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Abstract. Distinguishing between the instantaneous and delayed scatterers

in synthetic aperture radar (SAR) images is important for target identification

and characterization. To perform this task, one can use the autocorrelation
analysis of coordinate-delay images. However, due to the range-delay ambigu-

ity the difference in the correlation properties between the instantaneous and

delayed targets may be small. Moreover, the reliability of discrimination is
affected by speckle, which is ubiquitous in SAR images, and requires statistical

treatment.

Previously, we have developed a maximum likelihood based approach for
discriminating between the instantaneous and delayed targets in SAR images.

To test it, we employed simple statistical models. They allowed us to simulate
ensembles of images that depend on various parameters, including aperture

width and target contrast.

In the current paper, we enhance our previously developed methodology by
establishing confidence levels for the discrimination between the instantaneous

and delayed scatterers. Our procedure takes into account the difference in

thresholds for different target contrasts without making any assumptions about
the statistics of those contrasts.

1. Introduction. Signal processing algorithms for synthetic aperture radar (SAR)
imaging require a model for signal propagation and a model for scattering about
the target. For example, standard SAR assumes dispersionless propagation with
the speed of light and a point scatterer with constant instantaneous reflectivity.
These models are deterministic. In addition, stochastic treatment may be justified
for certain imaging scenarios. For example, physical characteristics of a turbulent
medium (e.g., density, velocity, etc.) are typically considered random fields [22, 24].
Accordingly, if radar signals propagate through such a medium, the resulting SAR
image is described in statistical terms [20, 11, 12].

Stochastic approach can also be used to describe the scattering of SAR signals
about the target. A detailed stochastic treatment of instantaneous extended targets
can be found in [23]. The goal of the current study is to address the scattering delay
and its detection in SAR. For scatterers with delayed response, a stochastic model
for SAR imaging has been built in our work [14]. It assumes the deterministic
propagation with constant speed as in standard SAR, while scattering about both
instantaneous and delayed targets is described in stochastic framework. Hereafter,
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we extend the results of [14] by introducing confidence levels for the detection of
targets with delayed response.

A delayed component in scattering may carry valuable information about the
properties of the scatterer, such as its internal structure and characteristic size.
The main difficulty in detecting the scattering delay is to separate it from the
propagation delay, which is at the core of SAR reconstruction. The authors of
[10] propose to interpret the scattering delay as a third dimension added to target
reflectivity and SAR image (on top of two spatial coordinates). Then, a point
scatterer in space ∼ δ(z − z0) used in standard SAR is replaced with a point
scatterer in space-time ∼ δ(z − z0)δ(t − t0). Subsequent analysis in [10] focuses
on the resulting coordinate-delay point spread function (PSF). The aforementioned
difficulty in separating scattering delay from the propagation delay manifests itself
via slow decay of PSF along certain directions in the space of its arguments, known
as ambiguity directions. This effect is called the range-delay ambiguity.

However, a completely deterministic treatment like that of [10] does not take into
account the stochastic effects in scattering, and hence cannot be applied directly to
distributed SAR targets [23]. A key manifestation of stochasticity in scattering is
speckle, which may be thought of as strong and rapid variations of the amplitude
and phase of a SAR image while the target parameters of interest remain smooth.
Speckle is common in images of most natural and man-made targets when illumi-
nation is coherent [15], which is the case for SAR. In the presence of speckle, weak
and slow variations along the ambiguity directions in the SAR image can be unde-
tectable, as demonstrated in [14]. This means that the discrimination between the
instantaneous and delayed targets becomes unreliable, unlike in the deterministic
case considered in [10].

A standard approach to problems of this kind is two-fold. To increase the relia-
bility of classification one can increase the sample, i.e., the amount of data supplied
to the discrimination functional. In [14], we have demonstrated the advantages
of a bigger sample size. To quantify the reliability of classification outcomes, one
needs to employ the confidence levels, which is the primary focus of the current
work. Specifically, we refine the discriminating functional for coordinate-delay SAR
images, introduce the confidence levels for it, and demonstrate the performance of
the discrimination procedure for various system and target parameters. Confidence
levels are crucial for applications that rely on the analysis of SAR images because
in practice, it is often impossible to obtain additional images of the same target
under similar conditions.

Section 2 presents the coordinate-delay SAR imaging procedure, builds the corre-
sponding imaging operator, and analyzes its properties in terms of the point spread
function. In Section 3, we introduce models for instantaneous and delayed scat-
terers and analyze the autocorrelation properties of the resulting coordinate-delay
SAR images. Section 4 presents two models of radar targets to be used in the dis-
crimination problems. A binary classification procedure and its extension that uses
confidence levels are introduced in Sections 5 and 6.1, respectively. In Section 6.2,
we analyze the cumulative distribution functions for the values of the discrimina-
tion functional and relate them to the quality of discrimination by the original
and extended classifier. In the same section, we also introduce the confidence lev-
els and the corresponding threshold values for the discrimination functional in the
case of known target contrast. The generalization of confidence levels to all tar-
get contrasts is presented in Section 6.3. To assess the efficiency of the proposed
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approach to discrimination between the instantaneous and delayed targets, we use
the Monte-Carlo simulation procedure described in [14]. It lets us build ensembles
of sampled SAR images and analyze the statistics of the discriminating functional.
Section 7 presents the results of simulation in terms of achievable discrimination
quality given a certain confidence level. Section 8 discusses possible future work.
Additional bibliography can be found in [10, 14].

2. Coordinate-delay SAR image and point spread function.

2.1. Assumptions, data collection geometry, and antenna waveform. Let
(x1, x2, x3) be Cartesian coordinates with vertical direction x3 and origin in the
target area on the ground (flat horizontal surface). Let the platform trajectory
(i.e., synthetic aperture) be an arc of a circle of radius L in the horizontal plane
at altitude H above the ground, with the center of the circle at (0, 0, H). Denote

R =
√
H2 + L2 and let θ be the incidence angle measured from the vertical. Then

H = R cos θ and L = R sin θ. Denote the angular extent of synthetic aperture by
ϕT and parametrize the trajectory by the angle ϕ, |ϕ| 6 ϕT /2� 1:

(1) x = x (ϕ) = (x1(ϕ), x2(ϕ), x3(ϕ)) = (− L sinϕ,−L cosϕ,H).

In practice, synthetic aperture is a finite set of locations xn = x (ϕn) on the tra-
jectory that correspond to the chosen discrete arguments {ϕn} in (1). Construction
of a SAR image involves summation over n, but we assume that the spacing between
the angles {ϕn} is fine enough so as to enable a sufficiently accurate replacement of
this summation with integration over the continuous variable ϕ, see formula (9).

