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We consider interior and exterior initial boundary value problems for the three-dimensional 
wave (d’Alembert) equation. First, we reduce a given problem to an equivalent operator 
equation with respect to unknown sources defined only at the boundary of the original 
domain. In doing so, the Huygens’ principle enables us to obtain the operator equation 
in a form that involves only finite and non-increasing pre-history of the solution in time. 
Next, we discretize the resulting boundary equation and solve it efficiently by the method 
of difference potentials (MDP). The overall numerical algorithm handles boundaries of 
general shape using regular structured grids with no deterioration of accuracy. For long 
simulation times it offers sub-linear complexity with respect to the grid dimension, i.e., is 
asymptotically cheaper than the cost of a typical explicit scheme. In addition, our algorithm 
allows one to share the computational cost between multiple similar problems. On multi-
processor (multi-core) platforms, it benefits from what can be considered an effective 
parallelization in time.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Numerical methods that rely on the boundary integral equations (BIEs) and are usually called boundary element methods 
(BEM) are popular for elliptic PDEs (steady-state or time-harmonic problems). Their key advantage is that they reduce the 
dimension of the problem by one (e.g., if the original formulation is three-dimensional, then the corresponding boundary 
integrals will be two-dimensional). Moreover, they offer a substantial flexibility from the standpoint of geometry so that 
the shape of the boundary can be quite general. In spite of their inherent limitations, such as the need to explicitly know 
the fundamental solution, the methods based on BIEs present a viable alternative to well-known volumetric methods, such 
as finite differences (FD) or finite elements (FEM). This is especially true for exterior problems where the variation of 
material properties is less of an issue and hence one can often use constant coefficient governing equations for which the 
fundamental solution is readily available. In that case, an additional advantage of BEM is that it automatically guarantees 
the correct behavior of the solution in the far field and therefore requires no artificial boundary conditions (ABCs).
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The treatment of the actual physical boundary conditions in BEM requires case-by-case care. Indeed, the unknowns for 
BIEs, i.e., the boundary sources, should be chosen so as to maintain the equivalence of the original boundary value problem 
(BVP) to the BIE and well-posedness of the latter.1 In particular, resonances of the complementary domain require special 
consideration [1].

Even though the well-posedness presents a delicate issue when setting the boundary conditions in BEM for elliptic PDEs 
(in those cases that go beyond the simplest scenarios), it has received substantial attention in the literature. In applica-
tions such as computational electromagnetism (CEM), the possible ill-posedness of the boundary representation may be 
alleviated, e.g., by the so-called combined field integral equations. A universal reduction from the domain to the boundary 
can be obtained with the help of Calderon’s boundary projection operators [2,3]. It is not tied to any particular type of 
boundary conditions, as opposed to BIEs with respect to specific densities, such as that of a single-layer potential or double-
layer potential. Importantly, it automatically preserves the well-posedness at the boundary as long as the original BVP is 
well-posed [4].

Unfortunately, the standard BEM cannot be applied directly to hyperbolic PDEs. Its time-dependent applications are 
rather limited to combined problems with a clearly identifiable elliptic component, such as low speed flows of viscous fluid 
[5,6] or water waves [7].

A special class of BIEs called the retarded potential boundary integral equations (RPBIEs) are designed at extending the 
BEM from elliptic to hyperbolic PDEs [8,9]. However, the corresponding time domain numerical methods, see, e.g., [10–13], 
have not gained nearly as much traction as their frequency domain (or pure potential) counterparts. One difficulty is that 
the time domain discretizations of RPBIEs often develop instabilities even if the RPBIE itself is well-posed (some aspects of 
stability have recently been studied in [14]). For the most part, however, the reason is that as the time elapses the boundary 
extends and the computation of convolutions involved in RPBIEs becomes progressively more expensive (it typically relies 
on Laplace transform methods [15,16]). An up-to-date comprehensive review of the entire area can be found in the recent 
monograph [13].

In the current work, we focus on presenting a new methodology that removes the foregoing main limitation of all nu-
merical methods based on RPBIEs and convolution quadratures [17]. Namely, for a given interior or exterior hyperbolic initial 
boundary value problem (IBVP) we show how to equivalently reduce it from the domain to the boundary while explicitly 
taking into account the (strong) Huygens’ principle. The Huygens’ principle provides a mathematical characterization of the 
phenomenon of diffusionless propagation of waves. In the case of diffusionless propagation, the waves due to compactly 
supported sources (in space–time) have sharp aft (or trailing) fronts. The regions behind those aft fronts are known as 
secondary lacunae in the sense of Petrowsky [18–20]. The solution inside the secondary lacunae is identically equal to zero.

For the Huygens’ principle to hold, the number of space dimensions must be odd. Moreover, there are additional rather 
tight constraints that altogether make the diffusionless propagation of waves a rare occurrence. It, however, manifests itself 
for the acoustic and electromagnetic waves in three space dimensions.2 Remarkably, it is those two types of waves that 
appear in a broad range of applications in science and engineering. Moreover, in many instances both acoustic and electro-
magnetic waves allow for a simplified representation by means of the scalar wave (d’Alembert) equation. It is known that 
a scalar PDE in the conventional 3 + 1-dimensional Minkowski space–time satisfies the Huygens’ principle if and only if it 
reduces to the d’Alembert equation [22].

For both interior and exterior IBVPs for the three-dimensional wave equation, a key role played by the Huygens’ prin-
ciple is that it allows one to derive an equivalent boundary operator equation of Calderon’s type with only a finite and 
non-increasing backward dependence on time. The advantage of Calderon’s boundary equations with projections is that 
they operate with physical sources (traces of the solution and its normal derivative at the boundary) and are completely 
independent of the boundary conditions. It means that the same reduced boundary formulation can handle a wide variety 
of boundary conditions. Of central importance is that unlike in the typical RPBIEs [13] where the unknowns (boundary 
densities) are defined everywhere between the initial and current moment of time, the unknowns for Calderon’s equations 
that we employ (i.e., Calderon’s equation that rely on the Huygens’ principle) are specified only on an interval of a fixed 
finite duration, regardless of the actual time that has elapsed since the initial moment. This property renders unnecessary 
the evaluation of convolutions over ever expanding time intervals.3

The limited backward dependence in time is important because the “finite-time” boundary operator equations can be 
solved efficiently. In our implementation, we use the method of difference potentials (MDP) [4] as a vehicle for discretization 
and numerical solution of the corresponding Calderon’s boundary equations. The MDP is very well suited for this purpose 
as it parallels the constructs of Calderon’s potentials and boundary projection operators at the discrete level. As in the 
continuous case, it guarantees that the resulting boundary formulation will be well-posed.

1 In the classical potential theory, the reduction of a BVP from its domain to the boundary is contingent upon specific boundary conditions. For example, 
a Dirichlet problem requires boundary representation in the form of a double-layer potential, whereas a Neumann problem needs a single-layer potential. 
This guarantees that the corresponding BIE will be a Fredholm integral equation of the second kind, which is well-posed.

2 In acoustics (linearized Euler’s equations), diffusionless propagation characterizes the pressure waves as opposed to vorticity waves. In electromagnetism 
(Maxwell’s equations), classical lacunae are sometimes replaced with quasi-lacunae inside which the solution is electrostatic yet not necessarily zero [21].

3 According to [13, page 86], the convolution quadratures built via the Laplace transform “eliminate the Huygens’ principle that so clearly appears in the 
time domain retarded operators and potentials.”
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The discrete counterparts of Calderon’s potentials and Calderon’s boundary projections are computed in the framework of 
MDP by means of solving a specially formulated auxiliary problem (AP). It replaces the convolution integrals that appear in 
the conventional definition of Calderon’s operators. The AP is set up and solved on a volumetric grid. However, this grid can 
be chosen regular (e.g., Cartesian) for computational convenience, whereas the boundary can have a general non-conforming 
shape. Therefore, the MDP maintains the geometric flexibility typical for BEM. At the same time, it allows one to avoid 
the numerical computation of singular integrals. Moreover, MDP enables reducing the computational cost when solving 
multiple similar problems (e.g., problems that share the same geometry yet have different boundary conditions). If the MDP 
is combined with the Huygens’ principle, the computational complexity of the resulting algorithm appears lower than that 
of the common explicit schemes. Moreover, in the case of a multi-processor (or multi-core) implementation, our algorithm 
essentially renders parallelization in time. We note that, while the MDP is our method of choice, the Calderon-type boundary 
equations that we built can be discretized and solved using other techniques as well.

The methodology we are proposing is not the first ever application of the Huygens’ principle in scientific computing. 
Previously, lacunae and the Huygens’ principle were used to design highly accurate ABCs for the numerical simulation of 
waves.4 The pioneering work by Ryaben’kii dates back to 1990 [26]. Later, it has been generalized to the wave equation 
driven by moving sources [27], acoustics equations [28], and Maxwell’s equations [29–31]. The main focus of the current 
work is to extend the application of lacunae beyond the artificial outer boundaries and include the various IBVPs with a 
broad range of boundary conditions set at the boundaries of general shape.

There is an alternative approach to solving unsteady problems by MDP. It was first explored in [32,33] for parabolic 
equations and then extended to the wave equation in our recent work [34]. The governing PDE is discretized by means of 
an implicit scheme (e.g., the compact high order accurate scheme [35]), which yields an elliptic (i.e., steady-state) equation 
at the upper time level. This equation is solved at each time step by the conventional MDP in much the same way as, 
e.g., the Helmholtz equation [36,37]. The resulting algorithm is simple and inexpensive. Moreover, as it does not rely on 
the Huygens’ principle, it can be built in 2D and can handle variable coefficients (e.g., the propagation speed that varies in 
space) as easily as constant coefficients. This is an important advantage. There are, however, some limitations as well. The 
elliptic equation solved at each time step is inhomogeneous. Its source term comes from the previous time levels. Therefore, 
for an exterior problem this equation will remain inhomogeneous over the entire unbounded region. This is an obstacle 
for numerical solution. Furthermore, with no use of lacunae in the case of hyperbolic PDEs, this technique cannot offer 
sub-linear computational complexity.

The rest of the paper is organized as follows. Interior problems are analyzed in Section 2. Exterior problems are dis-
cussed in Section 3. A succinct account of the method of difference potentials as it applies to solving the corresponding 
unsteady boundary equations is given in Section 4. The results of numerical simulations are provided in Section 5. Section 6
summarizes the current findings and identifies the directions for future work. Appendix A presents the results of additional 
numerical simulations for the Neumann problem.

2. Interior problem

Let �c denote the d’Alembert operator with a constant propagation speed c:

�cu ≡ 1

c2

∂2u

∂t2
− �u. (1)

Consider the following initial boundary value problem:

�cu(x, t) = 0, (x, t) ∈ � × (0, T ], (2a)

u
∣∣
t=0 = u0(x),

∂u

∂t

∣∣∣
t=0

= u1(x), x ∈ �, (2b)

l�u = φ, (x, t) ∈ � ≡ ∂� × (0, T ], (2c)

where � ⊂ R
3 is a bounded domain with piece-wise smooth boundary ∂�, T is the final time, and l� is the operator of 

the boundary conditions. The wave equation (2a) is homogeneous. The boundary condition (2c) can be time-dependent. 
The entire IBVP (2) is assumed well-posed in the sense of the standard energy integrals, i.e., in the sense of L2 , see, e.g., 
[38,39]. This is the most common interpretation of well-posedness for linear hyperbolic IBVPs. The geometry of problem (2)
is schematically shown in Fig. 1. Note that, while the actual formulation is three-dimensional, we are using the simplified 
2D and 1D illustrations, see Figs. 1a and 1b, respectively.

2.1. Reduction to the boundary

The fundamental solution G of the 3D d’Alembert operator (1) satisfies equation �c G = δ. It is a single layer on the 
sphere of radius ct centered at the origin:

4 Convolution quadratures have also been used for the development and analysis of far-field boundary conditions, see, e.g., [23], as well as the more 
recent work [24,25] that involves RPBIEs.
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Fig. 1. Geometry of the IBVP (2).

G(x, t) = c

2π
θ(t)δ(c2t2 − |x|2). (3)

The Heaviside step function θ(t) ≡
{

0, t � 0,

1, t > 0,
on the right-hand side of (3) is a manifestation of causality — a source at 

t = 0 may affect the solution only at subsequent times, t > 0.
Let u(x, t) be any solution to the wave equation (2a), and let ũ(x, t) be its formal extension with zero beyond the cylinder 

� × (0, T ). Then, ũ = G ∗�c ũ, which, in particular, implies that for any (x, t) ∈ � × (0, T ) we can write the following Green’s 
formula:

u(x, t) = 1

c2

∫
�

{
∂u

∂t
(y,0)G(x − y, t) − u(y,0)

∂G

∂t
(x − y, t)

}
d y

− 1

c2

∫
�

{
∂u

∂t
(y, T )G(x − y, t − T ) − u(y, T )

∂G

∂t
(x − y, t − T )

}
d y

+
∫
�

{
∂u

∂n
(y, t′)G(x − y, t − t′) − u(y, t′) ∂G

∂n
(x − y, t − t′)

}
dt′dS y,

(4)

where n is the outward normal to ∂� and dS y corresponds to the integration over ∂�. While we use the conventional 
integral notation in (4), the integrals need to be interpreted as convolutions in the sense of distributions, in accordance 
with the definition of G given by (3).

The second integral on the right-hand side of (4) vanishes because of the causality of G , see (3), since for t ∈ (0, T ) we 
have t − T < 0. Due to the same reason, the third integral can be calculated over only �t ≡ ∂� × (0, t] rather then over the 
entire �, where t is the current moment of time. This yields (cf. [40, equation (7.3.5)]):

u(x, t) = 1

c2

∫
�

{
∂u

∂t
(y,0)G(x − y, t) − u(y,0)

∂G

∂t
(x − y, t)

}
d y

+
∫
�t

{
∂u

∂n
(y, t′)G(x − y, t − t′) − u(y, t′) ∂G

∂n
(x − y, t − t′)

}
dt′dS y .

