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NUMERICAL SOLUTION OF 3D EXTERIOR UNSTEADY WAVE
PROPAGATION PROBLEMS USING BOUNDARY OPERATORS\ast 

SERGEY PETROPAVLOVSKY\dagger , SEMYON V. TSYNKOV\ddagger , AND ELI TURKEL\S 

Abstract. We propose a boundary method for the numerical simulation of time-dependent
waves in three-dimensional (3D) exterior regions. The order of accuracy can be either second or
fourth in both space and time. The method reduces a given initial boundary value problem for
the wave equation to a set of operator equations at the boundary of the original domain. The
reduction is based on a reformulation of the method of difference potentials. The resulting operator
equations relate the solution and its normal derivative at the boundary. To solve these equations,
one relies on the Huygens' principle. This yields an algorithm that works on a sliding time window
of a finite nonincreasing duration. As a result, it allows one to avoid the ever increasing backward
dependence of the solution on time. The major advantages of the proposed methodology are its
reduced computational complexity (grid-independent on the boundary and sublinear in the volume),
the capacity to handle curvilinear geometries using Cartesian finite difference time domain (FDTD)
methods, and automatic and exact accounting for the far-field radiation conditions. In addition, the
methodology facilitates solution of multiple similar problems al low individual cost per problem and
guarantees uniform performance over arbitrarily long time intervals.

Key words. method of difference potentials, time-dependent wave (d'Alembert) equation,
Huygens' principle, initial boundary value problem
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1. Introduction. We propose a methodology for computing the propagation
of unsteady waves outside a given three-dimensional (3D) shape. Mathematically,
it is an exterior initial boundary value problem (IBVP) for the hyperbolic PDE (or
system) that governs the propagation, e.g., the wave (d'Alembert) equation or Max-
well's equations. The relevant physical settings include acoustics, electromagnetism,
and elasticity.

The key challenges associated with these types of problems are their explicit
time dependence, possible complex geometry of the scatterer, and unboundedness of
the domain of propagation. The corresponding numerical methods include the finite
difference time domain method (FDTD), time domain finite elements (TD FEM) that
employ the weak formulation of the problem, the techniques that combine frequency
domain solutions, and boundary methods.

Standard FDTD methods are fairly easy to implement, including their high order
versions that are known to better control the dispersion error. Their main limitation
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BOUNDARY OPERATORS FOR UNSTEADY WAVE PROPAGATION A3463

is their poor ability to handle curvilinear geometries on regular grids (e.g., Cartesian)
that may lead to reduction in accuracy, and severe stability constraints due to small
cut cells near the boundary [35, 15]. The immersed boundary method [20] may help
attenuate the deterioration of accuracy. Both FDTD and TD FEM require artificial
boundary conditions (ABCs) to truncate the computational domain [36].

Integral transforms can be employed to solve the problem in the dual space and
subsequently reconstruct the solution by returning to the time domain. The trans-
form may be applied after the discretization in time, e.g., the discrete Laplace or
Z-transform [21]. However, the required computational resources grow as the time
elapses, so it is increasingly difficult to compute the solution on longer intervals [33].
In particular, after the Fourier transform in time, one needs to solve a set of in-
dependent equations that correspond to different frequencies. Yet for longer times,
the integrand in the inverse Fourier transform becomes more oscillatory, which re-
quires more sampling points in the frequency domain. Then, the overall cost scales
quadratically with time [29]. A strategy to alleviate this difficulty is presented in [4].

Boundary methods offer the advantage of having to solve the problem only on
the surface of the scatterer and thus reducing the dimension by one. Moreover, they
automatically account for the radiation of waves in the far field. However, their direct
application in the time domain encounters the same difficulty as that of the meth-
ods based on integral transforms---the cost of computing the convolutions grows in
time. Specifically, the retarded potential boundary integral equations (RPBIE) [9]
involve convolutions of the boundary data with the fundamental solution that extend
backward to the initial moment of time. To efficiently compute these convolutions,
a number of time-stepping techniques (convolution quadratures sometimes are pre-
ceded by a Laplace transform) have been proposed [14]. Yet many of these methods
have been reported to generate instabilities in the course of integration; see [14, 10].
Another implementation of RPBIE is based on the full Galerkin discretization in
both space and time so that no finite difference approximation of the temporal con-
volutions is required. The fundamental solution of the 3D d'Alembert equation is
G(\bfitx , t) = 1

4\pi | \bfitx | \delta (t  - | \bfitx | /c). Then, the integration is performed over the intersection

of the light cone of the past with the space-time boundary. For scatterers of finite size
it has finite duration in time. Thus, the backward dependence on time is truncated,
and the algorithm has only a finite temporal ``tail"" [14, 33]. In doing so, the matrices
of the resulting linear system contain weakly singular integrals over the aforemen-
tioned intersection of the light cone with the boundary, which may have complicated
geometry. The errors in computing those integrals may degrade the accuracy of the
solution [33]. Recent progress toward alleviating this difficulty is reported in [5].

In [25, 27, 24], we proposed a technique that combines the advantages of boundary
methods and FDTD. It is based on Calderon's operators and the method of differ-
ence potentials (MDP) [32]. A given IBVP is reduced to the operator equation with
respect to the unknown boundary sources. The radiation of waves at infinity is guar-
anteed automatically. Instead of boundary integrals, the MDP relies on a volumetric
auxiliary problem (AP). The latter is set on a simple computational domain and can
be solved by a standard FDTD scheme. This provides considerable flexibility and
ease, in particular, for high order accuracy, which can be achieved with no additional
overheads typical, for example, of TD FEM. Another important feature of the MDP
is that it employs physical boundary sources (the solution and its normal derivative)
rather than artificial densities, and treats all types of boundary conditions on the
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surface of the scatterer universally, i.e., without having to reformulate the boundary
problem every time a new boundary condition is introduced.

When a given IBVP is reduced from its domain to the boundary, the resulting
Calderon's boundary equations involve the entire history of the solution in time. To
truncate it, we employ the (strong) Huygens' principle [12]. The implementation of
this part of the algorithm is fundamentally different from the full Galerkin version
of RPBIE [14, 33]. It relies on lacunae of the solution, i.e., voids behind aft fronts
of the waves [28]. Lacunae allow us to limit the backward dependence of the MDP
algorithm in time and thus solve the AP only over a finite nonincreasing time interval.
The latter depends on the size of the scatterer and speed of propagation, but does
not depend on the frequency/wavelength. In our earlier work [26, 23], lacunae-based
time marching has shown a robust stabilizing effect on the treatment of artificial outer
boundaries for the wave equation and Maxwell's equations. The use of lacunae for
the design of ABCs was pioneered by Ryaben'kii [31].

Our algorithm consists of two stages. In the premarching stage, we use a second
or fourth order accurate FDTD scheme to solve a series of 3D APs that correspond to
a spectral representation of the unknown boundary sources on a specially chosen finite
time interval of the (2+1)-D space-time boundary. The required number of APs is not
fixed---it depends on the solution that is being computed. For solutions that contain
higher frequencies, this number will be larger. However, all APs are independent of
one another and can be solved in parallel, which can be thought of as parallelization
in time (section 6.4). The resulting solutions of the APs are used to form the matrix
of a discrete Calderon's projection operator. The inversion of this matrix is another
important component of the premarching stage of the algorithm. It is done in the
weak sense using a QR factorization. Efficient parallel implementation of QR is also
available [16]. Specific details on computational costs and scaling are given in section
6.

At the subsequent time-marching stage, we consecutively update the coefficients
of the boundary spectral expansion on one time interval after another. The cost
of any of these updates does not depend on the dimension of the FDTD grid. As a
result, for a given range of frequencies, the proposed methodology appears superior to
any volumetric time-marching scheme provided that the integration time is sufficiently
long. Indeed, while the premarching cost increases with frequency, for a predetermined
frequency band it becomes fixed. Then, as soon as the integration time exceeds the
number of APs times the AP time interval (plus the cost of QR prorated accordingly),
the boundary time marching becomes more efficient than a volumetric one (sections
6.3 and 6.4). If, in addition, the solution needs to be known in the volume at a
given moment of time, the corresponding cost scales cubically with respect to the grid
dimension in one direction. This is sublinear complexity which surpasses that of a
regular volumetric time marching by means of an explicit FDTD scheme. Moreover,
our algorithm enables a solution of a range of similar problems at low individual cost
per problem (section 6.2) and yields a nondeteriorating performance over arbitrarily
long time intervals (section 6.5).

2. Governing equations. We simulate the scattering of unsteady waves about
a finite obstacle \Omega \subset \BbbR 3. The physical quantity of interest u is assumed scalar so
that the propagation is governed by the 3D wave equation. In applications, u may
represent the acoustic pressure or any Cartesian component of the electric or magnetic
field. The scattering problem is formulated as an exterior IBVP on the unbounded
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BOUNDARY OPERATORS FOR UNSTEADY WAVE PROPAGATION A3465

domain \BbbR 3\setminus \Omega :

\square cu \equiv 1

c2
\partial 2u

\partial t2
 - \Delta u = 0, (\bfitx , t) \in \BbbR 3\setminus \Omega \times [0, T ],(1a)

\bfitl \Gamma u = \phi , (\bfitx , t) \in \Gamma \equiv \partial \Omega \times [0, T ],(1b)

u| t=0 =
\partial u

\partial t

\bigm| \bigm| \bigm| \bigm| 
t=0

= 0,(1c)

where c is the constant speed of light (or sound), and the final time T can be chosen
arbitrarily. The operator \bfitl \Gamma and the data \phi in (1b) account for the specific boundary
condition on the surface of the scatterer \partial \Omega . For example, (1b) can be a Dirichlet

boundary condition u| \Gamma =  - uinc or a Neumann boundary condition \partial u
\partial n

\bigm| \bigm| 
\Gamma 
=  - \partial uinc

\partial n ,

where uinc is the given incident field. Other, more complex, boundary conditions can
also be considered. The initial conditions (1c) are homogeneous, which means that the
simulation starts the moment the incident wave reaches the obstacle (inhomogeneous
compactly supported initial conditions can be incorporated as well). As u represents
only the scattered field, we assume that u is outgoing in the sense of [18]. This means
that u = 0 for all t \geqslant 0 and | \bfitx | \geqslant \rho + ct, where \rho is sufficiently large so that the
scatterer \Omega belongs to the ball of radius \rho centered at the origin.

3. Discrete equations. To discretize the IBVP (1), we introduce a computa-
tional domain \Omega \prime \supset \Omega that is bounded in space; see Figure 1(a). For convenience,
and with no loss of generality, we take \Omega \prime as a sufficiently large parallelepiped. The
treatment of the outer boundary \partial \Omega \prime will be discussed later. The discrete solution to
system (1) will be defined on \Omega \prime \setminus \Omega . However, to obtain this solution, we will need
to build a discretization on the full space-time domain \Omega \prime \times [0, T ], which includes the
scatterer \Omega . Thus, we introduce a uniform Cartesian grid with size h in space on \Omega \prime .
The grid is aligned with the shape of \Omega \prime , but the physical boundary \partial \Omega does not,
generally speaking, have to conform to this grid. To discretize (1a) on this Cartesian
grid, we use equally spaced time levels with step \tau and employ two finite difference
schemes. The first is the standard explicit central difference scheme, which is second
order accurate in space and time. The stencil of this scheme contains nine nodes;
it is schematically shown in Figure 1(b). The other scheme is compact fourth order
accurate in space and time; it is implicit in time with the stencil that contains a total
of 3\times 3\times 3\times 3 = 81 nodes. The fourth order semidiscretization of (1a) in time is as
follows:

(2) \Delta un+1  - un+1

\theta \tau 2c2
= 2

\biggl( 
\Delta un  - un

\theta \tau 2c2

\biggr) 
 - 
\biggl( 
\Delta un - 1  - un - 1

\theta \tau 2c2

\biggr) 
 - 1

\theta 
\Delta un,

where \theta = 1
12 . The resulting modified Helmholtz equation \Delta un+1  - \kappa 2un+1 = fn+1

on the upper time level is subsequently discretized by fourth order compact finite
differences in space; see [34] for further details.

