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ARTIFICIAL BOUNDARY CONDITIONS FOR THE NUMERICAL
SOLUTION OF EXTERNAL VISCOUS FLOW PROBLEMS*

V. S. RYABEN’KII AND S. V. TSYNKOV

Abstract. In this paper we describe an algorithm for the nonlocal artificial boundary conditions
setting at the external boundary of a computational domain while numerically solving unbounded
viscous compressible flow problems past the finite bodies. Our technique is based on the usage of
generalized Calderon projection operators and the application of the difference potentials method.
Some computational results are presented.
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1. Introduction. The numerical solution of external boundary-value problems
usually requires the application of special procedures for adequate consideration of
the solution structure in the whole unbounded domain. The need for developing such
special procedures is due to the computer limitations. At present it is possible to
point out two different approaches. The first one deals with the singular coordinate
transformations realizing one-to-one mappings between the unbounded original do-
main and the new finite domain. The second one is based on the so-called artificial
boundaries introduction and artificial boundary conditions (ABCs) setting. Following
such a technique, one ought only to compute a solution in some finite subdomain of
the original domain. Special conditions at the boundary of a subdomain (this bound-
ary is called an artificial) are to be formulated in such a way as to provide maximal
proximity (in a certain sense) of the solution obtained in the finite subregion to the
corresponding fragment of the original problem solution. Generally speaking, ABCs
can be used not only in the case of an unbounded original domain but also when it is
simply sufficient (for any reason) to know the solution of the problem not everywhere
but only in some subdomain of the original domain. A detailed review and compar-
ison of different well-known techniques of ABCs’ construction are given in [1], [2],
including some applications to the problems of elasticity, acoustics, fluid dynamics,
waves propagation, etc. Some review information is also contained in [3].

In the current paper the ABCs for the numerical solution of the external viscous
flow problems are developed; that is, we consider an unbounded viscous compressible
gas flow over the finite body in the stationary two-dimensional (2D) (plane) formu-
lation. The choice of geometry, problem dimensionality, and free stream parameters
(uniform subsonic flow) is not caused by any fundamental restrictions, but only be-
cause the theoretical analysis is apparently the least cumbrous in such a case and the
computational resources required are not very large.

The following assumption is the principle for our technique of ABCs’ construction:
flow perturbations caused by the immersed body are small far enough from it and,
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consequently, the governing equations can be considered as linear in the far field.
Let us clarify here how we understand the concept of linearization. Assume that

A is a finite domain in R2 (it is an immersed body hereafter) and we solve the problem

(1.1) Fxu=0

in R2\A. Here Fx is, generally speaking, a nonlinear differential operator and the
subscript "x" underlines the possibility to compute its action locally in each point
x E R2\A; u U and U is some space of (vector-)functions where the solution is
to be found. Boundary conditions at OA and while Ix] +oc are included in the
definitions of Fx and Uo We consider the full Navier-Stokes equations (second-order
nonlinear system of four equations) as (1.1) hereafter (see 2 and further) with the
nonslip conditions at OA and u ---+ u0 condition while Ixl -- +oc; here u0 are the
free stream parameters (for more details about the latter condition see also 2 and
further).

Choose now two subdomains Din and Dex in R\A such that Din (2 Dex R\A,
Di is bounded and completely surrounds A, i.e., {Vx OA x (Din; x
ODin x" oqA; dist(A, oqDin\oqA) > 0; Din U A is a simply connected domain},
and Dx de=f R2\Din [_j A is unbounded. We will name the sufficiently smooth non-self-

crossing curve F de__f 0Dex ODin\OA an artificial boundary. Replace the nonlinear
equation (1.1) in Dx by the linear one using the Frechet derivative F’ [u0] of operator
F in the point u0 U (the action of operator F [u0] is also computed by means of
local formulae). Then we pass to the following system"

(1.2) Fu0+F’[u0]x(fi-u0)=0, xe Dex,

Fx(1- 0, x Din

to be solved with respect to the unknown function fl U. Note that if Dx coincides
with R\A (and, consequently, Dn 0) then (1.2) is the first iteration of the operator
Newton method

Us+ U (F’ [us]) -1 fus, s 1, 2,..., x e R2\A
described, e.g., in [4].

We will try to get a sufficiently accurate approximate solution fi from (1.2) using
the freedom existing in the choice of artificial boundary F location, i.e., in the choice
of form and size of Din (and Dex). The error involved in fi is evidently caused by
the replacement of nonlinear equation (1.1) in Dex by the linear one. This error is
small when the exact solution u itself of equation (1.1) slightly deviates from the
background u0; i.e., when it takes place,

(1 3) Ifi(x)- u01 << 1

Assumption (1.3) (see {}2 for more details) is quite naturally far enough from the
immersed body (i.e., in the domain Dx if dist(A, F) is sufficiently large). How-
ever, we will be interested not only in the smallness itself of the error introduced
into the solution by linearization, but also in the possibility of control of this er-
ror value, i.e., in the possibility of making the solution fl more precise. Sub-
stituting this solution into (1.1) we get the residual Ffi 0, x Din, and
Ffl AF [u0] (fi u0),x E D,x. Here AF [u0]x is a nonlinear remainder term, i.e.,
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gu: Fxu Fxu0 + F’ [u0]x (u u0) + AF [u0]x (u u0). It would be possible to use
some iteration procedure starting from fi to obtain the exact solution u of equation
(1.1). In such case the residual of the previous iteration determines the contribution
of the next one to the solution.