(5)

Equation (5) is the well-known Green’s formula for the wave equation (2a). It shows that in general the solution at a given 
(x, t) ∈ � × (0, T ) is affected by both the initial data at t = 0 and the boundary data at �t . Moreover, it indicates that having 
a pre-defined terminal time T is not essential, as the solution can be obtained by surface integrals for any given t > 0. For 
x /∈ �̄, formula (5) yields u = 0. Other Green’s functions, besides the fundamental solution (3), can be used in (5), see [40, 
Section 7.3]. It may be beneficial for some purposes, including computational. Our current analysis, however, becomes most 
transparent when using the genuine free space Green’s function (3). As the cylinder (x, t) ∈ � × (0, T ) is a four-dimensional 
shape, all surface integrals in (5) are three-dimensional. By substituting the actual form of (3) and performing the integration 
dt′ in the second integral of (5), one can reduce the latter to the retarded potential representation [13]. Yet for our purposes 
it will be more convenient to keep the Green’s formula as given by (5).

Denote by B the bottom of the cylinder shown in Fig. 1a, i.e., the domain � at t = 0. Let ξB = (
u, ∂u

∂t

)∣∣
B ≡ (u0, u1) be a 

vector function on B with two components given by the initial values of the solution and its first time derivative, see (2b). 
At the lateral boundary �t , introduce another two-dimensional vector function, ξ�t

= (ξ0, ξ1). Denote by �t = (ξB, ξ�t
) the 

juxtaposition of these two vector functions. By analogy with the Green’s formula (5), define a mapping P� that maps �t

onto a “plain” scalar function of the arguments (x, t) on �:
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P��t(x, t) = 1

c2

∫
�

{
u1(y)G(x − y, t) − u0(y)

∂G

∂t
(x − y, t)

}
d y

︸ ︷︷ ︸
P ′

�ξB(x,t)

+
∫
�t

{
ξ1(y, t′)G(x − y, t − t′) − ξ0(y, t′) ∂G

∂n
(x − y, t − t′)

}
dt′dS y

︸ ︷︷ ︸
P�ξ�t

(x,t)

.

(6)

Since, ξB = (u0, u1) is assumed given and fixed while ξ�t
can be arbitrary, the mapping P� introduced by (6) appears 

an affine mapping from the space of vector functions ξ�t
= (ξ0, ξ1) defined on the boundary �t to the space of ordinary 

functions of the arguments (x, t) on the domain �, t > 0.
The purely linear part of the mapping P� with respect to ξ�t

, which is given by the second integral on the right-hand 
side of (6) and denoted by P �ξ�t

(x, t), is called Calderon’s potential with the density ξ�t
. In the particular case where 

ξ0 = u
∣∣
�t

and ξ1 = ∂u
∂n

∣∣∣
�t

, the right-hand side of (6) coincides with that of (5) and accordingly, P��t(x, t) coincides with 

the solution u(x, t).
For future convenience, we recast equation (6) in the compact form:

P��t(x, t) = P �ξ�t
(x, t) + P ′

�ξB(x, t). (6′)
The initial data ξB in (6′) can be viewed as a known part of the overall density �t defined at the combined boundary �t ∪B. 
In that regard, the derivative ∂

∂t can be interpreted as the normal derivative at B. Unlike in the case of elliptic problems, 
where the density of a Calderon potential is defined over the entire boundary, see [4], the density in (6′) is defined only on 
a part. Namely, the boundary (cylinder) does not have the top portion, i.e., no density is defined at the current moment of 
time t . This is due to the causal nature of the Green’s function (3). The solution to the IBVP (2) at t should be sought rather 
than specified ahead of time.

For any ξ�t
= (ξ0, ξ1), the left-hand side of (6′) solves the homogeneous wave equation for x ∈ � and t > 0:

�cP��t = 0.

It also satisfies the initial conditions (2b). Likewise, for any ξ�t
= (ξ0, ξ1) the Calderon potential given by the first term on 

the right-hand side of (6′) solves the wave equation (2a):

�c P �ξ�t
= 0

and satisfies the homogeneous initial conditions at t = 0.
However, in general neither P �ξ�t

nor P��t coincide with the density ξ�t
. Introduce the vector trace operator on �t :

∀ w(x, t) : T r�t w
def=

(
w,

∂ w

∂n

)∣∣∣∣
�t

. (7)

Then, unless ξ�t
is the trace of a solution to equation (2a), we have:

T r�t P �ξ�t
	= ξ�t

and T r�tP��t 	= ξ�t
. (8)

Relations (8) are a manifestation of the well-known fact that the boundary conditions for the wave equation cannot be set 
arbitrarily and simultaneously for both the solution itself and its normal derivative. Specifying u and ∂u

∂n at the boundary 
would yield an overdetermined IBVP.

The left-hand side of the first relation (8) defines a very important operator — Calderon’s projection:

P �t ξ�t

def= T r�t P �ξ�t
. (9)

An argument similar to that given in [4] allows one to show that the following boundary equation with projection (BEP)

P �t ξ�t
= ξ�t

(10)

holds if and only if ξ�t
= T r�t u, where u(x, t) is a solution to the wave equation (2a) subject to zero initial conditions at 

t = 0. Moreover, the inhomogeneous BEP

P �t ξ�t
+ T r�t P ′

�ξB = ξ�t
(10′)

with ξB = (u0, u1) holds if and only if ξ�t
= T r�t u, where u(x, t) is a solution to the wave equation (2a) subject to the 

initial conditions (2b).
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The BEP (10′) with the operator P �t defined by (9) can be considered an equation for the unknown density ξ�t
, where 

the term T r�t P ′
�ξB is a known source term that accounts for the inhomogeneous initial conditions (2b). To find the spe-

cific ξ�t
that corresponds to the original IBVP (2), one also needs to take into account the boundary condition (2c). For 

convenience, we recast it as

l�t ξ�t
= φ, (11)

emphasizing that the boundary condition is formulated on the interval from the initial to the current moment of time, and 
the operator l�t acts on vector densities ξ�t

with the components ξ0 and ξ1 that correspond to the trace of the solution 
and its first normal derivative, respectively.

The simplest cases are those with Dirichlet and Neumann boundary conditions. In the Dirichlet case, the component ξ0
in (11) is known, while ξ1 needs to be determined in the course of the solution. The Neumann case is opposite, ξ1 is known 
whereas ξ0 should be determined. If (11) is a mixed (Robin) boundary condition, then it implies a relation between ξ0 and 
ξ1 on �t . In general, regardless of the specific type of the boundary condition, equation (11) is combined with the BEP (10′). 
The resulting system (10′), (11) is equivalent to the IBVP (2) yet formulated only at the boundary. It is to be solved with 
respect to the unknown boundary density ξ�t

. Once the density ξ�t
has been determined, it is substituted on the right-hand 

side of equation (6′) (along with the initial data ξB), which yields the solution u to IBVP (2) on the domain � at the time t .
A key advantage of using Calderon’s operators is that they render the reduction of the wave equation/initial conditions 

(2a)–(2b) to the boundary in the form of the BEP (10′) completely independent of the boundary condition (11). The latter 
is “added” to the resulting BEP to form the overall boundary system that is solved with respect to ξ�t

. Hence, Calderon’s 
operators provide a very substantial flexibility from the standpoint of handling a variety of boundary conditions.

The rationale for using the boundary reformulation (10′)–(11), as opposed to solving IBVP (2) directly, is the reduced 
dimensionality.5 Indeed, both integrals on the right-hand side of (6) are three-dimensional, while the domain � × (0, T )

of the original problem (2) is four-dimensional. However, unlike in the conventional BEM for elliptic problems, the lateral 
boundary �t , on which the unknowns ξ�t

are specified, extends as the time t elapses. Therefore, the solution of system 
(10′), (11) with respect to ξ�t

will be progressively more expensive for longer simulation times. This is a serious difficulty 
for practical implementation. It is a difficulty of the same type as encountered by numerical methods based on RPBIEs 
and convolution quadratures [13]. In Sections 2.2 and 2.3, we show how one can use the partition in time and Huygens’ 
principle to completely remove this difficulty.

2.2. Partition in time

Let T0 be a fixed time interval (to be specified later, see Section 2.3), and assume, with no loss of generality, that we are 
interested in obtaining the solution for 0 � t � K · T0 ≡ T , where K is an integer.6 Then, we partition the lateral boundary 
� ≡ �T into K equal parts:

�T = �1 ∪ �2 ∪ ... ∪ �K , (12a)

where

�1 = ∂� × (0, T0], �2 = ∂� × (T0,2T0], . . . �K = ∂� × ((K − 1)T0, K T0]. (12b)

The density is partitioned accordingly:

ξ�T
= ξ�1

+ ξ�2
+ ... + ξ�K

, (13)

where for k = 1, 2, . . . , K :

ξ�k
(x, t) =

{
ξ�T

(x, t), if (x, t) ∈ �k,

0, if (x, t) ∈ �T \�k.
(14)

In other words, whereas the boundary itself is split into non-overlapping segments according to (12), the density is rep-
resented as the linear combination (13), where each ξ�k

is defined on the entire �T yet may be non-zero only on the 
respective �k: ξ�k

	= 0, k = 1, 2, . . . K , see Fig. 2a.
Equations (10′) and (11) written for the unknown density ξ�T

take the form:

P �T ξ�T
+ T r�T P ′

�ξB = ξ�T
(15)

and

5 This is true in regard to any method based on boundary equations, including RPBIEs [13].
6 Having a pre-determined final time T is not essential, and larger T ’s can be accommodated by increasing K .
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Fig. 2. Partition in time and application of the Huygens’ principle. Left panel: The characteristic cones are shown in red. Right panel: The solution is driven 
by (singular) sources at the lateral boundary and the bottom of the cylinder (shown in cyan); the sources operate until t = (K − 2)T0. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

l�T ξ�T
= φ, (16)

respectively, where ξB = (u0, u1) is the initial data from (2b). Our goal is to reformulate equations (15)–(16) to allow for 
a consecutive determination of the partial densities ξ�k

. Specifically, we will derive the equations for the unknown partial 
density ξ�K

assuming that the densities ξ�k
for k = 1, 2, . . . , K − 1 have been found previously.

Hence, we use the definitions of Calderon’s potential (6), boundary trace (7), and Calderon’s projection (9), and split 
equation (15) into two by separating the last component �K in the composition (12a) from the rest of the boundary �T :

T r�T −T0
P �ξ�T

+ T r�T −T0
P ′

�ξB = ξ�T −T0
, (17a)

T r�K P �ξ�T
+ T r�K P ′

�ξB = ξ�K
. (17b)

In equation (17a), �T −T0 = �1 ∪ �2 ∪ . . . ∪ �K−1, ξ�T −T0
= ξ�t

∣∣∣
t=T −T0

, and the trace operator is defined as T r�T −T0
= T r�t

for t = T − T0. Similarly, the operator T r�K in equation (17b) is the same trace operator as in (7) but taken only at the 
partial boundary �K . The argument of P � on the left-hand side of each equation (17) is still the entire density ξ�T

.
However, due to the causality, equation (17a) will not change if one substitutes ξ�T −T0

instead of ξ�T
on its left-hand 

side. This yields:

P �T −T0
ξ�T −T0

+ T r�T −T0
P ′

�ξB = ξ�T −T0
, (18)

where the projection P �T −T0
is defined according to (9) for t = T − T0, i.e., P�T −T0

= P�t

∣∣∣
t=T −T0

. Clearly, equation (18) is 

basically the same as (15), except that the domain �T −T0 for (18) is “shorter” and the domain �T for (15) is “taller,” see 
Fig. 2a. Equation (18) can be supplemented by the corresponding “truncated” counterpart of the boundary condition (16):

l�T −T0
ξ�T −T0

= φ. (19)

The system of equations (18), (19) is a system that determines ξ�T −T0
.

Assume that the density ξ�T −T0
has been obtained by solving equations (18), (19). This means, in particular, that the 

partial densities ξ�k
can be considered known for k = 1, 2, . . . , K − 1. We will show how to use equation (17b) to find the 

remaining partial density ξ�K
. We will show how to find the next partial density if the previous ones are available, which 

essentially yields a marching algorithm with respect to the partition index K .
Given that all ξ�k

, k = 1, 2, . . . , K − 1, are assumed known, we use the linearity and transform equation (17b) as follows:

T r�K P �ξ�K
+

K−1∑
k=1

T r�K P �ξ�k
+ T r�K P ′

�ξB = ξ�K
. (20)

The second term on the left-hand side of (20), which is a sum from k = 1 through K − 1, can be regarded as known because 
it represents the previously determined partial densities ξ�k

. The third term is also known as it represents the initial data 
ξB. Hence, equation (20) becomes an equation with respect to the unknown partial density ξ� .
K
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Recall that ξ�K
is defined on the entire lateral boundary �T . However, it may differ from zero only on �K , see (12) and 

(14). Then, according to (6), for the potential P �ξ�K
in the first term on the left-hand side of (20) we have:

P �ξ�K
(x, t) =

T∫
T −T0

{
ξ1(y, t′)G(x − y, t − t′) − ξ0(y, t′) ∂G

∂n
(x − y, t − t′)

}
dt′dS y .

The density ξ�K
(x, t), x ∈ ∂�, (K − 1)T0 < t � K T0, can be thought of as a translation in time:

ξ�K
(x, t) = ξ�T0

(x, t − (K − 1)T0), (21)

where ξ�T0
(x, ̃t) is a density defined for 0 < t̃ � T0 as in Section 2.1. The kernel G( · , t − t′) also allows translation in time, 

i.e., it depends only on the difference of the arguments t − t′ , see (3). Then, we can recast the expression for the potential 
as follows:

P �ξ�K
(x, t̃ + T0(K − 1)) = P�ξ�T0

(x, t̃)

=
T0∫

0

{
ξ1(y, t̃′)G(x − y, t̃ − t̃′) − ξ0(y, t̃′) ∂G

∂n
(x − y, t̃ − t̃′)

}
dt̃′dS y,

where 0 < t̃ � T0. Consequently, equation (20) becomes:

P �T0
ξ�K

+
K−1∑
k=1

T r�K P �ξ�k
+ T r�K P ′

�ξB = ξ�K
, (20′)

where the operator P �T0
does not depend on K :

P �T0
= P �t

∣∣∣
t=T0

,

and P �t is defined according to (9) and (7). Hereafter, we will use the foregoing interpretation of the partial density as a 
translation in time, see (21), whenever it does not cause any confusion.

