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Abstract—A boundary method for computing unsteady wave propagation in three-dimensional space
is proposed. The described approach is based on the method of difference potentials and the Huygens
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1. INTRODUCTION
Boundary methods for solving problems of mathematical physics have been long and successfully

applied to primarily elliptic problems. The main advantage of the boundary formulation is that the dimen-
sion of the problem is reduced by one after passing to equations for unknowns specified only on the
boundary of the original domain [1]. A direct generalization of this approach to unsteady problems faces
an obvious difficulty, namely, the boundary for an evolution problem represents a spatiotemporal mani-
fold, i.e., the direct product of the spatial domain boundary and the solution time interval. Moreover, with
growing time of integration, this boundary expands, so that increasingly more variables and equations
have to be stored and solved [2]. In practice, this approach is not applicable even in the case of short inte-
gration times.

In this paper, we describe a boundary method for solving certain hyperbolic equations that is free of
the indicated shortcoming. We consider equations satisfying the Huygens principle, in other words, equa-
tions whose solutions have a finite backward memory in time. The last property is equivalent to the exis-
tence of lacunas in solutions of these equations, i.e., domains in space-time where solutions vanish when
the source (the right-hand side of the equation) generating this solution becomes zero. Practically import-
ant examples of such equations are the three-dimensional wave equation with constant coefficients and
Maxwell’s equations in a vacuum. Since the dependence of solutions to these equations is bounded in
time, we can split the interval of integration into small subintervals and advance over fixed time steps,
sequentially updating the solution of some boundary equations. As a result, the advantages of the bound-
ary formulation (dimension reduction in space variables by one) are combined with a solution-updating
algorithm designed in the spirit of a usual difference scheme for an evolution equation. Due to the dimen-
sion reduction, the resulting algorithm is computationally more efficient than the conventional solution based
on an explicit difference scheme (this property holds starting at a certain duration of computation).

Another feature of the proposed approach is the methods used for reducing and especially solving the
boundary value problem. The traditional approach is based on discretizing integrals taken over the bound-
ary and solving the resulting algebraic system. For domains with complex geometry, the indicated tech-
nique may cause considerable computational difficulties. An additional difficulty is associated with the
fact that the kernels in the convolutions are singular. Our presentation relies on the method of difference
potentials [3], in which the arising convolutions are computed by solving an auxiliary problem in a geo-
metrically simple domain (say, cube) with the help of a suitable difference scheme on a simple rectangular
711



712 PETROPAVLOVSKY, TSYNKOV
grid. Due to the last circumstance, the algorithm is easy to implement and provides opportunities to con-
trol and improve the numerical accuracy by using high-accuracy schemes and other advantages inherent
in the finite-difference approach. Moreover, there is no loss of accuracy associated with the approxima-
tion of curvilinear boundaries/boundary conditions on a rectangular grid.

Below, the method is described as applied to an exterior problem for the three-dimensional wave equa-
tion. In other words, we solve the problem of wave scattering by an obstacle with a boundary of arbitrary
complex geometry; more specifically, we are interested in the reflected field. As applied to scattering prob-
lems, an additional advantage of any boundary method, including the one described below, is that the
radiation condition at infinity is exactly taken into account. In the case of volume integration methods,
radiation conditions at infinity are replaced by specially constructed artificial boundary conditions on the
outer boundary of the computational domain (see, e.g., [4]). Additionally, our computations rely on a high
(fourth) order accurate difference scheme, which allows us to effectively cope with numerical dispersion.

The general idea of the method in a continuous formulation is presented in Section 2. The main point
is a time advancing scheme with small step sizes. A discretization of the algorithm is described in detail in
Section 3. The results of test computations are given in Section 4.

2. IDEA OF THE METHOD
Consider the following exterior problem for the three-dimensional wave equation with constant coef-

ficients:

(2.1)

(2.2)

(2.3)

where  is the d’Alembert operator and  is the wave propagation speed. The task is to find

the solution  outside a bounded domain  over time . This problem formulation is
typical of (unsteady) wave scattering by an obstacle , where  is the reflected field. With this treat-
ment, the zero initial conditions (2.3) mean that the incident radiation reaches the obstacle  at the time

. The operator  in (2.2) specifies boundary conditions on the scatterer surface and determines the
type of scattering. The simplest examples of boundary conditions on  are the Dirichlet condition

 or the Neumann condition  written in terms of the incident radiation 

(here,  is the outward normal vector to the boundary  of ). In the general case, boundary condi-
tions can be much more complicated, including nonlocal ones, but they ensure the well-posedness
of problem (2.1)–(2.3).