The following condition

(1.4)

should evidently be valid for the function fi itself. Therefore, if it occurs that the value
of the residual AF [u0]x (fi(z) u0) vanishes while Ixl -- +oc faster than fi(x) u0
itself, i.e., if

(1.5) u01
then it means that the relative contribution of the next iteration to the solution
becomes smaller while receding from the body A and, consequently, the function fi
better approximates the exact solution. Therefore, in the case of the validity of (1.5) it
is possible in principle to make the approximate solution fi from (1.2) asymptotically
more precise by means of the size of Din enlargement. In other words, locating the
artificial boundary F at sutficient distance from A, we can get the solution fi from
(1.2) that approximates the solution u of the original problem (1.1) with desirable
accuracy.

Thus, we treat linearization as a replacement of (1.1) by (1.2) yielding a suffi-
ciently good (i.e., sufficiently close to the solution u of equation (1.1)) approximation
fi from (1.2) on the basis of (1.3) and, moreover, enabling the approximate solution
fi to become asymptotically more precise by means of Din size enlargement.

In this paper we do not consider general questions about linearization permis-
sibility; i.e., for what flow regimes (defined by the Mach and Reynolds numbers in
the first turn) does such a subregion of the original domain exist where (1.3) and
(1.5) are valid, and how far from the body A can one place the artificial boundary F
to obtain satisfactory accuracy of the approximation? These questions require some
additional investigation, both theoretically and by means of numerical experiments.
However, one can assume that at least for the low Ma and Re numbers, linearization
is possible; moreover, the configuration of domains Din and Dex corresponds to the
one described above, i.e., the domain Din, in which we use original nonlinear equation
(1.1), is finite. Our numerical experiments (6) justify this assumption.

The fundamental difference between (1.2) and (1.1) is just that we need to solve
the nonlinear equation in (1.2) only in some finite domain. It is easy to see that the
nonlinear problem in Dn and the linear one in Dex (see (1.2)) are not independent
and ought to be solved concurrently. But we will replace the whole linear part by the
equivalent ABCs at the boundary F. Then the solution of the nonlinear problem in

Din with these ABCs will coincide with the solution of the whole coupled problem
(1.2).

Our technique of ABCs’ construction is not connected with any specific method of
numerical integration of the Navier--.Stokes equations inside the finite computational
domain Din. A class of such methods is well known and described in the literature;
see, e.g., [5], [6], and the bibliographies there. Therefore we do not go into the proce-
dure of the solution of the nonlinear problem in .Din, but focus on the construction of
some special conditions at the artificial boundary. They should be equivalent to the



1358 V.S. RYABEN’KII AND S. V. TSYNKO

linear differential equation (system) from (1.2) combined with the corresponding con-
dition (1.4) at infinity. These relations will be, generally speaking, spatially nonlocal.
They are the operator equations containing generalized Calderon boundary projection
operators, the discretization of which is implemented by means of the difference po-
tentials method (DPM) [7], [8]. These boundary operator equations are used as ABCs
and are constructed hereafter in the discrete formulation compatible with some finite-
difference method used inside Din. By virtue of the equivalence mentioned above (the
linear problen in Dex e, boundary relations at F) the ABCs obtained in this way
guarantee the possibility of uniquely complementing the solution found in Din to the
solution of (1.2) in R2\A provided that the latter exists and is unique.

The material hereafter is prepared as follows. The general scheme of the ABCs’
setting based on the concept of problem decomposition into the "linear" and "non-
linear" parts and on the application of the generalized Calderon-Seeley projection
operators [9], [10] is stated in 2. The constructions of 2 are based on the fundamen-
tal concept of the auxiliary problem (aP) (see [7], [8]) formulated there in the infinite
strip parallel to the y-axis. In 3 it is shown how to pass to the AP in some finite do-
main for the discrete case. Section 4 is devoted to the description of a finite-difference
algorithm for the solution of the AP. Section 5 is devoted to the construction of the
difference ABCs; and, finally, some numerical results are described in 6. Section 7 is
the Appendix.

Notice, in addition, that an analogous technique for the inviscid Euler flow is
developed and implemented numerically in [3], [11].

2. Continual ABCs. Consider the plane stationary flow of viscous compressible
perfect gas governed by the Navier--Stokes equations"

+ o,

Ou Ou Op 1 [4 0 Ou
+ + 5 "ox

2 0 Ov 0 Ov 0 Ou’

Ov Ov Op_ 1 [ 0 Ov 0 Ou 2 0 0u 4 0 0v]

1 p
equation of state;

/-- p

here (x, y) are Cartesian coordinates, (u, v) Cartesian projections of velocity vec-
tor, p pressure, p- density, e internal energy, p viscosity coefficient, /

specific ratio, Re (pouoL)/#o Reynolds number, L characteristic size,
.Pr (#Cp)/e const Prandtl number, heat conduction coefficient. Sub-
script "0" denotes free stream parameters as before. System (2.1) is written just in
the dimensionless form, the value u0 is chosen as the velocity scale, and we’ll also
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assume hereafter that the free stream is directed from the left to the right parallel to
the x-axis, so vo 0, I01 0, p0 is the density scale, P0 (u0) 2 is the pressure scale,
#0 is the viscosity scale, (u0)2 is the internal energy scale.