Equation (20′) needs to be supplemented by the respective fragment of the boundary condition:

l�K ξ�K
= φ. (22)

Since, in general the boundary condition (16) is allowed to be time-dependent, in equation (22) we use the operator l�K

rather than l�T0
. The system of equations (20′), (22) determines ξ�K

. This completes the solution for the entire time interval 
of length T = K T0. As, however, we have mentioned previously, the final time T is arbitrary. Hence, once ξ�K

has been 
determined, we can use the same methodology to obtain yet another partial density, ξ�K+1

. Algorithmically, this amounts to 
replacing K with K + 1 in equations (20′), (22) and effectively yields a time-marching procedure with respect to K .

We emphasize though that according to equation (20′), its solution ξ�K
depends on all the preceding densities ξ�k

, 
k = 1, ..., K − 1, as well as the initial data ξB. This is not surprising, because the system (20′), (22) for ξ�K

, along with the 
system (18), (19) for ξ�T −T0

, present an equivalent reformulation of the overall system (15), (16). So the solution at later 
moments of time depends on its entire temporal pre-history. This property holds for any linear evolution problem. However, 
for the wave equation that satisfies the Huygens’ principle, the dependence of ξ�K

on ξ�k
, k = 1, ..., K − 1, can be truncated. 

In Section 2.3, we explain how that can be done with the help of lacunae in the solution.

2.3. Application of Huygens’ principle

Let the size T0 of the partition (12) be chosen as

T0 � 1

c
diam�. (23)

As the integrals on the right-hand side of (6) are convolutions with the free space Green’s function (3), it is easy to see 
that for any (x, t) ∈ �K , there will be no contribution from the initial data ξB on the left-hand side of equation (20′) and 
no contribution from any ξ�k

either for k = 1, 2, . . . , K − 2. The only source term remaining on the left-hand side of (20′)
will be T r�K P�ξ�K−1

. This happens because if the vertex of a characteristic cone belongs to �K , then its surface does not 
intersect with the bottom B and does not intersect with any of the segments �k either for k = 1, 2, . . . , K −2, see Fig. 2a. The 
surface of such a cone may intersect only with �K−1. For this phenomenon to hold, the space must be three-dimensional 
and the size of the partition must satisfy (23).
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Then, equation (20′) transforms into

P �T0
ξ�K

+ T r�K P �ξ�K−1
= ξ�K

, (20′′)

and we observe that ξ�K
depends only on one immediately preceding partial density ξ�K−1

rather than on all ξ�k
. The 

second term on the left-hand side of equation (20′′) involves the evaluation of Calderon’s projection due to a given partial 
density ξ�K−1

and taking its boundary trace (7) at the subsequent partition element �K . For future convenience, we denote 
the overall operator by R�T0

:

R�T0
ξ�K−1

(x, t) = T r�K

T −T0∫
T −2T0

{
ξ1(y, t′)G(x − y, t − t′) − ξ0(y, t′) ∂G

∂n
(x − y, t − t′)

}
dt′dS y,

x ∈ ∂�, T − T0 < t � T . (24)

Due to the same argument as given in Section 2.2 when deriving equation (20′), the operator R�T0
does not depend on K , 

i.e., admits translation in time. Therefore, equation (20′′) becomes:

P �T0
ξ�K

+ R�T0
ξ�K−1

= ξ�K
. (25)

To calculate ξ�K
, equation (25) must be combined with (22). System (22), (25) allows one to update the partial density 

consecutively, i.e., by transitioning from K − 1 to K . This procedure can be thought of as time stepping, with the size, i.e., 
duration, of each step equal to T0. In doing so, to obtain the density ξ�K

for the current step K , the required input consists 
of the density ξ�K−1

from only one previous step, K − 1, as well as the boundary data φ from the current step K . The 
foregoing time marching is performed along a (2 + 1)-dimensional lateral boundary, as opposed to the (3 + 1)-dimensional 
integration by a volumetric method. At some point, such as the final time T = K T0, we may need to actually obtain the 
solution u on the entire domain � rather than only its trace at the boundary. This solution will be given by Calderon’s 
potential:

u(x, T ) = P �ξ�K
. (26)

The limited backward time dependence that allowed us to replace equation (20′) with equation (25) is a direct con-
sequence of the presence of lacunae in the solutions of the wave equation. Indeed, for the sources located at the bottom 
B (initial conditions), as well as at the lateral boundary � below t = T − 2T0 (i.e., at �T −2T0 = �1 ∪ �2 ∪ . . . ∪ �K−2), the 
domain � completely falls into the lacuna starting from t = T − T0, see Fig. 2b. For a more detailed discussion of lacunae, 
their application to the construction of artificial boundary conditions, and generalization to Maxwell’s equations, we refer 
the reader to our work [21,30,31].

We also emphasize that the actual solution to the IBVP (2) does not usually have lacunae as the waves generated by the 
initial and boundary conditions will keep bouncing off the boundaries and will thus remain inside � as the time elapses. 
However, the proposed boundary reformulation is based on Calderon’s operators that are built with the help of the free 
space Green’s function. Therefore, it allows us to take advantage of the Huygens’ principle and thus obtain the foregoing 
two-step time-marching algorithm (25)–(22). In the next section, we introduce its semi-discrete version.

2.4. Semi-discretization

We consider two consecutive partition elements, say, (K − 1)-th and K -th. The corresponding densities ξ�K
and ξ�K−1

can be expanded on �K and �K−1 using an appropriate basis:

ξ�K−1
=

∑
s

c(I)
0,sψ0,s + c(I)

1,sψ1,s, ξ�K
=

∑
s

c(II)
0,sψ0,s + c(II)

1,sψ1,s. (27)

In formulae (27), the bi-component basis functions ψ0,s = (ψs, 0) and ψ1,s = (0, ψs) are used for representing the solution 
and its normal derivative, respectively. In practice, it is convenient and economical to choose the same basis functions on 
both �K−1 and �K (recall, these boundary segments have the same duration T0). This is what we assume in formulae (27), 
where the superscripts (I) and (II) indicate that the expansion coefficients pertain to �K−1 and �K , respectively. As both 
�K−1 and �K are Cartesian products of the spatial boundary ∂� times the corresponding time intervals, see formula (12b), 
it is also convenient to consider the basis functions ψ0,s and ψ1,s in (27) as products of functions that depend only on time 
and functions that depend only on space variables. The temporal factors are natural to take in the form of the Chebyshev 
polynomials. The spatial factors are determined by the geometry of ∂�; for the simple spherical shape of ∂� analyzed 
in the current paper we use spherical harmonics, see Section 5.1. Moreover, for actual implementation the dimension of 
the basis is always chosen finite (see Sections 4.6 and 5.1). Then, expansions (27) can be understood, e.g., as Galerkin-type 
approximations that provide sufficient accuracy.
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Fig. 3. Schematic for the time-marching algorithm based on equations (28)–(29).

Suppose the density ξ�K−1
at the lower partition element is known, i.e., the coefficients c(I)

0,s and c(I)
1,s are available. 

Substituting expressions (27) into equation (25), we obtain:

∑
s

c(II)
0,s

{
P �T0

− I
}

︸ ︷︷ ︸
Q �T0

ψ0,s+ c(II)
1,s

{
P �T0

− I
}

︸ ︷︷ ︸
Q �T0

ψ1,s

= −
∑

s

c(I)
0,s R�T0

ψ0,s + c(I)
1,s R�T0

ψ1,s,

(28)

where I is the identity operator. In addition, the boundary condition (22) on �K yields:

l�K

∑
s

c(II)
0,sψ0,s + c(II)

1,sψ1,s = φ ≡
∑

s

c(φ)
s ψs. (29)

If (22) is a Dirichlet boundary condition, then formula (29) implies that the coefficients c(II)
0,s are known and equal to the 

coefficients c(φ)
s of the expansion of the Dirichlet data φ with respect to the same system of scalar basis functions ψs . 

Likewise, if (22) is a Neumann boundary condition, then the coefficients c(II)
1,s are equal to the known coefficients c(φ)

s of the 
expansion of the Neumann data φ with respect to the basis functions ψs . For more general boundary conditions, e.g., Robin, 
formula (29) yields additional relations between the coefficients c(II)

0,s and c(II)
1,s that supplement equation (28).

In system (28), (29), the coefficients c(II)
0,s and c(II)

1,s are the unknowns, whereas c(I)
0,s , c(I)

1,s , and c(φ)
s represent the data. Given 

the functions Q �T0
ψ0,s and Q �T0

ψ1,s , solving this system means finding the coefficients of the linear combination on 
the first line of (28) that would make it equal to a known right-hand side (the second line of (28)), subject to additional 
constraints (29).

It is important that the operators Q �T0
and R�T0

do not depend on K , and the basis functions ψ0,s and ψ1,s are 
also chosen the same for all K . Consequently, the functions Q �T0

ψ0,s , Q �T0
ψ1,s , as well as R�T0

ψ0,s , R�T0
ψ1,s , remain 

unchanged for any two consecutive partition elements K − 1 and K . This leads to the following time-marching algorithm 
with respect to K .

First, the system of equations (15), (16) is solved for T = T0 or, equivalently, for K =1. Then, we choose K =2 and for 
ξ�K−1

≡ξ�1
obtain the expansion coefficients c(I)

0,s and c(I)
1,s according to the first equality of (27). Next, we solve equations 

(28), (29) with respect to the coefficients c(II)
0,s and c(II)

1,s that are attributed to ξ�K
≡ξ�2

. After that, we perform one time 
step. Namely, the upper level coefficients become the lower level coefficients: c(I)

0,s 
→c(II)
0,s , c(I)

1,s 
→c(II)
1,s and system (28), (29)

is solved again, this time with respect to the expansion coefficients c(II)
0,s and c(II)

1,s for ξ�K
≡ ξ�3

. The same process continues 
further, i.e., for K = 4, 5, . . ., as schematically shown in Fig. 3. In doing so, neither the functions Q �T0

ψ0,s , Q �T0
ψ1,s that 

form the linear combination on the left-hand side of (28) nor the functions R�T0
ψ0,s , R�T0

ψ1,s that yield the right-hand 
side of (28) depend on K , while the additional constraints (29) that are due to the boundary conditions may depend 
explicitly on time. The time invariance of Q �T0

ψ0,s , Q �T0
ψ1,s and R�T0

ψ0,s , R�T0
ψ1,s is a key factor that enables the 

superior computational complexity of the proposed methodology, see Sections 5.3 and 5.4.
If, for a given K , the solution u needs to be known on the entire domain �, it can be obtained using formula (26).
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Fig. 4. Geometry and partition in time for the exterior problem (30). Left panel: The larger auxiliary domain �R contains �; the domain �̃R is convenient to 
use for writing the Green’s formula (31). Right panel: The dashed portions of the characteristic cones (shown in red) that intersect with the outer boundary 
of �̃R correspond to the third integral in (31) that vanishes due to the radiation condition at ∂�R ≡ ∂�̃out

R . The green characteristic cone illustrates the 
computation of the solution in �̃ by Calderon’s potential after the boundary density has been obtained.

3. Exterior problem

A homogeneous exterior IBVP also can be reduced to an equivalent boundary formulation. Let � ⊂ R
3 be a bounded 

domain (as in Section 2), and denote its complement to the entire space by �̃ def= R
3\�̄. Consider the following problem [cf. 

equations (2)]:

�cu(x, t) = 0, (x, t) ∈ �̃ × (0, T ], (30a)

u
∣∣
t=0 = 0,

∂u

∂t

∣∣∣
t=0

= 0, x ∈ �̃, (30b)

l�u = φ, (x, t) ∈ � ≡ ∂�̃ × (0, T ]. (30c)

The boundary � in (30c) is clearly the same as that in (2c) since ∂� = ∂�̃. Problem (30) does not correspond to the most 
general exterior formulation, because both the governing equation (30a) and the initial conditions (30b) are homogeneous. 
Yet, this formulation is typical and important for applications. In particular, one can think of the scattering of a given 
incident wave about an obstacle �. In this case, u is the scattered field. The wave equation (30a) is homogeneous because 
the scattered field is not driven by any sources located on �̃. The initial conditions (30b) are homogeneous because with no 
loss of generality we can assume that the incident wave only reaches the scatterer � at t = 0. The boundary operator l� on 
the left-hand side of (30c) accounts for the type of scattering, while the boundary data φ represent the specific impinging 
signal. In acoustics, for example, the two most typical types of scattering surfaces are sound-soft and sound-hard. They 
are modeled by the Dirichlet and Neumann boundary conditions, respectively, so that relation (30c) becomes u = −uinc or 
∂u
∂n = − ∂uinc

∂n , where uinc is the given incident field.
To reduce the exterior IBVP (30) to its boundary counterpart, consider a larger bounded domain �R ⊃ � and denote 

�̃R
def= �R\�̄, see Fig. 4a. The boundary of the domain �̃R consists of two components, inner and outer: ∂�̃R = ∂�̃in

R ∪∂�̃out
R , 

where ∂�̃in
R ≡ ∂� and ∂�̃out

R ≡ ∂�R . As the domain �̃R is finite (i.e., bounded), it allows for a convenient representation of 
the solution u to IBVP (30) by means of a Green’s formula.

