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We solve the wave equation with variable wave speed on nonconforming domains with 
fourth order accuracy in both space and time. This is accomplished using an implicit finite 
difference (FD) scheme for the wave equation and solving an elliptic (modified Helmholtz) 
equation at each time step with fourth order spatial accuracy by the method of difference 
potentials (MDP). High-order MDP utilizes compact FD schemes on regular structured 
grids to efficiently solve problems on nonconforming domains while maintaining the 
design convergence rate of the underlying FD scheme. Asymptotically, the computational 
complexity of high-order MDP scales the same as that for FD.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

We consider an initial boundary value problem for the wave (d’Alembert) equation:

utt = c2�u + F ,
−→x ∈ � (1a)

u
(−→x ,0

) = φ0
(−→x )

(1b)

ut
(−→x ,0

) = φ1
(−→x )

(1c)

�(u)|� = ψ(t) (1d)

where � = ∂� is the boundary, the wave speed c is a variable function of the spatial coordinates (assumed smooth in 
the current work, although this limitation can be lifted as explained in Section 5), and F is an inhomogeneous term. The 
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boundary condition (1d) in this work is taken to be either Dirichlet (� = 1) or Neumann (� = ∂
∂n ). In our earlier work [1,

2] that discussed the Helmholtz equation (i.e., the time-harmonic wave equation), we have considered a variety of more 
general boundary conditions as well.

Equation (1a) is an established model for a broad range of problems in acoustics and electromagnetism. The key feature 
of all these problems is their linearity. The numerical methods that we are developing hereafter are not designed for solving 
the nonlinear problems. We rather consider our main challenge as to compute the solution over large and generally shaped 
regions with high fidelity and robustness.

Finite difference (FD) methods are known to lead to inexpensive and efficient algorithms for computing smooth solutions 
on regular domains/grids. Their primary disadvantage is in dealing with more complicated geometries and solutions with 
low regularity. The finite element method (FEM) and its extensions, as well as the discontinuous Galerkin method (DG), 
may help alleviate these two constraints pertinent to FD. Yet in practical problems of wave propagation, especially in 3D, 
both FD and FEM have serious limitations because of their relatively high “points-per-wavelength” requirement, as well as 
numerical pollution (the dispersion error), see [3,4] and [5, Section 4.6.1]. The numerical phase velocity of the wave in these 
methods depends on the wavenumber. Therefore, a propagating packet of waves with different frequencies gets distorted in 
the simulation. Furthermore, the numerical error strongly depends on the frequency [6,5].

This drawback can be (partially) overcome by high-order FD schemes. They, however, usually need a wider stencil, which 
complicates the boundary conditions. A class of schemes aimed at reducing the phase error are the dispersion relation 
preserving schemes [7,8]. Yet they need an even wider stencil than conventional schemes of the same order of accuracy.

There is also a special type of high-order schemes that do not require a wider stencil. These schemes rely on a targeted 
approximation of the class of solutions rather than of a much broader class of generic sufficiently smooth functions. The 
equation-based compact schemes that we have developed in [9–11] for the Helmholtz equation are in this category; other 
similar methods include [12–15]. A recent extension of compact equation-based schemes to the time domain is given in 
[16]. Such schemes reduce pollution while keeping the treatment of the boundary conditions simple. However, geometry 
still remains a hurdle.

In FEM, on the other hand, a high-order accurate approximation can be built for arbitrary boundaries with the help 
of isoparametric elements [17]. These methods require a grid generation which can be nontrivial for complex geometries 
and interfaces. In DG, discontinuous enrichment methods, and generalized FEM, high-order accuracy also requires additional 
degrees of freedom. The disadvantage of these methods for the linear problems with smooth solutions is their substantial 
redundancy, which entails additional computational costs.

A group of methods known to provide a very considerable flexibility from the standpoint of geometry are the boundary 
element methods (BEM). They typically apply to steady-state or time-harmonic problems (elliptic PDEs). In these methods, 
linear boundary value problems are reduced to boundary integral equations (BIE) with respect to equivalent boundary 
sources. BEM impose practically no limitations on the shape of the boundary and automatically account for the correct 
far field behavior of the solution. However, these methods rely on the explicit knowledge of the fundamental solution 
(and so they are not easily compatible with variable propagation speed), and the treatment of the boundary conditions 
requires care in choosing the boundary sources so as to maintain the equivalence of the reduction and well-posedness of 
the resulting boundary representation. In doing so, the cases that involve resonances of the complementary domain require 
special attention, see, e.g., [18].

Standard BEM cannot be used directly for unsteady problems of wave propagation (hyperbolic PDEs). Their time-
dependent applications are rather limited to combined problems with a clearly identifiable elliptic component, such as 
slow speed flows of viscous fluid [19,20] or water waves [21].

A special class of BIEs called the retarded potential boundary integral equations (RPBIE), see [22,23], provide a venue 
toward extending the BEM from elliptic to hyperbolic PDEs. However, the corresponding time domain numerical methods 
[24–27] are not nearly as popular as their frequency domain counterparts. One difficulty is that many time domain dis-
cretizations of RPBIEs appear prone to instabilities, even if the well-posedness of the RPBIE per se can be guaranteed in 
the first place (some aspects of stability have recently been studied in [28]). For the most part, however, the reason is that 
as the time elapses the boundary extends and the computation of convolutions involved in RPBIEs that typically relies on 
Laplace transform methods [29,30] becomes progressively more expensive. In that regard, we also mention work [31,32]
that uses RPBIEs and convolution quadratures [29,30] for the development and analysis of far-field boundary conditions.

In our earlier work on the Helmholtz equation [33,1,34,35,2], we have employed the method of difference potentials 
(MDP) developed by Ryaben’kii [36–39]. The MDP can be viewed as a discrete analog of Calderon’s potentials and Calderon’s 
boundary equations with projections in functional analysis [40,41]. Its capacity of handling the boundaries of general shape 
is comparable to that of BIEs. Yet the MDP does not require fundamental solutions and automatically guarantees the equiv-
alence of the reduced boundary problem and the original one. It uses discretizations on regular structured grids and can 
maintain high-order accuracy for non-conforming boundaries. Difference potentials for the Helmholtz equation [33,1,34,35,
2] were built using compact equation-based schemes [9–11] that enable high-order accuracy while avoiding the extensive 
redundancy inherent in high-order FEM and DG methods.

In the current paper, we extend the previously developed MDP-based approach for time-harmonic waves to the genuinely 
time-dependent formulation (1). Our goal is to achieve the same geometric flexibility and high-oder accuracy as we have 
obtained for the Helmholtz equation [33,1,34]. Fundamentally, there may be two ways of pursuing this goal. One can build a 
full-fledged MDP algorithm in 3+1 dimensional space-time. In doing so, like in the case of RPBIEs, computing the operators 
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may appear increasingly costly as the time elapses. To eliminate this increase, in 3D one can employ the strong Huygens’ 
principle and lacunae [42] in the solutions of equation (1a), and this method is analyzed in [43]. The idea of the approach 
of [43] is very close to what we have used previously when building the lacunae-based outer boundary conditions for the 
numerical simulation of unsteady waves [44–51]. Note that the phase filter of [52] can also be thought of in terms of the 
Huygens’ principle.

Alternatively, one can first discretize equation (1a) in time by means of an implicit scheme. This discretization yields an 
elliptic (i.e., steady-state) equation that needs to be solved on the upper time level at every time step. This can be done 
by means of MDP similarly to how the Helmholtz equation was solved in [33,1,34]. It is this approach that we develop 
and analyze in the current paper. The compact discretization that we use was recently introduced in [16]. Earlier, a similar 
methodology for parabolic equations was explored in [53,54], but the finite difference stencils are not compact and only 
Dirichlet boundary conditions are considered.

For simplicity, in this paper we consider the wave equation (1a) in two dimensions and take � to be a disk centered 
at the origin, so that the normal direction to � coincides with the polar radius. A Cartesian FD scheme will be used, so 
that the boundary does not conform to the grid. A treatment of general smooth boundary shapes is demonstrated for the 
Helmholtz equation in [55], and this case therefore represents no loss of generality.

In Section 2, we introduce an implicit finite difference scheme for equation (1a), see [16] for additional detail. This FD 
scheme becomes a component of the high-order MDP algorithm for the initial boundary value problem (1) described in 
Section 3. Numerical results verifying fourth order convergence in space and time are presented in Section 4.