Assume now tha the deviations of the flow parameters (noted by a tilde "-"

over the corresponding letter hereafter) are small in the domain Dex. It means for
the dimensionless values

where Ma is the free stream Much number Ma uo(3"(po/Po)) --1/ Ma < 1
Conditions (2.2) are the specific definition of (1.3).

Substituting (2.2) into (2.1) and retaining only the linear terms with respect to
small deviations, we obtain (the tilde "" is omitted everywhere because henceforth
we’ll deal only with the equations "in perturbations")

Op Ou Ov
(2.3) Ox + x + -y O,

On Op 1

Ox Ox Re
4 O2u 10v 02u"

Ov Op 1 [cg2v 1 09u cgv 1
Ox Oy Re - 30xOy t-Ox2j

Op 1 Op 3" Ap Ap
Ox (Ma) Ox Re Pr 3"(Ma)

The equation of state was used for e elimination while deriving the last equation (2.3);
A (O/Ox) + (Oe/Oy) is the Laplace operator in (2.3). In addition, note that the
term corresponding to Fxu0 from the first equation in (1.2) turns into zero here.

The vanishing of all the unknown variables (see (1.4)) is the boundary condition
at infinity for (2.3):

(2.4) p--/0, u0, v--0, p----*0 while x2+ye ,,
which simply corresponds to the free stream limit of the solution.

Let us now consider (without loss of generality) some strip DO { (, !/)10 < z <
X} completely containing Din. Designate D DxD. Since (2.3) is the system with
constant coefficients it is possible to seek its solution by means of variables’ separation.
We will formulate and solve an AP in DO for the nonhomogeneous version of system
(2.3). The boundary conditions for AP are to be set at the boundary of D, i.e., at the
straight lines x 0 and x X as well as for y ---+ +oc. They should be equivalent
to (2.4) or, in other words, one should be able to smoothly and uniquely complement
on .R2/D the solution of AP obtained in Do so that it satisfies (23)-(2.4) in Dx.
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We will also demand that an AP has a unique solution for any compactly supported
right-hand side.

Introduce the spaces U and F of the solutions and the right-hand sides of AP,
respectively; as it will be seen later, it is always possible to consider only functions
with compact support (belonging to D) as the right-hand sides of AP while perform-
ing specific computations. The elements of these spaces u (u, vp, po)T E U
and fo (flo, fo, fao, fo)T E FO are the vector functions defined on DO and D, re-
spectively; the functions fo have compact support: suppf C D. Moreover, we will
include the boundary conditions of AP in the definition of U. First, let the function
u(x, y) U be bounded on D, absolutely integrable and representable in the form
of the Fourier integral along y for all x

1
riO(x, c)eiYdc.(.) u(x, )=

In particular, this implies the vanishing of the solution along each line x const,
u(x, y) -- 0 as y . We will impose boundary conditions at x 0 and at
x X just on the Fourier transform ri(x, a) for all a. For this purpose, one first
ought to separate variables. Substituting (2.5) into the equation Lu fo, where L
U F is the linear operator from the left-hand side of (2.3), and doing the Fourier
transform for fo (fO(x y) has compact support) f(x, y) oL (x, a)eYda,
we get for each a the second-order system of ordinary differential equations (ODEs)
with respect to ri(x, ():

(2.6) d dg
+ +idx

]dx dx Re g 3 dx

dO 1 [ 4 iad d2]+ iadx 5 3 dx

1
dx (Ma)2 dx ReP; [ 7(Ma)2
The coefficients of (2.6) are constant and complex-valued; moreover, Va

supp (x, a) C (0, X). Now introduce the new variables

(.) (x, )=
da(x’

dx

d(x,V(z, a)
dx

d$(x,(x, )=
dx

designate

,0 (, ,

o: (f f2, RePrfo_ 1 (fo)’ 3Re )"Y 3,(Ma) - 4(Ma)2/2, 0, 0, 0, /1
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and obtain instead of (2.6) the following system of seven first-order differential equa-
tions

d (x, a)
dx

Q(a)0(x, ) $0(x, ),

where the entries of the matrix Q(a) are given by

Q()

Re Pr

3 Re4
0

3Re
4-(Ma)

a 0 0 04
4 2 ia Re 00

3a is Re Pr 02 a
4-),(Ma) ,(Ma)’2 /(Ma)

0 0 0 0
0 0 0 0
0 0 0 0
0 -ia 0 0

To satisfy the condition u 0, x ---, +cx (see (2.4)), we need to find a
solution to (2.8) on [0, X] that would be a fragment of the solution to (2.8) defined
on the whole set (-oc, +cx) and vanishing while x +c. Let us remember that
Va: supp(x, a) C (0, X); i.e., equations (2.8) are homogeneous outside (0, X).
Therefore the boundary conditions on the left end of the interval (x 0) are to
prohibit those solutions of homogeneous system (2.8) which correspond to /ks(a) < 0
(here s(a), s 1,o.., 7, are the eigenvalues of the matrix Q(a)) as these solutions
evidently do not vanish while x -- -x. Analogously, on the right end (x X)
these conditions are to prohibit the solutions corresponding to As(a) > 0 as they
grow infinitely while x ----, +cx. The case of A(a) 0 for x X is considered
below in 4. One can write the conditions required in the form

(2.9) s-()e(0, )= 0, e (-, +),

s+()0(x, ) 0, e (-, +),

where S-(a) and S+(a) are the special rank-deficient matrices 7 7 depending on
Q(a), with their ranks equal to the numbers of eigenvalues As(a) with nonpositive and
positive real part, respectively. These matrices are given by the following expressions:

(2.10) S-(a) H (Q(a) As(a)I),
x(a)>o

S+ (a) H (Q(a)
()<_o
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here I is an identity Inatrix. We will describe the matrices S-(c) and S+ (c) in detail
later on, while dealing with the finite-difference case in 5 (see also the Appendix).