Let \BbbN m be the stencil of the scheme (either second order central difference scheme
or fourth order compact scheme (2)) centered at the node m. Next, we introduce
various subsets of the space-time Cartesian grid on \Omega \prime \times [0, T ] that we will need for
the discretization of problem (1). Denote by \BbbM  - and \BbbM + the subsets of grid nodes
that belong to the domains \Omega \prime \setminus \Omega \times [\tau , T  - \tau ] and \Omega \times [\tau , T  - \tau ], respectively. In other
words, \BbbM  - and \BbbM + contain the nodes that lie outside and inside the scatterer \Omega for
all moments of time t \in [\tau , T  - \tau ]; the nodes residing precisely on the boundary \partial \Omega , if
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(a) Scatterer \Omega and computa-
tional domain \Omega \prime 
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(b) The grid, its subsets, and the sten-
cil of the scheme

Fig. 1. Computational domain and discretization grid. Panel (b): the sets \gamma + and \gamma  - are
shown in red and green, respectively. The stencil \BbbN m is symbolically shown by orange rectangles.
(Figure in color online.)

any, are combined into \BbbM +. The center of the stencil \BbbN m is always inside the domains
\Omega \prime \setminus \Omega \times [0, T ] and \Omega \times [0, T ] as long as m \in \BbbM  - and m \in \BbbM +, respectively.

Let \gamma + denote the subset of nodes that belong to the stencil \BbbN m with m \in \BbbM  - 

and lie inside \Omega ; see Figure 1(b). Likewise, let \gamma  - be the subset of nodes that belong
to the stencil \BbbN m with m \in \BbbM + and lie outside \Omega . The nodes \gamma + and \gamma  - form a
thin fringe that straddles the continuous space-time boundary \Gamma of the scatterer. In
addition to the sets\BbbM + and\BbbM  - , we introduce \BbbN + = \cup m\in \BbbM +\BbbN m and \BbbN  - = \cup m\in \BbbM  - \BbbN m

by adding the outermost points of the stencil \BbbN m while its center sweeps over \BbbM + or
\BbbM  - . For example, \BbbN  - also contains the nodes on the artificial boundary \partial \Omega \prime , the first
and the last time levels t = \{ 0, T\} inside \Omega \prime \setminus \Omega , as well as \gamma +. The sum \BbbN 0 = \BbbN +\cup \BbbN  - 

is the set of all grid nodes touched by the stencil \BbbN m when m \in \BbbM + \cup \BbbM  - .
Let the grid function u be defined on \BbbN  - and consider discretized equations (1):

\square (h)
c u = 0 on \BbbM  - ,(3a)

u = w+ on \gamma +,(3b)

u = 0 on \BbbN  - \cap \{ t = 0, \tau \} ,(3c)

\bfitl 
(h)
\Gamma \prime u = 0 on \Gamma \prime \equiv \partial \Omega \prime \times [0, T ].(3d)

In (3a), \square (h)
c is the 9-point central difference discrete d'Alembert operator or the

compact fourth order accurate discrete d'Alembert operator built in accordance with
(2). Note that, in general, compact schemes involve modifications to the right-hand
side of the equation as well [34]. As, however, (1a) is homogeneous, no modification is
needed. Equation (3d) is the far-field radiation boundary condition that we have to
include because, unlike in (1), the domain \Omega \prime where we build the discretization (3) is
finite. The boundary condition (3d) is homogeneous. Its role is to guarantee that the
solution of (3) will be outgoing (see the discussion after (1)), i.e., that there will be no
spurious reflections of waves from the outer boundary \partial \Omega \prime back to the computational
domain; see [36].

Condition (3b) is a discrete counterpart of the boundary condition (1b) on the
surface of the scatterer. However, for a nonconforming boundary \partial \Omega , the analytic
boundary data in (1b) and the discrete boundary data in (3b) are specified at different
loci in space. Adjusting the spatial grid near the boundary so that \gamma + \subset \partial \Omega \times [0, T ]
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may reduce accuracy and impose constraints on the time step due to cut cells [35, 15].
As an alternative, in section 4 we employ the governing equation (1a) to extrapolate
the exact boundary data (1b) from \Gamma to \gamma + and thus obtain w+ without modifying
the grid and with no adverse effect on the accuracy.

4. Description of the method.

4.1. Equation-based extension. Let A be a node of \gamma + at a given time level
t = n\tau : A \in \gamma + \cap \{ t = n\tau \} . Consider a local Cartesian coordinate system (x\prime , y\prime , z\prime )
such that the axis z\prime is aligned with the normal \bfitn A to the surface \partial \Omega pointing toward
A; see Figure 2. If there are multiple such normals \bfitn A (e.g., for nonconvex shapes,
see the inset in Figure 2), then the one to be chosen should correspond to the shortest
distance hA from \partial \Omega to A. The origin OA = (0, 0, 0) of the system (x\prime , y\prime , z\prime ) coincides
with the foot of the normal \bfitn A, and the point A lies on the axis z\prime , i.e., A = (0, 0, hA).
For some simple shapes of \Omega , e.g., spheres or ellipsoids, the local Cartesian system
(x\prime , y\prime , z\prime ) at every point of \partial \Omega can be taken so as to have its axes aligned with the
coordinate directions of the corresponding curvilinear orthogonal system (spherical
or ellipsoidal). Note, that this local coordinate system does not depend on time and
remains the same for all n.

x

y

z

AO

A

Ah


An

A

 

An





 

Fig. 2. Local frame of reference for the equation-based extension. The inset: the normal that
corresponds to the shortest distance from \partial \Omega to the node A.

The value of w+ at the node A can be approximated by Taylor's formula:

(4) w+
\bigm| \bigm| 
A
= u| OA

+ hA
\partial u

\partial z\prime 

\bigm| \bigm| \bigm| \bigm| 
OA

+
h2
A

2

\partial 2u

\partial z\prime 2

\bigm| \bigm| \bigm| \bigm| 
OA

+ \cdot \cdot \cdot ,

where u and its derivatives with respect to z\prime are evaluated at the foot of the normal
OA at t = n\tau . The specific number of terms to be taken in formula (4) will be
discussed in section 4.3.

We introduce a finite-dimensional basis composed of functions \xi i(\bfitx , t) on \Gamma and
expand the solution u and its normal derivative \partial u/\partial \bfitn with respect to this basis:

u| \Gamma =
\sum N

i=1
c0,i\xi i(\bfitx , t),(5a)

\partial u

\partial \bfitn 

\bigm| \bigm| \bigm| \bigm| 
\Gamma 

=
\sum N

i=1
c1,i\xi i(\bfitx , t).(5b)

In practice, formulae (5) can be thought of as approximations rendered by truncated
expansions that otherwise converge rapidly, e.g., Chebyshev, Legendre, etc. Future
applications of formulae (5) to more complex settings are discussed in section 7.
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Higher order normal derivatives in (4) (beyond \partial u
\partial z\prime 

\bigm| \bigm| 
OA

) can be obtained using

the governing differential equation (1a). For example,

(6)
\partial 2u

\partial z\prime 2

\bigm| \bigm| \bigm| \bigm| 
OA

=
1

c2
\partial 2u

\partial t2

\bigm| \bigm| \bigm| \bigm| 
OA

 - \partial 2u

\partial x\prime 2

\bigm| \bigm| \bigm| \bigm| 
OA

 - \partial 2u

\partial y\prime 2

\bigm| \bigm| \bigm| \bigm| 
OA

.

Substituting expansion (5a) into the right-hand side of (6) and differentiating it term-
wise, we can express the time derivative and tangential derivatives of u via the coef-
ficients c0,i, because the basis functions \xi i = \xi i(\bfitx , t) are known. To take into account
the next term in expansion (4), one needs the third derivative of u. It can be obtained
by differentiating equation (1a) with respect to z\prime :

(7)
\partial 2u

\partial z\prime 3

\bigm| \bigm| \bigm| \bigm| 
OA

=
1

c2
\partial 2

\partial t2
\partial u

\partial z\prime 

\bigm| \bigm| \bigm| \bigm| 
OA

 - \partial 2

\partial x\prime 2
\partial u

\partial z\prime 

\bigm| \bigm| \bigm| \bigm| 
OA

 - \partial 2

\partial y\prime 2
\partial u

\partial z\prime 

\bigm| \bigm| \bigm| \bigm| 
OA

.

Then, \partial u/\partial z\prime is substituted on the right-hand side of (7) in the form (5b). Likewise,
the fourth derivative can be computed by differentiating (7) and then substituting (6).
Altogether, this yields a systematic way of using formula (4) to extend the Cauchy data\bigl( 
u, \partial u

\partial n

\bigr) 
on the left-hand side of (5) from the continuous boundary \Gamma to the discrete

set of nodes \gamma +. Hereafter, we will refer to it as the equation-based extension. It is
applied individually to each point of space-time boundary \gamma + (assuming that none of
the derivatives on the right-hand side of formula (4) is singular at OA).

Combining (4), (5), and (6) (expressions for higher order derivatives, such as (7),
may also be needed) and rearranging the terms, we can write

(8a) w+ =

N\sum 
i=1

c0,iw
+
0,i +

N\sum 
i=1

c1,iw
+
1,i,

where w+
0,i and w+

1,i in (8a) represent the contributions from (5a) and (5b) to (4),

respectively. A similar equation-based extension can be developed for w - on \gamma  - :

(8b) w - =

N\sum 
i=1

c0,iw
 - 
0,i +

N\sum 
i=1

c1,iw
 - 
1,i.

4.2. Expansion of the boundary conditions. Applying expansions (5) to
u| \Gamma and \partial u/\partial \bfitn | \Gamma in the boundary condition (1b), we recast it as

(9) \bfitB 0\bfitc 0 +\bfitB 1\bfitc 1 = \bfitphi ,

where \bfitB 0 and \bfitB 1 are square matrices, \bfitc 0 \equiv (c0,1, c0,2, . . . , c0,N )
T
, \bfitc 1 \equiv 

(c1,1, c1,2, . . . , c1,N )T , and \bfitphi is the vector of coefficients obtained by expanding \phi 
of (1b) with respect to the basis \{ \xi i\} . For a Dirichlet problem, \bfitB 0 = \bfitI and \bfitB 1 = \bfzero .
For a Neumann problem, \bfitB 0 = \bfzero and \bfitB 1 = \bfitI . For other boundary conditions (Robin
or more general), neither \bfitB 0 nor \bfitB 1 vanishes. As, however, u| \Gamma and \partial u/\partial \bfitn | \Gamma may
not be specified at the same time, the coefficients \bfitc 0 in (5a) and \bfitc 1 in (5b) are not
available simultaneously. Equation (9) alone cannot determine them unambiguously.
Thus, equation-based extension (8a) cannot be used immediately for reconstructing
w+. The remaining coefficients are determined using simultaneous approximation of
the governing equation (1a) and boundary condition (1b) that involves extension (8b).
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4.3. Simultaneous approximation. Let u be a solution to system (3), with
the boundary data w+ in (3b) given by (8a). By linearity, it can be represented as
a superposition of 2N partial solutions u0,i, u1,i driven by the boundary data w+

0,i,

w+
1,i, respectively,

(10) u =

N\sum 
i=1

c0,iu0,i +

N\sum 
i=1

c1,iu1,i on \BbbN  - .