The interrogating pulse will be taken as a narrow-band linear chirp (frequency
modulated signal) with the carrier frequency ω0, bandwidth B, duration τ , and
rate α > 0 related by

(2) 2ατ = B � ω0 and Bτ � 1.

Using the notation χτ for the characteristic function:

χτ (t) =

{
1, t ∈ [−τ/2, τ/2],

0, otherwise,

we can write the expression for the chirp waveform as follows:

(3) P (t) = A(t)e−iω0t, where A(t) = χτ (t)e−iαt
2

.

We denote the incident and scattered fields by ui and us, respectively. For the
signal emitted by the antenna at a location x , we have ui(t,x ) = P (t), whereas
the scattered field recorded by the antenna at the same point is us

x (t) ≡ us(t,x );
this notation assumes the so-called start-stop approximation, i.e., we ignore the
antenna motion during transmit and receive (see [13, Chapter 6] for more detail).
Additionally, we assume that the signals emitted from different x don’t interfere. We
will use z = (z1, z2, 0) for target coordinates; note that with the antenna trajectory
as in (1), the coordinates z2 and z1 are usually called range and azimuth (or cross-
range), respectively. For any x = x (ϕ) and for any z in the target area, we introduce
a shortcut notation Rz = |z − x | for the propagation distance. The propagation
attenuation factor will be denoted by K(Rz ), so that the incident and scattered
fields obey the following relations:

(4) ui(t, z ) = K(Rz )P (t−Rz/c), us(t,x ) = K(Rz )us(t−Rz/c, z ),
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where c is the speed of light. Expression (4) relies on the first Born approximation
[8, 13], also referred to as the single-scattering approximation.

For a typical signal wavelength λ = 2πc/ω0, we will assume

(5) λ� max |z | � R,

where max |z | is the characteristic size of the target. While the fields vary on
the scale of λ, the attenuation coefficient varies on a much longer scale of R, e.g.,
K(Rz ) ∼ R−2

z . Hence, given (5), one can simplify (4) as follows:

(6) ui(t, z ) = K(R)P (t−Rz/c), us(t,x ) = K(R)us(t−Rz/c, z ).

2.2. Coordinate-delay SAR image. The goal of SAR imaging is to build an
approximate reconstruction of the reflectivity function of the target. In the current
formulation, the coordinate-delay reflectivity function ν(tz , z ) defines a relation be-
tween the incident and scattered fields; this relation is local in space but distributed
in delay time tz :

(7) us(t, z ) =

∫ ∞
0

ui(t− tz , z )ν(tz , z ) dtz .

The lower limit of the integral in (7) accounts for the causality of scattering.
Combining (7) with (6) and dropping a constant factor K(R)2, we obtain the

following linear model for the field scattered by a distributed non-instantaneous
target:

(8) us
x (t) =

∫ ∞
0

(∫∫
ν(tz , z )P

(
t− 2Rz

c
− tz

)
dz1 dz2

)
dtz .

In (8) and below, the integrals without limits will assume integration over the entire
real axis. The form (8) implies that ν does not depend on x , the property called
angular coherence, which typically requires that the synthetic aperture is far away
from the target and the angle subtended by it and centered at the target is small,
see Section 2.1.

The matched filter is obtained by taking the complex conjugate of the signal
waveform (3) and denoted by P (. . .). For an image coordinate y = (y1, y2, 0),
we introduce Rϕy = |y − x (ϕ)| and build the coordinate-delay image I(ty ,y) by
applying the matched filter to the received signal:

(9) I(ty ,y) =
1

ϕT

∫ ϕT /2

−ϕT /2

(
1

τ

∫
P
(
t− 2Rϕy

c
− ty

)
us
x(ϕ)(t) dt

)
dϕ.

Replacing x and Rz in (8) with x (ϕ) and Rϕz = |z − x (ϕ)|, respectively, and
substituting the result into (9), we obtain the expression for the imaging operator
that relates the SAR image and the reflectivity:

(10) I(ty ,y) =

∫ ∞
0

(∫∫
ν(tz , z )W (ty ,y ; tz , z ) dz1 dz2

)
dtz ,

with the kernel given by
(11)

W (ty ,y ; tz , z ) =
1

ϕT

∫ ϕT /2

−ϕT /2

(
1

τ

∫
P
(
t− 2Rϕy

c
− ty

)
P
(
t− 2Rϕz

c
− tz

)
dt

)
dϕ.

Function W in (10) is the point spread function (PSF) of the imaging operator
in the following sense: W (ty ,y ; td, zd) coincides with the image I(ty ,y) due to a
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space-time point scatterer

(12) ν(tz , z ) = aδ(z − zd)δ(t− td),
where δ(. . .) is the Dirac delta function and a = const. In particular, we can see
from (11) that max |W (ty ,y ; tz , z )| = 1 is attained when y = z and ty = tz .

In order to calculate W for the collection geometry and signal waveform defined
in Section 2.1, we take the Taylor expansions of Rϕy and Rϕy up to the second term
in ϕ, such that according to (1), we have

(13)

Tϕ =
Rϕy −Rϕz

c
+
ty − tz

2

≈
(y2 − z2

c
cosϕ− y1 − z1

c
sinϕ

)
sin θ +

ty − tz
2

≈
[y2 − z2

c

(
1− ϕ2

2

)
− y1 − z1

c
ϕ
]

sin θ +
ty − tz

2
.

For future convenience, we define

k0θ =
ω0

c
sin θ,

while T 0 is obtained from (13) by setting ϕ = 0:

(14) T 0 =
y2 − z2

c
sin θ +

ty − tz
2

.

We also introduce the following function:

(15) Φ(v1, v2) =

∫ 1/2

−1/2

e2iv1seiv2s
2

ds.

Then, the result of integration in (11) under assumptions (2) and (13) can be
expressed as follows (see details in [14]):

(16) W (ty ,y ; tz , z ) = e−2iω0T
0

· Φ
(
k0θϕT (y1 − z1), k0θϕ

2
T (y2 − z2)

)
· sinc(BT 0),

where the sinc function is defined as sinc ξ = sin ξ/ξ.

2.3. Properties of the PSF and the range-delay ambiguity. We can see that
the list of arguments of W in (16) can be contracted to

(17) W (ty ,y ; tz , z ) ≡W (ty − tz ,y − z ).

The range-delay ambiguity can be observed in the behavior of W of (17) along the
direction defined by

(18) T 0 = const, y1 − z1 = const.

In the space of arguments of W , formula (18) defines a family of straight lines
that we call ambiguity lines. Consider first the case where ϕT is so small that the
quadratic in ϕ term in (13) can be dropped. In this case, the second argument of Φ
in (16) is zero, and (15) reduces to

(19) Wlin(ty − tz ,y − z ) = e−2iω0T
0

· sinc
(
k0θϕT (y1 − z1)

)
· sinc(BT 0).