To derive the Green’s formula for �̃R , we employ the fundamental solution (3) and, using the same argument7 as in 
Section 2.1, obtain for (x, t) ∈ �̃R × (0, T ) [cf. formula (5)]:

u(x, t) = 1

c2

∫
�̃R

{
∂u

∂t
(y,0)G(x − y, t) − u(y,0)

∂G

∂t
(x − y, t)

}
d y

︸ ︷︷ ︸
=0

7 Recall, the transition from equation (4) to equation (5) in Section 2.1 was enabled by causality. Similarly, in formula (31) we have already dropped the 
integral over �̃R at the final moment of time t = T since it is zero. Moreover, the integration over the lateral boundaries is conducted only until the current 
moment of time t .
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+
∫
�t

{
∂u

∂n
(y, t′)G(x − y, t − t′) − u(y, t′) ∂G

∂n
(x − y, t − t′)

}
dt′dS y (31)

+
∫
�R

t

{
∂u

∂n
(y, t′)G(x − y, t − t′) − u(y, t′) ∂G

∂n
(x − y, t − t′)

}
dt′dS y .

︸ ︷︷ ︸
=0

The first integral on the right-hand side of formula (31) is zero because the initial conditions (30b) are homogeneous. The 
normal n in the second and third integral is considered outward with respect to �̃R . It means, in particular, that at the 
interior boundary ∂�̃in

R = ∂� its direction is opposite to that in the second integral of (5), because the outward normal with 
respect to �̃R becomes the inward normal with respect to �. The third integral on the right-hand side of (31), which is 
taken over the outer boundary �R

t = ∂�̃out
R × (0, t] = ∂�R × (0, t], is not present at all in formula (5). For x ∈ �̃R , we require 

that this integral be equal to zero.
The latter requirement means that we allow no incoming waves through the outer boundary �R

t , i.e., that no information 
may propagate from the boundary �R

t inwards and affect the solution u inside �̃R , see Fig. 4b. For convex boundary shapes 
∂�R , this is equivalent to having a perfectly non-reflecting boundary �R

t (see, e.g., [41]). In Fig. 4a, the boundary ∂�R is 
shown as spherical for simplicity, yet other convex boundaries can be used as well.

In fact, the outer boundary ∂�R is artificial; its key role is to help us write the Green’s formula on a bounded domain. Yet 
a perfect ABC at ∂�R that guarantees the non-reflectioning radiation of waves automatically implies that on the right-hand 
side of (31) there will be only one non-vanishing term — the second integral, which is taken over the interior boundary �t =
∂�̃in

R × (0, t], see Fig. 4. This is a manifestation of the fact that the scattered (outgoing) field governed by the homogeneous 
wave equation (30a) is determined solely by its trace at the boundary of the scatterer. Hence, we can formally extend the 
Green’s formula (31) beyond �̃R — to all x ∈ �̃.

The Calderon’s potential for the exterior problem is given by [cf. formula (6)]:

P
�̃
ξ�t

(x, t) =
∫
�t

{
ξ1(y, t′)G(x − y, t − t′) − ξ0(y, t′) ∂G

∂n
(x − y, t − t′)

}
dt′dS y, x ∈ �̃. (32)

The density ξ�t
= (ξ0, ξ1) of the potential (32) is defined on the same space–time boundary �t as that for the interior 

problem. Similarly to (9) and (7), the boundary projection is defined as the trace of the potential (32): P�t

def= T r�t P
�̃

, and 
the boundary equation with projection for the exterior problem reads [cf. equation (10)]:

P �t ξ�t
= ξ�t

. (33)

Similarly to in the case of interior problems, the BEP (33) holds if and only if the density ξ�t
= (ξ0, ξ1) coincides with the 

trace of a solution to the homogeneous wave equation (30a) on �̃ subject to the homogeneous initial conditions (30b). 
Since in the case of exterior problems the initial conditions are always assumed homogeneous, we need not consider the 
inhomogeneous BEPs of type (10′). To obtain the solution to the full IBVP (30), one needs to supplement the BEP (33) with 
the boundary condition (30c).

The solution algorithm for system (33), (30c) over the interval 0 � t � T is basically the same as that for the interior 
problem. It involves the partition in time of the boundary �T and the density ξ�T

, see formulae (12), (13), (14) and Fig. 4b. 
The partial densities are updated sequentially [cf. equation (25)]:

P �T0
ξ�K

+ R�T0
ξ�K−1

= ξ�K
, (34)

where P�T0
=T r�T0

P
�̃

and the operator R�T0
is defined similarly to (24) (only the direction of n is opposite):

R�T0
ξ�K−1

(x, t) = T r�K

T −T0∫
T −2T0

{
ξ1(y, t′)G(x − y, t − t′) − ξ0(y, t′) ∂G

∂n
(x − y, t − t′)

}
dt′dS y,

x ∈ ∂�, T − T0 < t � T .

Neither of the two operators, P�T0
or R�T0

, depends on K , i.e., both admit translation in time, see Sections 2.2 and 2.3. The 
sequential update based on equation (34) supplemented by (22) is enabled by the Huygens’ principle, specifically, by the 
lacuna of the fundamental solution (3). The semi-discretization described in Section 2.4, as well as the solution procedure 
with respect to the unknown expansion coefficients c(II)

0,s , c(II)
1,s , apply to exterior problems with no modifications.

An important difference between the interior and exterior formulation arises at the final stage of the algorithm where 
the solution on the domain of interest (not only at the boundary) is computed with the help of the Calderon’s potential. 
For an interior problem, it is sufficient to know only the immediately preceding partial density ξ� to obtain the solution 
K
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on the entire domain � at t = T , see formula (26). For an exterior problem, however, one needs both ξ�K
and ξ�K−1

to 
compute u(x, T ) for the locations x that are no further away from � than diam �:

u(x, T ) = P
�̃
ξ�K

+ P
�̃
ξ�K−1

, dist(x,�) � diam �.

This situation is illustrated in Fig. 4b: the green characteristic cone with the vertex in �̃R at t = T intersects �K and �K−1. 
For even more “remote” points x one would, generally speaking, need additional partial densities: ξ�K−2

, ξ�K−3
, . . .. It means 

that whereas the boundary time-marching algorithm with respect to K still involves only two consecutive partial densities, 
see formulae (34), (22), for computing the solution on the exterior domain one should store the previous densities as well. 
While technically speaking this is unavoidable if the solution is to be known far away from the scatterer, we emphasize 
that in many applications it is not required. For example, for computing scattering cross-sections, only the near field of the 
scatterer needs to be available.

4. The method of difference potentials

In this section, we introduce a fully discrete formulation of the problem based on boundary equations with projections. 
It involves the discretization and numerical solution of the boundary equations (28)–(29) by the method of difference 
potentials. For definiteness, we discuss only the interior problems of Section 2. The discretization of exterior problems 
(Section 3) will be presented in a subsequent work. In what follows, we will not provide a comprehensive account of 
the method of difference potentials, as its detailed exposition is available in the literature [4]. The purpose of this section is 
rather to outline the key components of the MDP for time-dependent problems, as opposed to steady-state or time-harmonic 
problems that it has been applied to previously (see, e.g., the recent publications [36,37]). We begin with presenting an 
alternative yet equivalent definition of Calderon’s potentials that will be more convenient for numerical implementation, 
see Section 4.1.

4.1. Auxiliary problem

Let ξ�t
= (ξ0, ξ1) be given, and let w = w(x, t) be an arbitrary sufficiently smooth function that is compactly supported 

in space and satisfies T r�t w = ξ�t
, where the operator T r�t is defined by (7). Generally speaking, �c w 	= 0. Therefore, for 

x ∈ � the Green’s formula (5) generalizes to

w(x, t) = 1

c2

∫
�

{
∂ w

∂t
(y,0)G(x − y, t) − w(y,0)

∂G

∂t
(x − y, t)

}
d y

+
∫
�t

{
∂ w

∂n
(y, t′)G(x − y, t − t′) − w(y, t′) ∂G

∂n
(x − y, t − t′)

}
dt′dS y (35)

+
t∫

0

∫
�

G(x − y, t − t′)�c w(y, t′)d ydt′,

see [40, equation (7.3.5)]. Since T r�t w = ξ�t
, the second integral on the right-hand side of (35) coincides with the second 

integral on the right-hand side of (6). Consequently, for Calderon’s potential with the density ξ�t
we can write:

P �ξ�t
(x, t) = w(x, t)−

t∫
0

∫
�

G(x − y, t − t′)�c w(y, t′)d ydt′

− 1

c2

∫
�

{
∂ w

∂t
(y,0)G(x − y, t) − w(y,0)

∂G

∂t
(x − y, t)

}
d y,

(36)

where it is assumed that x ∈ � and t > 0. Let us introduce the following new notations:

f (x, t)
def=

{�c w(x, t), if x ∈ �,

0, elsewhere,

w0(x)
def=

{
w(x,0), if x ∈ �,

0, elsewhere,

w1(x)
def=

{
∂ w
∂t (x,0), if x ∈ �,

0, elsewhere.

(37)
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Using (37), we can recast equation (36) as

P �ξ�t
(x, t) = w(x, t)−

t∫
0

∫
R3

G(x − y, t − t′) f (y, t′)d ydt′

− 1

c2

∫
R3

{
w1(y)G(x − y, t) − w0(y)

∂G

∂t
(x − y, t)

}
d y,

(36′)

where the key difference between (36) and (36′) is that the spatial integration in (36′) is formally conducted over the entire 
R

3 rather than over �. Then, it is easy to see that the second and third terms on the right-hand side of (36′) represent the 
solution to the following Cauchy problem:

�c v(x, t) = f (x, t), x ∈R
3, t > 0, (38a)

v
∣∣
t=0 = w0,

∂v

∂t

∣∣∣
t=0

= w1, x ∈R
3. (38b)

Hereafter, problem (38) will be referred to as the auxiliary problem (AP). It will be convenient to use a compact notation 
for the solution of the AP:

v = G( f , w0, w1) = G
(�c w

∣∣
�
, w0, w1

)
,

where G is the inverse operator given by the two integrals on the right-hand side of (36′). Then,

P �ξ�t
(x, t) = w(x, t) − G

(�c w
∣∣
�
, w0, w1

)
, x ∈ �. (36′′)

By design, the Calderon’s potential P �ξ�t
(x, t) of (36′′), where G is the inverse operator of the AP (38), does not depend on 

the choice of the auxiliary function w as long as T r�t w = ξ�t
.

4.2. Discrete AP

The AP (38) is a Cauchy problem formulated on an unbounded region — the entire R3. According to (37), its right-hand 
side and the initial data are compactly supported in space on the domain �. Since the propagation speed c is finite, it is 
clear that by the time T > 0 no wave can travel further away from � than the distance cT . Hence, as there are no sources 
of the field outside �, the solution of the AP beyond the aforementioned distance will be equal to zero. Consequently, for a 
given final time T the computational domain for the Cauchy problem (38) can be terminated by a zero boundary condition 
at the distance cT from �. This is the most straightforward approach to truncating the original unbounded domain of 
problem (38).

Denote by �0 the resulting bounded auxiliary domain beyond which the solution of the AP (38) is zero on the interval 
0 < t � T . On the domain �0, the AP can be discretized using any appropriate finite difference scheme and supplemented 
by zero boundary conditions at ∂�0. In this work, we employ the most common central difference second order accurate 
scheme on a uniform Cartesian mesh with size h in space; the scheme is stable provided that its time step τ satisfies 
the standard CFL condition: τ � h/c

√
3. In doing so, the auxiliary domain �0 can have a simple shape suggested by the 

discretization, e.g., it can be a cube. The actual boundary ∂� does not have to conform to the discretization grid; this is one 
of the key advantages of the MDP.

We will use the superscript “(h)” to denote the discrete functions and operators. Then, for the solution of the difference 
AP we can write:

v(h) = G(h)( f (h), w(h)
0 , w(h)

1 ),

where f (h) is the discrete right-hand side on the grid, and w(h)
0 and w(h)

1 are the initial data. The latter, unlike in Section 4.1, 
are interpreted as the values of the solution on the first two time levels. Note, that high order accurate schemes are 
beneficial as they reduce the numerical dispersion; later, we will incorporate the compact fourth order accurate scheme 
[35] into our algorithm.

As we have seen, the size of the auxiliary domain �0 is determined by � and the final time T . It is very important that 
the time T for the AP never needs to be large, even though the overall simulation time may be arbitrarily long. Indeed, 
the Huygens’ principle that our methodology relies on allows us to take T = 2T0, because having the solution of the AP 
(38) on � for 0 < t � 2T0 is sufficient for obtaining the operators P �T0

and R�T0
in equation (25). Moreover, the “spare” 

distance cT = 2cT0 required for solving the AP can, in fact, be halved, i.e., reduced to cT0. To see that, let �0 ⊃ � be such 
that dist(∂�0, �) � cT0. We can set an arbitrary (well-posed) boundary condition at ∂�0 × (0, 2T0]. Then, no wave reflected 
from this artificial outer boundary and traveling back toward � will be able to reach � before the computation is terminated 
at T = 2T0. Consequently, the solution inside � for 0 < t � 2T0 will remain exactly the same as the solution to the genuine 
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Fig. 5. One-dimensional schematic for the grid sets.

Cauchy problem (38). We have used this approach extensively to design the lacunae-based artificial boundary conditions 
(ABCs) for wave propagation problems [27–29]. In the current paper, we will be using it for the numerical simulations of 
Section 5. Other useful techniques for truncating the domain of the AP include ABCs, as well as perfectly matched layers 
(PMLs), at ∂�0. In particular, a PML has been used for the computations reported in Section 5.4. Further discussion on the 
treatment of outer boundaries for the AP is presented in Section 6.

4.3. Grid sets

Denote by N0
T the space–time discretization grid on which the solution to the finite difference AP is defined, so that for 

the entire solution we have v(h) ≡ v(h)

N
0
T

. The grid N0
T occupies the auxiliary domain �0 × [0, T ] introduced in Section 4.2. 

Likewise, let M0
T be the grid, on which the discrete right-hand side f (h) ≡ f (h)

M
0
T

is defined. In the case of a central difference 
Cartesian discretization employed in the current paper, the nodes of the two grids coincide and we make a distinction 
between them only for the purpose of considering v(h) and f (h) separately. However, for a different scheme, e.g., staggered, 
N

0
T and M0

T may actually be two different grids. For building the difference potentials, the various subsets of the grids N0
T

and M0
T are of central importance.

