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Abstract
We construct a family of compact fourth order accurate finite difference schemes for the
three dimensional scalar wave (d’Alembert) equation with constant or variable propagation
speed. High order accuracy is of key importance for the numerical simulation of waves as it
reduces the dispersion error (i.e., the pollution effect). The schemes that we propose are built
on a stencil that has only three nodes in any coordinate direction or in time, which eliminates
the need for auxiliary initial or boundary conditions. These schemes are implicit in time and
conditionally stable. A particular scheme with the maximum Courant number can be chosen
within the proposed class. The inversion at the upper time level is done by FFT for constant
coefficients and multigrid for variable coefficients, which keeps the overall complexity of
time marching comparable to that of a typical explicit scheme.
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1 Introduction

In this paper, we consider an initial boundary value problem the three dimensional wave
(d’Alembert) equation:

utt = c2Δu + F(x, t), (x, t) ∈ Ω × (0, T ], (1a)

u(x, 0) = φ(x), x ∈ Ω, (1b)

ut (x, 0) = ϕ(x), x ∈ Ω, (1c)

u|∂Ω = 0, t ∈ (0, T ], (1d)

where Ω ⊂ R
3, the wave speed c may vary in space, and the source term F is given.

Equation (1a) provides a simple yet relevant model for a broad range of unsteady wave prop-
agation phenomena in acoustics and electromagnetism. The excitation F(x, t) in acoustics
works via altering the balance of mass and/or momentum of the fluid, see [19, Section 4.1].
In electromagnetism, F(x, t) can be interpreted as density of the extraneous electric current
differentiated in time.

We are interested in approximating problem (1) by finite differences with high order
accuracy. It is particularly important because of numerical dispersion. For anygiven frequency
ω and wavenumber k = ω/c, the error of a pth order accurate scheme is proportional to
k p+1h p , where h is the discretization size (see [3]). Thus, to maintain a fixed discretization
error the number of points per wavelength∼ (kh)−1 must grow as k1/p . This phenomenon is
known as pollution [2,3,12]. The error growth O(k1/p) decreases as the order of the scheme
p increases. Therefore, a natural way of reducing the pollution effect is to increase the order
of accuracy of the scheme.

Furthermore, we are interested in building a finite difference approximation on a compact
stencil in both space and time. In [9], we have derived a scheme for the two-dimensional
wave equation; it uses three consecutive time levels and a 3 × 3 stencil in space. In 3D,
our goal is to construct a compact scheme that would also have no more than three nodes in
each spatial direction or time. Compact finite difference approximations require no additional
initial or boundary conditions beyond those needed for the differential equation itself (see
conditions (1b)–(1d) for Eq. (1a)). This is an important advantage compared to the more
traditional high order schemes that employ wider stencils. Previously, compact high order
accurate finite difference schemes have been developed for various models, including the
Helmholtz equation [8,16,25] and Navier–Stokes equations [1,13,29].

Compact finite difference schemes for the wave equation (1a) have to be implicit in time.
Otherwise, the discretization will require more than three time levels. Therefore, to compute
the solution at the upper time level one needs to solve a system of linear algebraic equations.
For the schemes that we are proposing, this system is obtained as a finite difference coun-
terpart to the modified Helmholtz equation Δu − κ2u = f , which is elliptic and symmetric
negative definite. The coefficient κ2 in this equation is constant if the propagation speed
c is constant; otherwise, κ2 also varies. In the case of a constant κ2, the inversion at the
upper time level is done by FFT at a log-linear cost with respect of the grid dimension in
space. This yields the overall complexity of time marching comparable to that of a typical
explicit scheme. In the case of a variable κ2, we do not want the complexity to deteriorate.
Therefore, we choose multigrid iterations to do the inversion at the upper time level. Indeed,
their convergence rate does not depend on the condition number of the matrix [6]. For finite
difference approximations of second order elliptic operators, the latter is usually O(h−2).

The main objective of this paper is do derive and test the fourth order compact scheme
for Eq. (1a) per se, while leaving the discussion of its applications to future publications.
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Therefore, it is sufficient to choose an otherwise simple setting for the initial boundary
value problem (1). The fourth order compact scheme (i.e., family of schemes) will be built
on a uniform Cartesian grid, and the domain Ω will be a Cartesian parallelepiped. The
boundary condition (1d) is homogeneous Dirichlet, i.e., the simplest possible. We realize, of
course, that for the analysis of practical problems more capabilities will need to be added.
Therefore, we will later incorporate the currently proposed scheme into a broader framework
that includes the method of difference potentials (MDP) by Ryaben’kii [23] and lacunae-
based time marching [22]. It will allow us to compute the solutions with various types of
boundary conditions, not only simple ones, such as the Dirichlet or Neumann boundary
conditions, but also Robin (i.e., impedance), Zaremba (i.e., mixed), nonlocal, etc. It will also
allow us to accommodate the non-conforming boundaries with no loss of accuracy (e.g., the
scattering shapes). Note that in [10], the MDP was applied to the 2D wave equation. We also
plan to develop a PML closure [4] at the artificial outer boundary to enable the simulation of
exterior problems.

The rest of the paper is organized as follows. In Sect. 2, we describe the implicit fourth
order accurate finite difference scheme in time. In Sect. 3, we build a family of fourth order
accurate compact schemes in space for the modified Helmholtz equation that appears on
the upper time level of the time discretization. In Sect. 4, we analyze the stability of time
marching. In Sect. 5, we describe the multigrid iterations at the upper time level and analyze
their convergence rate. In Sects. 6 and 7, we present the numerical results for the modified
Helmholtz equation and the full time marching algorithm, respectively. In Sect. 8, we draw
the conclusions and outline the directions for subsequent work.

2 Implicit Time Discretization

Let τ be the uniform time step and define tn = nτ (∀n ∈ N). Let δ2t denote the second order
central difference formula, δ2t u

n = (un+1 − 2un + un−1)/τ 2. Consider the semi-discrete
approximation to the wave equation centered at time tn :

δ2t u
n = c2Δun + θτ 2δ2t Δun + Fn + θτ 2δ2t F

n, θ ∈ R. (2)

The above is referred to as the θ -scheme [11,18]. Rearranging (2) yields:

Δun+1− un+1

θτ 2c2
= 2

(
Δun − un

θτ 2c2

)
−

(
Δun−1 − un−1

θτ 2c2

)
−1

θ
Δun− 1

θc2
Fn− 1

c2
τ 2δ2t F

n .

(3)
We define the auxiliary variable f n+1 = Δun+1 − 1

θτ 2c2
un+1, and rewrite (3) as

f n+1 = 2 f n − f n−1 − 1

θ
Δun − Gn+1 =

(
2 − 1

θ

)
f n − f n−1 − un

θ2τ 2c2
− Gn+1, (4)

where Gn+1 = 1
θc2

Fn + 1
c2

τ 2δ2t F
n = 1

θc2
Fn + 1

c2
τ 4Fn

tt . If θ = 1
12 , the semi-discrete

approximation (4) is implicit, fourth order accurate in time, and conditionally stable [9].
Therefore, advancing the time marching scheme simply amounts to solving the modified
Helmholtz equation

Δun+1 − κ2un+1 = f n+1, x ∈ Ω, (5a)

un+1|∂Ω = 0, (5b)
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where κ2 = 1
θτ 2c2

and the right hand side f n+1 depends on the inhomogeneous term of (1a)

and the previously computed solutions un and un−1. For constant speed of propagation, the
discrete modified Helmholtz equation can be solved efficiently by FFT. In the case of a
variable propagation speed, the most efficient solution methodology is multigrid iterations,
because the equation is elliptic and symmetric negative definite.