The coefficients c0,i and c1,i in (10) are still undetermined. Next, we require that

(11) u = w - on \gamma  - ,

where w - is given by (8b). Substituting (8b) and (10) into (11), we have

(12)

N\sum 
i=1

c0,iu0,i +

N\sum 
i=1

c1,iu1,i =

N\sum 
i=1

c0,iw
 - 
0,i +

N\sum 
i=1

c1,iw
 - 
1,i on \gamma  - ,

where all u0,i, u1,i, w
 - 
0,i, w

 - 
1,i are known.

Condition (11) requires that u of (10) coincide on \gamma  - , with w - given by (8b). As
both w+ and w - are obtained as equation-based extensions of

\bigl( 
u, \partial u

\partial \bfitn 

\bigr) \bigm| \bigm| 
\Gamma 
, the resulting

equation (12) yields a relation between u| \Gamma and \partial u
\partial \bfitn 

\bigm| \bigm| 
\Gamma 
enforced by the governing PDE

(1a) on \BbbR 3\setminus \Omega , i.e., by its discrete counterpart (3a) on \BbbN  - . However, this relation alone
is not sufficient for obtaining the coefficients \bfitc 0 and \bfitc 1. It needs to be combined with
the boundary condition (9). Systems (12) and (9) determine the coefficients \bfitc 0 and \bfitc 1
unambiguously and thus simultaneously approximate both the governing PDE (1a)
and boundary condition (1b) at the boundary \Gamma . Once the coefficients \bfitc 0 and \bfitc 1 have
been determined by solving (12) and (9), one can obtain the solution on \gamma via (8) and
on the rest of the grid \BbbN  - by computing with the scheme (3). The proposed algorithm
does not involve the approximation of the boundary condition (1b) on the grid.

To maintain the overall consistency, the accuracy of (11), or equivalently, that
of the equation-based extension (8), should at least match the accuracy of the finite

difference operator \square (h)
c . The accuracy of the equation-based extension is determined

by the number of terms in the Taylor formula (4). Theoretical estimates obtained for
elliptic PDEs [30] require that this number be no less than the sum of the order of the
differential operator and the order of accuracy of the scheme that renders its discrete
approximation. Our practical experience for both elliptic and hyperbolic equations
shows that taking fewer terms is typically sufficient. When (3a) represents a second
order discretization, one can keep only the first three terms in (4). For a fourth order
scheme (3a), two additional terms are needed in the Taylor formula (4), bringing the
total number of terms to five.

In actual computations, the system of equations (9) and (12) is first solved on
\gamma  - in the sense of least squares for the unknown coefficients \bfitc 0 and \bfitc 1. Then, w

+ is
restored on \gamma + by (8a), and the overall finite difference solution is computed on \BbbN  - 

by time marching the discrete equation (3a).
In the rest of this section, we derive an equivalent formulation of the problem

that makes its numerical solution easier. It also appears more amenable to the ap-
plication of lacunae-based time marching (see section 5), which is of key importance
for handling the outer boundary \partial \Omega \prime (see Figure 1(a)), as well as for achieving the
sublinear computational complexity.
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4.4. Making the boundary conditions homogeneous. Consider a grid func-
tion w\prime defined on \BbbN  - = \cup m\in \BbbM  - \BbbN m:

(13) w\prime =

\left\{     
w+ on \gamma +,

w - on \gamma  - ,

0 elsewhere on \BbbN  - ,

where w+, w - are given by (8). Introduce another grid function v\prime on \BbbN  - such that

(14) u = w\prime  - v\prime ,

where u is the solution to (3) subject to (11). Then, in accordance with (13) and (14),
we have

(15) v\prime = 0 on \gamma + \cup \gamma  - .

Moreover, v\prime = 0 on \BbbN  - \cap t = \{ 0, \tau \} and \bfitl 
(h)
\Gamma \prime v\prime = 0, because v\prime =  - u at the boundary

\Gamma \prime , and (3d) holds. Substitution of (14) into (3) yields a linear problem for v\prime :

\square (h)
c v\prime = \square (h)

c w\prime on \BbbM  - ,(16a)

v\prime = 0 on \gamma +,(16b)

v\prime = 0 on \BbbN  - \cap \{ t = 0, \tau \} ,(16c)

\bfitl 
(h)
\Gamma \prime v\prime = 0 on \Gamma \prime \equiv \partial \Omega \prime \times [0, T ].(16d)

The requirement (11) translates into

(16e) v\prime = 0 on \gamma  - .

Equations (16b) and (16e) together are equivalent to (15).
Problem (16) has the exact same structure as problem (3) except that the inho-

mogeneous boundary condition (3b) on \gamma + has been replaced with the homogeneous
boundary condition (16b), while instead of the homogeneous governing equation (3a)

we have the inhomogeneous equation (16a). Note that the right-hand side \square (h)
c w\prime of

(16a) depends on the undetermined coefficients \bfitc 0 and \bfitc 1, because w
+ and w - in (13)

are specified via (8). This right-hand side is defined on \BbbM  - , but may differ from zero
only next to the boundary \Gamma , because w\prime = 0 on most of \BbbN  - ; see (13). The solutions
to (3) and (16) are converted into one another by means of (14).

4.5. Problem formulation on the entire \Omega \prime . We introduce the functions w
and v on the entire grid \BbbN 0:

(17) w =

\Biggl\{ 
w\prime on \BbbN  - ,

0 on \BbbN 0\setminus \BbbN  - ,
v =

\Biggl\{ 
v\prime on \BbbN  - ,

0 on \BbbN 0\setminus \BbbN  - .

Applying the discrete d'Alembert operator \square (h)
c to v, recalling (16), and taking into

account that v = 0 on \BbbN 0\setminus \BbbN  - , we conclude that v solves the following AP on \BbbN 0:

\square (h)
c v = \mu \BbbM  - \square (h)

c w on \BbbM  - \cup \BbbM +,(18a)

v = 0 on \BbbN 0 \cap \{ t = 0, \tau \} ,(18b)

\bfitl 
(h)
\Gamma \prime v = 0 on \Gamma \prime \equiv \partial \Omega \prime \times [0, T ].(18c)
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In (18a), \mu \BbbM  - is the characteristic function of the set \BbbM  - . According to (17) and
(15), v = 0 on \BbbN +. Hence, the right-hand side of (18a) may indeed differ from zero
only on \BbbM  - . In addition to the AP (18), formula (16e) requires that

(19) v = 0 on \gamma  - .

Once the right-hand side of (18a) is written via the undetermined coefficients \bfitc 0 and
\bfitc 1, then (19) yields a constraint equivalent to (12); see section 4.6.

Compared to problem (3) or (16), the AP (18) is much easier to solve. Indeed, the
domain \Omega \prime is a parallelepiped, and the grid \BbbN 0 is Cartesian. The boundary condition
(3b) or (16b) that follows the geometry of \Gamma is replaced with a source term to equation
(18a). Moreover, problem (18) allows one to apply the lacunae-based time marching
(see section 5), which enables accurate treatment of the artificial outer boundary \Gamma \prime 

and helps substantially reduce the computational complexity.

4.6. Solution algorithm. Expansion (8) shows that the grid function w\prime of
(13) and thus w of (17) can be represented as

(20) w =

N\sum 
i=1

c0,iw0,i +

N\sum 
i=1

c1,iw1,i.

Accordingly, the AP (18) can be partitioned into 2N subproblems that correspond to
the individual terms from the right-hand side of (20) substituted into the right-hand
side of (18a):
(21)\left\{       

\square (h)
c v0,i = \mu \BbbM  - \square (h)

c w0,i on \BbbM  - \cup \BbbM +,

v0,i = 0 on \BbbN 0 \cap \{ t = 0, \tau \} ,

\bfitl 
(h)
\Gamma \prime v0,i = 0 on \Gamma \prime \equiv \partial \Omega \prime \times [0, T ],

\left\{       
\square (h)

c v1,i = \mu \BbbM  - \square (h)
c w1,i on \BbbM  - \cup \BbbM +,

v1,i = 0 on \BbbN 0 \cap \{ t = 0, \tau \} ,

\bfitl 
(h)
\Gamma \prime v1,i = 0 on \Gamma \prime \equiv \partial \Omega \prime \times [0, T ].

Constraint (19) then becomes

(22)

N\sum 
i=1

c0,iv0,i +

N\sum 
i=1

c1,iv1,i = 0 on \gamma  - ,

where v0,i, v1,i are solutions of (21). Equation (22) can be recast as

(23) \bfitQ 0\bfitc 0 +\bfitQ 1\bfitc 1 = 0,

where the matrices of the operators \bfitQ 0 and \bfitQ 1 are composed of columns v0,i and v1,i
that are traces of the solutions to the respective subproblems (21) on the grid set \gamma  - :

(24) \bfitQ 0 =
\bigl[ 
v0,1| \gamma  - , v0,2| \gamma  - , . . . , v0,N | \gamma  - 

\bigr] 
, \bfitQ 1 =

\bigl[ 
v1,1| \gamma  - , v1,2| \gamma  - , . . . , v1,N | \gamma  - 

\bigr] 
.

Equation (23) is equivalent to (12). The system of equations (23) and (9) deter-
mines the coefficients \bfitc 0 and \bfitc 1. The matrices \bfitQ 0 and \bfitQ 1 are | \gamma  - | \times N , where | \gamma  - | 
is the number of nodes in \gamma  - , and N is the dimension of the basis on \Gamma ; see (5). For
sufficiently smooth boundaries and data, N can be chosen small so that | \gamma  - | > N and
system (23) is overdetermined. We solve it by least squares. However, as long as the
original IBVP (1) has a unique solution, the quadratic cost function at the minimum
will be zero within the accuracy of the discrete approximation.

The overall algorithm can now be summarized as follows:
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1. Introduce the basis on \Gamma ; see formulae (5).
2. Recast the boundary condition (1b) into the form (9) or, in the case of a

Dirichlet or Neumann boundary condition, compute the corresponding vector,
\bfitc 0 or \bfitc 1, explicitly.

3. Perform the equation-based extension (8) for each basis function \xi i.
4. Solve 2N subproblems (21) and form the matrices \bfitQ 0 and \bfitQ 1 of (24) from

the traces of the respective solutions on \gamma  - .
5. Solve the resulting system (23) and (9) for the undetermined coefficients \bfitc 0

or/and \bfitc 1.
6. Once both \bfitc 0 and \bfitc 1 are available, compute w+ via (8a), substitute it into

(3b), and time march the finite difference IBVP (3) to obtain the discrete
solution u.