We can see that Wlin of (19) is constant along the ambiguity lines (18),(14). In
other words, a delayed scatterer (12) is indistinguishable from an instantaneous
scatterer at a point z ′d on the same ambiguity line, i.e., a scatterer with

(20) t′d = 0, z ′d = zd +
ctz

2 sin θ
e2,
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where e2 is a unit vector in the downrange direction. Note that by setting ty =
tz = 0 in (14) and (19) we reduce the latter to the standard SAR formula for the
imaging kernel, leading to the following expressions for the range and azimuthal
(i.e., crossrange) resolution:

(21) ∆R = π
c

B sin θ
, ∆A = π

1

k0θϕT
.

Obviously, in the coordinate-delay settings (10) and (19), the value of ∆R does not
completely characterize imaging in range because of the range-delay ambiguity.

Returning to the expression for W given by (13)–(16), we notice that the term
Φ(0, ·) yields unambiguous resolution in the range coordinate. Using the explicit
form for the marginal function

(22) Φ(0, v2) =
C(t) + i sign(v2)S(t)

t
, where t =

√
|v2|
2π

,

and C and S are the Fresnel integrals [9], we can derive the following asymptotic
relations:

(23) |Φ(0, v2)| ∼

{
(|v2|/π)−1/2 as |v2| → ∞,
1− 1

360v
2
2 as v2 → 0.

The width of the main lobe in range due to (23) can be evaluated from |v2| .√
360 ∼ 20, which corresponds to the distance of

(24) ∆U ∼
20

k0θϕ2
T

.

At the same time, for the scatterer (12) and with z ′d given by (20), we have

(25)

∣∣∣∣ I(0, z ′d)

I(td, zd)

∣∣∣∣ =

∣∣∣∣∣W
(
−td, ctd/(2 sin θ)e2

)
W (0,0 )

∣∣∣∣∣ =

∣∣∣∣Φ(0, k0θϕ
2
T

ctd
2 sin θ

)∣∣∣∣ .
It is possible to interpret formulae (22) and (25) as follows: since Φ(0, 0) = 1 and

|Φ(0, v2)| < 1 for any v2 6= 0, we can always discriminate between the pair of delayed
and instantaneous scatterers given by (12) and (20), respectively. Namely, any
coordinate-delay point (td, zd) can be tested for containing a delayed scatterer (12)
by checking whether this point corresponds to a maximum of |I| on the ambiguity
line (18) passing through it. Similarly to the resolution of standard SAR described
by (19) and (21), we assume that the location of this maximum can be determined
accurate to the width of the main lobe of |Φ(0, v2)| for v2 = k0θϕ

2
T ctd/(2 sin θ) =

ϕ2
Tω0td/2, see (25). This yields

(26) ϕ2
Tω0td & 40

as a detectability condition for a delayed return due to the point scatterer (12).
Additionally, we introduce the parameter κ to characterize the ratio between two
range scales, ∆R and ∆U, see (21) and (24):

(27) κ = ϕ2
T

ω0

B
,

such that relation (26) can be rewritten as

(26′) κ
Btd

2
& 20.

On the way to more realistic setups, we are going to include a homogeneous back-
ground and consider a certain range of delay times rather than a fixed delay td as
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in (12). These changes introduce a new effect, called speckle, into the consideration.
In the following sections, we will formulate the metrics of detectability of a delayed
return in the presence of speckle.

3. Statistical coordinate-delay models of distributed radar scatterers.
The deterministic description of SAR imaging presented in Section 2 is appropri-
ate for the space-time point scatterers given by (12). However, once the support
of ν becomes nonsingular in any argument, a statistical description appears to be
a proper way of describing interference of multiple scatterers within one resolution
cell (see details in [14, 23, 15]).

In particular, a homogeneous instantaneous reflectivity, or the background, is
modelled by

(28) background: νb(tz , z ) = δ(tz )µb(z ),

where µb(z ) is a two-dimensional circular Gaussian white random field:

(29) 〈µb(z )〉 = 0, 〈µb(z )µb(z ′)〉 = 0,
〈
µb(z )µb(z ′)

〉
= σ2

bδ(z − z ′).

In (29), 〈. . .〉 denotes statistical averaging and σ2
b is a positive deterministic con-

stant describing the statistically averaged reflectivity [23]. When a random reflec-
tivity function (28)–(29) is substituted into the imaging operator (10), the resulting
image Ib(ty ,y) is a stationary circular Gaussian random field, as confirmed in nu-
merous experiments [26, 23, 15]. For the lower moments of such field, we have

(30) 〈Ib(ty ,y)〉 = 0,
〈
I2
b(ty ,y)

〉
= 0, Var

(
|Ib(ty ,y)|2

)
=
〈
|Ib(ty ,y)|2

〉2
.

The suggested physical model behind this behavior is that each resolution element is
populated by a large number of uncorrelated point scatterers such that each image
pixel is a result of interference of individual returns with homogeneously distributed
phases [23, 15].

In addition to the spatially homogeneous model (28)–(29), we introduce two
models of inhomogeneous scatterers. First, we want to model a scatterer that
is small in size and exhibiting a certain range of delays. Such scatterer may be
representative of an opening into some cavity, e.g., a manhole or window in a wall.
Multi-path reflections or structural dispersion inside this enclosed space will result
in a range of response delays; if there are many such paths (or many electromagnetic
cavity eigenmodes), then the responses with different delay times can be considered
essentially uncorrelated, similarly to the scatterers at different locations in the model
(28)–(29). Hence, in order to describe a delayed scatterer (henceforth called t-
scatterer) located at zd (cf. (12)), we modify the model (28)–(29) as follows:

(31) t-scatterer: νt(tz , z ) ≡ νt(tz , z ; zd) = µt(tz )δ(z − zd),

where µt(t) will describe the random behavior of the reflectivity in time. The
averaged reflectivity will be characterized by the product of a positive constant σ2

t

and a non-negative dimensionless function of dimensionless time Ft(Bt/2), yielding
µt(t) as a non-stationary one-dimensional circular Gaussian white random process
with the following properties:

(32) 〈µt(t)〉 = 0,
〈
µt(t)µt(t

′)
〉

= 0,
〈
µt(t)µt(t

′)
〉

= σ2
tFt(Bt/2)δ(t− t′).

We require certain properties of Ft(ζ), in particular, that Ft(ζ) = 0 for ζ < 0 from
the causality considerations (cf. (7)) and the integrability to satisfy a sufficient
condition for the existence of the process (32) [1]. Note that the moments of the
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image It(ty ,y) due to such reflectivity function will obey the same relations as Ib
in (30).