2. Implicit time discretization

Let ht be the uniform time step and let δ2
t be the second order central difference in time. We consider the following 

semi-discrete approximation to equation (1a) centered at the time tn using a free parameter θ (sometimes referred to as a 
θ -scheme, see, e.g., [56,57]):

1

h2
t

δ2
t un = c2�un + θc2δ2

t �un + F n + θδ2
t F n. (2)

Rearranging (2) to gather the upper time level terms yields the implicit formulation:

�un+1 − 1

θc2h2
t

un+1 = 2

(
�un − 1

θc2h2
t

un
)

−
(

�un−1 − 1

θc2h2
t

un−1
)

− 1

θ
�un (3)

− 1

θc2
F n − 1

c2
δ2

t F n

≡ f n+1.

By definition, f n+1 = �un+1 − 1
θc2h2

t
un+1. Examining (3), we may use this definition at prior time levels to express f n+1 by 

the recursive formula

f n+1 = 2 f n − f n−1 − 1

θ
�un − F̃ n+1, (4)

where F̃ n+1 ≡ 1
θc2 F n + 1

c2 δ2
t F n consists of the given inhomogeneous terms. The terms f 0 and f 1 are known from the initial 

conditions (1b) of the wave equation. In Section 3.3, it will be demonstrated how to compute the remaining term �un when 
solving the elliptic equation (3) numerically.

As shown in [16], the accuracy and stability of the semi-discrete approximation (3) depends on the parameter θ , so that 
for

• θ = 1
12 , (3) is 4th order accurate in time and conditionally stable,

• θ ≥ 1
4 , (3) is 2nd order accurate in time and unconditionally stable (this includes the Crank–Nicholson scheme, θ = 1

2 ),
• θ = 0, (3) is explicit and 2nd order accurate in time.

Britt et al. [16] proved stability based on the construction of an appropriate norm. They showed that the scheme is energy 
conserving in this norm.

Moreover, even though the scheme is implicit and requires a matrix inversion at the upper time level, it is superior in 
complexity to a low-order explicit scheme and comparable to an explicit scheme of the same order of accuracy. The reason 
is that the inversion can be done by an efficient technique, such as FFT or multigrid. The issue of complexity has been 
thoroughly studied in [16].

From the initial condition (1b), u0 is known. Because (3) contains two backwards time levels, we approximate u1 by the 
Taylor expansion
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u1 = u0 + ht u0
t + h2

t

2
u0

tt + h3
t

6
u0

ttt + h4
t

24
u0

tttt +O
(
h5

t

)
. (5)

The term u0
t is also known from the initial condition (1c), while the higher order terms may be found by substituting the 

PDE (1a) at the initial time step as follows:

u0
tt = c2�u0 + F 0

u0
ttt = c2�u0

t + F 0
t

u0
tttt = c2�u0

tt + F 0
tt = c2�(c2�u0 + F 0) + F 0

tt .

(6)

It is assumed that the derivatives of F 0 and the spatial derivatives of u0 in (6) can either be computed analytically or by 
finite differences with the desired resolution.

The elliptic equation (3) at time step tn+1 is the modified Helmholtz equation, for which we formulate the boundary 
value problem (BVP) at each time step:

�un+1 − k2un+1 = f n+1,
−→x ∈ �, (7a)

�(un+1)|� = ψ(tn+1), (7b)

where k2 = 1
θc2h2

t
and f n+1 contains the previously computed time steps as well as inhomogeneous terms from the wave 

equation, see (3). In the next section, we describe a solution method for the semi-discrete BVP (7) at each time step by 
difference potentials.

3. Difference potentials

To solve the elliptic BVP (7) at each time step, we embed the general domain � within a simpler auxiliary domain �0, 
which in 2D we take to be a square. We then formulate an auxiliary problem on the square �0 that can be solved efficiently 
by a finite difference scheme on the Cartesian grid and will be used in constructing the difference potential. To demonstrate 
the capability of the high-order MDP algorithm to treat nonconforming domains, we take � to be a disk centered at the 
origin, the simplest nonconforming shape for a Cartesian scheme.

The statement of the auxiliary problem on the square �0 and its parameters, along with its solution method by finite 
differences, is described in Section 3.1. Section 3.2 establishes notation and definitions of various sets of grid nodes which 
will be needed when defining the difference potential. Section 3.3 specifies how to calculate the right-hand side f n+1 of 
the elliptic equation on the appropriate grid set as required to formulate the difference potential. In Section 3.4 we define 
the difference potential itself and introduce the boundary equation with projection.

In Section 3.5, we describe an equation-based extension procedure which ensures a high-order approximation of the 
continuous solution to the elliptic equation (7a) by difference potential. This is based on a result by Reznik [58,59] which 
provides sufficient conditions for the difference potential to approximate a continuous Calderon potential [41,40]. Next, we 
introduce a basis for pairs of functions along the continuous boundary � in Section 3.6, with which we will approximate 
the boundary data 

(
u, ∂u

∂n

) ∣∣
�

of the elliptic BVP (7).
Section 3.7 describes the high-order MDP algorithm for solving the wave equation using the implicit time discretiza-

tion (3).

3.1. The auxiliary problem

The auxiliary problem (AP) for the method of difference potentials must satisfy three conditions: the auxiliary domain 
�0 must contain the domain of interest �, the equation specified on �0 must coincide with the PDE on � ⊂ �0, and the 
PDE specified on �0 must be well-posed. Therefore let �0 be a square of side-length s > 2 centered at the origin, so that 
�0 contains � (i.e., the disk of radius 1 centered at the origin.) In our MDP formulation for the wave equation using the 
implicit time discretization (3), the PDE for the AP on the square �0 comes from the elliptic equation (7a),

�u − k2u = g, − s

2
≤ x, y ≤ s

2
u|x=± s

2 ,y=± s
2

= 0,
(8)

where k2 = 1
θc2h2

t
and g is an arbitrary right-hand side that will be specified by the MDP algorithm. As c(x, y) in the wave 

equation (1a) is defined only on �, we require a twice continuously differentiable extension of c to the larger domain �0 — 
this can be done, e.g., by polynomial extrapolation. The MDP algorithm requires the solution of multiple APs with different 
right-hand sides. Critically, the AP (8) is well-posed.

For the purposes of the high-order MDP algorithm for the wave equation, it is sufficient to consider only zero Dirichlet 
boundary conditions for the FD scheme on the square, even when the boundary conditions on the nonconforming domain 
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of interest (i.e., the disk) are not Dirichlet. This is because problem (8) remains well-posed on the square for any value 
of k2 > 0 and any right-hand side g with Dirichlet BCs. The usual Helmholtz equation with Dirichlet BCs on the square 
is prone to resonances for certain values of k2, and in our prior work this was avoided by taking a more complicated 
Sommerfeld-type BC at the left and right edges of the auxiliary domain [1]. The boundary conditions for the wave equation 
are therefore significantly more straightforward.

We numerically solve the AP (8) by the compact finite difference scheme described in [14]. On a 2D Cartesian grid which 
is equally spaced in both directions with step size hx = hy , we define the fourth order FD scheme L(h)u = g as follows. 
Denote by L0 the coefficient of the center node of a nine point stencil, by Ls the coefficient of the four side nodes, and by 
Lc the coefficient of the four corner points. Then the left-hand side operator L(h) on the 9-point stencil has coefficients

L0 = −10

3
− 2

3
k2h2

x , Ls = 2

3
− k2h2

x

12
, Lc = 1

6
. (9)

The compact scheme uses a right-hand side operator B(h) defined by coefficients Bi corresponding to the Li :

B0 = 2h2
x

3
, Bs = h2

x

12
, Bc = 0. (10)

When solving the BVP (7) by difference potentials, the AP (8) will need to be solved repeatedly for the right-hand sides g
supplied by the MDP algorithm. These right-hand sides are defined in Section 3.4 and can be thought of as if they already 
include the application of the operator B(h) . The AP (8) will also need to be solved for the “physical” right-hand sides f n+1

of (7a), in which case the operator B(h) will be applied explicitly. Eventually, in either case the discrete equation that we 
solve has the form L(h)u = g .