7. Alternatively, one can save the solutions v0,i, v1,i to subproblems (21) at the
space-time locations of interest in \BbbN  - and then reconstruct the overall solution
u at these points using the same linear superposition as on the left-hand side
of (22) with a substitution of (17) and (14).

This algorithm is equivalent to the method of difference potentials [32, supplement].

5. Lacunae-based time marching. A key limitation of the proposed method-
ology is that the boundary \Gamma = \partial \Omega \times [0, T ] extends as T becomes larger. Accordingly,
the vertical dimension of the matrices \bfitQ 0 and \bfitQ 1 given by (24) increases linearly
with time, and the solution of the boundary equation (23) becomes computationally
infeasible already at modest T . To address this issue, we employ lacunae-based time
marching. It replaces the solution algorithm described in section 4.6 by its equivalent
version that solves the problem in a sequence of time increments. The equivalence is
enabled by the Huygens' principle, i.e., the presence of lacunae in the solutions of the
wave equation [28].

We partition the time span T into K subintervals, each of duration

(25) T0 \geqslant 
1

c
diam\Omega ,

so that T = KT0. Hereafter, T0 will be considered fixed, while the increase of T will
be accommodated by increasing K. The grid sets \gamma + and \gamma  - can be represented as
sums of ``shorter"" subsets \gamma \pm 

k \equiv \gamma \pm \cap [(k  - 1)T0, kT0]:

\gamma + =
\bigcup K

k=1
\gamma +
k and \gamma  - =

\bigcup K

k=1
\gamma  - 
k .

Let \Gamma k \equiv \Gamma \cap [(k  - 1)T0, kT0), and let \{ \xi i(\bfitx , t)\} be the basis on \Gamma k for expanding
u and \partial u

\partial \bfitn in the form (5). The basis \{ \xi i(\bfitx , t)\} is assumed to be independent of k.
Applying the equation-based extension to each \xi i(\bfitx , t) for a given \Gamma k, we have (cf.
formulae (8))

w(+,k) =

N\sum 
i=1

c
(k)
0,iw

+
0,i +

N\sum 
i=1

c
(k)
1,iw

+
1,i,(26a)

w( - ,k) =

N\sum 
i=1

c
(k)
0,iw

 - 
0,i +

N\sum 
i=1

c
(k)
1,iw

 - 
1,i.(26b)

The grid functions w(+,k) of (26a) and w( - ,k) of (26b) are defined on \gamma +
k and \gamma  - 

k ,
respectively. The quantities w\pm 

0,i, w\pm 
1,i in (26) do not depend on k because they
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correspond to the ith basis function \xi i(\bfitx , t), and the basis functions are the same for

all k = 1, . . . ,K. However, the coefficients c
(k)
0,i and c

(k)
1,i in (26) may depend on k. We

also extend the functions w(+,k) and w( - ,k) to the entire \gamma + and \gamma  - , respectively, so
that w(+,k)

\bigm| \bigm| 
\gamma +

k\prime 
= 0 and w( - ,k)

\bigm| \bigm| 
\gamma  - 
k\prime 

for k\prime \not = k. Then, the equation-based extension (8)

on \gamma + and \gamma  - is replaced with the sum of contributions (26):

w+ =

K\sum 
k=1

w(+,k), w - =

K\sum 
k=1

w( - ,k),

where w(\pm ,k) \not = 0 only for t \in [(k  - 1)T0, kT0). According to (13), (17), and (20), for
each k we have

(27) w(k) =

N\sum 
i=1

c
(k)
0,iw0,i +

N\sum 
i=1

c
(k)
1,iw1,i.

Thus, the same partition in time holds for the grid function w =
\sum K

k=1 w
(k), and

consequently, the AP (18) gets split into a combination of subproblems:

\square (h)
c v(k) = \mu \BbbM  - \square (h)

c w(k) on \BbbM  - \cup \BbbM +,(28a)

v(k) = 0 on \BbbN 0 \cap \{ t = 0, \tau \} ,(28b)

\bfitl 
(h)
\Gamma \prime v(k) = 0 on \Gamma \prime \equiv \partial \Omega \prime \times [0, T ],(28c)

with the overall solution given by v =
\sum K

k=1 v
(k). Each partial solution v(k) in the

sum has the following properties:
1. v(k) \equiv 0 for t < (k  - 1)T0 because the right-hand side of (28a) is zero before

t = (k  - 1)T0.
2. v(k) \approx 0 on \BbbN + for t > (k + 1)T0 under condition (25).
3. Combining 1 and 2, we conclude that v(k) \not = 0 on \BbbN + only for (k  - 1)T0 \leqslant 

t \leqslant (k + 1)T0.
Property 2 on this list is of key importance. It holds because the discrete system (28)
approximates, in free space, the continuous wave equation with a source term that
is compactly supported in both space and time. Indeed, for the grid function (27)
we have w(k) \not = 0 only for t \in [(k  - 1)T0, kT0) in time and at the nodes next to the
boundary \partial \Omega in space, the latter due to (13) and (17). A continuous solution to the
3D wave equation with a compactly supported source is known to have a (secondary)
lacuna in the sense of Petrowsky [28]. The lacuna is a manifestation of the Huygens'
principle. It is a region of space-time behind the aft (trailing) fronts of the waves
propagating away from the source; see Figure 3(a). The solution inside the lacuna
is zero. Thus, once the source compactly supported on \Omega (including the boundaries)
ceases to operate, the waves will completely leave the domain \Omega after the time T0

elapses (provided that (25) holds).
Earlier studies of the phenomenon of lacunae in the discrete context have shown

that lacunae do exist in numerical solutions and can thus be exploited for the develop-
ment of numerical methods. As the solution inside a lacuna is zero, one might expect
that the numerical solution will be zero within the accuracy of the specific discrete
approximation. Remarkably, however, there is superconvergence inside the lacunae
(see [23, sect. 8.4]), so that property 2 in the previous list holds with accuracy higher
than \scrO (h2) for the second order scheme or \scrO (h4) for the fourth order scheme (3a).
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(a) Lacuna in the solution.
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(b) Limited backward dependence

Fig. 3. Partition in time and lacuna of the solution to the wave equation.

The solution v(k) of problem (28) inherits its linear superposition form from (27):

(29) v(k) =

N\sum 
i=1

c
(k)
0,i v0,i +

N\sum 
i=1

c
(k)
1,i v1,i.

It is fully determined by the coefficients c
(k)
0,i and c

(k)
1,i . The individual solutions v0,i

and v1,i on the right-hand side of (29) correspond to the extensions w0,i and w1,i of
the corresponding basis functions on \Gamma k; see (26) and (27). They are invariant with
respect to the translations in time by increments of T0 because the basis \{ \xi i(\bfitx , t)\} is
the same for each \Gamma k (and, therefore, the index k can be omitted). Properties 1--3 on
the previous page apply to each term in the sum (29). Then, taking into account the
translational invariance in time, for v0,i and v1,i on \BbbN + we can write

(30) v0,i =

\left\{       
v
(I)
0,i 0 \leqslant t < T0,

v
(II)
0,i T0 \leqslant t < 2T0,

0 otherwise

and v1,i =

\left\{       
v
(I)
1,i 0 \leqslant t < T0,

v
(II)
1,i T0 \leqslant t < 2T0,

0 otherwise.

In (30), v
(I)
0,i and v

(I)
1,i are solutions to the respective APs (28) on the interval of time

where the sources still operate, while v
(II)
0,i and v

(II)
1,i are solutions after the sources

cease to operate but before the waves completely leave \BbbN +. Otherwise, the grid set
\BbbN + entirely falls into the lacuna, where the solution is zero. Hence, the APs (28)
never need to be integrated beyond the terminal time 2T0.

Let us now consider the boundary equation (19) on a given subset \gamma  - 
k , k =

1, . . . ,K, rather than on the entire \gamma  - . By causality, we have v| \gamma  - 
k

=
\sum k

k\prime =1 v
(k\prime ),

because subproblems (28) for k\prime > k have not been initiated yet. Moreover, the
subproblems with k\prime < k  - 1 do not contribute to the sum either because the subset
\gamma  - 
k falls into the lacunae of the respective solutions. As a result, only two partial

solutions are nonzero on \gamma  - 
k , and instead of (19) we can write

(31) v| \gamma  - 
k
= v(k - 1)

\Bigl( 
\bfitc 
(k - 1)
0 , \bfitc 

(k - 1)
1

\Bigr) \bigm| \bigm| \bigm| 
\gamma  - 
k

+ v(k)
\Bigl( 
\bfitc 
(k)
0 , \bfitc 

(k)
1

\Bigr) \bigm| \bigm| \bigm| 
\gamma  - 
k

= 0.
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The grid functions v(k - 1) and v(k) in (31) are determined by the coefficients \bfitc 
(k - 1)
0 ,

\bfitc 
(k - 1)
1 and \bfitc 

(k)
0 , \bfitc 

(k)
1 , respectively. Thus, (31) provides a recurrence relation between

the coefficients from two consecutive time intervals T0. In the matrix-vector notation,
(31) reads (cf. formula (23))

(32) \bfitQ 
(I)
0 \bfitc 

(k - 1)
0 +\bfitQ 

(I)
1 \bfitc 

(k - 1)
1 +\bfitQ 

(II)
0 \bfitc 

(k)
0 +\bfitQ 

(II)
1 \bfitc 

(k)
1 = 0,

where the matrices of the boundary operators are given by (cf. formula (24))

\bfitQ 
(I)
0 =

\Bigl[ 
v
(I)
0,1

\bigm| \bigm| 
\gamma  - , v

(I)
0,2

\bigm| \bigm| 
\gamma  - , . . . , v

(I)
0,N

\bigm| \bigm| 
\gamma  - 

\Bigr] 
, \bfitQ 

(I)
1 =

\Bigl[ 
v
(I)
1,1

\bigm| \bigm| 
\gamma  - , v

(I)
1,2

\bigm| \bigm| 
\gamma  - , . . . , v

(I)
1,N

\bigm| \bigm| 
\gamma  - 

\Bigr] 
,

(33a)

\bfitQ 
(II)
0 =

\Bigl[ 
v
(II)
0,1

\bigm| \bigm| 
\gamma  - , v

(II)
0,2

\bigm| \bigm| 
\gamma  - , . . . , v

(II)
0,N

\bigm| \bigm| 
\gamma  - 

\Bigr] 
, \bfitQ 

(II)
1 =

\Bigl[ 
v
(II)
1,1

\bigm| \bigm| 
\gamma  - , v

(II)
1,2

\bigm| \bigm| 
\gamma  - , . . . , v

(II)
1,N

\bigm| \bigm| 
\gamma  - 

\Bigr] 
.

(33b)

The matrix equation (32) can be thought of as block bidiagonal. The column vectors
in the matrices (33) correspond to notation (30) and have dimension | \gamma  - 

k | , where | \gamma  - 
k | 

is the number of nodes in the grid set \gamma  - 
k (the same for all k). To compute the matrices

(33) one needs to solve numerically 2N APs (28), each over the interval 2T0, and save
the traces of the respective solutions in the matrices (33a) (for 0 \leqslant t < T0) and (33b)
(for T0 \leqslant t < 2T0). The overall algorithm can now be summarized as follows:

1. Precompute the matrices (33).
2. Initialization step, k = 1. Obtain the values of the undetermined coefficients

\bfitc 
(1)
0 and \bfitc 

(1)
1 using the algorithm of section 4.6. This requires taking into

account (9) for \Gamma 1.
3. For each k = 2, 3, . . . ,K, solve the boundary operator equation (32) combined

with (9) for \Gamma k in the sense of least squares with respect to the undetermined

coefficients \bfitc 
(k)
0 , \bfitc 

(k)
1 .