Similarly to (31)–(32), we define an instantaneous inhomogeneous scatterer with
the support on a straight line drawn in the range direction:

(33) s-scatterer: νs(tz , z ) ≡ νs(tz , z ; zd) = δ(tz )δ(z1 − zd1)µs(z2 − zd2),

where µs(s) is another one-dimensional inhomogeneous circular Gaussian white ran-
dom process:

(34) 〈µs(s)〉 = 0,
〈
µs(s)µs(s

′)
〉

= 0,
〈
µs(s)µs(s

′)
〉

= σ2
sFs(Bk0θs/ω0)δ(s−s′).

The support of the scatterer in (33)–(34) is related to that in (31)–(32) through
the ambiguity relation illustrated by (20). This means that images due to these
two scatterers, It(ty ,y) and Is(ty ,y), may resemble each other, and the problem of
detection of a delayed scatterer may be formulated as a problem of discrimination
between these two cases. In this context, it makes sense to assume that Fs(ζ) =
Ft(ζ).

Introduce the dimensionless coordinates ηd, ζd, and ψd with the origin at cer-
tain (td, zd) as follows:

(35)

ηd = k0θϕT (y1 − zd1),

ζd =
B

ω0
k0θ(y2 − zd2) +B

ty − td
2

,

ψd =
B

ω0
k0θ(y2 − zd2)−B ty − td

2
.

This way, the coordinate ψd is aligned with the ambiguity line (18). We take td = 0
for simplicity and present the second order statistics of images due to the scatterer
models (28), (31), and (33), for ηd = η′d = 0 and ζd = ζ ′d in the following concise
form:

(36)
〈
Iα(ζd, ψd)Iα(ζd, ψ

′
d)
〉

= σ2
αKαHα(ζd, ψd, ψ

′
d).

In (36), the following notations are used.

• For α ∈ {b, s, t} denoting the scatterer types given by (28), (33), and (31),
respectively, formula (36) is obtained directly by substituting the expressions
for να(tz , z ) into (10) and (16). We can choose Hα to be dimensionless with
sup |Hα| ∼ 1 as follows:

(37)

Hb(ζ, ψd, ψ
′
d) = Φ

(
0, κ

ψd − ψ′d
2

)
,

Ht(ζd, ψd, ψ
′
d) = Φ

(
0, κ

ζd + ψd

2

)
Φ
(

0, κ
ζd + ψ′d

2

)
· 1

π

∫ ∞
0

F 2
t (ζ) sinc2(ζd − ζ) dζ,

Hs(ζd, ψd, ψ
′
d) =

1

π

∫ ∞
0

F 2
s (ζ) sinc2(ζd − ζ)

· Φ
(

0, κ
ζd + ψd

2
− κζ

)
Φ
(

0, κ
ζd + ψ′d

2
− κζ

)
dζ,

such that the normalizing coefficients are given by

Kb =
ω0

Bk0θ

1

k0θϕT
· π2, Kt =

2

B
π, Ks =

ω0

Bk0θ
π.
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• We introduce the noise term In to represent the receiver noise and processing
errors. We do so by allowing α = n in (36) and formally setting

(38) Hn(ζd, ψd, ψ
′
d) = 0 if ψd 6= ψ′d, and Hn(ζd, ψd, ψ

′
d) = 1 if ψd = ψ′d,

so that all noise terms are uncorrelated. At the same time, the value of σ2
nKn

is a separate problem parameter as specified in (43) below.

In Fig. 1, we plot expectations for image intensities,
〈
|It|2

〉
and

〈
|Is|2

〉
, in the

plane y1 − zd1 = 0 (cf. (18)) for functions

(39) Ft = Fs = 1[0,ζmax],

with different values of ζmax. This is done by setting ψd = ψ′d in (36) and (37).
As ζmax increases, the parallelogram-shaped level lines of |Ht| and |Hs| stretch
in vertical and horizontal directions, respectively, which is in agreement with the
analysis made in [14]. The size of the parallelograms in the direction along the
ambiguity lines is determined by the width of the main lobe of Φ(0, κζ), see (23).
It can be argued that the shapes in one column of Fig. 1 differ substantially from
the respective shapes in the other column if this width is smaller than the support
of Ft and Fs, i.e.,

(40) κζmax & 20,

cf. (26′). Hence, the “difference” between the plots of
〈
|It|2

〉
and

〈
|Is|2

〉
can be

increased by increasing either ζmax or κ (or both).
It appears quite feasible to apply traditional image processing techniques, such

as edge detection and segmentation [5, 2, 28, 18], to the shapes in Fig. 1 in order to
determine the type of the scatterer and its parameters, such as ζmax. However, the
intensities of actual images look dramatically different from their statistical averages
because of the speckle, and while in practice there is typically only a single image
acquisition of the scene of interest, computation of statistical averages from the
empirical data is ruled out. For images with speckle, such as simulated in Fig. 2,
the mere detection (let alone classification) of the target in certain cases looks
problematic. The goal of the next sections is to quantify our ability to distinguish
between the t-scatterer and s-scatterer as defined in (31)–(34) in the presence of
speckle.

4. Two models for coordinate-delay SAR images. Using the scatterer types
described in Section 3, we are going to build models of radar targets to be used
in discrimination problems. For simplicity, we assume that there are two possible
configurations of scatterers in the target:

(41a) ν(tz , z ) = νs-model(tz , z ; zd) = νb(tz , z ) + νs(tz , z ; zd)

and

(41b) ν(tz , z ) = νt-model(tz , z ; zd) = νb(tz , z ) + νt(tz , z ; zd),

where νb, νt, and νs are defined in (28), (31), and (33), respectively, and zd in (41a)
and (41b) is the same. The names “s-model” and “t-model” are intended to match
the terms “s-scatterer” and “t-scatterer” introduced in Section 3, see (31) and (33).
The coordinate-delay SAR images resulting from substitution of (41) into (10) are
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Figure 1. Plots of
〈
|It|2

〉
and

〈
|Is|2

〉
for different values of ζmax

and κ, see (39) and (27). The dashed lines passing through the ori-
gin indicate the ambiguity direction, see (14),(18). For the middle
row of plots, the condition κζmax & 20 (see (40)) is satisfied, and
the difference in the orientation of the parallelogram-shaped level
lines is more apparent than for the top and bottom rows.

then given by either

(42a) Is-model(ty ,y ; zd) = Ib(ty ,y) + In(ty ,y) + Is(ty ,y ; zd)

or

(42b) It-model(ty ,y ; zd) = Ib(ty ,y) + In(ty ,y) + It(ty ,y ; zd),

where the terms In are described by (36) with (38).
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For delta-correlated scatterers as in Section 3, the correlation of the image de-
scribed by (10) is determined by the properties of the imaging kernel W . In partic-
ular, the correlation of the image rapidly decreases across the ambiguity lines (18)
owing to the sinc term in (16). This allows us to simplify the presentation of the
correlation function of images given by (42) by specifying a discrete set of ambi-
guity lines with large enough spacing between them such that the image values at
different lines can be considered uncorrelated.