To initialize the time marching scheme we will compute the functions u0, u1, f 0, and
f 1 analytically or approximately with at least fourth order accuracy in space and time. The
variable u0 is obtained from (1b) and the variable u1 is obtained from the Taylor expansion:

u1 = u0 + τ
∂u

∂t

0

+ τ 2

2

∂2u

∂t2

0

+ τ 3

6

∂3u

∂t3

0

+ τ 4

24

∂4u

∂t4

0

+ O(τ 5)

= u0 + τ
∂u

∂t

0

+ τ 2

2

(
c2Δu0 + F0) + τ 3

6

(
c2Δu0t + F0

t

)

+ τ 4

24

(
c2Δ(c2Δu0 + F0) + F0

t t

) + O(τ 5)

= φ + τϕ + τ 2

2

(
c2Δφ + F0) + τ 3

6

(
c2Δϕ + F0

t

)

+ τ 4

24

(
c2Δ(c2Δφ + F0)

) + O(τ 5),

where the high order terms are found by differentiating (1a). A similar approach can be taken
to compute f 0 and f 1 too. In Sect. 3, we describe how to discretize the modified Helmholtz
equation using only a 3 × 3 × 3 stencil in space.

3 Fourth Order Compact (FOC) Schemes

A conventional approach to constructing fourth order accurate schemes would require fourth
order central differences or, equivalently, a stencil that extends at least five nodes in each
coordinate direction. However, we will see that an equally accurate compact scheme can be
built on a 3×3×3 stencil in space. Hence, the conventional approach necessitates additional
modification near the boundary due to the width of the stencil, while compact finite difference
schemes need no additional treatment near the boundary. For some examples of compact finite
difference schemes applied to the original Helmholtz equation see [14,16,26,28].

Given the bounded domain Ω ⊂ R
3, let Ωh denote a uniform discretization of Ω with

a step size h. Given the node (xi , y j , zk) ∈ Ωh we group the adjacent nodes as shown in
Fig. 1. The node (◦) is at the center of the stencil (xi , y j , zk). We will refer to the (�), (•),
and (˛) as the side–side, side-corner, and corner-corner nodes, respectively. In order to write
the FOC economically, let ui, j,k = u(xi , y j , zk) and define the quantities:

uss = ui+1, j,k + ui−1, j,k + ui, j+1,k + ui, j−1,k + ui, j,k+1 + ui, j,k−1,

usc = ui+1, j,k+1 + ui−1, j,k+1 + ui, j+1,k+1 + ui, j−1,k+1 + ui+1, j+1,k + ui+1, j−1,k

+ ui+1, j,k−1 + ui−1, j,k−1 + ui, j+1,k−1 + ui, j−1,k−1 + ui−1, j+1,k + ui−1, j−1,k,

ucc = ui+1, j+1,k+1 + ui−1, j+1,k+1 + ui+1, j−1,k+1 + ui−1, j−1,k+1

+ ui+1, j+1,k−1 + ui−1, j+1,k−1 + ui+1, j−1,k−1 + ui−1, j−1,k−1,

where the subscripts ss, sc, and cc refer to the side–side, side–corner, and corner–corner
stencils, respectively. Let δ2x , δ

2
y , and δ2z denote the second order central difference operators
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Fig. 1 The nodes adjacent to the center of the stencil (xi , y j , zk ) denoted by (◦). The symbols are the side–side
nodes (�), side–corner nodes (•), and corner–corner nodes (˛)

for ∂2

∂x2
, ∂2

∂ y2
and ∂2

∂z2
. Introduce three additional operators: Δh := δ2x + δ2y + δ2z , Ah :=

δ2xδ
2
y + δ2xδ

2
z + δ2yδ

2
z , and Bh := δ2xδ

2
yδ

2
z . Then,

Δhu = uss − 6ui, j,k
h2

, Ahu = usc − 4uss + 12ui, j,k
h4

, Bhu = ucc + 4uss − 2usc − 8ui, j,k
h6

.

(6)
We will derive two FOC schemes for the modified Helmholtz equation (5a). Both schemes
will have the general form:

− α0ui, j,k + αssuss + αscusc + αccucc − h2
(
β0(κ2u)i, j,k + βss(κ2u)ss

+βsc(κ2u)sc + βcc(κ2u)cc
)

= h2
(
γ 0 fi, j,k + γ ss fss + γ sc fsc + γ cc fcc

)
, (7)

where the weights α0, αss, αsc, αcc, · · · , γ cc are nonnegative real numbers that satisfy:

0 = −α0 + αss + αsc + αcc, (8a)

1 = β0 + βss + βsc + βcc, (8b)

1 = γ 0 + γ ss + γ sc + γ cc, (8c)

α0 = 6αss + 12αsc + 8αcc, (8d)

β0 > 6βss + 12βsc + 8βcc, (8e)

γ 0 > 6γ ss + 12γ sc + 8γ cc. (8f)

The resulting linear system is Qh(κ
2)uh = h2Ph fh , where the matrix Ph is symmetric

positive definite and strictly diagonally dominant because of (8f), and the matrix Qh(κ
2) is

diagonally dominant for sufficiently small h > 0 because of (8d) and (8e). For the purposes of
analysis, the linear system can be written 1

h2
Lh(κ

2)uh = fh , where Lh(κ
2) = P−1

h Qh(κ
2).

3.1 Padé Based FOC Scheme

Assuming u is smooth, Taylor’s theorem states that
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∂2u

∂x2
= δ2xu − h2

12

∂4u

∂x4
− h4

360

∂6u

∂x6
+ O(h6)

= δ2xu − h2

12

[
δ2x

(
∂2u

∂x2

)
− h2

12

∂6u

∂x6
+ O(h4)

]
− h4

360

∂6u

∂x6
+ O(h6).

After combining like terms and applying the formal inverse (1 + h2
12 δ2x )

−1, the fourth order
accurate approximation of the second derivative with respect to x is

∂2u

∂x2
=

(
1 + h2

12
δ2x

)−1

δ2xu + h4

240

(
1 + h2

12
δ2x

)−1
∂6u

∂x6
+ O(h6). (9)

Substituting (9) (and the analogous derivatives with respect to y and z) into the modified
Helmholtz equation, we have:

(
1 + h2

12
δ2x

)−1

δ2xu +
(
1 + h2

12
δ2y

)−1

δ2yu +
(
1 + h2

12
δ2z

)−1

δ2z u − κ2u

+ h4

240

(
1 + h2

12
δ2x

)−1
∂6u

∂x6
+ h4

240

(
1 + h2

12
δ2y

)−1
∂6u

∂ y6

+ h4

240

(
1 + h2

12
δ2z

)−1
∂6u

∂z6
+ O(h6) = f . (10)

Multiplying (10) by

(
1 + h2

12
δ2x

) (
1 + h2

12
δ2y

) (
1 + h2

12
δ2z

)
= 1 + h2

12
Δh + h4

144
Ah + h6

1728
Bh

implies that

(
Δh + h2

6
Ah + h4

48
Bh

)
u −

(
1 + h2

12
Δh + h4

144
Ah + h6

1728
Bh

)
(κ2u)

=
(
1 + h2

12
Δh + h4

144
Ah + h6

1728
Bh

)
f + T Pade

h , (11)

where the truncation error is

T Pade
h = − h4

240

(
∂6u

∂x6
+ ∂6u

∂ y6
+ ∂6u

∂z6

)
+ O(h6).

Finally, rescaling (11) by a factor of h2, dropping the truncation error term, and replacing
the difference operators with (6), yields the Padé based FOC scheme:

− 25

6
ui, j,k + 5

12
uss + 1

8
usc + 1

48
ucc

− h2
(
125

216
(κ2u)i, j,k + 25

432
(κ2u)ss + 5

864
(κ2u)sc + (κ2u)cc

1728

)

= h2
(
125

216
fi, j,k + 25

432
fss + 5

864
fsc + fcc

1728

)
.
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3.2 Equation Based FOC Scheme

The key idea behind equation based schemes is to explicitly remove one or several leading
terms in the expansion of the truncation error, while computing the higher order derivatives
of the solution in those terms by differentiating the governing differential equation itself,
see [26] or [7]. In the case of a fourth order compact scheme obtained from the baseline
second order central difference scheme, the resulting expression will usually consist of mixed
partial derivatives of u and f with at most two derivatives taken in any given variable. As a
result, we can approximate the required high order derivatives with second order accuracy
using only nodes in the 3 × 3 × 3 stencil shown in Fig. 1.