Define M+
T = M

0
T ∩{� ×[0, T ]} and M−

T = M
0
T \M+

T . In other words, the set M+
T contains all the nodes of the spade-time 

grid M0
T that happen to be inside � ×[0, T ] (i.e., interior nodes), while M−

T is the complement of M+
T to the entire M0

T . The 
right-hand side f (h) will be non-zero on M+

T and zero on M−
T . Let Nm be the space–time stencil of the scheme centered at 

a given node m ∈M
0
T .8 Introduce the sets

N
+
T =

⋃
m∈M+

T

Nm, N
−
T =

⋃
m∈M−

T

Nm, and γT = N
+
T ∩N

−
T .

The set γT is called the grid boundary. It is a fringe of nodes that straddles the continuous boundary �T . Clearly, similar 
grid sets can be defined for any t < T . In particular, we will be using the grid boundary γt hereafter. It can be thought of 
as a discrete counterpart of �t (see Section 2.1). Figs. 5 and 6 schematically illustrate the foregoing grid sets.

4.4. Difference potentials

Let ξγt be a scalar grid function defined at the grid boundary γt , see Fig. 5c. Let w(h) be an auxiliary grid function 
defined on N0

t such that its trace on γt coincides with ξγt :

T r(h)
γt w(h) = ξγt .

The discrete trace operator T r(h)
γt restricts the grid function that it operates on from a larger set N0

t to the smaller set 
γt ⊂ N

0
t . Denote by �(h)

c the central difference discretization of the d’Alembert operator and define [cf. formulae (37)]:

8 To allow the stencil Nm to apply to every node of M0
T , the grid N0

T must have one additional layer of nodes at the boundaries of �0, as well as at the 
initial and final moments of time.
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Fig. 6. Two-dimensional schematic for a fragment of the set γT .

f (h)

M0
t

∣∣∣
m

def=
{�(h)

c w(h), if m ∈ M
+
t ,

0, if m ∈ M
−
t ,

w(h)
0

∣∣
n

def=
{

w(h)
∣∣
n0=0, if n ∈ N

+
t ,

0, if n /∈ N
+
t ,

w(h)
1

∣∣
n

def=
{

w(h)
∣∣
n0=1, if n ∈N

+
t ,

0, if n /∈N
+
t ,

(39)

where the first component n0 of the four-dimensional multi-index n = (n0, n1, n2, n3) is assumed to correspond to the time 
variable. Thus, the second and third equations of (39) define the initial data at the first two time levels of the discretization 
grid.

The difference potential with the density ξγt is a grid function defined on N+
t [cf. formula (36′′)]:

P
N

+
t
ξγt = w(h)

∣∣
N

+
t

− G(h)
(

f (h)

M0
t
, w(h)

0 , w(h)
1

)
, (40)

where the source terms for the difference AP are given by formulae (39). As w(h) = G (h)�(h)
c w(h) , the difference potential 

(40) satisfies the homogeneous finite difference d’Alembert equation on M+
t :

�(h)
c P

N
+
t
ξγt

∣∣∣
M

+
t

= 0.

The difference boundary projection is obtained by restricting the potential (40) to the grid boundary γt [cf. formula (9)]:

Pγt ξγt

def= T r(h)
γt P

N
+
t
ξγt . (41)

By design, neither the difference potential (40) nor the difference projection (41) depend on the choice of the auxiliary 
function w(h) as long as the latter satisfies T r(h)

γt w(h) = ξγt .
The homogeneous finite difference BEP [cf. equation (10)]

Pγt ξγt = ξγt (42)

holds if and only if ξγt = T r(h)
γt u(h)

N
+
t

, where u(h)

N
+
t

is a grid function that solves the homogeneous difference wave equation: 

�(h)
c u(h)

N
+
t

∣∣∣
M

+
t

= 0, and satisfies zero initial conditions. The inhomogeneous finite difference BEP [cf. equation (10′)]

Pγt ξγt + T r(h)
γt G(h)

(
0, u(h)

0 , u(h)
1

) = ξγt (42′)

holds if and only if ∃u(h)

N
+
t

such that T r(h)
γt u(h)

N
+
t

= ξγt , �(h)
c u(h)

N
+
t

∣∣∣
M

+
t

= 0, and the initial values of u(h)

N
+
t

are u(h)
0 and u(h)

1 . Thus, 

the discrete BEP equivalently reduces the finite difference wave equation �(h)
c u(h)

N
+
t

∣∣
M

+
t

= 0 (subject to homogeneous initial 

conditions in the case (42) or inhomogeneous initial conditions in the case (42′)) from the grid N+
t to the grid boundary γt . 

This is similar to the continuous setting of Section 2.1, where the BEP (10) (homogeneous) or (10′) (inhomogeneous) reduce 
the d’Alembert equation (2a) from the domain � × (0, t] to the boundary �t .

There are many functions ξγt that satisfy the discrete BEP (42) or (42′), just as there are many functions u(h)

N
+
t

that solve 

the discrete d’Alembert equation �(h)
c u(h)

+ on the interior nodes M+
t (and satisfy the appropriate initial conditions). To make 
Nt
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the BEP uniquely solvable, we must account for the boundary condition (11) on �t . However, the discrete BEP is enforced 
at the grid boundary γt rather than on the continuous boundary �t . We merge the two formulations by expanding the 
boundary data with respect to the same finite set of basis functions as in Section 2.4, and then applying the equation-based 
extension.

Consider the vector-valued function ξ�t
= (ξ0, ξ1)

∣∣
�t

that represents the trace of the solution u to the wave equation (2a)

and its outward normal derivative ∂u
∂n on the boundary. Given the density ξ� , the extension defines an approximation Ex ξ�

of u at the discrete boundary γt . It is the extension Ex ξ� that takes the place of ξγt in the difference BEP.
To have the boundary time-marching scheme of Section 2.3 implemented in a fully discrete setting, we will use the ap-

propriate difference counterparts of the operators P �T0
and R�T0

in equation (25). The discrete analogue of the continuous 
projection P �T0

is PγT0
≡ Pγt

∣∣
t=T0

obtained by formula (41). The discrete analogue of R�T0
, which we denote RγT0

, is also 
defined as the trace of a difference potential, but similarly to (24):

RγT0
ξγT0

def= T r(h)
γ(T0,2T0] P

N
+
2T0

ξγT0
. (43)

While the argument of RγT0
, i.e., the density ξγT0

, is specified for 0 < t � T0, the difference potential with this density 
is computed on the time interval of twice the duration: 0 < t � 2T0, and the boundary trace, which yields the result of 
application of the operator RγT0

to ξγT0
, is taken at the upper portion of the grid boundary: γ(T0,2T0] = γ2T0 \γT0 . By design, 

the grid sets γT0 and γ(T0,2T0] are identical yet shifted in time with respect to one another.

4.5. Equation-based extension

The difference potential may approximate the corresponding continuous Calderon’s potential provided that a certain 
relation holds between their respective densities. This relation is given by the equation-based extension that we introduce 
in the current section. Let ξ�t

= (ξ0, ξ1)
∣∣
�t

be given. In the vicinity of the boundary �t , we introduce a new function 
v = v(x, t) by means of a truncated Taylor series:

v(x, t) =
P∑

p=0

1

l!
∂ p v

∂np
(x0, t)ρ p, (44)

where the choice of P is discussed later. In formula (44), x ∈ R
3 is a point near ∂� and x0 is the foot of the normal dropped 

from x to ∂�. The quantity ρ is a signed distance from x to ∂�, i.e., ρ = |x − x0| if x /∈ � and ρ = −|x − x0| if x ∈ � (recall, 
n is the outward normal).

The derivatives on the right-hand side of (44) are defined as follows. For p =0, we take v(x0, t) = ξ0(x0, t). For p = 1, 
we choose ∂v

∂n (x0, t) = ξ1(x0, t). This means that T r�t v = ξ�t
. The higher-order derivatives are obtained by employing the 

d’Alembert equation (2a). Namely, assuming that ∂� is sufficiently smooth, we can introduce local orthogonal coordinates 
in R3 such that two of the three coordinate directions will be tangential to the surface ∂� and the third one will be normal. 
Then, for the Laplacian of v on the surface we can write: �v = ∂2 v

∂n2 + Lv , where the operator L involves the derivatives 
with respect to n of the order no higher than first, as well as the tangential derivatives. For example, if ∂� is a sphere, then 
we can use spherical coordinates and write:

�v = ∂2 v

∂r2
+ 2

r

∂v

∂r
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂v

∂θ

)
+ 1

r2 sin2 θ

∂2 v

∂ϕ2︸ ︷︷ ︸
Lv

.

Consequently, using �c v = 1
c2

∂2 v
∂t2 − �v = 0, for the term with p = 2 in the sum (44) we obtain:

∂2 v

∂n2
(x0, t) = 1

c2

∂2 v

∂t2
(x0, t) − Lv(x0, t). (45)

On the right-hand side of (45) we have at most first order derivatives with respect to n. So we can immediately evalu-
ate this right-hand side by substituting ξ0 and ξ1 in the capacity of v and ∂v

∂n on the surface. In particular, 1
c2

∂2 v
∂t2 (x0, t) =

1
c2

∂2ξ0
∂t2 (x0, t). Normal derivatives of v of orders p > 2 can be obtained by consecutively differentiating relation (45) with 

respect to n and recursively employing the d’Alembert equation to replace the arising second order derivatives on the right-
hand side. This process is known as equation-based differentiation, and the resulting function v(x, t) defined by formula 
(44) is called the equation-based extension of the boundary data ξ�t

.
If ξ�t

happens to be the boundary trace of a true solution to the d’Alembert equation, i.e., if ∃u = u(x, t) such that �cu = 0 and T r�t u = ξ�t
, then the equation-based extension v(x, t) given by (44) approximates u(x, t) with accuracy 

O(|ρ|P+1). The extension, however, can formally be applied to an arbitrary pair of functions ξ�t
= (ξ0, ξ1)

∣∣
�t

that do not 
necessarily correspond to the trace of a solution to the wave equation. In that case, it defines a new function.
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In the context of the DPM, we will need to evaluate the extension (44) at the nodes of the grid boundary γt , which are 
located close to �t by construction. In this case, we will write:

ξγt = Exξ�t
, (46)

where Ex is the extension operator (44)–(45). For elliptic equations, a judiciously chosen order P of the truncated Taylor 
series (44) guarantees that the difference potential with density ξγ will approximate the continuous Calderon’s potential 
with density ξ� to the design order of accuracy of the scheme,9 see [42]. In [36], we have shown that it is sufficient to take 
P = 4 to achieve fourth order accuracy for the Helmholtz equation. Earlier it has been shown that for second order accuracy 
one can take P = 2. The analysis of [42] has not been generalized to the case of hyperbolic equations (yet). Therefore, in 
the current paper we take the order P the same as we would have taken it in the elliptic case, and then verify the grid 
convergence experimentally, see Section 5.2. Specifically, as the scheme introduced in Section 4.2 is second order accurate, 
we choose P = 2.

4.6. Full discretization

The discretization that we obtain by means of the MDP employs the discrete BEPs (42), (42′) with the difference projec-
tion Pγt that acts on the functions at the grid boundary γt . The unknowns remain defined at the continuous boundary �t . 
The two boundaries are connected via the equation-based extension described in Section 4.5. This extension facilitates the 
approximation of the continuous potentials by difference potentials.

The time-marching algorithm of Section 2.4 operates with the partition elements of duration t = T0 (implication of the 
Huygens’ principle). To represent the solution at the continuous boundary �t = �T0 , we employ the basis introduced in 
Section 2.4. In the numerical simulations of Section 5, the boundary ∂� is spherical. Hence, we take the individual basis 
functions ψs as products of spherical harmonics on the surface ∂� times Chebyshev polynomials in time. For other shapes 
of ∂�, one can use some other type of spatial basis functions (including different bases for different patches on the surface, 
if needed). The dimension of the basis that we employ is finite: s = 1, 2, . . . , S . The specific choice of S is discussed in 
Section 5.1. It is important, however, that the accuracy of representing the data at the boundary via the basis {ψs} always 
be at least the same or better than the expected final accuracy of the numerical solution on the grid.

Consider the basis vector-functions ψ0,s = (ψs, 0) and ψ1,s = (0, ψs) that are used for building the expansions (27). Apply 
the equation-based extension operator (46) to each of these functions and subsequently compute P γT0

and RγT0
according 

to (41) and (43), respectively. Then, for each s = 1, 2, . . . , S we obtain two pairs of vectors of dimension |γT0 |: PγT0
Exψ0,s

and RγT0
Exψ0,s that correspond to ψ0,s and PγT0

Exψ1,s , and RγT0
Exψ1,s that correspond to ψ1,s , where |γT0 | is the 

number of nodes in the grid boundary γT0 . The computation of these vectors for either ψ0,s = (ψs, 0) or ψ1,s = (0, ψs)

requires one solution of the difference AP, i.e., 2S such solutions altogether.
Compose the matrices of the columns we have just introduced:

Q (0)
γT0

=
[

PγT0
Exψ0,1 − Exψ0,1︸ ︷︷ ︸

column # 1

. . . PγT0
Exψ0,s − Exψ0,s︸ ︷︷ ︸

column # s

. . . PγT0
Exψ0,S − Exψ0,S︸ ︷︷ ︸

column # S

]
,

Q (1)
γT0

=
[

PγT0
Exψ1,1 − Exψ1,1 . . . PγT0

Exψ1,s − Exψ1,s . . . PγT0
Exψ1,S − Exψ1,S

]
,

(47)

and

R(0)
γT0

=
[

RγT0
Exψ0,1︸ ︷︷ ︸

column # 1

. . . RγT0
Exψ0,s︸ ︷︷ ︸

column # s

. . . RγT0
Exψ0,S︸ ︷︷ ︸

column # S

]
,

R(1)
γT0

=
[

RγT0
Exψ1,1 . . . RγT0

Exψ1,s . . . RγT0
Exψ1,S

]
.