We define the Courant–Friedrichs–Lewy (CFL) number to be λ = cht
hx

, where hx is the uniform spatial grid step. The 

stability condition for the fourth order time discretization θ = 1
12 depends on the spatial discretization. Let L(h)

0 denote the 
negative definite discrete approximation to the Laplacian (k = 0 in formula (9)), for which 0 < (−h2

x L(h)
0 u, u) ≤ Lupper‖u‖2. 

Then, the stability condition is given by λ2 ≤ 6
Lupper

, which becomes λ2 ≤ 3
8 for scheme (9)–(10), see [16].

Let G(h) denote the solution operator of the discrete AP, so that the numerical solution of (8) is formally u = G (h) g on 
the square, although the matrix G (h) is never explicitly computed. For variable coefficients, the discrete AP can be solved 
by either direct or iterative methods in 2D, but direct methods such as LU or Cholesky factorization become prohibitively 
expensive in 3D. In [16], we compare the efficiency of a direct LU solver with conjugate gradient and multigrid iterative 
solvers in 2D. The MDP algorithm will require multiple solutions of the AP in the preprocessing steps as well as two 
solutions of the AP at each time step, but in every instance only the right-hand side g of the AP (8) changes while all other 
parameters are fixed. If solving by a direct matrix factorization method such as LU or Cholesky, the matrix decomposition is 
performed once at the beginning and then reused so that the subsequent numerical solutions of the AP are computationally 
inexpensive.

3.2. Grid sets

The definition of the difference potential involves subsets of grid points within the auxiliary domain which we now 
specify. Let N0 be the set of all Cartesian grid nodes with step size hx = hy on the auxiliary square �0, and let M0 be 
the set of interior nodes of the grid. Denote by M+ ⊂ M0 the set of grid points inside of the disk and by M− ⊂ M0 the 
nodes outside of the disk but excluding the boundary nodes of the square. We define corresponding sets N+ ⊂ N0 and 
N

− ⊂ N0 which consist of all nodes touched by the 9-point stencil (see equation (9)) acting on M+ and M− respectively. 
The intersection γ = N

+ ∩ N
− is then a nonempty subset of grid points that straddle the continuous boundary �, and we 

therefore refer to γ as the discrete boundary.
The grid sets M+ , M− , N+ , N− , and γ are schematically shown in Fig. 1. Having a given node from M0 lying precisely 

at the boundary � = ∂� rather than strictly inside or outside � presents no problem. Such nodes can be included either in 
M

+ or M− . The corresponding convention needs to be made ahead of time and followed throughout the development of 
the algorithm, in which case the particular choice, M+ or M− , will not make a difference.

3.3. Computing B(h) f n+1 on M+

In the recurrence relation (4) for f n+1, all terms are known on � by assumption except for �un . For the method of 
difference potentials, we require the quantity B(h) f n+1 only at the grid nodes M+ ⊂ �; however, direct application of the 
FD stencil of B(h) on M+ (see equation (10)) involves values of f n+1 that lie outside of �, namely, at some of the nodes 
from the set N+ \ M+ . We must therefore specify how to compute B(h) f n+1 on M+ at each time step. Our approach first 
treats the initial time steps so that the values of B(h) f 0 and B(h) f 1 are known on M+ and then proceeds by the recurrence 
relation (4) to obtain B(h) f n+1 on M+ . For clarity, we introduce the notation f n+1

B := B(h) f n+1, which is a sequence of 
values on M+ which formally is defined by the recurrence relation (4) operated on from the left by the stencil B(h) but in 
practice does not require values of f n outside of � after the initial steps.
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Fig. 1. Interior and exterior grid subsets and the grid boundary.

From the initial conditions (1b) of the wave equation, f 0 and f 1 are known on �, and at these initial values we may 
employ a continuously differentiable extension of f 0 and f 1 from the domain � to the adjacent nodes of N+ \ M+ (e.g., 
by a Taylor series of sufficient order). We then directly apply the stencil B(h) to f 0 and f 1 using the extended values on 
N

+ \M+ , which yields the initial quantities f 0
B , f 1

B of the recurrence for f n+1
B on M+ .

Recall that L(h)
0 denotes the FD operator defined by (9)–(10) for the case k = 0. The numerical solution at previous 

time steps, un , is assumed to be known by difference potentials on the grid N+ so that application of this FD operator 
yields L(h)

0 un ≈ B(h)�un + O
(
h4

x

)
(note that the coefficients of B(h) do not depend on k, see (10)). For an inhomogeneous 

equation, the source term F̃ n+1 is known on � and can also be defined at the required nodes of N+ \M+ by a continuously 
differentiable extension at each time step,1 so that we may compute B(h) F̃ n+1 at M+ by direct application of the operator. 
Altogether, we have the following at the nodes M+:

f n+1
B = 2 f n

B − f n−1
B − 1

θ
B(h)�un − B(h) F̃ n+1

≈ 2 f n
B − f n−1

B − 1

θ
L(h)

0 un − B(h) F̃ n+1.

(11)

Again, we emphasize that the terms f n
B = B(h) f n do not involve application of the operator but are calculated by recurrence 

starting from the initial values f 0
B , f 1

B as described above, and this eliminates the need for special treatment of f n at the 
nodes N+ \M+ which lie outside of �.

3.4. Difference potentials and the boundary equation with projection

Let ξγ be a function with values on the discrete boundary γ and define the auxiliary function w|γ = ξγ on N0 with 
w|N0\γ = 0. Then the difference potential with density ξγ is the operator PN+ : γ → N

+ defined by

PN+ξγ := w − G(h)
[
1M0(M

+)
(

L(h)w
)]

, (12)

where 1M0 is the indicator function on M0 and the right-hand side of (12) is considered only on the grid N+ ⊂ N0. As G (h)

is the solution operator of the discrete AP (8), the construction of the difference potential of density ξγ requires solving an 
auxiliary problem with the right-hand side g = 1M0(M

+) 
(

L(h)w
)
. Therefore the cost of computing a difference potential on 

N
+ is the same as solving a finite difference problem on the auxiliary square N0. We define the difference projection of ξγ

as

Pγ ξγ := (
PN+ξγ

) ∣∣
γ

(13)

in order to formulate the discrete boundary equation with projection (BEP) on γ at time step tn+1:

Pγ ξγ +
(

G(h) f̃ n+1
B

) ∣∣∣
γ

= ξγ , (14)

1 The extension of the known function F̃ n+1 from � to nearby grid nodes is rendered by a low order Taylor formula and proves and entails a computa-
tionally negligible cost.
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where f̃ n+1
B is equal to f n+1

B (see (11)) on the interior nodes M+ and zero on M− . A central result in the theory of 
difference potentials (see [37]) is that a density ξγ satisfies the BEP (14) if and only if it coincides on γ with a solution 
to the difference equation L(h)u = f̃ n+1

B on N+ . Therefore, we may think of the BEP as a reduction of the discrete problem 
from the discretized domain N+ to the discrete boundary γ .

Incorporating the boundary conditions (7b) on the circle (see Sections 3.5–3.6) to supplement the BEP (14) yields the 
unique solution ξγ , which allows us to approximate the solution to the BVP (7) on the disk � as follows:

u|N+ = PN+ξγ +
(

G(h) f̃ n+1
B

) ∣∣∣
N+ . (15)

One may note that the definition of the difference potential (12) depends on the operator G (h) and therefore on the 
specific choice of the auxiliary problem (8) (i.e., the shape of the auxiliary domain and its boundary conditions). However, 
as long as the AP has a unique solution for every right-hand side g and is well-posed, one can show that the range of the 
projection operator Pγ of (13) does not depend on the choice of the AP, see [37].

It is important to note that the operators PN+ and Pγ , see (12)–(13), as well as the key equation (14), are constructed 
independently at the discrete level. They, however, can be considered as formally “mirroring” the continuous development 
that leads to Calderon’s potentials and Calderon’s boundary equations with projections, see [40,41]. The parallel between the 
discrete and continuous constructs is explained, e.g., in our recent work [33]. For a more detailed analysis and rigorous justi-
fication of all the results we refer the reader to work by Ryaben’kii [36,37]. The discrete potentials and projections (12)–(13)
approximate their continuous counterparts provided that there is a certain relation between the respective densities, as 
discussed in Section 3.5.