Thus, assuming that the unique solution u E U of the AP,

(2.11) LOto=fo, uoEUo,
exists for any fo Fo, we construct this solution by means of the Fourier technique.
Consequently, the Green operator of the AP (2.11), G F .---, U, is defined. By
virtue of the choice of boundary conditions one can uniquely complenent the solution
u of the AP (2.11) found in DO so that it satisfies (2.3) on R, is bounded on
and vanishes along the lines x const and y const, u(x, y) ---, 0 as y --+

for any -oo < x < +oc and as x -- +oc for any -oc < y < +oc (see Lemma 4.1).
Further we will use these properties instead of (2.4) (actually, they are weaker than
(2.4)). Here we have to make the following important reInark.

Remark. Since the Navier---Stokes equations are of mixed order, the construction
of boundary conditions to be imposed actually depends on the stream direction at
the boundary. In our AP we have inflow at x 0 and outflow at x X. If one ana-
lyzes boundary conditions of a certain prescribed type, e.g., a general inhomogeneous
first-order differential relation as in [12], or a general homogeneous second-order dif-
ferential relation as in [13], it turns out that the Navier-Stokes equations require four
such conditions at inflow and three at outflow. Our approach is somewhat different
since the boundary conditions (2.9) connect all the functions u, v, p0, p0 in one
matrix equation and, what is more important, they are spatially nonlocal in physical
variables. In doing so, the difference between inflow and outflow boundaries is de-
termined by the structure of A(c) (eigenvalues of Q(c)), which may be easily seen
from (2.10). Indeed, even the numbers of eigenvalues with positive and nonpositive
real parts can be not equal to each other (these numbers may also depend on
which iInplies that the matrices S-(c) and S+ (c) (2.10) will have different ranks. A
natural question arising here refers to any correlations between the local and nonlo-
cal conditions. Though we did not carry out a special investigation, we believe that
certain classes of reasonable rational approximations to (2.9) yielding local conditions
in physical space may really result in the set of three separate conditions at outflow
and four conditions at inflow.

AP is still formulated in the unbounded domain, though unbounded only in one
direction. In the next section it will be shown how to pass to the finite domain while
solving AP numerically by means of some difference technique. And now assume that
we are able to find the solution of AP, i.e., to compute the operator Go and describe
briefly the procedure of constructing the boundary equations with projections [7], [8]
and their application to the setting of ABCs. We are not going to give here an accurate
basis of the method proposed; we only outline the scheme for the continuous case
which will be turned into the specific algorithm below for the difference formulation.

Let us introduce the operators: (90 complement of an arbitrary function de-
termined in D by zero in D\D and (9 restriction of a domain of any function
determined in DO froIn DO to D. 0 and are the analogous operators for closed
domains and

1, xC,o(c) o, x B\c
is a characteristic function of the set C where B and C, C c B, are arbitrary sets.

Define also the spaces F+ de__f {f0 F0 IODo(O)fO F0}, F+ de__f {f de.___f Of0 if0
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def U0+F0+}, U0+ a__f {u0 U0 [L0u0 F0+}, U+ a__f {u (u ]u } and the

operator G" F+ ----, U+, Vf E F+ G f deZ GOf. Let us also point out that the
operator L U+ -- F+ is defined by the left-hand side of the formula. (2.3) as well
as L. Further consider the space E of 8-component vector functions defined at F.
The components of vectors E

_
contain the values of u, v, p, p, and their normal

derivatives at F. E is the space of clear traces of functions u belonging to U+ [7], [8];
Tr U+ ----, F is the clear trace operator. Note that this clear trace is presumably
not the minimal one [8]. Generalized potential with the density belonging to E is
defined as follows:

(2.12) defP- u-GLu, P" =-U+

where u E U+ in (2.12) is such that Tru { and is arbitrary in the rest. It is shown
in [7], [81 that the potential P depends only on { but not on the choice of u U+,
Tr u- {, in formula. (2.12).

Furthermore, let us introduce the operator

(2.13) Pr de__f Tr P, Pr Z -- E,

which is a projection, as shown in [7], [8]. The following statement, playing a fun-
damental role in all our constructions, holds for Pp [7], [8]: {{ E E, { Pp} e=
{u g+, Lu 0, and { Tru}. It means that the equation Lu 0, i.e., (2.3)
being considered in D with conditions (2.5) and (2.9) at /?D, is equivalent to the
boundary equation

(2.14) { Pr{.