We assume that the terms Ib, In, Is, and It in (42a) or (42b) are independent;
hence, the moments of the total image are sums of the moments of the corresponding
components. In turn, due to the Gaussianity, the moments of each component can
be calculated using formula (36). Consequently, formulae (36)–(38) provide a com-
plete description of the statistics of the total image for the arguments corresponding
to one and the same ambiguity line.

Fig. 2 shows examples of simulated coordinate-delay SAR images due to the
targets (41a) (right panels) and (41b) (left panels) with Fs and Ft given by (39).
The relative scatterer intensities, or contrasts, are defined as follows:

(43) pn =
σ2

nKn

σ2
bKb

, qs =
σ2
sKs

σ2
sKs + σ2

bKb + σ2
nKn

, qt =
σ2
tKt

σ2
tKt + σ2

bKb + σ2
nKn

.

Note that for Fig. 2, we have chosen pn = 0, i.e., no noise component, while the
target contrasts qs = qt = q take three different values. It can be seen that the
visible shape features distinguishing the two types of scatterers in Fig. 1 appear
much less prominent even for a high contrast of q = 0.8 in the top row of Fig. 2,
and practically disappear for the lower contrasts. We will see that the value of q
is very important for the effectiveness of the discrimination algorithms described in
Sections 5 and 6.1. The effect of the value of pn has not been as prominent, and we
always set it to pn = 0.1.

5. Detection of the delayed response. In this work, we reduce the problem
of detection of the delayed response to discrimination between the scenario (41a)
involving only instantaneous scatterers and (41b) that includes a component νt with
a scattering delay.

Assume that we have some observation data us
x(ϕ)(t), see (8). Using (9), we

can build a coordinate-delay image I(ty ,y). We also assume that we can identify
candidates for zd as locations of a sharp increase of the image intensity along the
range direction at ty = 0, see Figs. 1,2.1 After that, the neighborhood of each
candidate location zd goes through the discrimination procedure described below.
This procedure attributes the apparent inhomogeneity at zd to one of the two classes
in (41).

We define the sampling procedure for the coordinate-delay SAR image as follows.
Let {ζm} be a discrete set of values of ζd, see (35), for some zd. These values will
be bounded by ζmax used in (39). In addition, we will introduce another parameter,
ζmin = 3π, to cut off the transitional effects due to the behavior of Fs(ζ) and Ft(ζ)
given by (39) in the vicinity of ζ = 0. Thus, this set will be defined according to

(44) ζm = πm, where m ∈ N, ζmin 6 ζm 6 ζmax.

Each value of ζm defines an ambiguity line passing through a neighborhood of (0, zd),
and, according to the discussion in Section 4, the spacing of π between the adjacent

1This can be done using one of the standard edge detection methods [5, 2, 28, 18].
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Figure 2. Simulated coordinate-delay SAR images with differ-
ent contrasts. We use κ = 2.5 and ζmax = 5π, which corresponds
to the middle row in Fig. 1. To build each image, we sample ζd
and ψd with a step of π each, and for every ζd (i.e., each ambigu-
ity line) generate the multivariate circular Gaussian image compo-
nents according to (36) with the weights σ2

αKα calculated via (43).
The total images are then computed according to the appropri-
ate expression in (42). Simulation of multivariate normal random
variables is performed using the MATLAB c© function mvnpdf.

values of ζm allows us to consider the values on different ambiguity lines uncorre-
lated.

For each m in (44), we choose Nm values of ψmj , 1 6 j 6 Nm; these values will
play the role of ψd and ψ′d for a given ζd = ζm in (36). Then, Imj will denote the
coordinate-delay SAR image sampled in a neighborhood of (0, zd). Using

(45) S = {b,n, s} and T = {b,n, t}
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to index the triples of terms on the right hand sides of (42a) and (42b), respectively,
we can represent the second order statistics for the corresponding sums with the
help of (36) in the following form:

(46)

〈
Imj, s-model Imj′, s-model

〉
=
∑
α∈S

σ2
αKαHα(ζm, ψmj , ψmj′), 1 6 j,j′ 6 Nm,〈

Imj, t-model Imj′, t-model

〉
=
∑
α∈T

σ2
αKαHα(ζm, ψmj , ψmj′), 1 6 j,j′ 6 Nm.

Remember that the statistical averages in (46) are unavailable in a practical setting.
Instead, we will use the actual data ImjImj′ and for each line of (46) build an
objective function for optimization with the unknown scatterer intensities as the
design variables. For each of the two scenarios in (42), i.e., for S and T in (45), our
discrimination algorithm will seek a set of values for unknowns σ2

α that maximizes
the probability density of the image with the statistics described by (46). Then, we
will choose the model that yields the larger of the two maxima. Essentially, this is
a maximum likelihood (ML) based procedure [19, 23].

The probability density of the sampled image {Imj} for either of the two models
is calculated as follows. For each m we create a real-valued vector rm of dimen-
sion 2Nm:

(47) rm = (Re Im1, Im Im1,Re Im2, Im Im2, . . .Re ImNm
, Im ImNm

)T.

Then, due to the circular Gaussianity and independence of all Iα, formula (46) can
be recast as

(48)
〈
rmrTm

〉 def
= M(m) =


M

(m)
11 M

(m)
12 . . . M

(m)
1Nm

M
(m)
21 M

(m)
22 . . . M

(m)
2Nm

...
. . .

M
(m)
Nm1 M

(m)
Nm2 . . . M

(m)
NmNm

 ,

where each individual 2× 2 block on the right hand side is given by

(49) M
(m)
jj′ =

1

2

∑
α∈A

σ2
αKα ·

(
ReHα(ζm, ψmj , ψmj′) −ImHα(ζm, ψmj , ψmj′)
ImHα(ζm, ψmj , ψmj′) ReHα(ζm, ψmj , ψmj′)

)
.

Choosing A = S or A = T in (49), we obtain two expressions for the matrices M(m)

in (48), henceforth called M
(m)
s-model and M

(m)
t-model. These matrices give rise to two

multivariate Gaussian distribution functions:

(50)

ps-model(rm) =
1

(2π)Nm

√
det M

(m)
s-model

exp
(
−1

2
rTm(M

(m)
s-model)

−1rm

)
,

pt-model(rm) =
1

(2π)Nm

√
det M

(m)
t-model

exp
(
−1

2
rTm(M

(m)
t-model)

−1rm

)
.