3.5. Equation-based extension from the continuous to discrete boundary

While the argument (i.e., density) of the difference potential (12) is a function defined on the boundary nodes of the 
discrete boundary γ , the density of the continuous Calderon potential is a pair of functions defined on the continuous 
boundary � [37,41,40]. In the case that this function pair is the solution of the modified Helmholtz equation (7a) and 
its normal derivative at the continuous boundary �, the Calderon potential with density 

(
u, ∂u

∂n

) ∣∣
�

will reconstruct this 
solution on the interior of �. The equation-based extension procedure will exploit the continuous wave equation (1a) to 
obtain normal derivatives of its solution in order to enforce a special relationship between the discrete density ξγ and 
the continuous function pair 

(
u, ∂u

∂n

) ∣∣
�

so that the resulting difference potential (15) will approximate the solution to the 
boundary value problem (7) on N+ at each time step.

Given a function pair at the continuous boundary, 
(

v, ∂v
∂n

)∣∣
�

, the Taylor expansion to a near-boundary node of γ takes 
the form:

vγ
def= Ex

(
v,

∂v

∂n

)∣∣∣∣
�

= v� + ρ
∂v

∂n

∣∣∣∣
�

+ ρ2

2

∂2 v

∂n2

∣∣∣∣
�

+ ρ3

6

∂3 v

∂n3

∣∣∣∣
�

+O
(
ρ4

)
, (16)

where ρ represents the distance from the boundary nodes of γ to the continuous curve �. The 2nd order and higher normal 
derivatives in (16) will be replaced by expressions derived from the wave equation (1a). In the case of a disk centered at 
the origin, the normal direction coincides with the polar radius, n = r. For more general boundary shapes, similar results 
are obtained in normal and tangential coordinates, see [55]. Rearranging the continuous wave equation (1a) for v and 
differentiating in r yields:

�v = 1

c2 (vtt − F ) , (17a)

∂ (�v)

∂r
= 1

c2

(
∂vtt

∂r
− ∂ F

∂r

)
− 2

c3

∂c

∂r
(vtt − F ) . (17b)

By assumption, the wave speed c and the inhomogeneous term F of the wave equation (1a) are given and can be computed 
with sufficient accuracy along with their radial derivatives.

Using the polar form of the Laplacian, we can write:

∂2 v

∂r2
= −

(
1

r

∂v

∂r
+ 1

r2

∂2 v

∂θ2

)
+ �v. (18a)

Differentiating with respect to r, we have

∂3 v

∂r3
= 1

r2

∂v

∂r
− 1

r

∂2 v

∂r2
+ 2

r3

∂2 v

∂θ2
− 1

r2

∂3 v

∂r∂θ2
+ ∂(�v)

∂r
. (18b)

Therefore, to compute the extension (16) with accuracy O
(
ρ4

)
using (17) and (18), it remains to show how to compute 

the terms vtt and ∂vtt
∂r in (17). These terms are needed along the continuous boundary � at time level tn+1. We follow the 

approach of [53,54] that involves backwards differences.
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Formulae (17) will be evaluated at the time level tn+1 using a relation in the form of a 2nd order backwards difference 
formula in time for vtt ,

vn+1
tt := 1

h2
t

(
2v − 5un + 4un−1 − un−2

)
, (19)

where v is, in general, an input function that is not dependent on time and the backwards time levels of u are known 
terms. In the special case that v = un+1, then equation (19) is exactly a second order backwards difference formula for 
un+1

tt = vn+1
tt . Notice that (19) contains one more backwards time level than the time discretization (3), and so at the first 

time step u−1 is computed by a similar Taylor expansion as for u1 in (5) (note that u−1 only needs to be approximated at 
the continuous boundary � for the extension (16)).

We observe that while the core finite difference scheme (2)–(3) involves three time steps, having the backward difference 
(19) included into the extension operator makes the overall time marching algorithm a four step scheme. The energy 
stability proof given in [16] applies to the core scheme (2)–(3) without boundary conditions or with Dirichlet boundary 
conditions. We have not conducted a theoretical stability analysis in the case with other types of boundary conditions, and 
it may be a challenging task. However, our numerical simulations presented in Section 4.2 show no indication of instability 
that can be attributed to the boundary conditions (in fact, no indication of instability at all as long as the stability constraints 
discussed in Section 2 are met). Thus, we conclude that using the four step backward difference (19) as a part of the 
extension (16) does not affect the overall stability justified for the original three step scheme.

Note also that (19) appears in the O
(
ρ2

)
term of (16). Since the previous time levels are assumed to be known with only 

O
(
h4

t

)
accuracy, the accuracy of formula (19) becomes O

(
h2

t

)
, bringing the overall accuracy of (16) to O

(
ρ2h2

t

)
. Assuming 

ht ≈ ρ , this results in at best O
(
ρ4

)
accuracy of the extension (16) — this assumption is discussed in more detail in the 

remarks at the end of this section. A higher order backwards difference formula for vtt will still contain a multiplication by 
h−2

t while using O
(
h4

t

)
solutions from prior time levels, and so would result in the same overall accuracy. Thus, the highest 

order extension that can be expected by this procedure is O
(
ρ4

)
.

Therefore, for the special case when ∂v
∂r = ∂u

∂r
n+1

, the term ∂vtt
∂r in (17) needs only to be approximated to O (ρ) to 

maintain O
(
ρ4

)
accuracy overall. The central difference in time at the previous time level is sufficient:

∂vtt

∂r

n+1

= 1

h2
t

(
∂v

∂r
− 2

∂un

∂r
+ ∂un−1

∂r

)
, (20)

where again ∂v
∂r can be interpreted as a general input function, while the backwards time levels are known. Assum-

ing that the radial derivative at previous time steps are known with at least O
(
h3

t

)
accuracy, the approximation (20) is 

O (ht) ≈O (ρ). Equation (20) requires the radial derivatives along � at the first two time steps, which are computed from 
the initial condition by finite differences in r for u0 and u1. If desired, we may increase the accuracy of the approximation 
to ∂vtt

∂r to O
(
h2

t

)
by replacing (20) by the same backwards difference formula as for un+1

tt in (19).
In the course of the MDP implementation, the extension (16) will need to be applied to an arbitrary pair of functions 

(ξ0, ξ1)
∣∣
�

that substitute for 
(

v, ∂v
∂n

) ∣∣
�

. In doing so, ξ0 will also replace v on the right-hand side of (19) and ξ1 will replace 
∂v
∂r on the right-hand side of (20). Following the approach for inhomogeneous elliptic equations (see, e.g., [1,33]), it will be 
useful to separate the extension operator into two components: ExH and ExI . The component ExH will rely on the input 
functions (ξ0, ξ1) while Exn+1

I is independent of the inputs but will change in time, so that the extension can be thought 
of as an affine operator:

Ex(ξ0, ξ1) = ExH (ξ0, ξ1) + Exn+1
I . (21)

In formula (21), the linear operator ExH consists of those and only those terms that involve ξ0, ξ1 (or v and ∂v
∂n ), and their 

tangential derivatives, while the function Exn+1
I contains known quantities such as the source term F of the wave equation 

(1a) or the numerically computed solution at previous time steps that appear in the expressions (19) and (20). Note, that the 
finite differences for un+1

tt and ∂un+1
tt
∂r involve the current time level tn+1 which is unknown. However, in the equation-based 

extension the upper time level coincides with the input functions v = ξ0 and ∂v
∂r = ξ1 and are thus a part of ExH .

The motivation for this decomposition is that ExH and Exn+1
I are computed separately to avoid redundancy. For ellip-

tic problems, this allows for the efficient solution of multiple BVPs with shared geometry since ExH (ξ0, ξ1) is computed 
once, so that only ExI needs to be recomputed when solving problems with different boundary conditions or different 
inhomogeneous terms. This same idea contributes to an efficient time marching in the high-order MDP algorithm for the 
wave equation, since ExH is completely determined by time-invariant input functions and can thus be accomplished in a 
pre-processing stage (see Sections 3.6 and 3.7), while Exn+1

I is updated at each time step. In contrast to our work on elliptic 
equations, Exn+1

I is not known analytically.