In this section, we construct a family of fourth order accurate equation based schemes.
From this family, we can choose specific schemes with most favorable properties, e.g., those
with the smallest stencil or those with the largest stability region. In Sect. 3.2.1, we derive a
particular scheme from the family in great detail. In Sect. 3.2.2,we derive the entire parametric
family of schemes by slightly modifying the results of Sect. 3.2.1.

3.2.1 Canonical Equation Based Scheme

For sufficiently smooth u, the Taylor expansion of the Laplacian is

Δu = Δhu − h2

12

(
∂4u

∂x4
+ ∂4u

∂ y4
+ ∂4u

∂z4

)
− h4

360

(
∂6u

∂x6
+ ∂6u

∂ y6
+ ∂6u

∂z6

)
+ O(h6). (12)

Applying the derivatives ∂2

∂x2
, ∂2

∂ y2
, and ∂2

∂z2
separately to the modified Helmholtz equation

(5a), we have:

∂4u

∂x4
+ ∂4u

∂x2∂ y2
+ ∂4u

∂x2∂z2
− ∂2

∂x2
(κ2u) = ∂2 f

∂x2
, (13a)

∂4u

∂x2∂ y2
+ ∂4u

∂ y4
+ ∂4u

∂ y2∂z2
− ∂2

∂ y2
(κ2u) = ∂2 f

∂ y2
, (13b)

∂4u

∂x2∂z2
+ ∂4u

∂ y2∂z2
+ ∂4u

∂z4
− ∂2

∂z2
(κ2u) = ∂2 f

∂z2
. (13c)

Combining Eqs. (13a)–(13c), we can write:

∂4u

∂x4
+ ∂4u

∂ y4
+ ∂4u

∂z4
+ 2

(
∂4u

∂x2∂ y2
+ ∂4u

∂x2∂z2
+ ∂4u

∂ y2∂z2

)
− Δ(κ2u) = Δ f . (14)

Then, substituting (14) into (12) we arrive at

Δu = Δhu − h2

12
Δ( f + κ2u) + h2

6

(
∂4u

∂x2∂ y2
+ ∂4u

∂x2∂z2
+ ∂4u

∂ y2∂z2

)

− h4

360

(
∂6u

∂x6
+ ∂6u

∂ y6
+ ∂6u

∂z6

)
+ O(h6). (15)

At this point, we could have replaced the derivatives in the∼ h2
6 term on the right-hand side of

(15) withAh of (6), which would preserve fourth order accuracy, and then continue similarly
to (9)–(11). However, the resulting discrete modified Helmholtz equation appears deficient.
Its right-hand side operator Ph is positive but only semidefinite, which does not allow one to
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apply the stability analysis of Sect. 4. Moreover, we observed difficulties with convergence
of the time marching scheme. To remedy those, we have developed the following approach.

The fourth order derivatives ∂4

∂x2∂ y2
, ∂4

∂x2∂z2
, and ∂4

∂ y2∂z2
of the modified Helmholtz equa-

tion (5a) are

∂6u

∂x4∂ y2
+ ∂6u

∂x2∂ y4
+ ∂6u

∂x2∂ y2∂z2
− ∂4

∂x2∂ y2
(κ2u) = ∂4 f

∂x2∂ y2
, (16a)

∂6u

∂x4∂z2
+ ∂6u

∂x2∂ y2∂z2
+ ∂6u

∂x2∂z4
− ∂4

∂x2∂z2
(κ2u) = ∂4 f

∂x2∂z2
, (16b)

∂6u

∂x2∂ y2∂z2
+ ∂6u

∂ y4∂z2
+ ∂6u

∂ y2∂z4
− ∂4

∂ y2∂z2
(κ2u) = ∂4 f

∂ y2∂z2
. (16c)

The sum of Eqs. (16a)–(16c) can be written as

∂6u

∂x4∂ y2
+ ∂6u

∂x2∂ y4
+ ∂6u

∂x4∂z2
+ ∂6u

∂x2∂z4
+ ∂6u

∂ y4∂z2
+ ∂6u

∂ y2∂z4
+ 3

∂6u

∂x2∂ y2∂z2

−
(

∂4

∂x2∂ y2
+ ∂4

∂x2∂z2
+ ∂4

∂ y2∂z2

)
(κ2u) =

(
∂4

∂x2∂ y2
+ ∂4

∂x2∂z2
+ ∂4

∂ y2∂z2

)
f .

(17)

Next, the Taylor formula yields:

Δ(κ2u) = Δh(κ
2u) − h2

12

(
∂4

∂x4
+ ∂4

∂ y4
+ ∂4

∂z4

)
(κ2u) + O(h4) (18)

and

∂4u

∂x2∂ y2
+ ∂4u

∂x2∂z2
+ ∂4u

∂ y2∂z2
= Ahu

− h2

12

(
∂6u

∂x4∂ y2
+ ∂6u

∂x2∂ y4
+ ∂6u

∂x4∂z2
+ ∂6u

∂x2∂z4
+ ∂6u

∂ y4∂z2
+ ∂6u

∂ y2∂z4

)
+ O(h4).

(19)

Substituting (17) into (19), we have:

∂4u

∂x2∂ y2
+ ∂4u

∂x2∂z2
+ ∂4u

∂ y2∂z2
= Ahu − h2

12

(
∂4 f

∂x2∂ y2
+ ∂4 f

∂x2∂z2
+ ∂4 f

∂ y2∂z2

)

− h2

12

(
∂4

∂x2∂ y2
+ ∂4

∂x2∂z2
+ ∂4

∂ y2∂z2

)
(κ2u)

− h2

4

(
∂6u

∂x2∂ y2∂z2

)
+ O(h4)

= Ahu − h2

12
Ah(κ

2u) − h2

12

(
∂4 f

∂x2∂ y2

+ ∂4 f

∂x2∂z2
+ ∂4 f

∂ y2∂z2

)
− h2

4

(
∂6u

∂x2∂ y2∂z2

)
+ O(h4).

(20)
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Combining (15), (18), and (20) with the modified Helmholtz equation (5a), we obtain:

Δhu + h2

6
Ahu −

[
1 + h2

12
Δh + h4

72
Ah

]
(κ2u)

= f + h2

12
Δ f + h4

72

(
∂4 f

∂x2∂ y2
+ ∂4 f

∂x2∂z2
+ ∂4 f

∂ y2∂z2

)
+ R, (21)

where the remainder is

R = h4

360

(
∂6u

∂x6
+ ∂6u

∂ y6
+ ∂6u

∂z6

)
− h4

144

(
∂4

∂x4
+ ∂4

∂ y4
+ ∂4

∂z4

)
(κ2u)

+ h4

24

∂6u

∂x2∂ y2∂z2
+ O(h6).

Note that, we keep the ∼ h4
72 term on the right-hand side of (21) separate from the remainder

R to enable energy estimates for the analysis of stability, see Sect. 4. To approximate the
RHS terms of (21) with fourth order accuracy, we first differentiate (13a), (13b), and (13c)
twice with respect to x , y, and z, respectively, which yields:

∂6u

∂x6
+ ∂6u

∂x4∂ y2
+ ∂6u

∂x4∂z2
− ∂4

∂x4
(κ2u) = ∂4 f

∂x4
,

∂6u

∂x2∂ y4
+ ∂6u

∂ y6
+ ∂6u

∂z2∂ y4
− ∂4

∂ y4
(κ2u) = ∂4 f

∂ y4
,

∂6u

∂x2∂z4
+ ∂6u

∂ y2∂z4
+ ∂6u

∂z6
− ∂4

∂z4
(κ2u) = ∂4 f

∂z4
.

Then,

f + h2

12
Δ f + h4

72

(
∂4 f

∂x2∂ y2
+ ∂4 f

∂x2∂z2
+ ∂4 f

∂ y2∂z2

)

= f + h2

12
Δh f + h4

72
Ah f − h4

144

(
∂4 f

∂x4
+ ∂4 f

∂ y4
+ ∂4 f

∂z4

)
+ O(h6)

=
(
1 + h2

12
Δh + h4

72
Ah

)
f − h4

144

(
∂6u

∂x6
+ ∂6u

∂ y6
+ ∂6u

∂z6

)

+ h4

144

(
∂4

∂x4
+ ∂4

∂ y4
+ ∂4

∂z4

)
(κ2u)

− h4

144

(
∂6u

∂x2∂ y4
+ ∂6u

∂x4∂ y2
+ ∂6u

∂x2∂z4
+ ∂6u

∂x4∂z2
+ ∂6u

∂ y2∂z4
+ ∂6u

∂ y4∂z2

)
+ O(h6).