Equation (2.14) contains the operator Pr which is a generalization and modification
of boundary projections introduced for the first time by Calderon [9] and Seeley [10]
(see also [7], [8]). Due to the equivalence of (2.14) and (2.3), (2.5), (2.9) one can
use (2.14) as an ABe at F for solving (2.1) in Din. Indeed, (2.14) involves only the
variables determined at F. It is evident that these variables can be obtained
using only the data from inside Din; therefore (2.14) completes the problem in Din.
The action of operator Pr is spatially nonlocal. The specific procedure of numerical
implementation of the nonlocal ABCs is described in 5. Note, in addition, that if
(2.14) is valid then the solution of L u 0 in D with the clear trace is unique
and can be restored according to found from (2.14) with the help of the generalized
Green formula [71, [8],

(2.15) u- P{.

Moreover, assuming that suitable norms are introduced in the spaces under consid-
eration and that the original coupled problem (1.2) is well posed in these norms, it
is possible to show [7], [8] that the boundary equation with projection (2o14) is also
well posed.

3. Auxiliary problem with periodic boundary bonditions. By somewhat
increasing the demands made of functions u U we will now show how to pass
from AP (2.11) to the new AP with periodic boundary conditions in the y-direction,
i.e., to the problem to be solved in some finite domain.
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THEOREM 3.1. Let w(y) be defined on (--cx,+.), w(y), yw(y), y2w(y) E
L1 (-c, +c), w’(y), w"(y) e C(-c, +oc)N.nl(--cx, +.). Denote its Fourier trans-
form as @(a), so that

(3.1)
1

Cv(()eiyda"

Let us associate with w(y) a periodic function wy (y) with the period Y. We determine
this function by its Fourier series

(3.2)

2rk
ak k 0 +/-1 +2

Then, for any finite interval (-, ) and for any > 0 one may choose such a number
Y that the estimate

holds for any Y >_ Y.
Proof. Note that the Fourier transform @(a)= 1/x/- f_ w(y)e-iYdy exists

under the assumptions of Theorem 3.1. It has the second derivative "(a); moreover,
I(a)l _< cla1-2, a -- +/-c [14]. By virtue of this estimate series (3.2) is majorized by
the convergent number series: Ek Icl <- x//Y J’k I@(ak)l <-- const and therefore
wy(y) (see (3.2)) is a continuous periodic function. Introduce a constant size mesh
on the a-axis: ak kha, k 0, +/-1, +/-2,..., ha 2r/Y const, and note that
one can represent the series (3.2) as follows:

Formula (3.3) may be obtained while replacing integral (3.1) by an approximate
quadrature formula of rectangles.

Let us now estimate the value Iw(y)- wy(y)l. Take some .4 =- hK > 0 (arbi-
trary for the present):

1
fit K

-fit k---.K

1
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def 1 1
o1 o

Expression [. [1 is an error of the quadrature formula of rectangles on. the finite interval
(-, .4). It is easy to see that

1

-1" I1 _< const, h2.A max
a(-A,A)

d2

const, h.A max ("(c)+ 2iy’(a) y2.d(a)) eiay
a(-A,A)

_< const" h .A

(El -" c2[y] + c3y2) A.h2, el, c2, E3 > 0.

For the second term we get

C4>0.

Thus

(3.4)

Now choose sufficiently large Y (or sufficiently small ha 27rYe_-1 so that the
inequality

E4+ <

defwhere co maxye(_,)(cl + c2]y[ + c3y2), co > 0, would have a real positive so-
lution ,4 of the specific type considered above; namely, ,4 ha. K, K is natural.
In such a case, the coefficients of (3.5) should satisfy a somewhat stronger condition
than simply the condition guaranteeing the existence of any real positive solution. For
example, the solution 4 possessing the above properties surely exists if one demands
that the distance between the (real) roots of the corresponding quadratic equation
(see (3.5)) is not less than ha. This results in the following inequality with respect to
ha:

(3.6) e2 4c0c4 h c h6 >_ 0.
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.All the real positive solutions of (3.6) fill the semi-interval (0, h], where h.
positive root of the equation

is a

2 4c0c4 hza cg h6a 0,

which evidently always exists and is unique. It is clear that h < e/(2cx/Ud where
the expression on the right-hand side of the last inequality yields the maximal value
of mesh size ha which still guarantees the existence of real solution A to (3.5). Now
designate Y 27c/h and get that V Y > Y one may always find A of the required
type. Then, by virtue of (3.4) the estimate Iw(y)- wy(y)l < e. holds for any y E
(.-, ) which is the statement of the theorem. [

Note that it is presumably also possible to get analogous results for the weaker
assumptions about the smoothness of the function w(y) and about the rate of its
decrease while y -- +/-oc, as well as for the stronger types of convergence (rather
than simple uniform convergence).

However, the formulation of Theorem 3.1 as given above already provides the
principle reason to pass from the AP (2.11) to the problem with periodic boundary
conditions in the y-direction. Indeed, the boundary projection PF operates with the
functions determined only at F and its difference analogue (see 5) operates with the
functions determined "near" F. Therefore, we will need to know the solution of AP
only in a small neighborhood of the curve F. If one demands from the rectangle
(0, X) x (-, ) to contain the necessary neighborhood then the solution of (2.11)
and the solution of the periodic problem do not differ from one another within the
chosen accuracy e on the set that is of interest to us. In doing so, the period Y of
the function we use to approximate the original solution on (0, X) (-, ) increases
while the permissible error decreases.