Denote the coefficients of the backwards difference formula (19) by dn− j
0 , j = −1, 0, 1, 2, and those of the (20) by dn− j

1 , 
j = −1, 0, 1. Altogether, the extension is given by Ex(ξ0, ξ1) = ExH (ξ0, ξ1) + Exn+1 with
I
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ExH (ξ0, ξ1) = ξ0 + ρξ1 + ρ2

2

(
−1

r
ξ1 − 1

r2

∂2ξ0

∂θ2
+ dn+1

0

c2
ξ0

)

+ ρ3

6

[
2

r2
ξ1 + 3

r3

∂2ξ0

∂θ2
− 1

r2

∂2ξ1

∂θ2
(22a)

+ 1

c2
dn+1

1 ξ1 +
(

− 1

rc2
− 2

c3

∂c

∂r

)
dn+1

0 ξ0

]
,

Exn+1
I = ρ2

2c2

⎛
⎝ 4∑

j=0

dn− j
0 un− j − F n+1

⎞
⎠ + ρ3

6

⎡
⎣− 1

c2r

⎛
⎝ 4∑

j=0

dn− j
0 un− j − F n+1

⎞
⎠

− 2

c3

∂c

∂r

(
dn

1
∂u

∂r

n

+ dn−1
1

∂u

∂r

n−1

− ∂ F

∂r

n+1)]
. (22b)

While the coefficients d j
0 and d j

1 in formulae (22) are specified by (19) and (20), respectively, they may be replaced by 
other difference formula if desired. It is assumed that the tangential derivatives of the input functions ξ0 and ξ1 are known. 
Provided that these input functions do not change with time, ExH in (22a) does not change in time either. In Section 3.6, we 
specify a time-independent basis for pairs of functions that will be the input functions. Meanwhile, Exn+1

I in (22b) changes 
with each time step and is not dependent on the input functions.

It was shown that O
(
ρ4

)
is the highest order of the extension (16) that can be achieved by our method for the wave 

equation (1a) using a 4th order FD scheme. This approach is valid for boundary conditions of any type on the circle and 
makes use of the wave equation (1a) to derive the equation-based expressions, and the numerical results of Section 4 verify 
the overall 4th order accuracy of the algorithm for Dirichlet BCs, while the results for Neumann BCs have a slightly lower 
convergence rate but are still high-order accurate.

It is also possible to proceed by equation-based substitution of the modified Helmholtz (steady-state) equation (7a). In 
that case, a O

(
ρ3

)
extension can be obtained for Dirichlet boundary conditions, but it is unclear how to obtain a higher 

order extension or how to treat general boundary conditions. Due to these limitations, the derivation of the equation-based 
extension (16) using the modified Helmholtz equation (7a) is omitted.

Remarks on accuracy

• As a consequence of Reznik’s theorem [58,59], for a scheme of order p = 4 and a PDE of order q = 2, an extension 
operator based on the Taylor formula of order p + q = 6 is sufficient to maintain the overall fourth order accuracy of 
the MDP algorithm. Our previous work on the Helmholtz equation [33,1,35] has shown experimentally that a Taylor 
expansion of order 4, i.e., only O

(
ρ5

)
, is sufficient to maintain the overall 4th order accuracy with a 4th order FD 

scheme. For the wave equation (1a), formulae (22) specify an equation-based operator of the form (16) with an accuracy 
of O

(
ρ4

)
. Yet the numerical results in Section 4 show overall 4th order accuracy for the wave equation (1a) with 

Dirichlet boundary conditions and also high-order accuracy for Neumann boundary conditions, even with variable wave 
speed. Reducing to a O

(
ρ3

)
extension resulted in a diminished convergence rate for the wave equation.

• The calculation of Exn+1
I in (22b) uses the numerical solution and its numerical normal derivative on � found at 

previous time steps by the high-order MDP algorithm. In order to simplify the analysis, we assume these quantities 
are known with O

(
h4

t + h4
x

)
accuracy. The accuracy of the overall scheme depends on the accuracy of the extension, 

and likewise the accuracy of the extension depends on the accuracy of the overall scheme at prior times. Provided that 
the O

(
ρ4

)
extension is sufficient to maintain fourth order accuracy in space and time and that the FD scheme for the 

wave equation is stable, then sufficient accuracy in the initial conditions ensures that the design convergence rate of 
the scheme is maintained at each step.

3.6. Basis functions on �

Let us now introduce a basis for function pairs on the continuous boundary �. The coefficients of the solution to the 
BVP (7) and its normal derivative in this basis will be obtained by substituting extension (22) into the discrete BEP (14)
and incorporating the boundary condition (7b) on the circle. This yields a system of linear equations for the unknown 
coefficients of 

(
u, ∂u

∂n

) ∣∣
�

at each time step.

Since � is a closed curve (i.e., the circle), we assume that the boundary data 
(
u, ∂u

∂n

)∣∣
�

will be periodic at each time step. 
We introduce a set of 2N + 1 complex Fourier basis functions on �:{

eijθ , θ ∈ [0,2π), j = −N, .., N
}

, (23)

and form pairs 
{(

ei jθ ,0
)}

and 
{(

0, ei jθ
)}

, so that altogether there are 2(2N + 1) basis functions for approximating a general 
function pair (ξ0, ξ1) on �. In particular, for each time step we may write
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(
u,

∂u

∂r

)∣∣∣∣
�

≈
N∑

j=−N

[
c(0)

j

(
eijθ ,0

)
+ c(1)

j

(
0, eijθ

)]
, (24)

where the time level superscripts are omitted and understood to be at the current time tn+1. The number of basis functions 
should be chosen such that the accuracy of (24) will exceed the accuracy of the overall algorithm. Series expansions using 
Fourier basis functions converge rapidly for smooth functions, and thus we expect the number of basis functions to be small 
compared to the number of points in the grid boundary, 4N + 2 � |γ |.

Observe that the component ExH (ξ0, ξ1) of the extension operator (22a) is linear since all of the expressions involved in 
(16) and formulae (18) are linear differential operators. Therefore, applying the extension operator Ex to the basis expan-
sion (24), we represent an approximation to un+1 at the grid boundary γ by

un+1
γ =

N∑
j=−N

[
c(0)

j ExH

(
eijθ ,0

)
+ c(1)

j ExH

(
0, eijθ

)]
+ Exn+1

I . (25)

Let Iγ denote the identity operator on γ . We obtain a system of linear equations for the coefficients of the boundary data 
by substituting (25) into the BEP (14),

Pγ uγ +
(

G(h) f̃ n+1
B

) ∣∣∣
γ

=un+1
γ ,

or, equivalently,

(Pγ − Iγ )un+1
γ = −

(
G(h) f̃ n+1

B

) ∣∣∣
γ
. (26)

Let Q H (ξ0, ξ1) =
(

Pγ − Iγ

)
ExH (ξ0, ξ1) and Q n+1

I = (
Pγ − Iγ

)
Exn+1

I . Then, substituting the right-hand side of (25) into 
(26) and rearranging, we have

N∑
j=−N

[
c(0)

j Q H

(
eijθ ,0

)
+ c(1)

j Q H

(
0, eijθ

)]
= −

(
G(h) f̃ n+1

B

) ∣∣∣
γ

− Q n+1
I . (27)

Let Q = [ Q 0, Q 1] be the |γ | × 2(2N + 1) matrix whose first 2N + 1 columns Q 0 are given by Q H

(
ei jθ ,0

)
, −N ≤ j ≤ N , 

and last 2N + 1 columns Q 1 by Q H

(
0, ei jθ

)
, −N ≤ j ≤ N , and let c =

[
c(0)
−N , . . . , c(0)

N , c(1)
−N , . . . , c(1)

N

]T
. Then we may write 

the linear system (27) with |γ | equations and 4N + 2 unknowns as

Q c = −
(

G(h) f̃ n+1
B

) ∣∣∣
γ

− Q n+1
I . (28)

Since N will be relatively small for smooth functions, we will typically have 4N + 2 < |γ | or even 4N + 2 � |γ | so that 
system (28) is overdetermined. Because the BEP (14) does not incorporate the boundary conditions on the disk, the system 
(28) requires additional information in order to specify a unique solution before it can be solved. For example, in the case 
that (1d) is a Dirichlet condition, at time tn+1 we compute the Fourier expansion of the Dirichlet data

un+1
∣∣
�

= φn+1
0 (θ) =

N∑
j=−N

c(0)
j ei jθ , (29)

so that c(0) is known. Substituting into (28) yields

Q 1c(1) = −
(

G(h) f̃ n+1
B

) ∣∣∣
γ

− Q n+1
I − Q 0c(0). (30a)

The same argument follows for a Neumann boundary condition and gives

Q 0c(0) = −
(

G(h) f̃ n+1
B

) ∣∣∣
γ

− Q n+1
I − Q 1c(1). (30b)

It is shown in [1] how to impose the proper constraints for general Robin boundary conditions, but only Dirichlet and 
Neumann BCs are considered in the present work. Linear systems (30) are typically overdetermined, because the dimension 
of the basis (23) is smaller than the number of nodes in the grid boundary γ . Therefore, they need to be solved in the weak 
sense, i.e., by minimizing the appropriately chosen norm of the residual, see [36–39]. Choosing the norm to be minimized 
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as the Euclidean norm leads to the solution in the sense of least squares.2 Solving either (30a) or (30b) by least squares at 
each time step yields the Fourier coefficients of 

(
un+1, ∂u

∂n
n+1

) ∣∣∣
�

, from which we compute un+1
γ by (25). We then obtain 

the numerical solution on N+ by constructing the difference potential with density un+1
γ , see (15).