The recursion in stage 3 can be interpreted as time marching with step T0.
The system (32) and (9) that is solved recursively can be written in the matrix

form,

(34)

\biggl[ 
\bfitQ 

(II)
0 \bfitQ 

(II)
1

\bfitB 0 \bfitB 1

\biggr] \Biggl[ 
\bfitc 
(k)
0

\bfitc 
(k)
1

\Biggr] 
=  - 

\biggl[ 
\bfitQ 

(I)
0 \bfitQ 

(I)
1 \bfzero 

\bfzero \bfzero \bfitI 

\biggr] \left[   \bfitc 
(k - 1)
0

\bfitc 
(k - 1)
1

\bfitphi (k)

\right]   .

For a Dirichlet boundary condition (1b), \bfitc 
(k)
0 = \bfitphi (k), and system (34) simplifies to

\bfitQ 
(II)
1 \bfitc 

(k)
1 =  - \bfitQ 

(I)
0 \bfitc 

(k - 1)
0  - \bfitQ 

(I)
1 \bfitc 

(k - 1)
1  - \bfitQ 

(II)
0 \bfitphi (k). For Neumann, \bfitc 

(k)
1 = \bfitphi (k), and

(34) reduces to \bfitQ 
(II)
0 \bfitc 

(k)
0 =  - \bfitQ 

(I)
0 \bfitc 

(k - 1)
0  - \bfitQ 

(I)
1 \bfitc 

(k - 1)
1  - \bfitQ 

(II)
1 \bfitphi (k). In general, the

dimension of the system matrix on the left-hand side of (34) is (| \gamma  - 
k | +N)\times 2N . Let

\bfscrQ \bfscrR be its factorization, where \bfscrQ is orthogonal (| \gamma  - 
k | + N) \times 2N and \bfscrR is upper

triangular 2N \times 2N . Then, the solution to system (34) is given by

(35)

\Biggl[ 
\bfitc 
(k)
0

\bfitc 
(k)
1

\Biggr] 
=  - \bfscrR  - 1\bfscrQ \ast 

\biggl[ 
\bfitQ 

(I)
0 \bfitQ 

(I)
1 \bfzero 

\bfzero \bfzero \bfitI 

\biggr] \left[   \bfitc 
(k - 1)
0

\bfitc 
(k - 1)
1

\bfitphi (k)

\right]   .

On the right-hand side of (35), a 2N \times 3N matrix is applied to a vector of length
3N . Of key importance is that this matrix is fixed, i.e., it does not depend on k. As
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such, it can be precomputed right after computing the operators (33). Consequently,
advancing the solution along the boundary by time step T0 costs \scrO (N2) arithmetic
operations, where N is the dimension of the basis \{ \xi i\} at the boundary \Gamma ; see (5).
Remarkably, this cost does not depend on the dimension of the grid at all.

Moreover, the matrices (33) do not depend on the specific boundary condition
(1b) and, once computed, accommodate any boundary condition. Then, solving for a
different boundary condition, e.g., another impinging wave or surface impedance, is
inexpensive. It only requires a new recursive update (35) and may or may not require
a new \bfscrQ \bfscrR factorization depending on whether the matrices \bfitB 0 and \bfitB 1 have changed.

Knowing the solution only at the boundary may often be sufficient (e.g., for
calculating scattering cross-sections). If, however, it needs to be known beyond the
boundary, we have two options to compute it that are similar to steps 6 and 7 of
the algorithm of section 4.6. We can obtain the boundary data w(+,K - 1) and w(+,K)

using the respective coefficients \bfitc 
(K - 1)
0 , \bfitc 

(K - 1)
1 and \bfitc 

(K)
0 , \bfitc 

(K)
1 and then compute

the solution of the wave equation on the grid by means of the core scheme (3a) at
t = T \equiv KT0, and no further away from \Omega than diam\Omega ; see Figure 3(b). Alternatively,
we can keep the values of the solutions v0,i and v1,i at the locations of interest outside
the scatterer. Upon completion of step 3, the solution at those locations can be
reconstructed using the same sum as in (31) and subsequently employing (17) and
(14).

In our algorithm, we use the conventional FDTD only for computing the matrices
of the boundary operators (33), which requires solving 2N APs (28) over the interval
2T0 \ll T . The number 2N is twice the dimension of the basis used for expansion
(5). While typically much smaller than the dimension | \gamma  - 

k | , the number 2N may not
always be small itself, depending on the required accuracy of the data representation
at the boundary. However, the 2N APs (28) can be efficiently solved in parallel
because different APs are completely independent from one another (section 6.4).

Another important consideration is that, traditionally, some artificial boundary
conditions must be set on \Gamma \prime to enable the reflectionless propagation of waves toward
infinity; see formula (3d). The use of lacunae for computations allows for a simple
and elegant alternative approach. The auxiliary domain \Omega \prime can be chosen sufficiently
large so that the waves reflected off the outer boundary \partial \Omega \prime back toward the interior
will not reach the boundary of the scatterer \partial \Omega during the time interval 2T0, i.e.,

(36) dist (\partial \Omega \prime , \partial \Omega ) > cT0;

see Figure 3(b). For computing the solution near \partial \Omega , this is equivalent to the exact
treatment of the artificial outer boundary regardless of the actual boundary condition
set at \Gamma \prime . We have used this approach in [26, 23] for the wave and Maxwell's equations.

6. Numerical simulations. We consider scattering about a sphere of radius
R0 and three different prolate spheroids with aspect ratios 4/3, 2, and 4.

6.1. Computational setting for the sphere. There is a well-known series
solution for time-harmonic scattering of a plane wave about a sphere. However, to
avoid a pure periodicity in time, we employ the sum of two plane waves with two
incommensurate frequencies \omega 1, \omega 2. A Dirichlet problem for the scattered field in the
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case when c = 1 is formulated as follows (cf. problem (1)):

\partial 2u

\partial t2
= \Delta u, (\bfitx , t) \in \BbbR 3\setminus \Omega \times [0, T ],(37a)

u| \Gamma =  - cos(\bfitk 1\bfitx  - \omega 1t) - cos(\bfitk 2\bfitx  - \omega 2t), (\bfitx , t) \in \Gamma ,(37b)

u| t=0 =
\partial u

\partial t

\bigm| \bigm| \bigm| \bigm| 
t=0

= 0.(37c)

The boundary condition (37b) implies that the sum of the incident and scattered field
on the surface of the scatterer is zero. This corresponds to sound-hard scattering in
acoustics or a perfect electric conductor (PEC) in electromagnetism. The ratio of the
frequencies is chosen to be \omega 1/\omega 2 =

\surd 
2. The wave vectors \bfitk 1 and \bfitk 2 are parallel, and

as c = 1, we have k1,2 = \omega 1,2. The exact solution to problem (37) involves two terms:

(38) uref = Re \{ usc(\bfitx , t, \omega 1)\} +Re \{ usc(\bfitx , t, \omega 2)\} ,

where

(39) usc(\bfitx , t, \omega ) =  - e - i\omega t
\infty \sum 
l=0

(2l + 1)ilPl(cos \theta )
jl(kR0)

hl(kR0)
hl(k| \bfitx | ),

and \theta is the angle between \bfitk and \bfitx . In (39), jl(\cdot ), hl(\cdot ), and Pl(\cdot ) denote the spherical
Bessel and Hankel functions and Legendre polynomials, respectively, where

Pl(\bfitn \bfitn 
\prime ) =

4\pi 

2l + 1

l\sum 
m= - l

Y \ast 
lm(\bfitn \prime )Ylm(\bfitn ),

Ylm are spherical harmonics, \bfitn = \bfitx /\| \bfitx \| , and \bfitn \prime = \bfitk /\| \bfitk \| .
As the boundary condition can be changed easily, we consider not only the Dirich-

let condition (37b), but the corresponding Neumann and Robin boundary conditions
as well. The normal derivatives involved are derived by differentiating series (39).

For the first set of simulations, the scatterer is a unit sphere, R0 = 1. The
frequencies are \omega 1 = 3 and \omega 2 = \omega 1/

\surd 
2. We are interested in obtaining the solution

near the scatterer, in the spherical layer R0 < | \bfitx | < R1 where R1 = 1.5.
The operators (33) are computed by solving 2N independent APs (28) over the

time 2T0. Each of those APs is driven by its own compactly supported source term
and formulated on the auxiliary cube \Omega \prime = [ - R1, R1]

3 with no cavity for the scatterer
\Omega ; see Figure 4. At the outer boundary \partial \Omega \prime , we employ a perfectly matched layer
(PML) [11] that has a quadratic damping profile. Its width was chosen \approx 1.65 to
achieve the best performance.1 The approximate size of \Omega PML is 6.3\times 6.3\times 6.3.

Alternatively, the lacunae-based time marching treats the artificial outer bound-
ary exactly. It requires a somewhat larger augmented domain that we choose as a
Cartesian cube \Omega aug = [ - R2, R2]

3. Its size R2 is determined as in (36), specifically,
the waves that travel outward from r = R0 to \partial \Omega aug and get reflected back should
not reach the boundary r = R1 during the time interval 2T0:

(40) 2R2  - R0  - R1 > 2cT0.

Hence, we can specify a zero Dirichlet boundary condition at \partial \Omega aug because it does
not affect the solution on R0 \leqslant | \bfitx | \leqslant R1. In practice, R2 needs to be taken a bit

1Layers narrower than the wavelength could not eliminate the error growth.
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PML or extra empty space

𝑅"

𝑅#

𝑅$

Fig. 4. A two-dimensional schematic of the computational domain. (Figure in color online.)

larger than prescribed by (40) to accommodate the transients in the formation of the
discrete lacunae. This yields the size of \Omega aug as 9.6\times 9.6\times 9.6.

The coarsest grid is uniform Cartesian with size h = 2/15 in all space directions
and time step \tau = h/3, which satisfies the CFL condition. The corresponding grid
dimensions in space are 47 \times 47 \times 47 for \Omega PML and 73 \times 73 \times 73 for \Omega aug. The
wave equation (1a) is discretized by either the standard second order accurate central
difference scheme or the fourth order compact scheme (2). The PML is discretized
as in [11] with second order accuracy. In the fourth order case, we use lacunae for
termination at the artificial outer boundary. To study the grid convergence outside
the scatterer, we introduce a sequence of finer grids, each time dividing the spatial
size h and time step \tau in half. The grids in this sequence are denoted by 1\times , 2\times , and
4\times .

The basis functions \xi i in expansions (5) are products of spherical harmonics in
space and Chebyshev polynomials in time: \xi i(\bfitx , t) = Ylm(\theta , \varphi )Tn(t). Ylm are eigen-
functions of the Beltrami operator on the sphere, which provides extra convenience.
To analyze the grid convergence for a given solution (38)--(39), the dimension of the
basis \{ \xi i\} is fixed. It is chosen so as to make sure that the accuracy of the truncated
series representation (5) will be no worse than the finite difference accuracy on the
finest grid. Specifically, we took l = 0, . . . , Lmax and n = 0, . . . , Nmax with Lmax = 12
and Nmax = 10. This has proven sufficient for all the grids used in our simulations.