Consider a somewhat large auxiliary region  such that the difference  (the bar over 
denotes the closure) contains the computational domain. Assume without loss of generality that  is a
parallelepiped. Let  be a retarded Green’s function (fundamental solution) of Eq. (2.1). To the four-
dimensional domain ,  (see [5]), we apply the Green formula

(2.4)

which expresses the solution  in this domain in terms of the solution values on the boundary. The
given (three-dimensional) boundary consists of pieces corresponding to the initial time, ,
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and nonzero times,  and ; note that  corresponds to the boundary of 
in space-time.

The first term in (2.4) vanishes because of the homogeneous boundary conditions (2.3). The last inte-

gral in (2.4) is taken over the boundary of the auxiliary domain in space-time, , and also
vanishes, provided that the chosen Green’s function is the free-space fundamental solution of the three-dimen-
sional wave equation, i.e.,

(2.5)

In this case, the boundary values of the solution and its derivative on  do not contribute to the solution
 at interior points of , since the spatial boundary  is reached only by outgoing waves leaving .

Thus, with the indicated choice of the Green’s function, the only term remaining in (2.4) is the second
term, which allows us to express the value of the solution in the computational domain  in terms of
its values (and values of its normal derivative) on the scatterer boundary  at all preceding times.

By analogy with formula (2.4), we introduce Calderon’s potential with density  defined
on :

(2.6)

where . Note that Calderon potential (2.6) satisfies the wave equation on , i.e.,
 for an arbitrary density .

By comparing formulas (2.4) and (2.6), it is easy to see that the functions  and  can be interpreted
as the traces on  of the solution leaving  and its normal derivative. It can be proved (see [3]) that the
pair  is the trace of the outgoing solution if and only if  satisfies the boundary equation with
projection (BEP):

(2.7)

where  and the trace operator is defined as . Obviously, there exists an

(infinite) set of solutions to BEP (2.7), since the original equation (2.1) has a set of outgoing solutions. To
identify the solution among them that corresponds to the type of scattering determined by boundary con-
dition (2.2), BEP (2.7) has to be solved together with the boundary condition relating the solution and its
normal derivative on the scatterer boundary:

(2.8)
It should be emphasized that boundary condition (2.2) can determine one of the density components,
namely,  (Dirichlet problem with a function specified on the boundary) or  (Neumann problem with
a given normal derivative) or the relationship between them (Robin problem and more complicated non-
local conditions). However, the two density components (function and its normal derivative at the bound-
ary) cannot be specified simultaneously as that would yield an overdetermined problem with no unique
solution.

Thus, BEP (2.7), together with boundary condition (2.8), is an equivalent boundary formulation of the
original system (2.2) with the unknown  (possibly, with only one unknown component in the case of
Dirichlet or Neumann conditions). The dimension of the problem is reduced by one as compared with the
original system. By using the found density , the solution  in the three-dimensional domain

 is recovered by applying formula (2.6).
It should be underlined that the integral in formula (2.6) is taken over a (2 + 1)-dimensional manifold

and, in the case of a scatterer  of complex geometry, it might represent a computationally nontrivial
problem. In this context, it is convenient to use another, equivalent representation of the Calderon poten-

tial. Consider a function  defined on  such that  and .
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Fig. 1. Scatterer  and the auxiliary domain .
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ative on  coincide with  and that the indicated initial conditions are satisfied. In other aspects, this
function is arbitrary, specifically, it does not need to be a solution of wave equation (2.1), i.e., in the gen-
eral case,  on . In practice,  can be constructed as an extension from the bound-
ary  with the help of Taylor series with the required second and higher order derivatives computed using
the original equation (2.1) (see Section 2). By applying the Green formula to the given function on

 and solving the resulting relation for quantity (2.6) of interest, it is easy to see that the Cal-
deron potential can be represented in the form

(2.9)

where the function  is defined in terms of the convolution of Green’s function (2.5)
with the quantity  extended by zero to the scatterer’s interior, i.e., to . Note that this convolution

is taken over the entire three-dimensional space  and the time interval . It is convenient to compute
this convolution by solving the auxiliary problem (AP)

(2.10)

set up formally with homogeneous initial conditions in the unbounded domain . In practice, of course,
this problem is solved in the bounded domain , but radiation conditions are set on the boundary of .
This is equivalent to choosing the required Green’s function (2.5). The transition from computing the Cal-
deron potential in terms of integral (2.6) to solving AP (2.10) plays a key role in convenience, flexibility, and
simplicity of the implementation of the described approach.  