Then, we extend formulae (50) by including the data from multiple ambiguity lines
given by a set of ζm. In a simplified treatment suggested in Section 4, we consider
the data for different ζm uncorrelated. Then, for the full dataset vector R that
combines all rm-vectors (47):

R = (rT1 , r
T
2 , . . . , r

T
m, . . . )

T,(51a)
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we have

p(R) =
∏
m

p(rm).(51b)

The actual dataset vector Q representing a sampled image has the same structure
as R of (51a):

(52) Q = (qT
1 ,q

T
2 , . . . ,q

T
m, . . . )

T,

where each vector qm corresponds to image values taken at a certain ambiguity
line. We will then consider (cf. (50), (51b))

(53)

ps-model(Q) =
∏
m

1

(2π)Nm

√
det M

(m)
s-model

exp
(
−1

2
qT
m(M

(m)
s-model)

−1qm

)
,

pt-model(Q) =
∏
m

1

(2π)Nm

√
det M

(m)
t-model

exp
(
−1

2
qT
m(M

(m)
t-model)

−1qm

)
,

as functions of the unknown scatterer intensities {σ2
α} that enter M(m) via (49) for

each of the models in (41). The functions ps-model(Q) and pt-model(Q) are called
the likelihood functions [19]. The discrimination procedure solves two optimization
problems formulated as follows:

(54) p̆s = max
σ2
b,σ

2
n,σ

2
s

ps-model(Q), p̆t = max
σ2
b,σ

2
n,σ

2
t

pt-model(Q),

subject to σ2
b, σ

2
n, σ

2
s , σ

2
t > 0. The resulting p̆s and p̆t yield the maximum likelihood

(ML) values for the corresponding scatterer models. It is common to consider
the logarithm of the likelihood rather than the likelihood itself. Accordingly, we
introduce

(55) l = log p̆t − log p̆s,

and the classification based on the comparison of the two maxima [14] is performed
as follows:

(56)

if l > 0
then

the target is classified as a delayed scatterer (41b), (42b)
else

the target is classified as an instantaneous scatterer (41a), (42a).

6. Statistical characterization of observations.

6.1. Classification outcomes and confusion matrices. The results of classifi-
cation by means of algorithm (56) may turn out incorrect for two different reasons.
First, the outcome of algorithm (56) depends on the difference between the values
of p̆s and p̆t that are subject to computational errors and noise. For example, the
classification decision based on a small value of |l|, see (55), should be considered
unreliable. At the same time, a large positive value of l obtained from an individual
image may give a strong indication that the underlying target is described by a
t-model, i.e., has a delayed component.
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An extension of algorithm (56) that recognizes the issue of small values of |l| may
look as follows:

(57)

if l > l+

then

the target is classified as a delayed scatterer (41b), (42b)
elseif l < l−

then

the target is classified as an instantaneous scatterer (41a), (42a)
else

the classification result is uncertain.

As compared to algorithm (56), we have introduced two classification thresholds, l−

and l+, to be defined in Section 6.2, instead of a single threshold l = 0. Accordingly,
we have three classification outcomes: s-model, t-model, and uncertain, instead of
the two outcomes in algorithm (56).

The second fundamental reason for possible misclassification is that formulae (53)
yield a nonzero probability density for any model and any data Q, so a certain
fraction of errors is inevitable regardless of the algorithm. The quality of the classi-
fication is characterized by the frequency of errors. Suppose that we have obtained
a representative ensemble of sampled images of a target described by the s-model
and another such ensemble for the t-model. Executing either of the algorithms
(56) or (57) on each image in these ensembles, we can evaluate the performance
of the classification by means of the confusion matrices as in Table 1. The rows
named “input: s” and “input: t” denote the models (42a) and (42b), respectively,
whereas the columns correspond to the outcomes of the particular classification al-
gorithm. The ideal confusion matrix in Table 1(a) will have rs = rt = 0, whereas
for Table 1(b) this will be r′s = r′t = r′′s = r′′t = 0.

The frequency of classification errors depends on several factors. System pa-
rameters, e.g., bandwidth, aperture width, etc., form one group. Another group
contains parameters of the target, such as its contrast. The roles of these groups
of parameters have been investigated in [14]. Ultimately, the classification quality
depends on the discrimination algorithm. The choice of the algorithm and its set-
tings may depend on the specific application. For example, a wide gap between l−

and l+ in (57) should decrease r′s and r′t in Table 1(b) at the cost of a large fraction
of uncertain outcomes, i.e., large values of r′′s and r′′t . In Section 6.3, we discuss a
procedure whereby the classification errors can be kept below a specified level.

6.2. Confidence levels for classification with a given target contrast. A
standard approach to controlling the estimation errors for noisy measurements in-
cludes confidence intervals or levels [19]. In parameter estimation problems, a confi-
dence interval is built around the measured value of a certain parameter to indicate
a possible range for the true value of this parameter. The boundaries of such an
interval are determined from an ensemble of measurements of the parameter of in-
terest or a probability distribution function representing it, such that only a small
percentage of outliers, say 5%, falls beyond this interval. Similarly, for a classifica-
tion problem, an individual measurement can be assigned a numerical characteristic
that will express the certainty that this observation falls into (or beyond) a spe-
cific category [19]. For the procedure described in Section 5, the value of l defined
by (55) can play the role of such parameter.
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Table 1. Confusion matrices: (a) for classification using algo-
rithm (56); (b) for classification using algorithm (57). The rows
correspond to the models in (42), whereas the columns indicate
the outcomes of a particular classification algorithm. The entries
are relative frequencies of the events calculated for two ensembles
with the same contrast, i.e., qs = qt = q.

(a)
output: s output: t

input: s 1− rs rs
input: t rt 1− rt

(b)
output: s output: t uncertain

input: s 1− r′s − r′′s r′s r′′s
input: t r′t 1− r′t − r′′t r′′t

Yet in the case of SAR imaging, building an ensemble of observations to study the
statistical properties of the discrimination procedure is not realistic, as explained in
Section 1. In [14], we introduced a Monte-Carlo procedure that simulates ensembles
of sampled coordinate-delay SAR images of instantaneous and delayed targets, see
(42).2 We used those ensembles to evaluate the efficiency of algorithm (56) for
different target contrasts. In the current work, we extend the approach of [14] to
define the confidence levels for target classification.

Figure 3. Cumulative distribution functions (cdf) for ensembles
generated from the s-model and t-model. (a) Examples of cdfs for
log p̆s and log p̆t, see (54). The notations cdfs[. . .] and cdft[. . .] are
similar to those in (60). (b) Examples of cdfs for l = log p̆t− log p̆s,
see (55) and (60). According to (61) (see also Table 1(a)), we have
rt = cdft(0; q) and rs = 1− cdfs(0; q). (c) A zoom-in to the central
part of panel (b). The entries r′s, r

′′
s , r′t, and r′′t from Table 1(b)

are determined according to (63) and (65) with p = 0.05.