6.2. Grid convergence for the sphere. Figures 5 and 6 show the \ell \infty error of
the second order numerical solution, \| u - uref\| \infty over R0 < | \bfitx | < R1. The proposed
method converges with the design rate. The series (39) that yields reference solution
(38) was truncated at l = Lmax + 5 to ensure its superior accuracy. The simulation
time was taken very long, Tsim = 6600R0. The specific Robin boundary condition
was taken as u+ \partial u

\partial \bfitn 

\bigm| \bigm| 
\Gamma 
= 0. We emphasize that the computations with three different

boundary conditions were done without recomputing the operators (33).
For the fourth order scheme (2), the grid convergence is shown in Figure 7; it also

reaches the design rate. The fourth order scheme requires normal derivatives up to
order four in the Taylor's formula (4). The error of the boundary expansions (5) is
always smaller than the error on the grid, because according to Figures 5--7 it does
not hamper the grid convergence. The actual values of the error averaged over the
simulation interval Tsim are presented in Tables 1 and 2. The rates in Tables 1 and
2 are defined as log2(coarser grid error) - log2(finer grid error). If the grid is refined
by a factor of two, this quantity directly approximates the order of accuracy.
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time

-12

-11

-10

-9

-8
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1x grid
2x grid
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#T
sim

(a) Matrices (33) computed by lacunae-
based termination
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time
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-8
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#T
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(b) Matrices (33) computed using the
PML

Fig. 5. Grid convergence in the case of a Dirichlet boundary condition (1b) and second order
accurate central difference scheme---binary logarithm of \ell \infty error versus time.
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(a) Neumann BC
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(b) Robin BC

Fig. 6. Grid convergence in the case of Neumann and Robin boundary conditions and a second
order accurate central difference scheme---binary logarithm of \ell \infty error versus time. Operators (33)
are computed using lacunae-based termination.

0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1
time

-20

-19

-18

-17

-16

-15

-14

-13

-12

2x grid
4x grid

# T
sim

(a) Dirichlet BC
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(b) Neumann BC
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(c) Robin BC

Fig. 7. Grid convergence in the case of a fourth order discretization scheme; see (2). Binary
logarithm of \ell \infty error versus time.

To compute the operators (33), we have used both a PML and exact lacunae-
based termination at the artificial outer boundary. The performance is compared in
the second order case, because the PML [11] is discretized only to second order accu-
racy. We observed no significant difference between the two approaches for either the
recursive time marching (35) or final accuracy on the grid. In Figure 5(a), we show
the grid convergence in the case of exact lacunae-based termination, while Figure 5(b)
corresponds to the PML. Apart from a somewhat stronger ``wiggling"" in Figure 5(b),
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Table 1
\ell \infty error on the grid averaged over 0 \leqslant t \leqslant Tsim and grid convergence rates for the second

order central difference scheme. The rate is log2 (coarser grid error) - log2 (finer grid error).

Grid
Dirichlet Neumann Robin

Average error Rate Average error Rate Average error Rate

1\times 6.55 \cdot 10 - 3 - 1.84 \cdot 10 - 2 - 2.02 \cdot 10 - 2 -

2\times 1.52 \cdot 10 - 3 2.11 4.84 \cdot 10 - 3 1.93 5.74 \cdot 10 - 3 1.82

4\times 2.91 \cdot 10 - 4 2.38 9.69 \cdot 10 - 4 2.32 1.41 \cdot 10 - 3 2.03

Table 2
\ell \infty error on the grid averaged over 0 \leqslant t \leqslant Tsim and grid convergence rates for the fourth order

compact scheme (2). The rate is log2 (coarser grid error) - log2 (finer grid error).

Grid
Dirichlet Neumann Robin

Average error Rate Average error Rate Average error Rate

2\times 6.52 \cdot 10 - 5 - 2.09 \cdot 10 - 4 - 2.86 \cdot 10 - 4 -

4\times 2.44 \cdot 10 - 6 4.74 8.60 \cdot 10 - 6 4.6 1.31 \cdot 10 - 5 4.45

the results are the same. The graphs in Figures 6(a) and 6(b) correspond to the Neu-
mann and Robin boundary conditions, respectively, with the matrices (33) computed
using lacunae-based termination. The errors in Figure 6 are one to two binary orders
of magnitude larger than those in Figure 5. We attribute this to derivatives in the
boundary condition rather than the treatment of the outer boundary.

As the domain \Omega aug is somewhat larger than \Omega PML, while the governing equations
in the PML are more complex and require more operations per grid node, the com-
putation of the matrices (33) takes roughly the same time. The subsequent boundary
time marching (35) does not depend on how the matrices (33) have been computed.
Consequently, neither the PML nor exact lacunae-based termination currently offers a
faster performance. Yet, in addition to its unimprovable accuracy, the lacunae-based
time-marching has proven very efficient in suppressing the long-time instabilities that
may characterize some PMLs [1, 2, 3, 26, 23].

6.3. Sublinear complexity. When computing solutions with a predetermined
range of frequencies so that the dimension N of the basis \{ \xi i\} is fixed, the reduced
dimension of the boundary problem (32) and (9) yields a substantial improvement of
numerical performance compared to the conventional volumetric time marching.

The reference volumetric problem is set up on the domain \Omega PML. The scatterer is
shaped as a cube rather than a sphere (see Figure 4 (shown in dashed red)), because
for this case we want to use only the Cartesian scheme (3a) over the volume with
no MDP. Instead of (39), we use a different test solution [23], because it satisfies
the homogeneous initial conditions everywhere including the PML. We specify the
Dirichlet data on the surface of the scatterer from test solution [23] and solve the
resulting IBVP with second order accuracy by volumetric time marching terminated
with a PML. The observed numerical performance provides a reference point for
comparison to the MDP+lacunae solver for the sphere of a comparable size; see
Figure 4.

Table 3 summarizes the CPU times required for integrating the wave equation
over the time T0 with these two methods. For MDP+lacunae, it is very important to
distinguish between the solution (35) only at the boundary and additional solution
on the grid exterior to the scatter. In the case of only boundary integration, the
cost does not depend on the dimension h - 1 of the spatial grid at all (see section
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Table 3
CPU times needed to advance the solution over the interval T0. In the case of MDP+lacunae,

the solution on the 3D grid in space is computed once per T0.

Grid
Volumetric method+PML MDP+lacunae

CPU time, seconds Scaling, times CPU time, seconds Scaling, times

1\times 1.26 - 6.14 \cdot 10 - 2 -

2\times 19.8 15.7 5.16 \cdot 10 - 1 8.44
4\times 322 16.3 4.44 8.61

5). It depends on the dimension N of the basis on \Gamma as \scrO (N2) and remains very
small: 2.4 \cdot 10 - 3sec, because for the specific values we have chosen, Lmax = 12 and
Nmax = 10, N = (Lmax + 1)2(Nmax + 1) is orders of magnitude less than the FDTD

dimension (diam\Omega aug)3

h3
T0

\tau , even for the coarsest grid that we are using. Therefore,
the cost of boundary update is not included in Table 3. The CPU times reported in
Table 3 for MDP+lacunae are the times needed to reconstruct the solution on the
spatial grid exterior to the scatterer after the spectral expansion coefficients at the
boundary have been determined. This reconstruction is performed once per T0, and
the 8-fold scaling on successive grids corresponds to the grid dimension in 3D space.
Taking uniform increments T0 in physical units of time (as opposed to discretization
steps \tau ) is adequate for computing the solution in the volume, especially since in many
cases the volumetric solution may not be needed at all or may otherwise be needed
only at the final time T . The 16-fold scaling of the cost for the volumetric method in
Table 3 is commensurate with the grid dimension in the (3+1)D space-time. Thus, the
proposed method offers grid-independent complexity at the boundary and sublinear
complexity over the volume with respect to the total grid dimension. In doing so, the
dimension of the basis N = (Lmax + 1)2(Nmax + 1) is fixed (see section 6.1).

6.4. Parallelization in time. The data in Table 3 do not take into account the
cost of computing the operators (33) and the matrix on the right-hand side of (35).
This is a one-time expense, but it may be large. To compute the operators (33), one
needs to solve 2N APs (28) over the interval 2T0. Costwise, this is equivalent to solving

one AP over the time 4NT0. As the APs (28) with right-hand sides \mu \BbbM  - \square (h)
c w(k) that

correspond to different w+
0,i and w - 

1,i, i = 1, 2, . . . , N , are completely independent, they
can be efficiently solved in parallel. This can be thought of as parallelization in time.
On 32 cores, we have achieved about 60\% parallelization efficiency effortlessly. On a
larger parallel system, the wall clock time of computing (33) will be small.

Table 4
CPU times and break-even times for the proposed boundary method with second order scheme.

The recursive boundary update (see step 3 of the algorithm on page A3475) is performed for a
smaller increment T \prime 

0 = 1
4
T0. The size of \Omega aug is reduced according to (36) and (40), which yields

a three-fold cost reduction compared to having the increment T0.

Grid CPU time for computing (33), (35), seconds Break-even time, R0

1\times 414.93 329
2\times 6717.63 353
4\times 103483 323

In Table 4, we provide the CPU times required to precompute the operators
(33) and the matrix on the right-hand side of (35) for the boundary method. The
operators (33) are computed using the central difference second order scheme and the
exact lacunae-based termination at the outer boundary \Gamma \prime . The matrix on the right-
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hand side of (35) requires a QR factorization at a cost of approximately \scrO (| \gamma  - 
k | \cdot N2)

operations; see section 5. Every time the grid is refined by a factor of 2, the execution
time in the second column of Table 4 increases by roughly a factor of 16, because the
number of grid nodes in the (3+1)D computational domain increases by a factor of
16 (the dominant behavior), the number of nodes in the (2+1)D grid boundary | \gamma  - 

k | 
increases by a factor of 8, and the dimension of the basis N remains fixed. This setting
corresponds to computing a chosen fixed solution on a sequence of grids. The results
of a pollution study that involves refining the grid and increasing the frequency of the
solution at the same time are presented in section 6.6. In Table 4, we also present the
corresponding break-even times in the units R0 (because c = 1). A break-even time is
the time of integrating one problem by a volumetric method that would be equivalent
to the time for integrating 2N APs (28). From Table 4 we see that the boundary
method breaks even at computational times \gtrsim 300R0. As we advance further in time,
the boundary method becomes progressively more efficient, because the cost of time
marching along the boundary is \scrO (N2) and does not depend on the dimension of
the finite difference grid, while the subsequent reconstruction of the solution in the
volume at select moments of time scales cubically with respect to h - 1. On the other
hand, the volumetric method scales quartically (see Table 3 and all of section 6.3).

0 1/6 2/6 3/6 4/6 5/6 1
time

-9

-8

-7

-6

-5

-4

-3

-2

-1

1x grid
2x grid
4x grid

# T
sim

(a) Binary logarithm of \ell \infty error versus
time

0 1/6 2/6 3/6 4/6 5/6 1
time

-3

-2.9375

-2.875

-2.8125

-2.75

-7.3

-7.2

-7.1

PML

DP+lacunae

# T
sim

(b) Average error on the grid 1\times 

Fig. 8. Long-time performance of the DPM+lacunae method versus that of the reference scheme.