It should be emphasized once again that AP (2.10) is solved in a simple (rectangular) auxiliary domain 
with no “hole” corresponding to the scatterer . The entire information on the geometry of this object
(which is possibly complex and does not conform to the Cartesian grid) and on the boundary conditions
set on its surface is contained in the function  and passes into the right-hand side of (2.10) and, next,
into formula (2.9). Due to this circumstance, finite-differences on the simplest rectangular grids can be used to
compute objects of complex geometry without any loss of accuracy associated with the nonconformity of the
object boundaries to the grid.

Now suppose that the task is to find a solution of the problem at a finite time  by applying the
indicated method. As  grows, the boundary , on which the density  is defined,
increases linearly and, even for moderate  the method becomes hardly applicable because of the need
of storing and solving an equation for the quantity  increasing with time.

To overcome this limitation, the interval  is partitioned into  subintervals of length , where
, and, on each partial boundary in space-time

in this partition, we introduce corresponding densities  (see Fig. 2a). At first glance, this formal parti-
tion does not resolve the issue of the boundary  growing with time, since, by virtue of causality, the den-
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Fig. 2. (a) Partition in time and the characteristic cone of the solution. (b) Lacuna in the solution. The horizontal axis
formally represents three-dimensional space. 
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sity  on any th partition element has to depend on the densities , , on all preceding
segments. Seemingly, this prevents us from solving system (2.7), (2.8) for  separately without using all
preceding values .

However, it is easy to see that, for the chosen Green’s function (2.5), the integral in the Calderon
potential (2.6) is taken over the intersection of the light cone with the vertex in  and the scatterer surface

 at the preceding times (see Fig. 2a, where  for illustrative purposes). Considering all points of 
at which we are interested in the density , we conclude that this intersection is nonempty at most over
the time  measured back from the last (latest) time of the set  (i.e., for the case shown in the figure

), provided that the partition size satisfies

(2.11)

In other words, under condition (2.11), the densities  corresponding to the earlier partition elements
, , do not influence the density determined on the element . In terms of lacunas in the

solution of the wave equation in free space, the same situation can be explained as follows: the solution
generated by a source (right-hand side) localized in space-time on the boundary of the preceding partition
element (  in Fig. 2b) a fortiori leaves the domain  during time (2.11). Thus, the back dependence of
the solution of Eq. (2.7) is limited to a single partition element. As a result, the density can be updated
using the recurrence scheme

(2.12)
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716 PETROPAVLOVSKY, TSYNKOV
and  in (2.13). Note that integral (2.13) is taken over the preceding partition element , but its
value is calculated at a point from the next element .

It is convenient to expand the partial densities  and  in series on  and  in terms of some
basis functions:

(2.14)

where the two-component basis functions  and  are used to represent the solu-
tion and its normal derivative on the boundary. It is also natural to use the same basis functions for any
partition element . For example, in the case of a spherical scatterer , the basis functions  can be
defined as the direct product of spherical harmonics (in angular variables) and Chebyshev polynomials
(in time). Depending on the imposed boundary condition (2.2), some of the coefficients in the expansions
can be known; for example, in the case of the Dirichlet condition, the function specified on the boundary
uniquely determines  and ; the Neumann condition fixes  and ; and the Robin condition
establishes a relation between these sets of coefficients.

Note also that, in view of explicit expression (2.5), the kernel of integrals (2.6) and (2.13) is invariant
under time shifts. Therefore, by using the same basis for all partition elements, the action of operators (2.6) and
(2.13) on the basis elements on the set  (the left-hand side of Eq. (2.12)) can be calculated on any two
consecutive partition elements of size , for example,  and , with the results denoted by  and

. Then Eq. (2.7) becomes

(2.15)

It should be emphasized that the actions of these operators are computed using AP (2.10); moreover, the
AP for computing  is solved over time , and AP for , over . The number
of such APs is equal to the number of basis elements in (2.14). After performing this computation,
Eq. (2.15) turns into an equation for the expansion coefficients of density on two consecutive partition ele-
ments  and :