Further we will consider the new periodic AP retaining all the old designations
for the new domain and function spaces defined in it and supplying them with only
the additional subscript "Y""

(3.7) Lu=f, u EU, f F,

D-(O,X) -/

(we do not use a new subscript for the operator L because its action is defined
precisely in the same manner for both periodic functions and nonperiodic ones).

The spaces U and .F consist of periodic fllnctions:

f(x, y) f(x, y Y).

Concerning the right-hand sides, we are interested here in the functions with com-

pact support belonging to some (small) neighborhood of the curve F; consequently,
supp f C D. Moreover, the conditions analogous to (2.9) are now included in the
definition of U for the discrete set of wavenumbers but no longer for the continuous
one:

(3.9)

S+(k)9(X, k)- 0, /c 0, 1, +2,.o.,
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since by virtue of (3.8) we are going to use the following representation (compare with
(3.2)):

uS (x,

Y

where ck (x)
v

instead of (2.5).
The next stage is just the numerical solution of the AP (3.7) (3.10), before which

one ought to define the operators Sr(k and S+y(k). A detailed description of the
numerical algorithm for the solution of (3.7)-(3.10) is contained in 4. Here we will
dwell on the general question of convergence.

Consider some finite-difference schemes for (3.7)-(3.10):

(3 11) o o uOh,v U,v fo FoLhUh,y f,Y, h,Y E. h,Y"

The subscript "h" corresponds to the grid functions and operators acting in the spaces
of grid functions The Cartesian finite-difference grid in D will be characterized by
two sizes hx and hy; therefore, one can treat h in (3.11) as a multi-index. The
right-hand sides f0 F0

h,V E h,v are determined, generally speaking, only on the set of
"inner grid nodes." The structure of the latter depends on the stencil of the difference
operator L (see 4 and 5). Let us now give the following definition.

DEFINITION 3.2. The solution of the difference problem (3.11) converges to the
solution of the continuous problem (2.11) if VII > 0 such that (0, X) x (-, ) D
Di and Ve > 0 one can find a (suciently small) grid size h , hv,) and a

(suciently large) period Y[ such that uh,y [u]h < e VY _> , Vh" h <_
h hv5xe hye

Here [U]h designates the trace of the exact solution to (2.11)on the grid and .
is the C-norm in the space of grid vector functions (columns of height 4) determined
on (0, X) x (-, ): ]]. ]]. mx,,,o max(,v)e(0, x)x(_,) ], where (x, y) are
the grid nodes; i.e., the points of kind (mhx, jhy), m, j are integers. Note that the
type of convergence considered in Definition 3.2 (uniform convergence) is the sme s
that in Theorem 3.1. The norms used here and in Theorem 3.1 should be consistent
with each other as will be seen from further considerations.

Definition 3.2 differs somewhat from the usual definition of convergence. First,
we consider convergence not in the whole D but only on each specific subset of grid
nodes from the rectangle (0 X) x (-, ) Second, the finite-dimensional spaces Uh,Y
where nn approximate solution is to be found are characterized not only by the grid
size h (hi, hv) but also by the additional parameter Y. Actually we consider the
convergence while (h hu, Y) (0, 0, +) and in so doing, the decrease in grid
size and the increase in period are not independent.

Let us show qualitatively the dependence between period and size. One cn
estimate from above the value [[u,y [u]h [ (see Definition 3.2) s follows:
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We require that the sum on the right-hand side of (3.12) be less than ; this condition
is evidently sufficient (but not necessary) for Definition 3.2 to be fulfilled. Assume
that the scheme (3.11) possesses the convergence property in the "usual" sense, i.e.
that the inequality

II 0

holds in the fixed domain D, while the grid is being refined. Here, the exponent q > 0
determines the convergence rate. As to the value cy it is the constant which does
not depend on the grid size but my depend, generMly speaking, on the domain D
shape. Namely, in some cases cy may grow while the ratio Y/X increases under the
fixed hx and hy. However one may assume for the AP (3.7)-(3.10) that the values
cy are totally bounded by some constant c5. The numerical results (see 6) confirm
this assumption experimentally.

Returning to inequality (3.12) we estimate from bove the first term on its right-
hand side with the help of (3.13) nd the second one on the bsis of Theorem 3.1
(We consider, generally speaking, the continuous C-norm in Theorem 3.1 but it is
evident that the required estimate will also remain valid for the traces of continuous
solution on the grid.) The right-hand side of (3.12) should not exceed e > 0. Then
by virtue of (3.13), it is sufficient that the inequMity

(3.14)

be valid. Now doing the same here as was done to justify the estimate (3.5) (see the
proof of Theorem 3.1), let us drop A from (3.14) considering all other variables as
parameters. In other words, derive a sufficient condition providing that the inequality
(3.14) has real positive solutions A of the type A h. K; K is natural"

(3.15)

The qualitative character of the relation between Y and h is seen from (3.15). Namely,
to achieve the desirable accuracy e one ought to decrease the grid size h and to enlarge
the period Y consistently.

Clearly, the formula (3.15) does not contain the definite means of choosing the
AP parameters because the constants involved are not known in advance. However,
this choice cn be carried out experimentMly. The results of some computations are
presented in 6.

