7T -

Hk)y=m7 ~Sinexgésin9/c(m+2k2 sin fs).

For kisinf; = kysinfsy, these kernels coincide®, and the corresponding spectral
interval of reflectivity in the case Af > 0 is given by (cf. formula (120)):

B ) B (1
(135) —2(sin0(k+ 2—6) —kcos@xR ) <k < —2<sin9<k — 2—6) — kcos@xR >

Therefore, unlike in (128)—-(131), the integrals in the numerator and denominator
of (93) are taken over the same interval. As long as the inequality (122) holds, this
yields:

|7 = 48" =1,
whereas (133) implies |y| < 1. As the center of the interval (135) coincides with £,
of (130), we have:

LTI - 2(FTGP ).
and using (82), we obtain:
25 = £Q(ys) = (THWHTAWR)) = 20k RZ — ki BY) + ke — V)
=®, + Ak(2R — 2V — 2) = &y,
which coincides with (117).
~(2?N?2t;3 that due to misregistration, we may still have T (y{) # 72 (4 and 7V (y{D) #
Zs™ (ys™)-
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Considering the integral in (128), one can argue that the wavenumber adjustment
(134) filters out (i.e., eliminates) the intervals of x from each term in the integrand
that are outside the support of the other term (cf. equation (131)). This gives rise
to the alternative name “range spectral filtering” for the wavenumber adjustment
procedure.

On the other hand, the model for an isolated point scatterer (see Sections 3.4
and 5) is deterministic rather than stochastic. Although the spectra of the images
M (y,) and Z?)(y,) due to a point scatterer are different, formula (93) with no
ensemble averaging will still yield |y| = 1 regardless of Af because no integral of the
type (128) appears in the calculation of the interferogram. As for the experimental
formula (94), the main contribution into each of the sums comes from the sample
that is closest to the scatterer. Hence, the resulting value of |y**P°'| will be close
to 1 as well.
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