(2.16)

where  denotes the identity operator and  and  are known from the preceding step. For choosing the
required solution, Eq. (2.16) is supplemented with boundary condition (2.8) written in terms of expansion
coefficients:

(2.17)

3. DISCRETIZATION

On the auxiliary domain  (parallelepiped), we introduce a rectangular grid with a step size  in each
space dimension. Once again, it should be stressed that, although the discrete solution of the problem is
determined and required only outside the obstacle , we discretize the entire domain  as well. Note also
that the obstacle boundary  may not coincide with lines of the introduced rectangular grid. The solu-
tion of the problem is sought at discrete times with step ; in other words, a grid with the indicated step
sizes is introduced on the four-dimensional domain . Equation (2.2) is discretized using a
fourth-order accurate compact difference scheme with a stencil consisting of  points:

(3.1)

with parameter . Note that Eq. (3.1) describes only time differencing, which is implicit. At the time

level , Eq. (3.1) is next approximated up to fourth-order accuracy in space on a stencil of 
points by using the general idea of compact schemes (see [6]).
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Fig. 3. Grid covering the auxiliary domain . The nodes making up the discrete boundary  of the scatterer are shown
in green. The stencil of the difference scheme is depicted by yellow squares [6].
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Let  denote the grid points belonging to the given 81-point stencil centered at the node . In what
follows, we need several subsets of the spatiotemporal rectangular grid covering . Specifically,

let  and  denote the subsets of grid nodes lying in the domains  and ,

respectively. Thus,  and  represent the grid nodes lying outside and inside  at all times .

The nodes lying on the boundary  are included in . The center of the stencil  is inside

 and  if  and , respectively.

Let  denote the subset of nodes satisfying two conditions: these nodes belong to the stencil  cen-

tered at  and lie inside . Similarly,  denotes the subset of nodes belonging to the stencil  cen-

tered at  and lying outside . The union  forms a thin layer of nodes covering the spa-
tiotemporal boundary  of  and replacing  in the discrete formulation (see Fig. 3). Additionally, we

consider the sets  and , which consist of all points of the stencil  with

its center running over all points of  or , respectively. Specifically,  contains points on the bound-

ary , the first and last time levels  inside , and the subset . The union 

is the set of all grid points lying in the stencil  with .

All the above-introduced (sub)sets of nodes correspond to a grid covering the entire spatiotemporal
domain , where  is a finite moment of time. Obviously, all these constructions can also be
defined on any subdomain , , in which case they are equipped with a subscript . Specifi-
cally, the set  is a discrete analogue of the boundary  from Section 2.

3.1. Difference Potentials
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The trace operator  yields the restriction of the grid function from the set  to the discrete bound-

ary . Let  denote the discrete Laplacian corresponding to the chosen difference scheme.
By analogy with formula (2.10), we construct a “right-hand side” extended by zero to grid nodes inside :

The difference potential with density  is defined as a grid function on  specified according to the
rule

(3.2)

where  is the Green’s function (resolvent) for the difference wave equation. The subtrahend

 on the right-hand side of (3.2) is computed by solving the difference AP

(3.3)

on the set  with radiation conditions specified on the outer boundary (cf. (2.10)). Since
, the difference potential (3.2) is the solution of the homogeneous difference wave equa-

tion on :

The projection of the difference potential onto the set  is defined in terms of its trace on this set:

(3.4)

By construction, neither difference potential (3.2) nor its projection (3.4) depends on the choice of the
auxiliary function  if .

It can be shown that the finite-difference BEP

(3.5)

(cf. (2.7)) holds if and only if , where  is a discrete solution of the wave equation

 with zero initial conditions.

As in the continuous formulation, the difference BEP (3.5) set up on the discrete boundary  is equiv-
alent to the difference wave equation  with zero initial conditions on the set , i.e., out the

scatterer .

Obviously, there exists a set of solutions  of the difference BEP (3.5), since there exists a set of solu-

tions  of the difference wave equation for  at exterior (with respect to the scatterer) nodes of .
To choose the required solution, Eq. (3.5) is supplemented with a corresponding condition following from
the boundary condition (2.2) on the scatterer. However, conditions (2.2) are set on the analytical bound-
ary  rather than on its discrete analogue , where Eq. (3.5) is considered. Accordingly, an additional
procedure is needed for transferring boundary data from  to .
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3.2. Extension of Boundary Data

Suppose that the density  on the analytical boundary  is given. By using a Taylor series
with a finite number  of terms, we define a function  in the neighborhood of :

(3.6)

The point  in formula (3.6) is near the scatterer boundary , while the point  corresponds to
the base of the normal to  pointing to the point . The quantity  is the distance from the point  to
the surface  taken with a plus sign for exterior points (with respect to ) and with a minus sign for inte-
rior points, i.e.,  if  and  if .