6.5. Long-time and nonreflecting performance. In Figure 8(a), we plot
the error profiles for the second order volumetric method terminated with a PML on
three consecutive grids.2 The graphs in Figure 8(a) corroborate the second order grid
convergence and do not point to any problems with long-time performance. However,
the error averaged over the elapsed time interval gradually increases; see Figure 8(b).
On the other hand, the average error profile for the boundary method is flat. The
long-time error growth for the volumetric method may be characteristic of the finite
difference scheme itself (see, e.g., [22, 13, 37]) and/or the PML [11] that we have
chosen. Yet the boundary method, for which the operators (33) were computed using
the same PML to terminate the APs (28), shows no error growth at all; see Figure 8(b).
This example illustrates the specific advantage that we have presented previously---
stabilization of the long-time numerical performance with the help of lacunae; see [26,
23]. Regardless of what causes the error accumulation over long runs, the Huygens'
principle allows one to partition the overall temporal evolution of the solution into a

2The 4\times solution is not computed on the full interval Tsim, because that would take too long.
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sequence of small increments (of length T0 or shorter). Each of those is computed only
over its own short duration so that the error does not accumulate noticeably. Due to
the presence of lacunae, the overall solution at any given moment of time is affected
only by a fixed and nonincreasing number of the preceding partition elements; hence
the error does not accumulate at all.

6.6. Scaling with frequency and numerical pollution. For the Helmholtz
equation, it is well known [6] that as the wavenumber k increases, one needs to keep the
quantity kp+1hp constant in order to guarantee that the error of a pth order accurate
finite difference method will not increase. This means that for the grid dimension in

each coordinate direction in space, we must have h - 1 \propto k
p+1
p .

Similar analysis for time-dependent problems (hyperbolic) has been conducted in
[17]. Time-dependent formulations usually involve a set or band of frequencies; see,
e.g., our test solution (38) and (39). As k = \omega /c and \tau \propto h, we have kp+1hp \propto \omega p+1\tau p.
Hence, to make sure that the error doesn't grow, one must maintain the same scaling

in time: \tau  - 1 \propto \omega 
p+1
p , where \omega is a typical or the maximum frequency in the band.

The boundary method that we are proposing requires a basis of dimension N =
(1+Lmax)

2(1+Nmax) on \Gamma (section 6.1). In Table 5, we show how N should increase
in order to maintain a predetermined accuracy of the spectral expansion (5) at the
boundary. Table 5 indicates that as the frequency doubles, the required number of APs
(last column in Table 5) increases by a factor of 2\alpha ,3 where \alpha is a number somewhat
larger than 2. For example, for \omega = 24 and \omega = 48 we have \alpha = 2.35. Since the
basis \{ \xi i\} covers a (2+1)D surface in space-time, it is a very slow increase compared

to what a finite difference scheme requires to maintain the accuracy: (2
3
2 )3 \approx 22.5 as

many nodes on a fixed 3D domain in space, and 26 as many on a given (3+1)D domain

in space-time for second order and (2
5
4 )3 \approx 13.5 and 25, respectively, for fourth order.

Table 5
Spectral expansion of a plane wave on \Gamma .

Frequency Error for u Error for \partial u
\partial \bfitn 

Lmax Nmax \# of APs

\omega = 3 2.5 \cdot 10 - 3 5.2 \cdot 10 - 2 7 6 252

\omega = 6 2.4 \cdot 10 - 3 4.1 \cdot 10 - 2 11 8 702

\omega = 12 3.5 \cdot 10 - 3 4.9 \cdot 10 - 2 18 12 2470

\omega = 16 3.1 \cdot 10 - 3 5.7 \cdot 10 - 2 22 16 4692

\omega = 20 3.7 \cdot 10 - 3 7.1 \cdot 10 - 2 27 18 7714

\omega = 24 5.6 \cdot 10 - 3 4.8 \cdot 10 - 2 31 21 11616

\omega = 36 3.4 \cdot 10 - 3 6.8 \cdot 10 - 2 42 27 26488

\omega = 48 1.1 \cdot 10 - 3 4.4 \cdot 10 - 2 56 35 59508

The actual value of \alpha cannot be determined accurately from Table 5. But even for
a value larger than what we have observed, for example, \alpha =3, the growth in N that
would guarantee the desired accuracy is still much slower than that of the dimension
of an FDTD grid. The computational cost for an explicit finite difference scheme is
proportional to the grid dimension. In the case of second order accuracy (p=2), we

have k3h2=const, which means that the grid dimension is (diam\Omega aug)3

h3
T0

\tau and the cost
scale as \omega 6. Even if we assume that \alpha =3, we have N \propto \omega 3 as the frequency increases.
Accordingly, the cost of a boundary update, which is \scrO (N2), will also scale as \omega 6.

3Since the d'Alembert operator and Chebyshev polynomials are real, the number of APs solved
to compute the boundary operators (33) is only (1+Nmax)(1+Lmax)(2+Lmax)/2; see [25, sect. 5.1].
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Therefore, it will remain as small as is shown in section 6.3 compared to the cost
of volumetric time marching. For a fourth order accurate scheme (p = 4), we have
k5h4 = const, so that the grid dimension and the cost of volumetric integration scale
as \omega 5. If we assume that \alpha = 3, then the cost of a boundary update, \scrO (N2) \propto \omega 6,
increases faster. However, this cost will ``catch up"" only when A\omega 5 = B\omega 6, where
A and B are constants (frequency independent). Consequently, the frequency for
which the two costs become equal is \omega = A/B, where A/B is the relative cost of the
two methods on the chosen reference grid for \omega = 1. As we have seen in section 6.3
(Table 3), this quantity could be anywhere between 103 and 105. For a scatterer of size
1, the frequencies in the range around 103 to 105 are already approaching geometrical
optics, since, in observations \alpha < 3, the actual parity between the methods appears
even later. Therefore, for all practical purposes the cost of integration along the
boundary will still be much lower than that of the volumetric time marching.

In Table 6, we present the results of computations for a sequence of frequencies
that allow us to maintain the same level of error on the grids 1\times , 2\times , and 4\times according
to the law k3h2 = const (p = 2). For each \omega , we also show the minimum dimension
of the basis that guarantees that the error at the boundary will be smaller than the
error on the grid. The last column of Table 6 is the CPU time required to advance
the solution at the boundary by T0/4 (see caption for Table 4). From Table 6, we see
that to maintain a given accuracy, N grows slower than the dimension of the grid in
three dimensions. Indeed, as the latter increases 8-fold, the dimension of the basis in
(2+1)D increases 2 to 2.5 times. Table 6 also corroborates the finding of section 5:
the cost of advancing the solution in time at the boundary does not depend on the
dimension of the grid. It is proportional to N2, where N is the dimension of the basis
on \Gamma .

Table 6
Illustration of the numerical pollution effect for the second order scheme. CPU time in seconds.

\omega 
Error on three grids

Error u| \Gamma Basis APs CPU time
1\times 2\times 3\times 

3 6.5 \cdot 10 - 3 --- --- 2.3 \cdot 10 - 3 7\times 6 252 1.2 \cdot 10 - 4

3 3
\surd 
4 --- 5.8 \cdot 10 - 3 --- 3.7 \cdot 10 - 3 9\times 7 440 4.5 \cdot 10 - 4

3 3
\surd 
16 --- --- 5 \cdot 10 - 3 1.3 \cdot 10 - 3 13\times 10 1155 3 \cdot 10 - 3

Note also that the dimension 2N \times 3N of the matrix on the right-hand side of
(35) is small compared to all typical dimensions associated with the grid. Hence, after
the operators (33) and the matrix on the right-hand side of (35) have been computed,
the runtime memory requirements of the proposed algorithm remain very low.

6.7. Prolate spheroids. We compute the solution to problem (1) outside a
prolate spheroid that has its major axis aligned with the Cartesian coordinate z:
(x2 + y2)/b2 + z2/a2 = 1. For brevity, we only present the results of computations by
means of the second order scheme. In our simulations, we keep the major semiaxis
of the spheroid fixed, a = 1, and allow its aspect ratio a/b to vary. An outgoing
test solution in the region exterior to the spheroid is obtained by placing a \delta -source
inside the spheroid (off-center at the point \bfitx \prime = (0.1, 0, 0)). This source generates a
spherical wave G(\bfitx ,\bfitx \prime ) = 1/4\pi exp(ik| \bfitx  - \bfitx \prime |  - i\omega t)/| \bfitx  - \bfitx \prime | , which is interpreted
as the scattered field outside the spheroid. Its trace G| \Gamma provides the Dirichlet data
for an exterior problem, while the trace \partial G

\partial \bfitn 

\bigm| \bigm| 
\Gamma 

provides the Neumann data. The
frequency \omega = 3, so that the wavelength 2\pi c/\omega is of the same order of magnitude as the
diameter 2a = 2. The basis \{ \xi i\} for representing the boundary data (see (5)) consists
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Table 7
\ell \infty error on the grid averaged over 0 \leqslant t \leqslant Tsim, and grid convergence rates for prolate spheroids

with three different aspect ratios a/b; computations by second order central difference scheme. The
rate is log2 (coarser grid error) - log2 (finer grid error).

Grid
a/b = 4/3

Lmax APs Error u| \Gamma 
Dirichlet Neumann

Error Rate Error Rate

1\times 6 378 5.6 \cdot 10 - 3 6.1 \cdot 10 - 3 --- 2.0 \cdot 10 - 2 ---

2\times 9 567 1.2 \cdot 10 - 4 1.6 \cdot 10 - 3 1.9 4.9 \cdot 10 - 3 2.0

4\times 11 693 2.1 \cdot 10 - 5 4.0 \cdot 10 - 4 2.0 1.2 \cdot 10 - 3 2.0
a/b = 2

1\times 12 756 3.9 \cdot 10 - 3 7.8 \cdot 10 - 3 --- 3.9 \cdot 10 - 2 ---

2\times 15 945 5.8 \cdot 10 - 4 2.1 \cdot 10 - 3 1.9 1.0 \cdot 10 - 2 2.0

4\times 18 1134 2.3 \cdot 10 - 4 5.8 \cdot 10 - 4 1.8 2.8 \cdot 10 - 3 1.8
a/b = 4

2\times 24 1512 5.7 \cdot 10 - 3 6.9 \cdot 10 - 3 --- 2.5 \cdot 10 - 2 ---

4\times 34 2754 7.1 \cdot 10 - 4 1.9 \cdot 10 - 3 1.8 6.8 \cdot 10 - 3 1.8

of the angular spheroidal functions Sml(d, \eta ) multiplied with cos(m\varphi ), where m =
0, 1, . . . ,Mmax, l = m,m+1, . . . ,m+Lmax - 1, d = k

\surd 
a2  - b2, and \eta , \varphi are the angular

coordinates in the prolate spheroidal system; see, e.g., [19]. Similarly to spherical
harmonics on the sphere, the system of functions \{ Sml(d, \eta ) \cdot cos(m\varphi )\} is complete on
the surface of the spheroid (if not truncated). To account for the temporal dependence
of the solution at the boundary, we still employ the Chebyshev polynomials Tn(t),
n = 0, . . . , Nmax. In our computations, we take Nmax = 8 and Mmax = 6 (except
for the last row of Table 7 where Mmax = 8), while Lmax varies in order to maintain
the accuracy of the boundary expansion (5) on the spheroid (column ``Error u| \Gamma "" in
Table 7). The overall dimension of the basis is N = (1 + Nmax)(1 + Mmax)Lmax; it
increases as the spheroid gets more prolate (see column ``APs"" in Table 7).