(48)

The horizontal dimension of each of these matrices is S and the vertical dimension is |γT0 |. The columns of the matrices 
Q (0)

γT0
and Q (1)

γT0
are the discrete counterparts of Q �T0

ψ0,s and Q �T0
ψ1,s , respectively, from equation (28). Similarly, the 

columns of the matrices R(0)
γT0

and R(1)
γT0

are the discrete counterparts of R�T0
ψ0,s and R�T0

ψ1,s , respectively, see (28). 

Arrange the coefficients c(I)
0,s and c(I)

1,s , as well as c(II)
0,s and c(II)

1,s , see Section 2.4, into vectors of dimension S:

c(I)
0 =

[
c(I)

0,1 . . . c(I)
0,s . . . c(I)

0,S

]T
,

c(I)
1 =

[
c(I)

1,1 . . . c(I)
1,s . . . c(I)

1,S

]T
,

9 There is no time variable in elliptic equations, so the expressions are modified accordingly.
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c(II)
0 =

[
c(II)

0,1 . . . c(II)
0,s . . . c(II)

0,S

]T
,

c(II)
1 =

[
c(II)

1,1 . . . c(II)
1,s . . . c(II)

1,S

]T
.

Then, the fully discrete counterpart of equation (28) can be written as

Q (0)
γT0

c(II)
0 + Q (1)

γT0
c(II)

1 = −R(0)
γT0

c(I)
0 − R(1)

γT0
c(I)

1 . (49)

The unknowns in equation (49) are the coefficients c(II)
0 and c(II)

1 . They pertain to the continuous formulation in the sense 
that they are the coefficients of the expansion of the trace of a continuous solution at the continuous boundary. At the same 
time, the boundary equation with projection in (49) is enforced on the discretization grid, specifically, at the grid boundary 
γT0 . Similarly to (28), the coefficients c(I)

0 and c(I)
1 on the right-hand side of (49) are considered known. They represent the 

trace of the solution at the previous partition element, i.e., previous stage of time marching.
Equation (49) is supplemented by equation (29) that accounts for the boundary conditions. This is very convenient, as 

the latter is inherited straight from the original IBVP and thus formulated at the continuous boundary with respect to the 
same unknowns. The two equations together, (49) and (29), form a system to be solved for the coefficients c(II)

0 and c(II)
1 . 

In doing so, equation (49) enforces the discrete BEP built on a subset of the regular (Cartesian) discretization grid. The 
continuous boundary does not have to conform to this grid and no approximation of the boundary conditions on the grid 
is required, because the boundary condition (29) is implemented directly.

4.7. Algorithm

Equations (49) and (29) describe a fully discrete version of the time-marching algorithm of Section 2.4. The simulation 
starts with precomputing the matrices Q (0)

γT0
, Q (1)

γT0
and R(0)

γT0
, R(1)

γT0
that all have the dimension of S × |γT0 |. This requires a 

total of 2S solutions of the discretized AP (38), see Section 4.2.
The time marching is initiated by solving the discretized system (15), (16) for T = T0:

Q (0)
γT0

c(II)
0 + Q (1)

γT0
c(II)

1 = −T r(h)
γT0

G(h)
(
0, u(h)

0 , u(h)
1

)
, (50)

l�T0

∑
s

c(II)
0,sψ0,s + c(II)

1,sψ1,s = φT0 . (51)

Equation (50) is obtained directly from the inhomogeneous BEP (42′), where u(h)
0 and u(h)

1 are assumed to approximate the 
original initial conditions (2b) with second order accuracy on the first two time levels of the discretization grid. Equation 
(51) is the specification of the boundary condition (29) to the very first partition element that corresponds to K = 1 ⇔
t ∈ (0, T0].

Next, we make one time step by reassigning the coefficients: c(I)
0 
→c(II)

0 and c(I)
1 
→c(II)

1 and solving equations (49), 
(29) with respect to the new c(II)

0 and c(II)
1 . All subsequent time steps are performed the same way. The coefficients are 

updated recursively as shown in Fig. 3. The time marching is conducted solely at the boundary, because both the data c(I)
0 , 

c(I)
1 and the unknowns c(II)

0 , c(II)
1 for each update pertain to the expansion of the solution with respect to the chosen basis 

at the continuous boundary of the domain where the solution is defined. If, at some point in time, the solution needs to 
be obtained inside � rather than only at ∂�, it can be computed in the form of a difference potential P

N
+
T0

ξγT0
, where 

ξγT0
= Exξ�T0

corresponds to the current partition element.
The system of equations (50), (51) is solved in the sense of least squares by QR factorization. The same solution method-

ology is used for system (49), (29). Least squares are chosen because |γT0 | is typically larger than S so that both systems are 
formally overdetermined. As long as the original IBVP (2) has a unique (sufficiently smooth) solution, one may expect that 
the least squares minimum for systems (50), (51) and (49), (29) will be reached at zero (within the approximation accuracy 
on the grid).

The matrices on the left-hand side of equation (49) are the same as those on the left-hand side of equation (50) — they 
do not depend on time, i.e., on the partition index K . This is the same phenomenon as the time invariance of Q �T0

ψ0,s

and Q �T0
ψ1,s in the semi-discrete setting of Section 2.4. If, in addition, the operator of the boundary conditions l� appears 

time-independent so that l�K on the left-hand side of (29) does not depend on K (the data φ may still depend on t), then 
the QR decomposition needs to be performed only once ahead of time. It therefore becomes a part of the precomputing 
stage of the algorithm, and only backward substitution is done at every time step, i.e., at every transition from one partition 
element to the next. Numerical simulations of Section 5 are conducted for this case. Specific considerations related to 
computational complexity are discussed in Sections 5.3 and 5.4. They include, in particular, the analysis and demonstration 
of the efficiency of parallel implementation of the proposed algorithm (Section 5.4).

Finally, it is important to emphasize that since the boundary conditions are enforced by means of a separate equation 
(equation (51) or (29)), then the same set of operators Q (0)

γ , Q (1)
γ , R(0)

γ , and R(1)
γ will allow one to handle various similar 
T0 T0 T0 T0
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Fig. 7. Computational domain � and auxiliary domain �0.

IBVPs (same geometry but different boundary conditions) at a very small additional computational cost. In particular, in 
Section 5.2 the operators were reused (rather than recomputed) for solving Dirichlet, Neumann, and Robin IBVPs.

5. Numerical experiments

5.1. Computational setup

Computational domains and grids The computational domain � is a ball of radius R = 1 centered at the origin of the 
Cartesian system, see Fig. 7. We solve the IBVP (2) on �, where the boundary condition (2c) may be of Dirichlet, Neumann, 
or Robin type. The specific Robin boundary condition that we use has the form:(

u + ∂u

∂n

)∣∣∣∣
∂�

= φ. (52)

Boundary condition (52) can be thought of as an “intermediate” case between the pure Dirichlet and pure Neumann bound-
ary conditions.

The computational domain � is embedded into the auxiliary domain �0 shaped as a cube: �0 = [−a, a]3, see Fig. 7. The 
AP (38) is discretized and solved on �0. In doing so, it is truncated with the homogeneous boundary conditions at ∂�0. 
The size a of the auxiliary cube �0 is chosen sufficiently large so as to prevent the waves reflected from the outer boundary 
∂�0 from reaching � over the time interval 2T0, as explained in Section 4.2. Specifically, a = cT0 + R . As such, A depends 
on the size T0 of a partition element (introduced in Section 2.2). In theory, T0 can be as small as diam �/c. In practice, 
however, one needs to use a somewhat larger value: T0 � diam �/c, because the Huygens’ principle holds in the discrete 
framework only approximately, rather than exactly. In other words, the backward dependence of the discrete solution in 
time stretches slightly beyond the predicted theoretical threshold. A detailed discussion of the discrete implementation of 
the algorithms based on the Huygens’ principle can be found in [30,31]. In this paper, we merely take the value of T0 as 
T0 = 2diam�/c, which offers a very substantial “safety margin” and thus guarantees a proper behavior of the method.

An alternative to choosing the auxiliary domain �0 sufficiently large so that the waves reflected off ∂�0 inwards won’t 
reach � during the time interval 2T0 is to take a smaller �0 but truncate it with a PML at ∂�0. This approach potentially 
makes solving the AP less expensive. The corresponding numerical simulations are presented in Section 5.4.

The domain �0 is discretized with a sequence of Cartesian grids that we refer to as Grid 1, Grid 2, and Grid 3 (also 
Grid 4 in Section 5.3). The size of the coarsest grid (Grid 1) is h = 2R/15 so that there are 16 points per the diameter of 
the computational domain �. The overall Grid 1 on �0 has 76 nodes in each coordinate direction. The time step is taken 
as τ = h/3 to make sure that the CFL stability condition also holds with a safety margin. The three subsequent grids, Grid 
2, Grid 3, and Grid 4, are obtained from Grid 1 by refining the latter by a factor of 2, 4, and 8, respectively. In all the 
computations of Section 5.2, the simulation time is T = 2000 diam�/c, which is equivalent to 2000 times the time required 
for the waves to travel across the domain �.

Basis functions and symmetries As the computational domain � is a ball, we use a finite number of spherical harmonics 
Ylm(θ, ϕ), l = 0, 1, . . . , Lmax, m = −l, . . . , l, as basis functions in space (i.e., on the boundary ∂�). The basis functions in 
time are Chebyshev polynomials Tn(t), t ∈ [0, T0], n = 0, 1, ..., Nmax. Thus, the overall space–time basis functions ψs on 
�T0 = ∂� × (0, T0] (see Sections 2.4 and 4.6) are the products: ψs = Tn(t)Ylm(θ, ϕ), where s = {l, m, n}.

The spherical harmonics with opposite m satisfy:

Yl,−m(θ,ϕ) = (−1)mY ∗
lm(θ,ϕ),

where the asterisk ∗ denotes complex conjugate. Let ψ0,s = (ψs, 0) = (
Tn(t)Ylm(θ, ϕ), 0

)
, as defined in Section 4.6, and let 

also ψ0,s′ = (ψs′ , 0) = (
Tn(t)Yl,−m(θ, ϕ), 0

)
. Then, it is easy to see that



314 S. Petropavlovsky et al. / Journal of Computational Physics 365 (2018) 294–323
PγT0
Exψ0,s′ = (−1)m(

PγT0
Exψ0,s

)∗
, (53)

because the operator �(h)
c and the Chebyshev polynomials are real.10 The same is true for ψ1,s = (0, ψs) =

(
0, Tn(t)Ylm(θ, ϕ)

)
and ψ1,s′ = (0, ψs′ ) =

(
0, Tn(t)Yl,−m(θ, ϕ)

)
. Therefore, even though the dimension of the finite basis is S = (1 + Nmax)(1 +

Lmax)
2, the actual number of discrete APs that need to be solved to obtain either Q (0)

γT0
or Q (1)

γT0
of (47) is only 

(1 + Nmax)(1 + Lmax)(2 + Lmax)/2 (see Section 4.6). The remaining columns of the matrices Q (0)
γT0

and Q (1)
γT0

are obtained 

with the help of (53). The same applies to R(0)
γT0

and R(1)
γT0

of (48). For the numerical simulations of Sections 5.2 through 5.4, 
we choose Nmax = 11 and Lmax = 9. These dimensions enable a sufficiently accurate representation of the boundary data on 
�T0 = ∂� × (0, T0], which allows us to demonstrate the convergence of the numerical solution on fine grids.

Reference solution The monochromatic plane wave

uref(x, t) = cos(k · x − ωt) (54)

solves the three-dimensional homogeneous wave equation (2a) and is used as a reference solution with ω = 1 and k =
ω√

3
(1, 1, 1) so that the dispersion relation holds: |k| ≡ k = ω/c. The data for the initial and boundary conditions (2b) and 

(2c) are derived from (54) at t = 0 and on �, respectively.
Expanding eik·x over the spherical functions and e−iωt over the Chebyshev polynomials, one can represent the trace of 

the reference solution (54) on ∂� as follows:

cos(k · x − ωt)|∂� =
∞∑

n=0

∞∑
l=0

l∑
m=−l

Anlm(ω,k)Ylm(θ,ϕ)Tn

(
2t − T0

T0

)
, (55)

where the polar angle θ and azimuthal angle ϕ correspond to a given x ∈ ∂�. The argument of Tn ranges from −1 to 1 as 
the time t ranges between 0 and T0. The coefficients Anlm(ω, k) are given by:

Anlm(ω,k) = 2π in+l jl(kR)
{

an(ω) + (−1)lan(−ω)
}

Y ∗
lm(θ ′,ϕ′), (56)

where

an(ω) = (−1)ne−iω
(
t0+T0

/
2
)

Jn(ωT0
/

2) ×
{

1, n = 0,

2, n > 0.
(57)

The angles θ ′ and ϕ′ in (56) determine the direction of k, and jl(·) denotes the spherical Bessel function. In (57), Jn(·) is 
the Bessel function of the first kind.

Formulae (55)–(56) provide the coefficients c0 required for the solution of the Dirichlet problem. For the Neumann 
problem one needs c1, i.e., the expansion of the normal derivative of (54) on ∂�, which can be obtained from (55)–(56) by 
differentiating with respect to R . The resulting expression is, again, given by (55) with the substitution jl(kR) → k jl

′(kR)

in (56), where jl
′(·) is the first derivative of the spherical Bessel function. The Robin boundary condition (52) yields a 

relationship between c0 and c1 rather than the actual values of the specific coefficients. So in this case no expressions 
similar to (56) are required. Instead, the aforementioned relations between c0 and c1 become a part of the overall linear 
system that is solved by least squares.