3.7. Overview of the high-order MDP algorithm for the wave equation and its cost analysis

In the algorithm below, components (a)–(c) represent the pre-processing steps. Not only are these steps computed just 
once for a given problem, but they may, in fact, be reused. In other words, they can be computed only once for a range 
of related problems with a shared geometry. For example, if we wish to solve several problems on the same domain �
but with different boundary conditions (as done in Section 4) or different source terms, then steps (a)–(b) are performed 
only once provided that the same set of basis functions is suitable. In particular, the algorithm requires only very simple 
(and negligible from the standpoint of cost) changes for treating Dirichlet or Neumann boundary conditions. This has also 
been extended to Robin boundary conditions and in fact, the algorithm will remain valid for any smooth, periodic boundary 
conditions without additional analysis, just by adding the boundary conditions to the BEP system solved by least squares. 
An even broader class of boundary conditions has been analyzed in [1].

The component (c) below is unique to each problem but is computationally trivial, while step (d) and its subparts repre-
sent the time marching algorithm that is required for each problem. We emphasize that while in this paper we have chosen 
� to be a circle, this choice was made only for simplicity, because our primary focus is on time-dependent computations 
rather than the geometry. The MDP can, in fact, easily handle boundaries of irregular shape, as demonstrated, e.g., in our 
recent time-harmonic paper [55].

(a) We choose the number N so that a Fourier expansion w.r.t. 2N + 1 basis functions on the circle � (23) sufficiently 
accurately approximates the given Dirichlet or Neumann boundary condition (1d). Then, there are 4N +2 basis functions 
total, with 2N + 1 of the form (ei jθ , 0) and 2N + 1 of the form (0, ei jθ ), with −N ≤ j ≤ N . The homogeneous extension 
ExH of (22a) is applied to each of the 4N + 2 basis functions, resulting in 4N + 2 extended basis vectors with values 
on the grid boundary γ .

(b) The extended basis vectors are substituted into the boundary equation with projection (14), which requires the evalua-
tion of the difference potential with density given by each extended basis vector. Altogether, this step involves 4N + 2
numerical solutions of the auxiliary problem (8) by finite differences on the square with different right-hand sides g . 
The latter are specified by the expression in square brackets on the right-hand side of (12) with each extended basis 
vector as a density.

(c) The first time step u1 is computed by the initial conditions (1b)–(1c) via the Taylor expansion (5). Using a Taylor 
expansion of u0 and u1 from � to the grid nodes N+ \ M+ , we compute f 0

B and f 1
B on M+ by applying the compact 

FD operator (9) to the values of u0 and u1 on N+ (see Section 3.3). On �, we also compute u−1 and ∂u0

∂r , ∂u1

∂r from the 
initial conditions.

(d) At time step tn+1,
(i) Compute Exn+1

I by (22b) and compute Q n+1
I = (Pγ − Iγ )Exn+1

I . Applying the difference projection Pγ requires 
computing a difference potential of density Exn+1

I , which involves the solution of the AP (8) on the square �0 by 
FD with the right-hand side g given by the expression in square brackets in (12) with density Exn+1

I .

(ii) Compute f̃ n+1
B . This requires two matrix-vector multiplications and storing two vectors, see Section 3.3.

(iii) Compute 
(

G (h) f̃ n+1
B

)∣∣∣
γ

on the right-hand side of the linear system (28). This requires one solution of the AP by 

FD with g = f̃ n+1
B .

(iv) Compute the Fourier coefficients of the given boundary data from (7b).
(v) Solve the least squares system (30a) for a Dirichlet BC (c(0) is given and fixed):

c(1) = arg min
c̃(1)

∥∥∥∥ Q 1c̃(1) +
(

G(h) f̃ n+1
B

) ∣∣∣
γ

+ Q n+1
I + Q 0c(0)

∥∥∥∥
2
,

or (30b) for a Neumann BC (c(1) is given and fixed):

c(0) = arg min
c̃(0)

∥∥∥∥ Q 0c̃(0) +
(

G(h) f̃ n+1
B

) ∣∣∣
γ

+ Q n+1
I + Q 1c(1)

∥∥∥∥
2
.

This yields the approximate Fourier coefficients c for the full boundary data 
(

un+1, ∂u
∂r

n+1
)∣∣∣

�
. Numerically, the 

least squares minimization is implemented by QR decomposition.

2 As long as the original elliptic BVP (7) has a unique solution, the weak solution of the corresponding system (30a) or (30b) is expected to be “almost” 
classical in the sense that the minimum norm of the residual will be achieved at zero, or, more precisely, it will be a quantity of order O(hp), where p = 4
is the order of accuracy of the finite difference scheme.
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(vi) Compute un+1
γ by the basis expansion (25). Then, the numerical solution un+1 on N+ is given by (15), which is 

found by computing the difference potential with density un+1
γ and adding the inhomogeneous term. This requires 

one more solution of the AP by finite differences with right-hand side g given by the expression in square brackets 
in (12) with density un+1

γ .

We emphasize that while the treatment of the boundary conditions in our algorithm consists of a number of stages, the 
overall procedure remains perfectly linear and eventually reduces to solving an overdetermined system of linear algebraic 
equations in the sense of the least squares.

The largest computational costs of the algorithm are the steps that require solving the AP (8) by FD with a new right-
hand side. Therefore, the most expensive single step of the above algorithm is step (b), which requires 4N + 2 solutions 
of the AP as a pre-processing stage. The time marching of (d) requires altogether 3 solutions of the AP by FD with new 
right-hand sides per time step, and this number can be reduced to 2 as explained at the end of this section.

We emphasize that the pre-processing can be reused for any problem for which the same basis functions can be 
employed, so that only the cost of time marching is required for solving additional problems within a suitable class. In 
particular, this applies to problems with different boundary or initial conditions on the same geometry. If a direct linear 
solver is used for the AP (8), which is the case for the current 2D implementation, then the LU factorization needs to be 
performed only once at the pre-processing stage. Each subsequent solution of the AP, including those 2 solutions per time 
step that are needed for time marching, involves only the new right-hand side. Hence, it requires only backward substitu-
tion and incurs only a quadratic computational cost with respect to the grid dimension. Moreover, in the case of a constant 
propagation speed, which is not the most general one but nonetheless important, the AP on the Cartesian grid that is not 
tied to the geometry of � can be solved by FFT. As the complexity of the latter is essentially linear (neglecting the log
factor), the overall cost of time marching is equivalent to that of an explicit scheme. At the same time, the compact stencil 
of the scheme (2)–(3) avoids having to set the additional non-physical initial/boundary conditions that are always required 
for explicit/non-compact high-order accurate finite difference schemes. In 3D, the LU decomposition is likely to become 
prohibitively expensive. However, multigrid iterations that are also characterized by linear complexity have shown superior 
efficiency for the modified Helmholtz equation, as did conjugate gradient iterations, see our recent work [16].

Additionally, we observed that the final difference potential computation in step (vi) of the foregoing algorithm can be 
accomplished without solving a new AP, but at the expense of additional memory, bringing the total computational effort 
of each time step to only 2 FD solves rather than 3. After solving for the coefficients of un+1

γ in step (v), the difference 
potential with density un+1

γ can be written in either of the following ways by linear superposition:

un+1|N+ = PN+ un+1
γ +

(
G(h) f̃ n+1

B

)∣∣∣
N+

=
N∑

j=−N

[
c(0)

j PN+ ExH

(
eijθ ,0

)
+ c(1)

j PN+ ExH

(
0, eijθ

)]

+ PN+ Exn+1
I +

(
G(h) f̃ n+1

B

)∣∣∣
N+ .