As Table 7 suggests, the mean error converges with the design rate of the second
order accurate scheme. The time of simulation is chosen comparably long to that of
section 6.2, Tsim = 6600a/c. The error profiles remain flat throughout the interval
0 \leqslant t \leqslant Tsim and look very similar to those in Figures 5 and 6; that's why we do
not present the additional plots here. For the most prolate spheroid (a/b = 4), the
grid 1\times appears to be too coarse (the spatial step h \approx 0.13, whereas the maximum
transversal size 2b = 0.5), which ruins the computation. Switching to finer grids 2\times 
and 4\times fixes the problem without any changes in the code.

7. Discussion. The proposed numerical method solves exterior initial boundary
value problems for the 3D wave equation (e.g., scattering about a given shape). It
has been built and tested successfully using both a second order accurate and fourth
order accurate finite different discretization. The method employs boundary operators
that are similar to Calderon's projections. The same set of operators allows us to
handle any boundary condition on the surface of the scatterer, which means that
multiple similar problems can be solved at a low individual cost per problem. The
computations are conducted on a regular Cartesian grid, but the shape of the scatterer
can be arbitrary (nonconforming). This does not result in any reduction of accuracy
and does not cause any problems with stability.

The proposed method requires a one-time computation of the boundary operators
that may entail a substantial cost. However, this initial computation parallelizes
efficiently, and we expect that the associated execution time on a larger multiprocessor
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platform will be small. Once the operators have been computed, the cost of advancing
a given solution in time along the boundary becomes completely grid-independent.
The cost of computing the solution on the grid exterior to the scatterer scales cubically
with respect to the linear dimension, i.e., it increases slower than the overall number
of grid nodes in space-time. At the same time, the cost of the conventional volumetric
method scales quartically, i.e., directly proportional to the number of nodes. Thus,
for a fixed range of frequencies, our method will outperform any volumetric scheme
as long as the integration time is sufficiently long.

The proposed method involves a spectral expansion of the solution and its normal
derivative with respect to a basis chosen at the continuous boundary; see formulae (5).
As the frequency increases, the number of terms in this expansion needed to maintain
the accuracy grows. However, this growth is much slower than that of the dimension
of the finite difference grid. The cost of the boundary update increases with frequency
as well. Yet it remains a small fraction of the cost of volumetric integration.

As the proposed methodology relies on the Huygens' principle, it is inherently
three-dimensional. We presented it for the case of a constant propagation speed c in
(1a). It can be extended to the case of a variable propagation speed provided that
0 < cmin \leqslant c. The Huygens' principle also enables the exact reflectionless treatment
of artificial outer boundaries and provides a stabilizing effect for long-time integration
regardless of what may have caused a deterioration of accuracy in the first place.

In the future, we plan to incorporate more sophisticated geometries/shapes, con-
sider not only boundaries per se but also interfaces between domains and transmis-
sion/scattering problems, and generalize from the scalar wave equation to systems.
Going beyond simple shapes such as a sphere or spheroid is likely to require patching
and piecewise parametrization of the boundary, like, e.g., in [8, 7], which, in turn,
will lead to choosing the systems of basis functions in (5) independently for different
patches. This approach will also help accommodate nonsmooth surfaces, although
addressing the corresponding singularities in the solution may require special care.
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SUPPLEMENTARY MATERIALS: BOUNDARY OPERATORS FOR
UNSTEADY WAVE PROPAGATION: EQUIVALENCE TO THE

METHOD OF DIFFERENCE POTENTIALS\ast 

SERGEY PETROPAVLOVSKY\dagger , SEMYON V. TSYNKOV\ddagger , \mathrm{A}\mathrm{N}\mathrm{D} ELI TURKEL\S 

Abstract. We propose a boundary method for the numerical simulation of time-dependent waves
in 3D exterior regions. The order of accuracy can be either second or fourth in both space and time.
The method reduces a given initial boundary value problem for the wave equation to a set of operator
equations at the boundary of the original domain. The reduction is based on a reformulation of the
method of difference potentials. The resulting operator equations relate the solution and its normal
derivative at the boundary. To solve these equations, one relies on the Huygens' principle. It yields
an algorithm that works on a sliding time window of a finite non-increasing duration. As a result,
it allows one to avoid the ever increasing backward dependence of the solution on time. The major
advantages of the proposed methodology are its reduced computational complexity (grid-independent
on the boundary and sub-linear in the volume), the capacity to handle curvilinear geometries using
Cartesian FDTD methods, and automatic and exact account for the far-field radiation conditions.
In addition, the methodology facilitates solution of multiple similar problems al low individual cost
per problem and guarantees uniform performance over arbitrarily long time intervals.

Key words. method of difference potentials, Huygens' principle, time-dependent wave (d'Alembert)
equation, initial boundary value problem

AMS subject classifications. 35L05, 65M06, 65M12, 65M22, 65M99, 65Z05, 78A40

DOI. 10.1137/19M1269269

Consider the same grid sets as defined in section 3, see Figure 1(b). Let w be a

grid function defined on \BbbN 0, such that w = 0 for t = 0, \tau and \bfitl 
(h)
\Gamma \prime w = 0 at the outer

boundary. Let \bfitT \bfitr (h)
\gamma w \equiv \xi \gamma be the restriction (trace) of w on (to) \gamma \equiv \gamma + \cup \gamma  - .

Introduce the grid function f on \BbbM + \cup \BbbM  - similarly to how the right-hand side of
(18a) is constructed:

(SM1) f = \mu \BbbM  - \square (h)
c w.

The difference potential with density \xi \gamma is a grid function defined on \BbbN  - as follows:

(SM2) \bfitP \BbbN  - \xi \gamma = (w  - \bfitG (h)f)
\bigm| \bigm| 
\BbbN  - ,

where \bfitG (h) is the Green's, i.e., inverse, operator for the problem

(SM3)

\left\{       
\square (h)

c v = f on \BbbM  - \cup \BbbM +,

v = 0 on \BbbN 0 \cap \{ t = 0, \tau \} ,

\bfitl 
(h)
\Gamma \prime v = 0 on \Gamma \prime \equiv \partial \Omega \prime \times [0, T ],

with the solution v defined on \BbbN 0, i.e., v| \BbbN 0 = \bfitG (h)f . The difference potential (SM2)
depends only on \xi \gamma and does not depend on w| \BbbN  - \setminus \gamma , i.e., for two different functions
w with the same trace \xi \gamma , the respective difference potentials coincide on \BbbN  - .
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Consider the following homogeneous problem for u defined on the grid \BbbN  - :

(SM4)

\left\{       
\square (h)

c u = 0 on \BbbM  - ,

u = 0 on \BbbN  - \cap \{ t = 0, \tau \} ,

\bfitl 
(h)
\Gamma \prime u = 0 on \Gamma \prime \equiv \partial \Omega \prime \times [0, T ].

A density \xi \gamma is the trace of a solution u to problem (SM4) i.e., \xi \gamma = \bfitT \bfitr (h)
\gamma u, if and

only if the boundary equation with projection (BEP) holds:

(SM5) \bfitP \gamma \xi \gamma = \xi \gamma ,

where the boundary projection operator \bfitP \gamma is defined as \bfitP \gamma \xi \gamma \equiv \bfitT \bfitr (h)
\gamma \bfitP \BbbN  - \xi \gamma . Equa-

tions (SM4) and (SM5) are equivalent but the former is volumetric, because u in
(SM4) is defined on \BbbN  - , whereas the latter is a boundary operator equation, because
\xi \gamma is defined on the grid boundary \gamma = \gamma + \cup \gamma  - , a narrow fringe of grid nodes that
straddles the continuous boundary \Gamma , see Figure 1(b).

According to formulae (SM2), (SM3) and the definition of the trace operator

\bfitT \bfitr (h)
\gamma , the BEP (SM5) is equivalent to having the solution v of problem (SM3) satisfy

(SM6) v| \gamma = 0.

By inspection, it is easy to see that problem (SM3) along with the definition (SM1) of
the right-hand side f is identical to the AP (18). In turn, the solution to problem (18)
coincides on the grid \BbbN  - with the solution of problem (16). As such, the solution to
problem (18) satisfies v| \gamma + = 0 by design, see formula (16b). Therefore, the additional
constraint (19) that we impose on the solution to problem (18) is equivalent to (SM6)
and by transitivity, to the BEP (SM5).

Recall that, equations (18), (19) were used in section 4 as a part of a simultaneous
approximation of the governing PDE (1a) and boundary condition (1b) at the bound-
ary \Gamma . Specifically, the boundary condition (1b) was reduced to the form (9) that
employs the undetermined coefficients \bfitc 0 and \bfitc 1 of the expansion with respect to the
basis \{ \xi i\} on \Gamma . Then, with the help of the equation-based extension (8), the govern-
ing equation (1a) was reduced to the boundary equation (12) that employs the same
coefficients \bfitc 0 and \bfitc 1. With the help of (18) and (19), equation (12) was subsequently
recast into an equivalent form (23) that is more convenient for computations.

In the framework of difference potentials, system (SM4) has no boundary con-
ditions on the surface of the scatterer. There is only the governing equation, the
initial condition, and the far-field radiation condition. Hence, system (SM4) has
multiple solutions, and so does the BEP (SM5). To obtain a unique solution, one
should additionally specify a boundary condition at \Gamma , as provided by formula (1b).
This boundary condition accounts for a particular type of scattering, e.g., sound-soft,
sound-hard, etc. Similarly to (18), (19), one can also use the BEP (SM5) to build a
simultaneous approximation of the wave equation (1a) and boundary condition (1b)
on \Gamma . Namely, equation (9) remains unchanged. A counterpart of equation (12) is
obtained by substituting the equation-based extension [cf. formulae (8)]:

(SM7)

\xi 
\bigm| \bigm| 
\gamma + =

N\sum 
i=1

c0,iw
+
0,i +

N\sum 
i=1

c1,iw
+
1,i,

\xi 
\bigm| \bigm| 
\gamma  - =

N\sum 
i=1

c0,iw
 - 
0,i +

N\sum 
i=1

c1,iw
 - 
1,i,
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into the BEP (SM5), which yields another equation with respect to \bfitc 0 and \bfitc 1. As
equations (SM1), (SM3), (SM6) are equivalent to (18), (19), the equation with respect
to \bfitc 0 and \bfitc 1 obtained by substituting (SM7) into (SM5) will be equivalent to (12).
This equation is to be combined with (9).

Altogether, we conclude that the methodology introduced in section 4 is an equiv-
alent reformulation of the method of difference potentials. Unlike many previous ex-
positions of the method of difference potentials, the presentation in section 4 aims at
emphasizing its algorithmic aspects. Of particular importance in practice is the role of
the grid sets \gamma + and \gamma  - and that of the equation-based extension (8) for representing
the solution as linear superposition (10) and deriving equation (12).

The MDP was introduced by Ryaben'kii and subsequently developed by him
and his co-authors primarily for solving elliptic equations (steady state and time-
harmonic). A comprehensive description of the method can be found in [SM1]. Later,
it was extended to both parabolic and hyperbolic time-dependent problems.
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