(22)

Combining (21) and (22), we have:

Δhu + h2

6
Ahu −

[
1 + h2

12
Δh + h4

72
Ah

]
(κ2u) =

(
1 + h2

12
Δh f + h4

72
Ah

)
f + T EB

h ,

(23)
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where the truncation error is

T EB
h = T Pade

h + h4

24

(
∂6u

∂x2∂ y2∂z2

)
− h4

144

(
∂6

∂x2∂ y4
+ ∂6

∂x4∂ y2
+ ∂6

∂x2∂z4

+ ∂6

∂x4∂z2
+ ∂6

∂ y4∂z2
+ ∂6

∂ y2∂z4

)
u + O(h6). (24)

Finally, rescaling (23) by a factor of h2, dropping the truncation error (24), and replacing the
difference operators with (6), yields the canonical FOC Equation Based scheme:

−4ui, j,k+ uss
3

+ usc
6

−h2
(
2

3
(κ2u)i, j,k + (κ2u)ss

36
+ (κ2u)sc

72

)
= h2

(
2

3
fi, j,k + fss

36
+ fsc

72

)
.

(25)

3.2.2 Family of Equation Based FOC Scheme

We derive a one parameter family of equation based schemes by extending the analysis of
Sect. 3.2.1. Let EB(ρ) denote the equation based scheme, where the parameter ρ ∈ R. First
consider the finite difference operator

Âhu := 1

2h4
(
ucc − 4uss + 16ui, j,k

)
.

Using the multivariate Taylor’s formula, we can write:

∂4u

∂x2∂ y2
+ ∂4u

∂x2∂z2
+ ∂4u

∂ y2∂z2

= Âhu − h2

12

(
∂6

∂x2∂ y4
+ ∂6

∂x4∂ y2
+ ∂6

∂x2∂z4
+ ∂6

∂x4∂z2
+ ∂6

∂ y4∂z2
+ ∂6

∂ y2∂z4

)
u

− h2

2

∂6u

∂x2∂ y2∂z2
+ O(h4).

Next, for any ρ ∈ R define the new finite difference operator

Ãp
h u :=

[
ρAh + (1 − ρ)Âh

]
u = 1

h4

(
−2(ρ + 1)uss + ρusc + 1 − ρ

2
ucc + 4(ρ + 2)ui, j,k

)
.

Consequently,

∂4u

∂x2∂ y2
+ ∂4u

∂x2∂z2
+ ∂4u

∂ y2∂z2

= Ãρ
hu − h2

12

(
∂6

∂x2∂ y4
+ ∂6

∂x4∂ y2
+ ∂6

∂x2∂z4
+ ∂6

∂x4∂z2
+ ∂6

∂ y4∂z2
+ ∂6

∂ y2∂z4

)
u

− (1 − ρ)
h2

2

∂6u

∂x2∂ y2∂z2
+ O(h4). (26)

If we repeat the same steps as (15)–(22), but replace Ah with Ãρ
h and use (26) whenever we

utilize Ãp
h , then we obtain the family of equation based schemes:
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−14 + 2ρ

3
ui, j,k + 2 − ρ

3
uss + ρ

6
usc + 1 − ρ

12
ucc

− h2
(
11 + ρ

18
(κ2u)i, j,k + 2 − ρ

36
(κ2u)ss + ρ

72
(κ2u)sc + 1 − ρ

144
(κ2u)cc

)

h2
(
11 + ρ

18
fi, j,k + 2 − ρ

36
fss + ρ

72
fsc + 1 − ρ

144
fcc

)
, (27)

where the corresponding truncation error is

T EB(ρ)
h = T Pade

h + (3 − 2ρ)h4

24

(
∂6u

∂x2∂ y2∂z2

)

− h4

144

(
∂6

∂x2∂ y4
+ ∂6

∂x4∂ y2
+ ∂6

∂x2∂z4
+ ∂6

∂x4∂z2
+ ∂6

∂ y4∂z2
+ ∂6

∂ y2∂z4

)
u + O(h6).

Our family of equation based schemes (27) partitions into four distinct categories:

• If ρ = 1, we recover the canonical equation based scheme (25). The 19-point stencil
contains only the nodes (◦), (�), and (•), as shown in Fig. 1.

• If ρ = 0, the 15-point stencil contains only the nodes (◦), (˛), and (�), as shown in
Fig. 1.

• If ρ = 2, the 21-point stencil contains only the nodes (◦), (•), and (˛), as shown in Fig. 1.
• If ρ /∈ {0, 1, 2}, the equation based scheme uses the full 27-node stencil.

In Sect. 4, we will show how the parameter ρ in Eq. (27) affects the stability of the scheme.
The corresponding analysis requires that the right-hand side operator Ph be strictly diagonally
dominant. The strict diagonal dominance holds provided that |11+ρ|

18 >
|2−ρ|
6 + |ρ|

6 + |1−ρ|
18

or ρ ∈ (− 1
2 , 3). Similarly, the matrix Qh(κ

2) is diagonally dominant for sufficiently small
h > 0 and for any ρ ∈ (− 1

2 , 3).

4 Stability Criteria

Let λ = λ(x) denote the CFL number:

λ(x) = c(x)τ

h
, (28)

where h is the grid size in space and τ is the time step. Let Lh(0) denote the left-hand side
operator of the FOC scheme applied to the Laplace equation (i.e., Eq. (5a) for κ2 = 0). In [9],
stability of this scheme was studied using the energy estimates. Specifically, the energy was
taken as ‖un − un−1‖2 + ‖un + un−1‖2, which is equivalent to ‖un‖2 + ‖un−1‖2 if and only
if 1/λ(x)2 − (1/4 − θ)Lupper � 0, where 0 < (−Lh(0)u, u) � Lupper‖u‖2 for all u. As
the fourth order accuracy is achieved for θ = 1

12 , the fourth order time marching scheme is
stable provided that

max
x∈Ω

λ2(x) � 6/Lupper.

To compute the quantity Lupper, assume that the FOC scheme (7) has periodic boundary
conditions and a constant wave speed. Then, we can take the Fourier transform (in space) and
apply the Parseval equality to conduct the analysis in the frequency domain. As 1

h2
Lh(0) =
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Fig. 2 Lupper for the equation based scheme for ρ = − 6
32 ,− 5

32 , . . . , 63
32 , 64

32

P−1
h Qh(0), the Fourier transform of −Lh(0) is given by

−L(ξ, η, ζ ) = α0 − 2αss X(ξ, η, ζ ) − 4αscY (ξ, η, ζ ) − 8αcc Z(ξ, η, ζ )

β0 + 2βss X(ξ, η, ζ ) + 4βscY (ξ, η, ζ ) + 8βcc Z(ξ, η, ζ )
, (29)

where (ξ, η, ζ ) ∈ [−π, π]3 and
X(ξ, η, ζ ) = cos(ξ) + cos(η) + cos(ζ ),

Y (ξ, η, ζ ) = cos(ξ) cos(η) + cos(ξ) cos(ζ ) + cos(η) cos(ζ ),

Z(ξ, η, ζ ) = cos(ξ) cos(η) cos(ζ ).

For both the Padé scheme and equation based scheme, the denominator of (29) is never zero
since Ph is strictly diagonally dominant. Using the maximize subroutine of Mathematica,
we can find:

LPade
upper = max

(ξ,η,ζ )∈[−π,π ]3
|LPade| = |LPade(π, π, π)| = 18,

LEB(1)
upper = max

(ξ,η,ζ )∈[−π,π ]3
|LEB(1)| = |LEB(1) (π, π, 0) | = 48

5
.