(31)

A difference potential for each extended basis function is computed in the pre-processing step (b) and also for Exn+1
I at 

step (i), but only their projections on γ are stored. If instead we store the full difference potential for each basis function 
and for Exn+1

I , each of which is a vector of size |N| rather than |γ |, then (31) can be computed by simply summing the 
difference potentials with the coefficients c . Therefore, for the cost of storing 4N + 3 vectors of size |N|, we can avoid the 
computational cost of solving a FD problem on the auxiliary domain N. To our knowledge, this observation has not been 
made in any previous publications and represents a substantial gain in computational efficiency. The numerical tests of 
Section 4 use the algorithm as presented above and so do not reflect these savings in computation time, but we have tested 
and verified the accuracy of this alternative approach.

An alternative to the method proposed in the current paper, for the type of problems we are targeting, is to solve 
the problem by high-order finite elements in space combined with a high-order explicit time-marching scheme such as 
the Runge–Kutta method. High-order finite elements will require grid generation, which is a separate non-trivial task for 
domains of general shape. Moreover, a fourth order accurate Runge–Kutta method takes four evaluations of the spatial 
operator per time step; each will entail linear complexity with respect to the dimension of the spatial discretization. Our 
full-fledged fourth order accurate method (with the boundary conditions taken into account), while implicit in time, needs 
only two linear or log-linear solves per time step. Given that high-order finite elements typically require many additional 
degrees of freedom per grid node, and our scheme maintains a single degree of freedom per node, one may expect a better 
overall performance from the currently proposed method.

Yet another approach is to map the general domain into a square and then use a high-order scheme coupled with 
a high-order one-sided approximation near the boundary. This can be constructed in a stable manner using summation 
by parts operators and imposing the boundary conditions weakly via simultaneous approximation terms (SATs), see e.g., 
[60]. Both these approaches suffer the disadvantage of the need to construct a grid that matches the general domain or 
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equivalently a mapping of the domain to a rectangle. In contrast, the methodology described in the current paper uses only 
Cartesian or polar grids.

4. Numerical tests

4.1. Computational parameters

All of the tests were carried out on a disk of radius 1 centered at the origin, � = {
(x, y) : x2 + y2 ≤ 1

}
, embedded in a 

square auxiliary domain of side length s = 2.2, �0 = {(x, y) : −1.1 ≤ x, y ≤ 1.1}. We consider a test solution on the disk �
of the form

u = cos(Ax) cos(B y) cos(ωt), (32)

and the source term F is found by substituting the test solution (32) into the wave equation (1a) as follows:

F = utt − c2�u =
[

c2(A2 + B2) − ω2
]

u. (33)

In each numerical example, Dirichlet or Neumann conditions on the circle x2 + y2 = 1 are specified by the test solution (32).
The initial time steps u1 and u−1 are computed from the given initial conditions (1b) by (5), and for the test solution 

(32) this reduces to

u1 = u−1 ≈ u0 − ω2

2
h2

t + ω4

24
h4

t .

All of the following results use the implicit time discretization (3) with θ = 1
12 , so that the time discretization is 4th 

order and the scheme is conditionally stable. The finite difference scheme (9) is used for solving the auxiliary problem (8)

in the MDP algorithm, so that the stability condition is given by λ2 = c2h2
t

h2
x

≤ 3
8 . Thus for a grid of step size hx and maximum 

wave speed cmax on �0, we take the largest time step such that ht ≤ 3
8cmax

hx . We take a final computation time of tF = 1
for all tests. The error in Section 4.2 is quantified using the maximum norm.

For each test case, the wave speed c(x, y) is given analytically as a C∞ function on � which is also defined on all of �0. 
We note that this may cause cmax on �0 to be larger than the maximum value of c on the physical domain �, and thus a 
smaller CFL number may be needed. In practice, one may eliminate this inefficiency by using a continuously differentiable 
polynomial extension of c from � to �0 which does not continue to grow on �0 outside of a small neighborhood of �.

The Fourier basis functions were used for the series expansion of the boundary data with N = 20 on all grids. With 
41 basis functions each for the Dirichlet and Neumann data on �, there are altogether 82 basis functions involved, so that 
the pre-processing step (b) requires 82 solutions of the AP by FD. This is sufficient to exceed the overall accuracy of the 
algorithm even on the finest grid, and therefore we conclude that for coarser grids the same accuracy can be achieved with 
fewer basis functions.

A direct LU solver is used for the solution of the AP by FD using MATLAB’s built-in lu command, with the initial 
factorization being done once in the pre-processing stage of the algorithm so that subsequent backsolves of the AP for 
time-marching are calculated efficiently (see Section 3.7). All computations were performed on a Mac Pro with 64 GB of 
RAM and a 12-core Intel Xeon Processor E5-v2 at 2.7 GHz.

4.2. Numerical results

The pre-processing steps (a)–(b) of the MDP algorithm (see Section 3.7) are performed only once for each new test case 
even though two different boundary conditions are solved for. Even though all test cases use the same geometry, their wave 
speeds are different and thus pre-processing is necessary. Since we use a direct LU solver, the pre-processing includes the 
LU factorization of the FD matrix. Table 1 displays the pre-processing time on each grid corresponding to the first test case 
below; however, it is representative of the cost for subsequent test cases as well since the amount of work done is affected 
only by the grid size and number of basis functions, which are the same across all test cases. The times listed in subsequent 
tables correspond only to treating the initial conditions in (c) and the time-marching steps (d).

In the numerical examples of Tables 2–4, the values A = 2 and B = 5 were used in all tests. In Tables 2–4, the errors and 
convergence rates for Dirichlet and Neumann BCs are provided along with the CPU time that is unique to each boundary 
condition and is added on top of the pre-processing times of Table 1 (recall, the pre-processing is done only once for each 
test case). Because there is virtually no change in the MDP algorithm between the Dirichlet and Neumann BCs, the same 
amount of computational work is done for each. Therefore only the time required for the Neumann problems are displayed 
in each of Tables 2–4 as a representative case. These running times are dominated by 3 solutions of the AP by FD per time 
marching step; however, as discussed in the final comment of Section 3.7, this may be reduced to only 2 solutions of the 
AP by FD at the expense of storing 2(2N0 + 1) + 1 vectors on the full computational grid N.
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Table 1
The time required for pre-processing steps (a)–(b) of the MDP algorithm (see Section 3.7), which includes the 
LU factorization of the FD matrix and constructing the difference potential (i.e., solving an AP) for each of the 
82 basis functions. The pre-processing is performed only once for each of the ensuing computational examples 
even though two problems with different BCs are solved. Additional problems with different BCs or different 
inhomogeneous source terms can make use of the same pre-processing.

Grid Setup time (s)

32 0.55
64 1.07
128 2.47
256 6.30
512 26.6
1024 117

Table 2
Homogeneous test solution u = cos 2x cos 5y cos

√
29t with constant wave speed c = 1 and the CFL restriction 

ht = 0.6hx .

Grid Dirichlet BC Neumann BC # Time steps Time (s)

Error Conv. rate Error Conv. rate

32 1.59 × 10−3 – 1.23 × 10−3 – 24 0.088
64 8.61 × 10−5 4.21 3.24 × 10−4 1.92 48 0.37
128 5.74 × 10−6 3.91 2.74 × 10−5 3.56 96 2.38
256 3.37 × 10−7 4.09 2.79 × 10−6 3.30 191 20.8
512 2.17 × 10−8 3.96 5.53 × 10−7 2.33 382 210
1024 1.37 × 10−9 3.99 6.69 × 10−8 3.05 764 2220

Table 3
Inhomogeneous test solution u = cos 2x cos 5y cos 6.46t with wave speed c = x2+y2

4 + 1 and CFL condition 
ht = 0.38hx .