The outward normal derivatives on  in (3.6) are defined as follows:  for  and

 for . This choice corresponds to . Higher order derivatives are com-
puted using the wave equation (2.1) considered in a local orthogonal coordinate system with the origin
placed at the point . This system is chosen so that two of its axes lie in the tangent plane, while the third
axis is aligned with the normal  (up to its sign). In this case, the three-dimensional Laplacian at the point

 can be written as

where the operator contains tangential derivatives and, possibly, the derivative with respect to n of at most
the first order. For example, if  is a sphere, then, in spherical coordinates, we have

By using the original equation , the normal derivative of order  in (3.6) can be

represented in the form

(3.7)

On the right-hand side of (3.7), the derivatives with respect to , if any, have at most the first order.
Substituting the known quantities  and  into this expression, we find the second normal derivative. To
obtain normal derivatives of order , Eq. (3.7) is differentiated with respect to  and, if necessary, the
second derivative with respect to  appearing on the right-hand side is recursively expressed via Eq. (3.7).
A conceptually similar technique is often used in solving evolution equations by a finite-difference
method when analytical Cauchy data specified at  have to be extended to the first time level  in
order to start the difference scheme. The function  obtained according to (3.6) is called the extension
of the boundary data  with the help of the original equation.

If the density  corresponds to some solution  of the wave equation, i.e., if  and  are the
traces of this solution and its normal derivative on , then the function  constructed according to
(3.6) approximates this solution up to  accuracy. Formally, this technique for boundary data trans-
fer can be applied to any pair of functions , which do not need to be consistent or be the
traces of some solution and its derivative. In that case, rule (3.6) merely defines a new function. Within
the described approach, we are interested in an extension of (3.6) to the nodes of the discrete boundary 
lying near the exact boundary . This extension is denoted as follows:
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where  is the extension operator determined by formulas (3.6), (3.7). In this way, any basis element ,
 specified on the exact boundary  can be extended to , i.e., we can compute the grid functions

 and .

3.3. Scheme for Updating the Solution in Time

Now the partition of the boundary in time described in Section 2 is applied to the discrete boundary .
Let  denote the difference analogue of the operator  defined by formula (3.4). The difference ana-
logue of  is defined as

(3.9)

where  is obtained by extending the density from the exact boundary to the set  according to (3.8).
Once again, we emphasize that the argument of  (density ) is defined for times , while the
difference potential is calculated over the time  as the solution of AP (3.3), and the trace of this
solution is preserved on the “upper” part of two consecutive partition elements of the discrete boundary

. The scheme for updating coefficients (2.16) in the difference formulation has the form

(3.10)

where the right-hand-side coefficients

are known from the preceding step and the unknowns are the sets of coefficients (possibly, only one of
them in the case of Dirichlet or Neumann conditions)

The columns of the matrices in (3.10) correspond to individual elements of the used basis:

(3.11)

(3.12)

The size of these matrices is , where  is the dimension of the basis and  is the number of
points in the set . Note that matrices (3.11) need to be computed only once before solving the problem.
This computation requires solving  auxiliary problems (3.3) over the time  for matrices (3.11) and over

 for matrices (3.12). These problems are solved in a suitable three-dimensional rectangular domain
without holes. The grid do not need to conform to the boundary of . Chosen according to (2.11), the
fixed time  of computing data for AP is usually a tiny fraction of the total computation time: .
Note that the basis dimension  can be rather large, which requires solving a large number of APs. How-
ever, all these APs are completely independent of one another, so these computations can be effectively
parallelized.

After matrices (3.11) and (3.12) have been computed, the recurrence relation (3.10) is solved, together
with the scatterer boundary condition (2.17), for the unknown coefficients. The solution is sought in the
least squares sense by using QR decompositions of the matrices  and , since the number of rows
of matrices (3.11) and (3.12) is, as a rule, considerably greater than the number of their columns and the
system for the unknown coefficients is overdetermined. Note that the most computationally expensive
part of the solution (QR decompositions) has to be performed only once before starting the computations,
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Fig. 4. Binary logarithm of the error in the numerical solution on two sequential grids for three types of boundary condi-

tions. The Robin boundary condition is specified as . 
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so that the recurrence update of the coefficients in (3.10) is reduced to back substitution in the QR decom-
position method.