In Fig. 2, we show the effect that the parameter ρ has on the quantity LEB(ρ)
upper . As ρ increases,

LEB(ρ)
upper monotonically decreases until is reaches the minimum value of 48/5. We observe

that for all ρ > 3/4 we have LEB(ρ)
upper = 48/5.

We also see from Fig. 2 that for all ρ < 2
5 , L

EB(ρ)
upper > LPade

upper. In this case, both schemes
utilize the full 3 × 3 × 3 stencil (27 nodes), but the Padé based scheme has a larger CFL
number and smaller truncation error.However, ifρ > 2

5 wehave L
EB(ρ)
upper � LPade

upper and theCFL
number produced by the equation based scheme is larger. If our objective is to maximize the
CFL number, then we can choose any value of ρ > 3

4 which yields Lupper = 48/5. However,
ρ = 1 and ρ = 2 are the only equation based schemes in this scenario that do not utilize
the full 27-node stencil. Consequently, if our goal is to maximize the CFL number while
minimizing the number of non-zero coefficients on the 3×3×3 stencil (the latter may affect
multigrid performance, see Sect. 5), then EB(1) and EB(2) are the best candidates.

The CFL numbers for periodic boundary conditions and a constant wave speed are given
by

λPade = 1√
3

≈ .577, λEB(1) = λEB(2) =
√
5

8
≈ .79.
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There are several other factors we could consider when trying to determine the “optimal”
parameter ρ. For example, one can take into account anisotropy and the dispersion error
along individual coordinate directions, spurious reflections, and other criteria, see, e.g., [16].

If we allow Lupper to depend on the boundary conditions and κ , then the time step must
satisfy

τ = εhλ

maxx∈Ω c(x)
,

where ε ∈ (0, 1] is a “safety factor” to accommodate the additional considerations. Note
that, the role of Eqs. (20) and (21) in the derivation of the equation based scheme is to make
it amenable to the foregoing stability analysis. If we omit (20) and (21), the RHS operator
Ph remains symmetric but becomes only positive semidefinite. Therefore, the denominator
of (29) vanishes at the point (−π,−π,−π).

We emphasize, that while the proposed scheme is implicit, its stability is only conditional.
Indeed, the implicitness of the scheme is an implication of its fourth order accuracy and
compactness in time. It corresponds to θ = 1

12 in Eq. (4), and the choice of θ (along with
the spectral properties of the spatial operator Lh) determines the stability characteristics of
the scheme. For other values of θ , one can construct the unconditionally stable schemes
of type (2), but their accuracy will not be as high as fourth order. Note also that as the
problem we are studying is linear, the stability of the scheme combined with its consistency
imply convergence. The grid convergence with the design rate (fourth order) is demonstrated
experimentally in numerical simulations of Sect. 7.

5 Multigrid

Multigrid methods are a family of fast iterative methods for solving systems of linear alge-
braic equations derived from discretizations of elliptic PDEs. Unlike other iterative methods,
such as Krylov subspaces or conjugate gradients, multigrid methods theoretically achieve
the rates of convergence that are independent of the condition number (i.e., the grid size).
Hence, multigrid methods can solve problems for a constant amount of work per unknown
regardless of the dimension N of the problem. Computational complexity of multigrid meth-
ods scales similarly to that of FFT. Namely, reducing the initial error by a prescribed factor
requiresO(N ln N ) arithmetic operations. The constants that characterize multigrid methods
are usually larger than those for FFT, but multigrid methods apply to a much broader class
of formulations including, in particular, equations with variable coefficients. Moreover, by
carefully choosing and arranging the discretization variables, the constant in the O(N ln N )

estimate can be made fairly modest.
The main principle of multigrid methods is to write the error as a linear combination of

high frequency modes and low frequency modes. Then, the error is attenuated using several
nested grids. More specifically, the high frequency components of the error on a given grid
are damped by a smoother, while the low frequency components of the error are damped by
a combination of the coarse grid correction and recursion. For a complete introduction to
multigrid methods see the texts [6,24]. For a more advanced treatment of multigrid methods
see [27].

In Sect. 5.1, we give a short introduction to multigrid methods. Specifically, we list the
main components of multigrid iterations and illustrate the above concepts using the simplest
multigrid method, the two-grid cycle. We also illustrate the V ,W , and F cycles, and explain
how we plan on adapting multigrid methods to the time marching scheme.
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In Sect. 5.2, we estimate the rate of convergence of multigrid methods as applied to
the modified Helmholtz equation (5a). We use local Fourier analysis to obtain theoretical
predictions and compare those against the convergence factors evaluated numerically for
several different examples.

5.1 Multigrid Methods

Suppose that we have � nested grids: Ωh ⊃ Ω2h ⊃ · · · ⊃ Ω2�−1h . Then, standard multigrid
methods require the following components:

• Coarse grid operator L2i−1h : Ω2i−1h → Ω2i−1h is the operator of the linear system that
corresponds to the grid Ω2i−1h . In this paper, L2i−1h is the operator derived from the
scheme (7) on the grid with size of 2i−1h.

• Smoother Si : Ω2i−1h → Ω2i−1h is an iterative solver that damps the high frequency
components of the error while leaving the low frequency components largely unaffected.
Jacobi iterations, Gauss–Seidel iterations, or successive overrelaxation (SOR) are com-
monly used as smoothers. Hereafter, “smoothν(L2i−1h, v2i−1h, f2i−1h)” will indicate that
the smoother is applied ν times to the linear system with the operator L2i−1h , solution
v2i−1h , and RHS f2i−1h .

• Restriction operator Ri+1
i : Ω2i−1h → Ω2i h takes a coarse grid node and assigns its

value as a weighted average of neighboring nodes of the fine grid. The injection and full
weighting operators are commonly used.

• Prolongation operator P i
i+1 : Ω2i h → Ω2i−1h takes a node in Ω2i−1h\Ω2i h and uses

polynomial interpolation from the neighboring nodes of the coarse grid to define the grid
function at this node. If the node belongs to Ω2i−1h

⋂
Ω2i h , then the value of the grid

function is unmodified. Otherwise, linear interpolation along each axis (tri-linear inter-
polation) or cubic interpolation along each axis (tri-cubic interpolation) are commonly
used for prolongation.

The two-grid method (� = 2) schematically shown in Fig. 3 is the simplest multigrid
method. It provides a convenient framework for showing how the foregoing components
interact. Given the mth iterate, the smoother is applied ν1 times to damp the high frequency
components of the error on the fine grid. To attenuate the low frequency components of the
error, one uses a process called coarse grid correction. Let Lhuh = fh and assume that the
current iterate is vh . Then, the error eh = uh − vh must satisfy Lheh = fh − Lhvh = rh .
Coarse grid correction approximates the error using a coarse grid. Specifically, one computes
the residual on the fine grid, maps it onto the coarse grid with the restriction operator, solves
the analogous coarse grid linear system L2he2h = r2h , and then uses prolongation to map
the coarse grid error e2h to the fine grid. Once the prolongated coarse grid error is combined
with the fine grid approximation of the solution, the coarse grid correction is completed. The
last step is to apply the smoother ν2 times to damp any remaining error. That concludes one
iteration of the two-grid cycle.

In practice, we do not employ the two-grid cycle per se. We rather use it to construct more
advanced multigrid methods. Consider the coarse grid system L2he2h = r2h as shown in
Fig. 3. The two-grid method requires that we solve the linear system on the coarse grid. If we
treat the residual r2h as a generic RHS vector, we can apply the two-grid method once more
as a solver. Thus, more advancedmultigrid methods can be obtained by applying the two-grid
cycle recursively. Examples are provided by the V, F, and W cycles that are schematically
shown in Fig. 4 in the case of a total of four nested grids. We generally refer to this family of
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Fig. 3 Schematic of the two-grid cycle. Lh denotes the operator of the linear system, fh is the RHS vector,

rh is the residual, v(m)
h is the mth iterate, and eh is the error

Fig. 4 Schematic of the three commonly used multigrid cycles (MGCYC) in the case of four nested grids,
Ωh , Ω2h , Ω4h , and Ω8h , and standard coarsening. The symbols (•) denote pre-smoothing steps, (◦)—post-
smoothing steps, (�)—direct solver or fast iterative solver, (↘)—restriction, and (↗)—prolongation

multigrid methods as multigrid cycles (MGCYC). Algorithm 1 explicitly states the details
of the V cycle. It can easily be extended to perform F and W cycles as well.