Here let us point out in addition that the best accuracy guaranteed by the above
estimates is given by

(3.) o,t

where eopt(Y)is defined as follows. Let A0 arg minA (coAh +c4/A)
c/c0(1/ha)
where [.] represents the integer part. Then

c4 coKh +(.a.17) eop(Y)a2min coKh + Kh

=min coK K2’ coK +
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Evidently, opt(Y) 0 as Y ---. q-o; therefore, the case of cy c5 const
opt(h, Y) decreases while Y grows: opt(h, Y) chlhl q as Y +c. Our con-
struction of AP provides the realization of just this case in practical computations
(6). Moreover, if h 0 and Y is fixed then opt(h, Y) decreases being bounded from
below by the positive value 4r/Y. This behavior corresponds to the "usual"
convergence of the difference periodic solution to the continuous periodic one.

4. Numerical solution of the periodic auxiliary problem. We first specify
the finite-difference scheme (3.11). Remember that the Cartesian grid with constant
size in both directions

(4.1) N"= {(Xm, yj) -(mhz, jhy -Y/2)lhx hy > 0, m 0,...,

M, M X/hx, j O,...,2J + 1 2J + Y/h}

is introduced in D. We construct the second-order approximation to (3.7) on the
grid Af (the operator L from (3.7) is defined by the left-hand side of (2.3)):

0 0 0 0 0 0

(4.2) P,+I,j Pm-l,j + Um+l,j Um-l,j + Vm,j+l Urn,j-1 0

2hx 2hx 2h flm,,

o o 0 o FA o
?-tin+ ,j ttm- ,j Pm+1,j Pro- ,j 1

[_ ttm+ ,j

2hx
+

2h Re h2x

o o2itm,j -[- ltm_ l,j

0 0 0 0
Vm+l,j+ Vm+l,j_ Vm_l,j+ @ Vm_l,j_l

12hhy

o 2uo + o
Um,j+ ,j Urn,j-- 0

0Vm+1,j Vm- ,j Pm,j+ Pm,j 1
+2h 2hu Re

o o o
Vm+l,j 2Vm,j + Vm--1,j

0 0 0 0
Um+l,j+ Itm+l,j_ Um_l,j+ - ltm_l,j_

04 Vm,j+l

12hh
+ - o o ]2Vm,j + Vrn,j-1 f,O

h 3m,j

o o 0 oPro+ 1,j Pro- 1,j 1 flm+l,j Pro- 1,j

2hz (Ma)2 2hz,

0 0 0 0o 2P + Pro- 2Pm,j + Pm/ Pm+l,j ,j 1,j Pm,j+t ,j-

Re Pr h2 + hy2

0 0 0 01 Pro+ ,j 2Pm,j + Pro- 1,j Pro,j+
3’(Ma)2 h +

02Pm,j + Pro,j-1

m=l,2,...,.M-1, j=O,l,o..,2J.

U0 0 0 T0
m,j

0We will designate urn,j f30 fo4m )TVm, Pmj Pro,j) fm,j (fo=, f2o, , ,
as before. The difference scheme (4.2) is written using the 9-node stencil 3 x 3;
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therefore, if the solution is determined on the whole grid Af from (4.1) then the right-
hand sides are determined only in the inner nodes m 1,..., M- 1 (see page 1367).
Periodic boundary conditions in the y-direction are now represented as follows:

(4.3) 0 0Urn,0 Urn,2J+l m 0,..., M,

0 0Urn,_ Um,2J 77 0 M.

We wish to find a solution for (4.2)--(4.3) in the form of the finite Fourier series,
before which we have to construct the boundary conditions of type (3.9) for m 0
and m M. Substituting the expressions

J
o i kjhy(4.4) Um,j E u,, V

J

m
^0 i kjhy

,j fm,k
k=-d

m=0,...,M, j=0,...,2J,

m=l,...,M-1, j=0,...,2J

into (4.2) where the coefficients of the series (4.4) are defined by

(4.5)
2J

^o 1 E o -ikjhy
u,,k 2.1 + 1 Urn,j e.

j=O

2J

o_1E_fo e-ikjhy2r-F-
,k 2J + 1 "’J

j=0

m=O,...,M, k=-J,...,J,

m=l,...,M-1, k=-J,...,J,

we obtain for each wavenumber k -J,..., d the following second-order system of
ordinary difference equations.

^0 ^0 0 0

(4.6) P+t,k Pm-t,k Um+l,k Um-l,k ^0 ^0

2hx + 2hx
+ sk Vn,k

1 Vrn+l,k Vm_l,k
tk t0+-s 2hx .,j ,k

^0 "0 [ ^0 "0 ^02v, +’Vm+l,k Vm-l,k ^0 1 lYre+l,k k Vrn-l,k
2hx

+ sk p.,k -e h2

^0 ^01 Urn_Fl,k tm_l,k 4 ^0 ^0

^0 ^0Prn+ 1,k Pro- 1,k
^0 ^01 Prn+ ,k tim- ,k /

(Ma)2 2h. Re .Pr
2 0rn,k  0rn_l,k
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’-O ^0 "0
^o 1 P+t,k 2Pm,k + P,-t,-t p,, 7(Ma)2 h t 3o )] ^o, frn,k

m=l,...,M-1, k=-J,...,J, sk=

Introducing the additional variables (compare with (27))