2 To minimize the computational cost, we always choose Nm = 2, ψm1 = ζd, ψm2 = −ζd,
see (46). Referring to Fig. 2, it means that for each ξd, we sample a pair of coordinate-delay
“points”

(
ty = 0, y2 = zd2 + ξd · c/(B sin θ)

)
and

(
ty = ξd · 2/B, y2 = zd2

)
. Choosing these

two locations on a given ambiguity line has the advantage of maximizing the expectation of the
intensity of at least one of the two possible inhomogeneous images, |Is|2 or |It|2, see Fig. 1. This
is beneficial in the presence of fluctuations due to the background and noise.
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In the simplest setting, the simulated ensembles of sampled SAR images represent
two scenarios in (42) with equal target contrasts (43):

(58) qs = qt = q.

In addition to contrast, each scenario has a set of associated parameters, such as
κ, the values of {ζm} used for sampling, etc. The output of simulation is an en-
semble of datasets Q of type (52) that we use in lieu of the actual measurements.
While the discrimination procedure does not “know” which of the two target mod-
els in (42) and what contrast were used to generate a given dataset Q, we can
associate the outcomes of the procedure, and in particular, the set of values of p̆s
and p̆t, with the type of underlying model and the values of its parameters. We will
describe the statistics of these outcomes with the help of a cumulative distribution
function (cdf),3 which for a real-valued random variable ξ and a given argument x
yields the probability that ξ < x:

(59) cdf[ξ](x) = P (ξ < x).

In the context of discrimination between the two types of scatterers, the random
variable will be l defined in (55), and we will use the following notations:

(60a) cdfs(x; q) = cdf[l](x)

for the ensemble generated from the s-model with qs = q, and

(60b) cdft(x; q) = cdf[l](x)

for the ensemble generated from the t-model with qt = q. While the target contrast
is explicitly specified as the second argument of cdf in (60), other system and target
parameters affecting the probability in (59) will be considered fixed until Section 7.
Note that the subscript at a cdf in (60) corresponds to the rows in the confusion
matrices in Table 1, whereas the choice of the model in the optimization problem
is denoted by the lower index in p̆s and p̆t, see (53) and (54).

Figure 3(a) plots cdfs of log p̆s and log p̆t for a pair of ensembles of sampled images
that differ only by the type of the actual inhomogeneous scatterer (note that tiny
values of likelihood are not unusual for multidimensional data as in (53)). For the
same data, Figure 3(b) plots cdfs(·, q) and cdft(·, q), see (60), for qs = qt = q = 0.5.
This plot clearly shows the separation between these two ensembles, such that
most of the values of l are negative for the ensemble generated from the s-model
and positive for the ensemble generated from the t-model. This implies that the
discrimination results by algorithm (56) are correct in most cases (remember that
l is calculated from the observations by a procedure that has no access to the
underlying value of contrast or model type). We can establish the following relation
between the curves in Fig. 3(b) and the values in Table 1:

cdft(0; q) = rt(61a)

and, similarly,

cdfs(0; q) = 1− rs.(61b)

For example, the value of cdft(0; q) yields the fraction of targets in the ensemble
built from the t-model that algorithm (56) incorrectly classifies as s-targets.

3A more commonly used probability density function (pdf) is the first derivative of cdf.
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To introduce confidence levels, we choose a small value, say p = 0.05, i.e., 5%, as
a threshold for admissible classification errors. In other words, our goal is to make
sure that

(62) r′s 6 p and r′t 6 p,

see Table 1(b). Then, we define two values, l− and l+, implicitly as solutions to the
following equations:

(63) cdft(l
−; q) = p and cdfs(l

+; q) = 1− p.
The cdfs in (63) are nondecreasing in their first argument, but may be discontinuous.
Although this does not present a major obstacle to subsequent considerations, we
will assume for simplicity that all cdfs are continuous and monotonic; in this case,
solutions l− and l+ always exist and unique for p < 1.

We will consider first the case where l− < l+, which is equivalent to

cdfs(l
−; q)− cdft(l

−; q) < 1− 2p, cdfs(l
+; q)− cdft(l

+; q) < 1− 2p,

as shown in Fig. 3(c) for p = 0.05. For an ensemble of datasets Q generated from
the t-model, the frequency of the cases l(Q) < l− will be equal to p. If this value
of l− is used as the lower threshold in algorithm (57), with the above dataset as the
input, we will also have

(64a) r′t = P
(
l(Q) < l− | t-model

)
= p,

Considering an ensemble generated from the s-model, we obtain, in a similar way,
the following:

(64b) r′s = P
(
l(Q) > l+ | s-model

)
= p.

From relations (64), we see that using the interval (l−, l+) defined by (63) in algo-
rithm (57), we can keep the rate of classification errors, in particular, r′s and r′t in
Table 1(b), at the predefined level as stated in (62).

The rate of uncertain outcomes from algorithm (57) can be expressed as follows:

(65)
r′′t

def
= cdft(l

+; q)− cdft(l
−; q) = cdft(l

+; q)− p,

r′′s
def
= cdfs(l

+; q)− cdfs(l
−; q) = 1− p− cdfs(l

−; q).

Relations (63) and (65) are illustrated in Figs. 3(c) and 4.
The case where from (63) we obtain l− > l+ (e.g., for the ensembles in Fig. 3(c),

this will happen for p = 0.2) can be interpreted as follows: the separation between
the two ensembles of values of l is so good that the error level of p can be guaranteed
with no need for a confidence interval. In this case, we can use algorithm (56) with
any l∗ ∈ [l+, l−] as a single threshold. Alternatively, we can find l∗ as a solution to

cdfs(l
∗, q) + cdft(l

∗, q) = 1.

As the cdfs are monotonic, we will have l∗ ∈ [l+, l−] yielding the error rates of
algorithm (56) at

rt = cdft(l
∗, q) = 1− cdfs(l

∗, q) = rs 6 p,

which also satisfies (62).
Finally, we should note that taken alone, the definitions of thresholds in (63)

can be seen as a way of excluding either extremely large positive or extremely large
negative values of l. However, when the thresholds defined in (63) are used in
algorithm (57), it is a neighborhood of l = 0 that gets thrown away. This highlights
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Figure 4. Separation between the graphs of cdfs(· ; q)
and cdft(· ; q) for different values of κ and q. The thick colored
vertical bars indicate the percentage of uncertain classifications for
the ensembles generated from the s-model (the left set of bars in
each plot) and t-model (the right set of bars), see also (65) and
Fig. 3(c).

the difference between the problems of parameter evaluation and classification. For
the latter, once the rate of classification errors has been fixed at p, see (64), the
quality of classification is determined by the percentage of uncertain outcomes, i.e.,
the values of r′′s and r′′t in Table 1(b). From Fig. 4, we can see that as either κ
or q increase, the curves of cdfs(· ; q) and cdft(· ; q) become better separated, the
intervals between l− and l+ shrink, and the above percentages decrease, as expected.