Algorithm 1 The V (ν1, ν2) cycle when using � grids: v
( j+1)
h = MGCYC-V(�, ν1, ν2, v

( j)
h ,

Lh , fh)
1: Let bh = fh , wh = vmh , and w2i−1h = 0 = b2i−1h for i = 2, 3, · · · , � � Initialize the RHS and initial

guesses on every level.
2: for i = 1 to � − 1 do
3: w2i−1h ← smoothν1 (L2i−1hw2i−1h , b2i−1h) � Apply smoother ν1 times.

4: b2i h ← Ri+1
i (b2i−1h − L2i−1hw2i−1 ) � Restrict residual to the next grid.

5: for i = � downto 1 do
6: if i = � then
7: L2�−1hw� = b� � Direct solve or fast iterative solver on the �th grid.

8: w2�−2h ← w2�−2h + P�
�−1w2�−1h � Correct the iterate on (� − 1)th grid using prolongation.

9: else if � < i < 1 then
10: w2i−1h ← smoothν2 (L2i−1h , w2i−1h , b2i−1h) � Apply smoother ν2 times.

11: w2i−2h ← w2i−2h + P i−1
i w2i−1h � Correct the iterate on (i − 1)th grid.

12: else if i == 1 then
13: wh ← smoothν2 (Lh , wh , bh) � Apply smoother ν2 times on the finest grid.

14: v
( j+1)
h ← wh � Obtain the next iterate

The computational complexity of multigrid iterations O(N ln N ) arithmetic operations
since the rate of reduction in the error is constant (does not depend on N ). However, the
actual cost also depends on the initial guess because it is the initial guess that determines the
initial error, from which the multigrid reduction starts off. The time marching scheme has
access to two solutions on the previous time levels. These two approximations can be used
to generate a very good initial iterate and obtain a cost reduction compared, say, to simply
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setting the initial guess to zero. Suppose we want to solve the discrete modified Helmholtz
equation (5a) on the upper time level tn+1. The Taylor formula yields:

un+1 + un−1 = 2un + τ 2
∂2un

∂t2
+ τ 4

12

∂4un

∂t4
+ O(τ 6),

un+1 = 2un − un−1 + τ 2
(
c2Δun + Fn) + τ 4

12

∂4un

∂t4
+ O(τ 6),

= 2un − un−1 + τ 2
(
c2Δhu

n + Fn)

− h2τ 2

12
c2

(
∂4un

∂x4
+ ∂4un

∂ y4
+ ∂4un

∂z4

)
+ τ 4

12

∂4un

∂t4
+ O(τ 6),

where Δh is the central difference second order discrete Laplacian. Consequently, equation

wn+1 = 2un − un−1 + τ 2
(
c2Δhu

n + Fn) (30)

provides a fourth order initial guess for the modified Helmholtz equation on the upper time
level tn+1. On the right-hand side of (30), un and un−1 are known with fourth order accuracy,
the term Fn can be evaluated on the grid up to machine precision, andΔhun can be computed
by a sparse matrix vector product.

Another way to provide a good initial guess to MGCYC is to employ the procedure called
nested iteration. It provides an initial iterate to the fine grid problem by solving the analogous
linear system on a coarse grid and using a high order prolongation operator. The output of
high order prolongation will serve as the initial guess on the fine grid. Of course, this idea
can be applied using several nested grids. Nested iteration combined with multigrid cycles
yields the full multigrid method (FMG). Algorithm 2 depicts the full multigrid method in
detail. The FMG requires that the RHS vector is assembled on every level. Therefore, we
need to do that using (4) for each auxiliary grid. In addition to that, when applying several
consecutive multigrid cycles (ν3 in the construct of Algorithm 2), it is the solution from the
previous cycle that provides the initial guess to the next one.

Algorithm 2 The full multigrid method with � grids: uh = FMG(�, ν1, ν2, ν3, Lh, fh)
1: Construct the right hand side vector on every level
2: for i = � downto 1 do
3: if i = � then
4: Solve L2�−1hu2�−1h = f2�−1h � Solve directly or use a fast iterative solver on the coarsest grid.

5: u2�−2h ← P�−1
�

u2�−1h � Use high order interpolation operator to provide initial guess to the next
finest grid.

6: else if � < i � 1 then
7: for j = 1 to ν3 do
8: u2i−1h = MGCYC(� + 1 − i , ν1, ν2, u2i−1h , L2i−1h , f2i−1h ) � Apply ν3 consecutive

multigrid cycles.
9: if i �= 1 then
10: u2i h = P i−1

i u2i−1h � Use high order interpolation operator to provide initial guess to the next
finest grid.

The most common smoothers used for standard multigrid iterations are the damped Jacobi
method, lexicographic Gauss–Seidel [17], or SOR. In [9], the rate of convergence was esti-
mated by performing an eigenvalue analysis of the damped Jacobi method. This is possible
since the eigenvectors of the linear system Lh and the damped Jacobi method coincide. Yet
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it is no longer true if Gauss–Seidel is used as the smoother. Generally, the Gauss–Seidel
method is known to have better smoothing properties than damped Jacobi iterations [27].

In Sect. 5.2, we estimate numerically the multigrid convergence rate when Gauss–Seidel
is used as the smoother and compare the results against the theoretical predictions by local
Fourier analysis [6,27].

According to Trottenberg et al. [27], the order of the restriction operator plus that of the
prolongation operator should exceed the order of the differential operator to achievemultigrid
convergence. Therefore, injection (zeroth order) plus tri-cubic interpolation (fourth order) or
full weighting (second order) plus tri-linear interpolation (second order) are both sufficient
combinations of restriction and prolongation operators.We chose full weighting and tri-cubic
interpolation as our particular combination. However, we empirically observed that any of
the above combinations produces similar results. Finally, we chose tri-quartic interpolation
as our high order interpolation operator for FMG, since the finite difference scheme is fourth
order accurate.

To summarize, in our simulations that involve multigrid iterations (Sects. 6 and 7) we
choose the following components:

• Smoother—Gauss–Seidel,
• Restriction operator—full weighting,
• Prolongation operator—tri-cubic interpolation,
• High order (FMG) interpolation operator—tri-quartic interpolation.

5.2 Multigrid Convergence Rate

Local Fourier analysis (LFA) provides sharp estimates of the multigrid convergence rate for a
large class of linear elliptic PDEs [5]. A detailed account of LFA can be found, e.g., in [6,27].

Let ω denote the amplification factor of the Gauss–Seidel smoother Sh applied to the
compact scheme (7). It depends on the frequency θ = (θ1, θ2, θ3) ∈ [−π, π]3 on the grid
and on the quantity h2κ2. In the context of time marching, κ2 is inversely proportional to the
square of the time step τ , see the definition given right after Eq. (5b). Hence, the quantity h2κ2

is inversely proportional to the CFL number (28) squared, as follows from the discussion of
stability in Sect. 4. In the case of a variable κ2 = κ2(x), the amplification factor is introduced
by freezing the coefficient κ2(x) and thus, in addition to θ , it depends on the location x where
the coefficient κ2 is frozen.

The smoothing factor is commonly defined as

μ = μ(h2κ2) = max
θ∈ΘH

|ω(θ , h2κ2)|, (31)

whereΘH = [−π, π]3\[−π
2 , π

2 )3 is the subset of high frequencies on thegrid. In the simplest
case of a constant κ2 whereμ of (31) does not depend on x, the smoothing factor immediately
provides an estimate of how slowly the high frequency modes on the grid may decay when
damped by Sh . This, in turn, allows one to estimate the multigrid convergence rate. For
example, if we perform a V (ν1, ν2) cycle, then the error should be expected to decrease by
a factor of approximately μν1+ν2 . In the case of a variable κ2 where μ of (31) depends on
the location x at which κ2(x) is frozen, the slowest decay (i.e., the worst case scenario)
corresponds to the maximum value of μ across all x. For the Gauss–Seidel smoother applied
to the FOC scheme (7), this translates into μ = μ(h2κ2

min), where κ2
min = minx κ2(x).