Conditioning Since system (50), (51), as well as system (49), (29), will be solved by least squares, it is useful to estimate 
the condition number of the corresponding system matrix. For simplicity, we choose the Dirichlet problem and consider the 
rectangular matrix Q (1)

γT0
, see formula (47). Its condition number in the sense of the Euclidean norm ‖ · ‖2 is given by (see 

[43, pages 94-95]):

κ
(

Q (1)
γT0

) = ∥∥ Q (1)
γT0

∥∥
2

∥∥ Q (1)+
γT0

∥∥
2 = σmax

σmin
,

where the superscript + denotes the Moore–Penrose pseudo-inverse, and σmax and σmin are the largest and smallest sin-
gular values of Q (1)

γT0
, respectively. The singular values are computed numerically on four consecutive grids and the results 

are summarized in Table 1.
From Table 1, we see that the condition number of Q (1)

γT0
decreases as the grid is refined. This behavior indicates that the 

problem we will be solving by least squares is well conditioned. If the grid were to be refined further (beyond Grid 4), we 
expect that the condition number would approach (asymptotically) a sufficiently small limit value. As far as the mechanism 

10 See Section 4.4 for the construction of difference potentials/projections, in particular, the operator PγT0
, and Section 4.5 for the construction of the 

equation-based extension Ex.
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Table 1
Maximum and minimum singular values and the 
condition number of Q (1)

γT0
.

σmax σmin κ
(

Q (1)
γT0

)
Grid 1 14.94 5.15 × 10−3 2901
Grid 2 40.44 6.51 × 10−2 621
Grid 3 110.85 2.98 × 10−1 372
Grid 4 306.65 1.07 287

Fig. 8. Grid convergence in the maximum norm of the finite-difference solution on the domain �; the simulation time T = 2000 diam�/c. Upper graph — 
Grid 1; middle graph — Grid 2; lower graph — Grid 3.

of improvement of the condition number shown in Table 1, we attribute it to the system of grid functions {Exψ1,s}S
s=1 that 

help define Q (1)
γT0

in (47) becoming closer to orthogonal on finer grids. Indeed, while the continuous basis functions ψ1,s

are chosen orthogonal, their extensions Exψ1,s to the grid boundary γT0 do not, generally speaking, maintain this property. 
However, on finer grids the grid boundary γT0 straddles the continuous boundary �T0 “tighter” and hence the grid functions 
Exψ1,s move closer to orthogonal.

The condition number of the matrix Q (0)
γT0

of (47) that is used for solving the Neumann problem behaves basically the 

same way as the condition number of Q (1)
γT0

shown in Table 1.

5.2. Results of computations: grid convergence and accuracy analysis

In this section, we present the numerical results for the Dirichlet, Neumann, and Robin IBVPs. Since these problems 
share the same geometry, then on a given grid they are solved using the same operators Q (0)

γT0
, Q (1)

γT0
, R(0)

γT0
, and R(1)

γT0
. The 

operators do not need to be recomputed when the boundary condition changes.
In Figs. 8a and 8b we show the error profiles for the Dirichlet and Robin boundary conditions, respectively, as functions 

of the time t . These figures clearly demonstrate that there is no error accumulation over time, and that the numerical 
solution converges to the reference solution (54) uniformly in time with the design rate of the scheme (second order) as 
the grid is refined.

The performance of the method in the case of a Neumann boundary condition is, however, different. As indicated by 
Fig. 9a, the error accumulates linearly in time. The rate of accumulation decreases as the grid is refined, and at any fixed 
moment of time one still observes the design second order grid convergence. Yet the error grows as the time elapses.

However, the growth of the error is completely eliminated if, instead of the finite difference solution itself, we consider 
its gradient, i.e., the derivative in a given spatial direction. This is demonstrated in Fig. 9b that shows three temporally 
uniform error profiles for the gradient of the solution and thus corroborates the grid convergence with the design rate of 
the scheme.

In Table 2, we summarize the grid convergence results that correspond to Figs. 8a, 8b, and 9b. Convergence rates are 
calculated by taking a square root of the ratio of errors on two subsequent grids. In all cases, the method demonstrates the 
design second order convergence.

The phenomenon of error accumulation shown in Fig. 9a is specific to the Neumann boundary conditions. We have not 
observed any growth of the error in any simulations that we conducted with either Dirichlet or Robin boundary conditions. 
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Fig. 9. Grid convergence in the maximum norm of the finite-difference solution on the domain � in the case of the Neumann boundary condition; the 
simulation time T = 2000 diam�/c. Panel (a): upper graph — Grid 2; lower graph — Grid 3. Panel (b): upper graph — Grid 1; middle graph — grid 2; lower 
graph — Grid 3.

Table 2
Time averaged error on different grids and convergence rates calculated from plots 8a, 
8b, and 9b.

Grid 1 Grid 2 Rate Grid 3 Rate

Dirichlet BC 8.03 × 10−5 2.64 × 10−5 1.74 6.87 × 10−6 1.96
Robin BC 2.89 × 10−4 7.50 × 10−5 1.96 1.87 × 10−5 1.99
Neumann BC (∇) 4.86 × 10−4 1.29 × 10−4 1.94 3.48 × 10−5 1.92

We attribute this phenomenon to the fact that the linear function a +bt satisfies both the homogeneous d’Alembert equation 
and homogeneous Neumann boundary condition. Therefore, small perturbations of the initial data may give rise to the 
spurious solution a + bt that increases as the time elapses. This spurious mode does not exist for either Dirichlet or Robin 
boundary conditions. Taking a spatial gradient of the solution eliminates it in the Neumann casel. Hence, there is no error 
accumulation in Fig. 9b. A rigorous derivation of the formulae that yield solutions to IBVPs for the d’Alembert equation 
(including the Neumann case) can be found in [44, Chapter 2]; it is based on separation of variables.

In Appendix A, we discuss the phenomenon of error growth for Neumann IBVPs in more detail, and also present the 
results of additional numerical simulations. We emphasize that this phenomenon is apparently not related to our specific 
numerical method that is based on difference potentials and the Huygens’ principle. Indeed, in Appendix A we observe the 
same behavior of the error in the case of straightforward integration of a Neumann IBVP for the wave equation on the 
Cartesian grid in a rectangular box.

A certain deterioration of numerical performance for Neumann boundary conditions has been previously reported in the 
literature, e.g., in the case of spectral methods [45].

Fortunately, in most physical applications, a Neumann IBVP for the wave equation would be formulated for the potential 
of the field rather than for the field itself (e.g., vector and scalar potentials in electrodynamics, velocity potential in fluid 
mechanics, etc.). To obtain the observable quantity, i.e., the field, one needs to differentiate the potential, which removes 
the error growth.

5.3. Computational complexity for a fixed time interval

In the next two sections, we analyze the complexity of the boundary time-marching algorithm of Section 4.7 and com-
pare it against that of the conventional volumetric time marching. The volumetric integration is conducted by means of the 
same finite difference scheme as used for solving the discrete AP in Section 4.2, but applied to the original problem (2) on 
a simple domain, namely, the cube [−R, R]3. Although the latter is somewhat larger than the ball � = {r � R}, this choice 
involves no special treatment of curvilinear boundaries on the Cartesian grid and is sufficient for the purpose of comparison.

In Fig. 10, we plot the computational time CPU(T0) required to advance the numerical solution over a fixed interval T0

of physical time on the successive grids, Grid 1 through Grid 4. The interval T0 is chosen as a natural time scale, see (23), 
and each subsequent grid is a refinement of the previous one by a factor of 2. In the case of a conventional volumetric time 
marching by means of an explicit scheme, the execution time CPU(T0) is proportional to the overall number of grid nodes 
used by the algorithm during the time interval T0:
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Fig. 10. Log–log plot of the computational time vs. grid dimension (i.e., the refinement factor relative to the coarsest grid — Grid 1) for computing the 
solution during the physical time interval T0 on four successive grids.

CPU(T0) = const × (number of time steps per T0) × N3 = const × N4,

or ln CPU(T0) ∝ 4 ln N.
(58)

In (58), N is the grid dimension in one spatial direction. In addition, we assume that cT0 ∼ diam� = 2R and the time step 
is proportional to the spatial grid size so that the number of steps per T0 will scale linearly with respect to N . This yields a 
total of O(N4) grid nodes in space–time over the interval T0. The computational cost directly proportional to N4, see (58), 
indicates a linear computational complexity with respect to the grid dimension.

In the case of the boundary approach, we expect

CPU(T0) = const × S × N3, or ln CPU(T0) ∝ 3 ln N. (59)

Indeed, the linear system (50), (51) (or (49), (29)) is solved by least squares, i.e., by QR factorization. The horizontal dimen-
sion of this system is equal to the number of basis functions S , see formula (47), while its vertical dimension is |γT0 | ∼ N3. 
The cost of factorization itself, however, is not included into CPU(T0) of (59); this quantity accounts only for the cost of 
backward substitution performed after the factors Q and R have been determined. The number of basis functions S is cho-
sen ahead of time and fixed for the entire range of simulations on a sequence of grids, see Section 5.1. Hence, formula (59)
shows a sub-linear complexity with respect to the grid dimension, because the computational cost in (59) grows slower 
than the total number of grid nodes. Note, however, that the cost of precomputing the operators in equation (49) is not 
included into the estimate (59) either. This cost, along with the cost of QR factorization per se, will be addressed in the 
context of parallelization, see Section 5.4.

Fig. 10 suggests that CPU(T0) indeed behaves as predicted by formulae (58) and (59) when N increases 2, 4, and 8 
times. To facilitate the comparison, we explicitly show the slopes of individual segments of the log–log lines (58) and (59)
between the successive grid refinements. Fig. 10 also indicates that the boundary method outperforms the volumetric one 
only on sufficiently fine grids. The reason is that on coarse grids, the “thickness” of γT0 may be comparable to the size of the 
computational domain, see Figs. 5c and 6, so the boundary problem does not benefit yet from its reduced dimensionality. 
As the grid is refined, the dependence of the actual cost on N involves specific proportionality constants (fixed values 
determined by a given method) both in formula (58) and in formula (59). In the case of the boundary method, see (59), the 
cost is also proportional to the number of basis functions S (which is fixed as well). While it is clear that as N increases, 
the right-hand side of the first equation in (58) grows faster than that in (59) and will eventually dominate, the specific 
value of N where the two curves intersect depends on the aforementioned constants. As Fig. 10 shows, for our particular 
computational setting the intersection occurs somewhere between Grid 2 and Grid 3.

5.4. Computational complexity over long runs and parallelization in time

The operators Q (0)
γT0

, Q (1)
γT0

, R(0)
γT0

, and R(1)
γT0

that appear in equation (49) need to be computed prior to starting the time 
marching. According to formulae (47) and (48), this requires solving the discrete AP on the interval 2T0 for each basis 
function ψ0,s or ψ1,s , s = 1, 2, . . . , S , which is a major contribution to the overall computational complexity. The overall 
number of APs M that need to be solved is reduced due to symmetry, see Section 5.1, but may still remain substantial. 
For our simulations, we take Nmax = 11 and Lmax = 9, which yields a total of M = (1 + Nmax)(1 + Lmax)(2 + Lmax)/2 = 660
APs to integrate. However, this workload can be distributed over multiple computational cores with high efficiency, since 
different APs are completely independent from one another. Hence, ideally, the time needed to precompute the operators in 
equation (49) should decrease proportionally to the number of cores.
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All the simulations reported in the current paper are performed on a 32-core Dell PowerEdge server with two Intel®

Xeon® CPU E5-2698 v3 2.30GHz processors and 512 Gb RAM, running Linux OS. In our code, the APs are split into groups 
of 32 as per the number of cores. Numerical solution of each AP is rendered by a Fortran subroutine (Intel® Parallel Studio 
XE Composer Edition for Fortran) that takes a given basis function ψ0,s or ψ1,s as input. This subroutine with different input 
data is cloned for parallel execution on 32 computational cores using OpenMP 3.0 API. For a shared memory architecture, 
this appears a relatively easy task. On the coarsest grid (Grid 1), the single-core and multi-core runs take 70.28 and 3.32
seconds, respectively, which yields a speed-up of approximately 21 times or, equivalently, the parallelization efficiency of 
about 66%. On the next grid (Grid 2), the computational times are 1128.61 and 54.26 seconds, respectively, which again, 
yields the same acceleration by approximately a factor of 21. On finer grids, the acceleration factor remains around 20. This 
is still less than the theoretical limit of 32, which would correspond to a 100% parallelization efficiency in distributing the 
independent APs between the computational cores. The reason for having a somewhat reduced parallelization efficiency 
may be related to hardware (shared memory as opposed to distributed memory) or software or both. In this paper though, 
we do not pursue a further increase of parallelization efficiency and rather leave this objective for the future.

The overall computational complexity of the algorithm as a function of the physical time t , measured in terms of the exe-
cution time: CPU = CPU(t), behaves differently for the conventional volumetric time marching and boundary time marching. 
In the case of a conventional marching, the execution time is directly proportional to the physical time:

CPUvol(t) = Cvolt, (60)

where Cvol is a constant that depends on the grid dimension.11 The value of Cvol can be easily determined from the data 
presented in Fig. 10. On a given grid, one merely has Cvol = CPU(T0)/T0, where CPU(T0) is introduced in equation (58).

For the boundary time marching, the complexity is given by

CPUbnd(t) = CPU0 + Cbndt. (61)

In formula (61), CPU0 is the initiation cost needed for precomputing the operators Q (0)
γT0

, Q (1)
γT0

, R(0)
γT0

, and R(1)
γT0

, as well as 
performing the QR factorization for the resulting linear system (49), (29), while Cbnd is another constant that depends on 
the grid dimension. Similarly to Cvol of (60), the value of Cbnd in (61) can be obtained from the data presented in Fig. 10: 
Cbnd = CPU(T0)/T0, where CPU(T0) is introduced in equation (59) (it does not include the initiation cost).