6.3. Generalization to all target contrasts. The confidence intervals intro-
duced in Section 6.2 depend on the target contrasts qs and qt defined by (43). The
latter values should be considered unavailable to the image processing algorithm.
Hence, the definitions of l− and l+ in (63) should be modified in order to make
them independent of target contrasts.

One way of achieving this goal is to use prior information about the target con-
trasts. For example, we can assume that the probability distribution of the target
contrast is known. This means that we can consider q to be a random variable
with known probability, and instead of ensembles with a given value of q used in
Section 6.2 generate a pair of ensembles, one for the s-model and one for the t-
model, with the given statistics of target contrasts (in general, this statistics can
be different for s-target and t-target models). Then, cdfs and cdft built from these
ensembles should replace the cdfs of (60) in definitions (63).

An alternative approach that uses no prior information about the contrast is to
take the minimal l− and, correspondingly, maximal l+, over the entire range of
target contrasts:

(66) l− = min
q

(
x | cdft(x; q) = p

)
, l+ = max

q

(
x | cdfs(x; q) = 1− p

)
.

With l− and l+ redefined as in (66), the procedure (57) should perform with the
classification error rates r′s and r′t not exceeding p for ensembles generated from any
probability distributions of contrasts q.
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Definitions (66) are used in the numerical experiments described in Section 7. In
order to actually compute the maximum and minimum in (66), we have taken the
values of q in the range from 0.0 to 0.9 with the step of 0.1.

7. Simulation results. Discrimination between the instantaneous and delayed
targets hinges upon our ability to resolve the range-delay ambiguity (see equations
(20) and (25)) in the presence of clutter and noise. The quality of discrimination
depends on the system and target parameters. In Section 6, the only variable
parameter of the model was the contrast q of (58). In this section, we explore
the dependence of the discrimination quality on the parameters κ and ζmax that
determine the threshold for having the range-delay ambiguity resolved, see (40).

Figs. 5 and 6 show the dependence of the off-diagonal entries of the confusion
matrices in Table 1 on ζmax and κ, respectively, for two different values of the
target contrast q. The lower half in each color panel represents the second row in
Table 1(a) or 1(b), with the colors denoting the individual entries. The upper half
corresponds to the first rows in Table 1(a) or 1(b); for clarity of presentation, this
part is flipped vertically with respect to the bottom half. The dashed vertical lines
are drawn at κζmax = bΦ, where bΦ ≈ 23 [14] is the first local minimum of |Φ(0, ·)|,
see (22) and (40).

As expected, the discrimination quality improves with the increase of ζmax, see
Fig. 5. A less expected effect that can be observed in Fig. 6 is the saturation of the
fraction of reliable classifications for κ & 0.4; this may require further attention.
Introduction of the confidence level successfully keeps the number of classification
errors below p. This, on the other hand, makes a number of correct classifications
deemed uncertain.

8. Discussion. The goal of analyzing the scattering delay is to enhance the amount
of information supplied by a radar imaging system as compared to standard SAR.
At the same time, the proposed methodology uses tools from image classification
and pattern recognition. Hence, future developments of this work may come from
solving two completely different classes of problems.

In the field of radar imaging, one possibility for the next step is to consider a wider
class of functions Fs and Ft as compared to the indicator functions (39) used in this
work. Another option is to explore the stability of the discrimination method to the
incorporation of highly coherent components in the received signal: this problem
was addressed by means of time-frequency analysis in [4, 7]. Additional steps that
can improve the applicability and performance of the discrimination procedure are
suggested in [14]. Further, the choice of the contrast parameter q for setting the
confidence levels, see (58) and (66), may not always be optimal from the standpoint
of applications. For example, in a different setting we may be interested in detecting
the cases where the dimensionless delay ζmax of (39) exceeds a certain threshold
value. Such a problem will require significant modification to the classification
algorithm (57) and definitions of the confidence levels (66).

The most noticeable developments in the area of image classification and pattern
recognition are currently related to the advances in the artificial intelligence (AI) [3].
The concepts of deep learning and multi-layer convolution neural network (CNN)
have received a wide recognition because of their demonstrated efficiency in image
classification tasks [17, 21]. Yet introducing elements of AI into the analysis of
coordinate-delay SAR images may be complicated for several reasons. First, these
images are expensive to build, and we cannot expect to be able to obtain the
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Figure 5. Dependence of the discrimination quality on ζmax,
see (39), for two different target contrasts. The left column of
plots corresponds to algorithm (56) and Table 1(a), and the right
column corresponds to algorithm (57) and Table 1(b). The dashed
vertical lines are drawn at κζmax = bΦ ≈ 23, cf. (40). The lower
and upper parts of the colored panels represent ensembles gener-
ated from the s-model and t-model, respectively. The percentage
of correct classifications is shown in green (two different shades are
used to distinguish between the ensemble types), incorrect in red,
and uncertain in yellow (only the right column of plots).

training sets as massive as those with optical images. Second, the appearance
and properties of “signal” and “noise” in coordinate-delay SAR images, see Fig. 2,
are very different from those in photography. Hence, besides the convolution and
activation operations (i.e., nonlinearity) that are the building blocks of an image
classification CNN, we may want to use the transformations that take into account
the correlation properties of the images given by (36)–(37). Reports about successful
application of deep learning to the problems of automated target recognition in
standard SAR images are encouraging [27, 6], but at the same time the scarcity of
the real data and the difficulties in augmenting it with modelled data are recognized
as a major problem [6, 25].

As a combination of these two directions, we can apply the modern classifica-
tion techniques to the entire output of the optimization problems (54). This means
that in addition to the minimum values used in the classifier (56), we will take
into account the arguments of the minima, i.e., the minimizing scatterer intensities:
(p̆; σ̆2

α, α ∈ S)s-model× (p̆; σ̆2
α, α ∈ T )t-model, see (45) and (54). The resulting param-

eter space is 8-dimensional, which is hard to process without assistance from some
classification algorithm. In our initial trials involving a linear classifier (see, e.g.,
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Figure 6. Dependence of discrimination quality on κ, see (27).
The notations are the same as in Fig. 5.

[16, Chapter 4]), we did not observe any significant improvements as compared to
the method (56) that uses only two out of the eight parameters. This topic may
require more attention in the future.
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