Figure 5 shows the LFA produced smoothing factor (31) as a function of h2κ2. Clearly,
μ(h2κ2) decreases as h2κ2 increases for both the equation based and Padé scheme, which
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Fig. 5 Smoothing factor μ = μ(h2κ2) for Gauss–Seidel

implies faster convergence. In the time-dependent framework, we have h2κ2 = 1
θλ2

, where

θ = 1
12 enables fourth order accuracy in time (see Sect. 2), and the Courant number λ of

(28) has a scheme-dependent upper bound that guarantees the stability of time marching (see
Sect. 4).

Another way to estimate the rate of multigrid convergence is to evaluate the convergence
factor ρ = lim

m→∞ ‖r (m)
h ‖/‖r (m−1)

h ‖ numerically, where r (m)
h is the residual of the mth iterate:

r (m)
h = Ph fh − 1

h2
Qh(κ

2)v
(m)
h . To do so, we compute the two quantities:

q(m) = ‖r (m)
h ‖/‖r (m−1)

h ‖, (32a)

q̂(m0,m) = m−m0

√
q(m0+1) · q(m0+2) · · · q(m) = m−m0

√
‖r (m)

h ‖/‖r (m0)
h ‖, (32b)

where m0 and m are sufficiently large to observe the asymptotic rate of convergence. A
convenient setting for this numerical evaluation is the homogeneous counterpart of prob-
lem (5a)–(5b), for which the right-hand side of the modified Helmholtz equation is zero,

discretized on a cube Ω =
[

− π
2 , π

2

]3
.

Table 1 compares the numerically computed convergence factors (32a) and (32b) to the
LFA predicted convergence rate for several different functions κ2(x). When the total number
of smoothing steps ν1 + ν2 is less than or equal to two, the convergence factors (32a) and
(32b) agree with the LFA prediction for both the Padé and equation based scheme. However,
once more than three (two) total smoothing steps for the Padé (equation based) scheme are
performed, the LFA tends to over-predict the convergence rate. A similar observation was
made in [27, Remark 2.5.4] as well. Note that, the value of κ2 = 0 that transforms the
modified Helmholtz equation into the Laplace (Poisson) equation is included in Table 1 only
for comparison purposes. It does not correspond to any time marching scheme.

6 Numerical Results for theModified Helmholtz Equation

6.1 Constant Coefficients

Consider a homogeneous Dirichlet problem for the modified Helmholtz equation on a cubic
domain Ω [cf. (5)]:

Δu − κ2u = f , x ∈ Ω = (0, 1) × (0, 1) × (0, 1),

u(x) = 0, x ∈ ∂Ω.
(33)
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Fig. 6 The discretization error for Test Problem 1 when solved on the sequence of grids with sizes h =
1
16 , 1

32 , · · · , 1
1024 . The discrete solution uh was computed using the FFT

Table 2 Mean run time (s) for
simulations in Fig. 6

h Padé Equation based

1/64 .0269 .0244

1/128 .2030 .2036

1/256 2.058 2.014

1/512 17.31 17.65

1/1024 184.1 180.3

For Test Problem 1, define the analytic solution as u(x, y, z) = sin(πx) sin(2π y) sin(3π z).
The correspondingRHS f in (33) is generated by substitutingu under themodifiedHelmholtz
operator for a specified κ2, which is constant in space.

Let u(h) denote the analytic solution evaluated on the appropriate uniform Cartesian grid
with size h and uh denote the solution to the discretized problem (33) on the corresponding
grid domain Ωh . We measure the error in all of our experiments with the discrete �2-norm:

‖u(h) − uh‖�2 = ‖eh‖�2 = h3/2
√ ∑

(xi ,y j ,zk )∈Ωh

|eh(xi , y j , zk)|2.

The quantity ‖u(h) − uh‖�2 is the discretization error.
In Fig. 6,we show the error as a function of hwhen solvingTest Problem1 for κ2 = 1, 100,

and 1000 by means of the FFT. Since the error graphs are parallel to the reference line that
represents the dependence ∼ h4, fourth order convergence is achieved. We also observe that
as the quantity κ2 increases, the error decreases.

Table 2 shows the run time for the simulations depicted in Fig. 6. When the grid size is
reduced by a factor of two, the total number of grid points increases eight times, and the run
time increases approximately 8–10 times. Thismatches our expectations as the computational
complexity of FFT is O(N log N ).

6.2 Variable Coefficients

We consider the same homogeneous Dirichlet problem (33) for the modified Helmholtz
equation, but let the quantity κ2 vary. For Test Problem 2, we take κ2(x, y, z) = 1 + x2 +

123

Author's personal copy



Journal of Scientific Computing (2019) 81:1181–1209 1201

0 1 2 3 4 5 6

#W (1, 1) Cycles

2−31

2−27

2−23

2−19

2−15

2−11

2−7

2−3

Er
ro
r

Padé
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Fig. 7 Convergence history for Test Problem 2 when employing W (1, 1) cycles
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Fig. 8 Convergence history for Test Problem 3 when employing W (1, 1) cycles

y2 + z2 and define the analytic solution as u(x, y, z) = sin(πx) sin(2π y) sin(3π z). For
Test Problem 3, we take κ2(x, y, z) = 2 + cos(e3x ) cos(e2y) cos(e3z) in (33) and define the
analytic solution as u(x, y, z) = sin(5πx) sin(7π y) sin(5π z). The corresponding RHS f
in (33) is generated by substituting a given u under the modified Helmholtz operator for a
given κ2.

In the case of variable coefficients, we also redefine the error. Let u(h) denote the analytic
solution evaluated on the appropriate grid,uh denote the exact solution to the discretemodified
Helmholtz equation on Ωh , and vh denote the approximate solution computed on Ωh by
multigrid iterations. The overall error is the error of our approximate solution vh : ‖u(h) −
vh‖�2 . We want it to be as close as possible to the discretization error: ‖u(h) − vh‖�2 ≈
‖u(h) − uh‖�2 .

Figures 7 and8 show the error history forTest Problem2andTest Problem3when applying
several consecutive W (1, 1) cycles. The first W (1, 1) cycle is initiated with the initial guess
v

(0)
h = 0, while for all subsequent cycles the solution on the previous one initiates the next
one. We notice that the error levels off as the number of cycles increases. This implies that
the error of the approximate solution approaches the discretization error. We also see that
the graphs from the first to second cycle (and the second to third cycle as well) are roughly
parallel on each grid. This indicates that the rate of reduction in the error is roughly the same
on every grid once the approximate solution is sufficiently close to the true solution. Finally,
we observe that fourth order convergence is attained. The distance between the tick marks
on the y axis and the distance between the horizontal portions of each graph are roughly the
same. Since the y axis has a base 2 scale, each tick mark represents a factor of 16.

Table 3 presents mean run times for several V and W cycles. Note that, as we reduce the
step size in half we increase the total number of grid points by a factor of about eight. We
observe that the run time also increases by a factor of about eight when cutting the step size
in half. Comparing the data in Tables 2 and 3 we see that while the multigrid execution times
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Table 3 Mean run time per cycle (s) for several MGCYC applied to Test Problem 2 and Test Problem 2

Scheme h Test Problem 2 Test Problem 3

V(1,1) W(1,1) V(1,2) W(1,2) V(1,1) W(1,1) V(1,2) W(1,2)

Padé 1/64 0.356 0.399 0.489 0.552 0.352 0.398 0.487 0.550

1/128 2.985 3.367 4.097 4.655 2.970 3.347 4.084 4.639

1/256 24.45 27.70 33.46 38.22 24.40 27.58 33.48 38.16

1/512 199.9 226.5 272.6 313.3 199.0 224.7 273.8 312.2

EB 1/64 0.553 0.627 0.787 0.906 0.561 0.634 0.808 0.914

1/128 4.650 5.277 6.658 7.630 4.649 5.311 6.710 7.680

1/256 37.95 43.29 54.44 62.73 38.03 43.59 54.75 63.08

1/512 308.3 352.4 442.2 510.3 308.6 354.7 444.4 512.5

are acceptable, the FFT still computes the solution much faster on the grid of equivalent
dimension. It will remain considerably faster even if the corresponding multigrid execution
times are cut in half, because as Figs. 7 and 8 show, we do not need as many multigrid cycles
for reaching the level of the discretization error.