Note also that, since the matrices do not contain information on a specific boundary condition on the
scatterer , they are universally suitable for any type of scattering. In other words, to recalculate the
problem with another type of boundary condition on , it is sufficient to solve recurrence relation (3.10)
with  boundary condition (2.17) of the new type without relatively expensive recalculation of matri-
ces (3.11), (3.12).

4. NUMERICAL EXPERIMENT
The demonstrate the performance of the method described above, we consider the scattering of a plane

wave by a sphere of radius  cm. This classical problem has an analytical solution in the form of a
series (see [5]), which will be compared with the numerical solution. As incident radiation, we use the sum
of two plane waves with incomparable angular frequencies,  s–1 and , thus obtaining a
time-aperiodic solution. At the chosen frequencies, the incident wavelength is a quantity on the order of
the scatterer diameter . We are interested in the solution within a spherical layer around the scatterer
with , where  cm.

The auxiliary domain  is specified as a cube ,  such that, over the maximum com-
putation time  used for AP, the waves reflected from the outer boundary  do not reach the compu-
tational domain  (see Fig. 2b). It is easy to see that, for this purpose,  has to satisfy the con-
dition . With this choice of the size of the auxiliary domain, arbitrary boundary con-
ditions, rather than approximate radiation conditions, can be set on  and the solution of AP (3.3) can
be obtained over the time interval  for  as if AP is solved in an unbounded domain. Note
that this technique makes it possible to model reflected waves going to infinity exactly without using any approx-
imation process, which is a significant advantage of the described method. This possibility is ensured by the
short computation time of AP (at most ), which is required for generating matrices (3.11), (3.12).

The domain  thus constructed is covered with a rectangular grid, on which the above-mentioned
fourth-order difference scheme is used [6]. The convergence of the algorithm can be examined by reduc-
ing the mesh size (see Fig. 4). It can be seen that the binary logarithm of the error is decreased by four
when the mesh size is halved, which confirms the correct work of the algorithm. Note also that this figure
presents the result of a sufficiently long computation: the terminal simulation time  corresponds to a
time interval over which a signal crosses a ball of  about 6000 times. There is no evidence that the
error increases with time.

Note also that the basis ,  is constructed using the direct product of Chebyshev polynomials 
(in time) and spherical harmonics  (for decomposition on the boundary of , i.e., on a sphere).
As was shown in the experiment, the maximum order  and  are more than enough to obtain
results with a level of accuracy presented in Fig. 4.
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5. CONCLUSIONS
An algorithm for computing unsteady wave propagation was proposed that (i) reduces the dimension

of the problem by one by transforming it to a boundary formulation, (ii) applies to domains of complex
geometry with the use of standard difference schemes on simple rectangular grids without loss of accuracy
associated with approximation of boundaries, (iii) exactly takes into account radiation conditions for exte-
rior problems, and (iv) effectively exploits the opportunities of parallel computations.

Let us discuss items (i) and (iv) in more detail. Obviously, the update of the solution on a partition ele-
ment of length  according to (3.10) takes less time than its advance over the same time with the use of
an explicit difference scheme, since the dimension of the problem in the former case is less by one. How-
ever, before solving recurrence relation (3.10), we need to calculate the matrices involved in (3.10). This is
the most computationally long part of the algorithm, since  problems have to be solved over time at
most  at this stage. As a result, for short computation times, a common explicit scheme takes less time
than the proposed algorithm. For longer computation times, the time cost of computing the matrices ,

, , and  is compensated for by the faster (than in an explicit scheme) advance based on (3.10).
Thus, there exists a computation time starting at which the proposed algorithm becomes more efficient
than the most obvious, simple, and fast solution based on an explicit difference scheme. Importantly, the
matrices , , , and  are computed in parallel, since their columns are independent of one
another. The more cores, nodes, etc., are used in the computation, the less time is required and the sooner
(with less computation time) the described algorithm becomes more efficient than an explicit scheme.
Note also that a detailed study of the described method as applied to interior problems can be found in [7].

A further development of the method is associated with its generalization to Maxwell’s equations and
objects with a boundary of arbitrary shape with the use of suitable splines.
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