Grid Dirichlet BC Neumann BC # Time steps Time (s)

Error Conv. rate Error Conv. rate

32 1.17 × 10−3 – 8.47 × 10−4 – 39 0.14
64 6.83 × 10−5 4.10 1.86 × 10−4 2.19 77 0.58
128 4.18 × 10−6 4.03 1.60 × 10−5 3.54 153 3.74
256 2.60 × 10−7 4.01 1.62 × 10−6 3.30 305 33.2
512 1.65 × 10−8 3.98 3.09 × 10−7 2.40 612 330
1024 1.07 × 10−9 3.95 3.73 × 10−8 3.04 1224 3508

One may see that for coarse grids the pre-processing times of Table 1 are smaller than the time-marching steps of the 
algorithm. This is due to the arbitrary choice of the final time tF = 1 and the fact that the number of time steps needed is 
inversely proportional to the grid step size hx .

For the first example, we choose a constant wave speed c = 1 with the parameter ω = c
√

A2 + B2 = √
29 ≈ 5.39, so 

that the wave equation (1a) is homogeneous, F = 0. The stability condition then becomes h2
t ≤ 3

8 h2
x , and we note that √

3
8 ≈ 0.612. The results for Dirichlet and Neumann boundary conditions with a constant wave speed with a final time of 

tF = 1 are recorded in Table 2 along with the CPU time that is unique to each problem.

Next, we consider the variable wave speed c2(x, y) = x2+y2

4 + 1. We take ω = 1.2
√

29 ≈ 6.46 in the test solution (32), 
so that the inhomogeneous term (33) of the wave equation becomes F = −(1.2 + c2(x, y))

√
29u. We have c2

max ≈ 2.57
on �0, so that the stability condition becomes h2

t ≤ 3
8c2

max
h2

x ≈ 0.381h2
x . Therefore we take the time step ht = 0.38hx . Table 3

displays the results for the Dirichlet and Neumann problems with a final time of tF = 1.
For yet one more example, we take the variable wave speed c2(x, y) = ex . We again let ω = 1.2

√
29 ≈ 6.46 for the test 

solution (32), and the inhomogeneous term (33) is F = −(1.2 + c2(x, y))
√

29u. The maximum value of c on the domain 
is c2

max = e1.1 ≈ 3.004 and the CFL condition becomes h2
t ≤ 3

8c2
max

h2
x ≈ 0.0415h2

x or ht ≤ 0.2038hx . We thus take ht = 0.2hx . 
Results for the Dirichlet and Neumann problems are summarized in Table 4.

Our final numerical example is designed to demonstrate the performance of the proposed method in the case of an 
oscillatory wave speed: c(x, y) = 1 + sin2 5πx cos2 2π y. The parameters of the test solution (32) are A = 5, B = 3, and 
ω = 4, and the right-hand side of the wave equation F = F (x, y, t) is taken in accordance with (33). All other parameters, 
such as the geometry, the dimension of the Fourier basis, etc., are the same as in the previous examples. The results for the 
oscillatory wave speed are shown in Table 5.

The difference in running times for Tables 2–5 is directly proportional to the number of time steps performed, which is 
determined by the accompanying CFL restrictions of each problem according to the maximum wave speed on �0.
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Table 4
Inhomogeneous test solution u = cos 2x cos 5y cos 6.46t with wave speed c = ex and CFL condition ht = 0.2hx .

Grid Dirichlet BC Neumann BC # Time steps Time (s)

Error Conv. rate Error Conv. rate

32 2.65 × 10−3 – 1.44 × 10−3 – 67 0.24
64 1.35 × 10−4 4.30 1.86 × 10−4 2.95 139 1.08
128 8.47 × 10−6 3.98 1.44 × 10−5 3.69 281 7.00
256 4.93 × 10−7 4.10 1.51 × 10−6 3.25 567 62.5
512 2.75 × 10−8 4.16 3.97 × 10−7 1.93 1035 620
1024 1.81 × 10−9 3.93 4.03 × 10−8 3.23 2281 6582

Table 5
Inhomogeneous test solution u = cos 5x cos 3y cos 4t with wave speed c = 1 +sin2 5πx cos2 2π y and CFL condition 
ht = 0.3hx .

Grid Dirichlet BC Neumann BC # Time steps Time (s)

Error Conv. rate Error Conv. rate

32 2.03 × 10−3 – 1.70 × 10−3 – 49 0.28
64 1.64 × 10−4 3.63 3.95 × 10−4 2.11 97 0.75
128 1.18 × 10−5 3.80 4.75 × 10−5 3.06 194 4.83
256 6.98 × 10−7 4.08 6.45 × 10−6 2.88 388 42.9
512 4.52 × 10−8 3.95 8.31 × 10−7 2.96 776 448
1024 3.11 × 10−9 3.86 1.02 × 10−7 3.03 1552 4358

The theoretical 4th order convergence rate in space and time is achieved for the Dirichlet problem in Tables 2–5 while 
the convergence rate for the Neumann problem is diminished by about half an order. We note that in other applications, 
e.g., spectral methods, it is well known that there is a loss of one order of accuracy for Neumann boundary conditions [61].

In general, one may suspect that the deterioration of the Neumann convergence rate in our simulations is due to the 
insufficiently high order of the extension (16), only O(ρ4), while O(ρ5) may be needed. On one hand, given that this 
extension involves backward differencing in time, improving the O(ρ4) order may not be very straightforward, see equation 
(19) and the discussion that follows. One the other hand, for our current approach the difficulty may, in fact, be elsewhere. 
By substituting the exact solution, we have been able to verify unambiguously that the term in the discretization that needs 
to be computed more accurately in order to improve the overall Neumann convergence is 1

θ
B(h)�un on M+ . At the moment, 

it is approximated by 1
θ

L(h)
0 un on the right-hand side of formula (11). This approximation will be improved in the future.

5. Discussion

A high-order difference potentials algorithm for the wave equation is developed on domains that do not conform to a 
Cartesian mesh. It uses a conditionally stable 4th order accurate implicit time discretization of the wave equation coupled 
with an auxiliary problem for the elliptic equation at each time step. Wave speeds that vary in space and a range of 
boundary conditions are easily handled. The time discretization requires only 3 time levels, while the AP is solved by a 
fourth order compact finite difference scheme at each time step. Thus, the overall scheme is fourth order accurate and 
compact both in space and time. The equation-based extension relies on the continuous wave equation (1a) and employs 
backwards differences in time.

For time-harmonic problems that we analyzed previously [1], an equation-based extension of at least O
(
ρ5

)
accuracy 

is required to maintain overall 4th order convergence of the algorithm. In this paper, the design accuracy of the algorithm 
is achieved for Dirichlet boundary conditions, which is fourth order in space and time, even though the equation-based 
extension is only O

(
ρ4

)
. Results for the Neumann boundary conditions fall slightly short of the design rate but are still 

high-order.
The algorithm is efficient, requiring 3 solutions of the AP on a square by finite differences per time step to obtain 

a high-order accurate solution on the nonconforming domain of interest, which can be reduced to only 2 FD solves per 
time step by a small modification requiring additional storage. A direct LU solver is used and performs well for problems 
at this scale in 2D, especially since the factorization of the matrix is done only once in preprocessing. For 3D, iterative 
solvers such as conjugate gradients (CG) or multigrid (MG) can be used, see [16], since direct solvers become prohibitively 
expensive. In our simulations [16], we took the solution from the previous time level as the initial guess, and both CG and 
MG solvers converged very rapidly, driving the residual down almost to machine precision in only a few iterations. The 
corresponding accuracy of the solution to the linear system will exceed that of the finite difference approximation on the 
grid. We therefore expect that if an iterative solver were used for the AP (8), its accuracy can easily be made sufficiently 
high so that the discrete projection operators will not be noticeably affected.

In the current paper, we have considered only smoothly varying wave speeds c = c(x, y). However, wave speeds that lack 
differentiability and may even become discontinuous can also be included. The corresponding modification of the algorithm 
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will be very similar to that described in our recent work [55] which treats the material discontinuities in the time-harmonic 
framework.

Allowing for the variation of the wave speed in time will be more challenging. While the formal constructs of the 
proposed algorithm will stay the same, the elliptic equation (7a) will be changing from one time level to another because 
the quantity k2 depends on c. Therefore, one will no longer be able to pre-compute the boundary operators once and for 
all, as suggested in step (b) of the algorithm (see page 36). Instead, one will have to re-compute the projections on every 
time step, which will obviously cause a substantial reduction in efficiency.
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