Next, we apply the FMGmethod (see Algorithm 2) to Test Problem 2 and Test Problem 3.
Tables 4 and 5 compare the discretization error to the error of the approximate solution for Test
Problems 2 and 3, respectively. If two cycles are used on every grid (the FMG(1,1,2) method),
the discretization error is achieved on every level regardless of the cycle type. However, with
only one cycle per grid (the FMG(1,1,1) method) the approximate solution does not quite
reach the discretization error level. For solving the modified Helmholtz equation per se this
may be acceptable. However, the recursively defined right-hand side (4) is a function of the
approximate solutions on previous time levels. If the discretization error is not achieved, the
error may accumulate for the RHS vectors on subsequent time levels. Most likely, this is the
reason for the disruption of convergence that we report in Sect. 7.2 in the case where FMG
with insufficiently many cycles is applied to the time marching scheme.

7 Numerical Results for the TimeMarching Scheme

7.1 Constant Coefficients

We consider problem (1a)–(1d) on the domain Ω = (−π
2 , π

2

)3 with constant wave speed
and analytic solution u(x, y, z, t) = cos(x) cos(y) cos(z) cos(t). The terminal time is T = 2.
The right-hand side F is generated by substituting u under the d’Alembert operator. This
formulation will be referred to as Test Problem 4. Given the size h on the finest grid, we
utilize the largest possible time step of τ = hλ

c , where the CFL number λ is defined by (28).
If enh = u(h),n − unh is the error on the nth time level, then the overall error of the time

marching scheme is given by

Error = supn‖enh‖�2 ,

and order of convergence is given by

Order = log2
supn ‖enh‖�2

supn ‖enh/2‖�2

.
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Fig. 9 Error history for Test Problem 4 when the solution on the upper time level is obtained by FFT. The
largest possible time step was used

Figure 9 shows that the time marching scheme is fourth order accurate. Indeed, the graph
of the error supn ‖enh‖�2 as a function of the grid size h is parallel to the reference line, which
has a slope of four on a log–log scale. The same conclusion was made in Sect. 6.1. Since
time marching relies on solving the modified Helmholtz equation at every step, the fourth
order convergence in the time domain is expected.

Table 6 shows that increasing the wave speed from one to three triples the run time. When
the size h is fixed and the wave speed triples, the Courant number decreases by a factor of
three. Therefore, the number of time steps triples.

7.2 Variable Coefficients

We consider the same formulation as in Sect. 7.1 except that the wave speed varies in space:
c2(x, y, z) = 1 + 1

8 x
2. The analytic solution is also the same as in Sect. 7.1: u(x, y, z, t) =

cos(x) cos(y) cos(z) cos(t). This formulation will be referred to as Test Problem 5. Given the
size h of the finest grid, we use a time step of τ = .98hλ/(1 + π2

8 ), where the CFL number
λ is defined by (28).

We employ two solvers on the upper time level of the time marching scheme. Time
marching solver 1 (TMS1) uses W(1,2) cycles with (30) as the initial guess to solve the
modified Helmholtz equation at every time level. Time marching solver 2 (TMS2) uses
FMG(1,2,2) withW cycles on each level. The total error is defined similarly to how it is done
in Sect. 6.2. At every time level, it is the difference between the exact solution on the grid
and the solution of the corresponding modified Helmholtz equation obtained by multigrid
iterations.

In Fig. 10, we show the error history for Test Problem 5 and both the Padé and equation
based scheme when applying TMS1. A sharp increase of the error in the beginning of time
marching is not surprising since u0 is accurate to machine precision and u1 is fifth order
accurate in time. At the same time, we see that once we go past the first few time levels, the
distance between the graphs remains approximately constant for both schemes. We observed
a similar behavior in Figs. 7 and 8, which indicates that the discretization error is achieved.
The error of the equation based scheme exceeds that of the Padé scheme for the same grid
dimension in space. However, both schemes demonstrate fourth order convergence. In par-
ticular, if we examine the error history for either scheme at the terminal time, the distance
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Fig. 10 Error history for Test Problem 5 when using TMS1
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Fig. 11 The error of the initial guess as a function of time for the Padé approximation in space. Left panel:
initial guess (30) for TMS1. Right panel: output of nested iteration prolongated to the finest grid for TMS2

between the graphs and the tick marks is almost identical. As the distance between the tick
marks represents a factor of 16, fourth order convergence is attained.

Next, we compare TMS1 and TMS2 for Test Problem 5. Figure 11 shows the error of the
initial guess as a function of time for the Padé scheme. For TMS1, the initial guess refers
to (30) and for TMS2 the initial guess is the output of nested iteration prolongated to the
finest grid. One can clearly see from Fig. 11 that the initial guesses for both approaches are
comparable. In addition, Table 7 demonstrates that both schemes are fourth order convergent.
However, the run time for TMS2 is about twice as large as that for TMS1. We can attribute
this to TMS1 only using one cycle while TMS2 using two cycles on each level. To reduce
the computational cost of TMS2 and thus make both schemes comparable, we tried to use
FMG(1,2,1) instead of FMG(1,2,2). However, the method did not converge. Most likely, the
reason is that FMG with fewer cycles does not drive the error of the approximate solution
all the way down to discretization error (see Sect. 6.2). We also attempted to use FMG with
one pre-relaxation sweep and two post relaxation sweeps where two cycles are performed
on the auxiliary grids and one cycle on the finest grid. Unfortunately, that led to a reduction
of accuracy by roughly one order of magnitude. The conclusion therefore is that FMG is not
beneficial for the type of problems we are investigating, and that the use of consecutive W
cycles is more efficient.
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Table 7 Comparison of TMS1 and TMS2 when discretizing the modified Helmholtz Equation with the Padé
scheme

h TMS1 TMS2

Error Order Mean run time (s) Error Order Mean run time (s)

π/16 1.387(−05) – .0060 1.421(−05) – .0122

π/32 9.292(−07) 3.900 .0577 9.289(−07) 3.927 .1278

π/64 5.979(−08) 3.958 .5083 5.964(−08) 3.961 1.147

π/128 3.782(−09) 3.983 4.285 3.775(−09) 3.982 9.75

π/256 2.386(−10) 3.987 35.28 2.383(−10) 3.986 80.45

8 Conclusions and FutureWork

We solve the three dimensional wave equation subject to homogeneous Dirichlet boundary
conditions with fourth order accuracy using only three levels in time and three nodes along
each coordinate axis (i.e., compactly in time and space). The approximation in time is implicit
and requires solving the modified Helmholtz equation on the upper time level at every step.
The modified Helmholtz is discretized in space with two compact fourth order accurate
finite difference schemes. Since the equation is symmetric negative definite elliptic, one can
efficiently solve it by multigrid in the case of variable coefficients. For constant coefficients,
it is solved by FFT. In both cases, we compare the CFL numbers, multigrid convergence
factors, and run times induced by each compact discretization in space. Finally, we provide
numerical examples to demonstrate that fourth order accuracy is achieved for the modified
Helmholtz equation alone, as well as in the course of time marching.

The simple geometry of the domainΩ (a Cartesian cube) and simple boundary conditions
do not present a limitation because our next step will be to combine the proposed fourth order
accurate compact scheme with the method of difference potentials [23]. It will allow us to
accommodate non-conforming boundary shapes and a variety of boundary conditionswith no
deterioration of accuracy while still using a Cartesian grid, see [10] for a 2D implementation
with fourth order accuracy and [22] for a 3D implementation with second order accuracy.

Also in the future, we will adopt a perfectly matched layer (PML) approach for the
simulation of the three dimensional wave equation on unbounded regions. Our present work
will provide a foundation for constructing a fourth order accurate compact approximation
for the PML formulation of the wave equation. For examples of the PML applied to the wave
equation see [4,15,20,21].
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