The sub-linear complexity of the boundary method implies that on sufficiently fine grids we have Cbnd < Cvol, and 
the finer the grid the more significant is the difference. This is evident from Fig. 10, see also formulae (58) and (59). 
Therefore, even though CPU0 presents a substantial contribution to the overall complexity of the boundary method, see 
(61), the slower rate of increase in (61) compared to (60) implies that there exist a break-even simulation time tBE beyond 
which the boundary time marching outperforms the volumetric one. The behavior of CPUvol(t) and CPUbnd(t), including the 
determination of tBE, is schematically shown in Fig. 11, while from (60) and (61), we find:

tBE = CPU0

Cvol − Cbnd
. (62)

According to (62), the value of tBE depends on CPU0; the larger the initiation cost, the further away on the horizontal 
axis the moment tBE is located, see Fig. 11. The initiation cost CPU0, in its own right, is the cost of solving a predetermined 
number M of APs on the time interval 2T0 (proportional to M × N4) plus the one-time cost of QR factorization (proportional 
to S2 × N3). Beyond the initial execution time CPU0, the specific cost of the boundary method, i.e., its cost per unit time, 
becomes (much) lower than that of the volumetric method, and the lower the finer the grid. Therefore, at t = tBE the overall 
cost of the boundary method also becomes lower than that of the volumetric method.

Moreover, as we have shown, the computation of the operators in equation (49) can be efficiently parallelized on a multi-
processor (or multi-core) platform. The same is true regarding the QR factorization. It can be computed very efficiently by 
the standard Mathematics Kernel Library (MKL), which is a part of Intel® Parallel Studio. In doing so, the cost of computing 
the QR factorization appears negligible compared to the cost of solving M APs over the time interval 2T0. Therefore, from 
now on we will be assuming that the initiation cost CPU0 consists of only solving the APs. In the case of a sequential 
implementation, this cost is obviously the same as what would have been the cost of integrating a single AP over a long 
time interval — the interval equal to 2T0 M , where M is the number of APs. In the case of a parallel implementation, the 
actual wall-clock time for this computation becomes

CPU′
0 = CPU0

P
, (63)

where P is the factor that determines the parallelization efficiency. In our simulations, the value of P varied between 20 
and 21, with the theoretical limit of 32 on a 32-core system. Given the relation (63), one can interpret the execution time 

11 Recall, the volumetric integration that we need for comparison purposes is performed on a cube [−R, R]3, where R is the radius of the ball �, see the 
beginning of Section 5.3.



S. Petropavlovsky et al. / Journal of Computational Physics 365 (2018) 294–323 319
Fig. 11. Schematic dependence of the execution time CPU(t), i.e., the computational cost, on the physical time t for the volumetric and boundary time 
marching. The actual data are summarized in Table 3.

Table 3
Parameters of the simulation that characterize the complexity.

Cbnd, sec/T0 Cvol, sec/T0 CPU′
0, sec t′

BE, T0

Grid 3 1.8 2.3 766 1532
Grid 4 15 49 12792 376

CPU′
0 as the cost of integrating a single AP over the time interval 2T0 M/P , which is P times shorter than the interval 2T0 M

that corresponds to a fully sequential, i.e., single-core, implementation. This can be thought of as parallelization in time.
Accordingly, in Fig. 11 we schematically show two graphs of complexity for the boundary method. The first one corre-

sponds to equation (61) with the full non-modified initiation cost CPU0, and the second one corresponds to the modified 
equation:

CPU′
bnd(t) = CPU′

0 + Cbndt, (61′)

with the new initiation cost CPU′
0 that is reduced by a factor of P due to parallelization. We are also showing two break-even 

moments of time, one given by (62) and the other one that corresponds to parallelization in time:

t′
BE = CPU′

0

Cvol − Cbnd
= tBE

P
. (62′)

Formula (62′) is obtained from (61′) and (60).
The AP can be solved on a large domain �0 that won’t allow the reflections from its outer boundary to reach the interior 

domain � during the time interval 2T0, see Fig. 7, or it can be solved on a smaller domain �0 terminated with a PML. 
The second approach is potentially less expensive. Hence, in our subsequent simulations we employ a Cartesian PML for the 
3D wave equation proposed in [46]. We also note that a comparative study of complexity for the various treatments of the 
artificial outer boundary is available in [47]. As our test solution (54) has a fairly long wavelength: 2π/|k| = 2π , we could 
not make the PML too narrow and took its width as approximately 0.67, where the diameter of the computational domain 
� is equal to 2. The damping profile of the PML was chosen quadratic, with the damping constant ζi = 75 in each spatial 
dimension. Overall, the use of the PML [46] has allowed us to reduce the grid dimension on the auxiliary domain �0 from 
76 × 76 × 76 to 45 × 45 × 45 for our coarsest grid — Grid 1. For the finer grids, the relative reduction of dimension was the 
same.

In Table 3, we present the values of Cbnd, Cvol, CPU′
0, and t′

BE (measured in the units T0) on Grid 3 and Grid 4 in the 
case of the AP terminated with a PML. The quantities Cbnd and Cvol are obtained from the data presented in Fig. 10, as 
suggested previously.12

As Table 3 indicates, the value of CPU′
0 increases by roughly a factor of 16 when the grid is refined by factor of 2 (this 

follows the O(N4) asymptotic that characterizes the plain volumetric integration employed at the precomputing stage). The 
value of Cvol has increased by a factor of 21 between Grid 3 and Grid 4 (theoretically, it was supposed to be a factor of 

12 More accurate estimates of Cbnd and Cvol on the time interval of length 100T0 yield the same results.
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16), while the value of Cbnd has increased by a factor of 8, as predicted by analysis. As a result, the break-even time t′
BE has 

dropped by a factor of 4.
The scaling shown in the first three columns of Table 3 is expected to remain the same if the grid were to be further 

refined. Namely, every reduction of the grid size by a factor of 2 should cause the increase of CPU′
0 and Cvol by a factor of 

16, and the increase of Cbnd by a factor of 8. After n successive refinements starting from a given grid, we obtain with the 
help of formula (62′):

t′(n)
BE = CPU′

0

Cvol − Cbnd
2n−1

. (64)

Expression (64) shows that on one hand, on finer grids the break-even time is shorter, which makes the boundary method 
more beneficial. On the other hand, the relative cost of the boundary time marching compared to that of the conventional 
volumetric time marching becomes progressively smaller (compare the two terms in the denominator on the right-hand 
side of (64)). Asymptotically on very fine grids (as we formally take n → ∞ in (64)), this cost can be disregarded. Then, the 
break-even time approaches a finite limit: t′(n)

BE → CPU′
0/Cvol. In other words, on sufficiently fine grids one can think that the 

cost of the boundary method beyond the initiation expense is negligible.
It is to be reiterated that the initiation cost CPU′

0 that has already been reduced by parallelization, can also be shared 
between multiple similar problems (e.g., problems with the same geometry but different boundary conditions). This further 
increases the overall efficiency of the proposed boundary method. For example, all the solutions presented in Section 5.2
(Dirichlet, Neumann, and Robin boundary conditions) were computed using one and the same set of operators Q (0)

γT0
, Q (1)

γT0
, 

R(0)
γT0

, and R(1)
γT0

on a given grid. We needed to recompute the operators only on a new (finer) grid, while on the same grid 
they were reused, and the initiation cost CPU′

0 was incurred only once.

6. Discussion

By combining the method of difference potentials with the Huygens’ principle, we have built a boundary time marching 
algorithm for the unsteady wave equation that offers a better computational complexity (sub-linear) that of the conventional 
volumetric time marching. The performance of the proposed algorithm has been demonstrated experimentally by solving a 
range of interior IBVPs with the Dirichlet, Neumann, and Robin boundary conditions.

Our algorithm uses only regular structured grids yet allows one to discretize the formulations that involves general 
non-conforming geometries with no loss of accuracy. It also facilities sharing the computational cost between multiple 
similar problems. On multi-processor (multi-core) systems the algorithm takes advantage of what can be thought of as 
parallelization in time.

The possible future extensions include going from second order accuracy to high order accuracy (which is important 
for the numerical simulation of waves as it reduces the dispersion error), running the computations for exterior problems, 
addressing more realistic geometries, getting better parallelization efficiency, and moving from scalar governing equations 
to systems (e.g., Maxwell’s).

High order accuracy can be achieved by replacing the currently used central difference second order accurate scheme 
with a compact high order accurate scheme [35]. In doing so, the grid sets defined in Section 4.3 may change and the 
extension operators of Section 4.5 may need to be built to higher order, but the rest of the algorithm will stay unaffected.

The simulation of exterior problems is expected to be even more beneficial from the standpoint of complexity than the 
simulation of interior problems. The reason is that the proposed boundary method requires solving the AP that involves a 
PML, which increases the overall grid dimension and adds the cost (per unit time) compared to the plain interior problem. 
In the case of exterior problems, however, the reference volumetric time marching will also have to include a PML, which 
will place both methods on an equal footing and make the break-even time much shorter.

Let us also note that as the Huygens’ principle allows one to solve the AP only on a finite time interval, then for the 
boundary time marching it eliminates any potential concerns related to the long-time performance of the chosen PML. 
In [48,30,31,49], we have employed lacunae and the Huygens’ principle for the stabilization of ABCs and PMLs over long 
simulation times.

Extension to systems will begin with obtaining the vector counterparts to the Green’s formulae (5) and (31). The 
parallelization efficiency may be improved by porting the code to a different hardware architecture and/or making the 
appropriate software modifications.

Appendix A. Numerical solution of the wave equation subject to Neumann boundary conditions

Our goal here is to demonstrate that the linear growth of the error that we observed in Section 5.2 in the case of a 
Neumann boundary condition, see Fig. 9a, is not related to the application of the MDP and/or the Huygens’ principle, and 
can rather be reproduced for the simplest “textbook” discretization as well.

To that end, consider an interior Neumann IBVP (2) for the three-dimensional wave equation on the domain of a simple 
shape — a cube � = [−R0, R0]3. We will solve this problem numerically using the same second order accurate central 
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Fig. 12. Error profiles in the maximum norm for the Neumann and mixed problem solved on a Cartesian cube. A log-linear scale is used in the panels (b) 
and (c). Upper graph — Grid 1; lower graph — Grid 2.

difference scheme as used for solving the AP, see Section 4.2. To approximate the Neumann boundary conditions with 
second order accuracy, we choose the uniform Cartesian grid in such a way that the boundary of the cube � would cross 
through its cell centers rather than actual nodes. Then, the normal derivative can be approximated with second order 
accuracy as follows:

∂u

∂n

∣∣∣∣
i+1/2

≈ ui+1 − ui

h
,

where the subscript i corresponds to the direction of differentiation. For the numerical demonstrations in this section, we 
will use the same plane wave test solution (54) as used in Section 5.2.

In Fig. 12, we plot the maximum norm of the error as a function of time. Fig. 12a corresponds to the error of the 
Neumann solution itself, and one can clearly see that this error increases linearly as the time elapses (cf. Fig. 9a). In contrast 
to that, the gradient of the solution shows no error accumulation at all for the entire length of computation, see Fig. 12b 
(cf. Fig. 9b).

Another case where the error profiles appear flat is that of the mixed boundary conditions. For example, Fig. 12c cor-
responds to a problem where five faces of the cube still have Neumann boundary conditions whereas on the sixth face 
we set a Dirichlet boundary condition. Even though this setting differs from the pure Neumann problem by the type of the 
boundary condition only on one face of the cube, it already eliminates the error growth. We have also carried out additional 
“weaker” simulations, increasing the number of faces with Dirichlet boundary conditions all the way up to the full Dirichlet 
problem, with no sign of error accumulation.
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We thus conclude that the growth of the error observed in Fig. 12a (see also Fig. 9a) can unambiguously be attributed to 
the full Neumann boundary conditions. A qualitative explanation of this error growth may be given as follows. The function 
a + bt , where a and b are constants, satisfies both the homogeneous wave equation and homogeneous Neumann boundary 
conditions. The constants a and b can be interpreted as the solution and its first time derivative averaged over the spatial 
domain � at t = 0. Therefore, if the initial data (at t = 0) for a given Neumann problem have a non-vanishing mean a and/or 
non-vanishing mean time derivative b, then the solution for t > 0 may have a component a +bt that grows over time unless 
b = 0. As a simple physical illustration of such a solution in the one-dimensional case, one can think of the oscillations of 
a string with free endpoints, where the Neumann conditions correspond to a force applied to those endpoints. Then, the 
constant a represents the initial location of the string’s center of mass and b yields the string’s initial momentum. If b 	= 0, 
the overall motion of the string can be decomposed into the motion of its center of mass according to the law of classical 
mechanics: a +bt , and the oscillations in the center-of-mass moving frame. In our simulations, even though the initial mean 
time derivative of the reference solution (54) vanishes at t = 0 (due to a symmetry with respect to the origin), the round-off 
errors may still lead to an effective non-zero b and hence to the observed linear growth of the error.

Note that in the case of Dirichlet, Neumann, or Robin boundary conditions (2c), the solution of IBVP (2) can be written 
in the form of a Fourier series, see [44, Chapter 2]. In particular, if (2c) is a homogeneous Neumann boundary condition 
(φ = 0), then the series takes the form:

u(x, t) = a0 + b0t +
∞∑

s=1

(as cosλst + bs sinλst)vs(x), (A.1)

where vs(x) are Neumann eigenfunctions of the Laplacian on � and −λ2
s are the corresponding eigenvalues. Under certain 

constraints on regularity and compatibility of the initial data u0 and u1 in (2b), series (A.1) can be proven to converge 
uniformly with respect to x and t , along with the series obtained by its term-wise differentiation. Then, the sum of series 
(A.1) yields a classical solution of IBVP (2).

The linear growth of the error that we observed in our Neumann simulations shall therefore be attributed to the first 
two terms of the series (A.1): a0 + b0t . They correspond to λ0 = 0 and v0(x) = const. In contradistinction to (A.1), for the 
boundary conditions other than Neumann the solution is given by a series that contains neither a constant nor linear term:

u(x, t) =
∞∑

s=1

(as cosλst + bs sinλst)vs(x). (A.2)

In formula (A.2), vs(x) are eigenfunctions of the Laplacian subject to the appropriate boundary condition (Dirichlet or 
Robin). Series (A.2) convergence uniformly under the same conditions as guarantee the convergence of series (A.1), see [44, 
Chapter2]. Unlike (A.1), formula (A.2) does not allow error growth over time.
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