(4.7) ^o hx :. 1,k O,tOm,k tm.- 1,k

^o ;o_ hx zl 1, 0,m,k 1,k

o o h

_
1 OPm,k Pm- l,k

o o hx --., 0Pm,k tim- 1,k

m 1,...,M,

and designating

we rewrite (4.6) as the system of eight first-order ordinary difference equations:

(4.8) ^oA, + BkOm-l,k gin,k,

m l, M, k -d, d,

where the matrices Ak and B are given by the following expressions:

(4.9)A

! 02
hx 4 h isinky
2 3Re 6Re hy
hx isink, hx
6Re hv 2 Re

0 0
0 0
0 0
0 0
0 0

0

hx Y
2 Re Pr

0
0
0
0

2(Ma)2 "t-" (Ia)Repr
0
0
0
0
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0 sin ky 0 0h9- sin

0 4h 4 ky isin ky hx 03Re h sin2 2 hy

0 0 7h 4 sin2 kh hx 4 sin2Re P (Mh) Re P
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

(4.10) Bk

- 0 02

_
4 h isin ky hx- 3Re 6Re hy -hx isin khy hx

6Re hy 2 - ’e 0

0 0 hx Y
2 - Re Pr

-hx 0 0
0 -hx 0
0 0 -hx
0 0 0- 0 0 0 0

0 0 0 0 0
0 0 0 0 0

h 0 0 0 02(Ma) (Ma)2Re Pr
0 .-1 0 0 0
0 0 -1 0 0
0 0 0 -1 0

-.hx 0 0 0 -1

Note that the first-order system of ODEs (2.8) and the corresponding first-order
discrete system (4.8) are of different dimensionalities (7 and 8, respectively) due to the
reasons of simplicity. We think that the easiest way to obtain a first-order system on a
discrete level for the specific scheme (4.2), (4.6) is simply to introduce four additional
variables, whereas in (2.7) we introduced only three. While deriving the boundary
conditions for (4.8) (see the formulae (4.13), (4.14)), the dimensionality growth may
cause an additional condition (for each wavenumber k) to appear. However, the
discrete boundary conditions at x 0 and at x X will be based on the same idea
as in 2 (see (2.9), (2.10)). Namely, we prohibit all. the nondecreasing solutions on both
ends of the interval, and thus, the addition of an extra, variable ( in (4.8)) should
not change the far-field behavior of hydrodynamic variables u, v, p, p. Therefore,
this additional condition should present no contradiction to (2.9) and should not

0 to the continuous solution u(x, y)disturb convergence of the discrete solution u,,j
(in the sense of Definition 3.2). Regretfully, the question of "identifying" this specific
additional condition in the nonlocal matrix relation (see (4.13)) and of "establishing
the one-to-one correspondence" between the continuous conditions (2.9) and those
discrete conditions which do approximate (29) (i.e., which are not additional) seems
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to be rather difficult. However, our numerical experiments actually provide us with
sufficient reasons to use just the system (4.8) of eight equations and the corresponding
conditions (4.13); see 6.

Now we proceed directly to the construction of boundary conditions for the dif-
ference AP. System (4.8) should be supplied for each k -J,..., J with boundary
conditions at m 0 and rn M. To do this let us formally consider the extension of
(4.8) on the infinite (in the z-direction) grid

(4.11) ^o o ^oAv., + B ._, g.,,

m 0, +/-1, +2,... k -J,o..,J,

with gin,k^ 0 for ’rn _< 0 and for m _> M’, i.e., the system (4.11) is homogeneous
outside the finite interval. We need to find a solution to (4.8) for m 0,..., M that
would be a fragment of a solution to (4.11) which is bounded for all m 0, +1, +2,
In reality the solution of (4.11) has to vanish while m oc (see page 1361) for
all k -J,..., J. However it turns out that it is not always possible. Actually,
the behavior of the solutions to (4.11) in the "homogeneous" part of the domain is
determined by the spectrum of the matrix

(4.12) Qk A-IB.
If it occurs for all the eigenvalues #s(k), s 1,..., S of Qk that I#s(k)l : 1, then
the solution of (4.11) vanishing at infinity ^0IIv,,kll 0, m--- +ec, does exist for
the given wavenumber k. This is evidently the case in the general situation. But it is
also possible that there are some eigenvalues equal to 1 in absolute value: I#(k)l 1.
This means that the homogeneous system (4.11) admits, generally speaking, constant,
oscillating, or polynomial solutions. In this case one can ensure that the solution of
(4.1.1) will vanish only along one particular direction: m

The directions m ---, -o and m ---, +oc do not have the same rights in the
problem under investigation. Namely, the former corresponds to the upstream prop-
agation of perturbations (inflow) and the latter to the downstream propagation (out-
flow). Therefore, we will primarily demand that the solution to (4.11) vanishes while
m -cx, i.e., along the upstream direction for all k -J,..o, J. Regarding the
downstream conditions (rn +oc), they depend on the structure of the Q spec-
trum. We require here either a strict decrease or only boundedness of the solution for
m -- +oc if the eigenvalue(s) Ip(k)l 1 exist(s). Moreover, it is necessary to add
the following important remark.

Remark. We assume that even when the eigenvalue #(k) i#(k)l 1 is multi-
ple, the matrix Q still has as many linearly independent eigenvectors corresponding
to this eigenvalue #s(k) as its multiplicity. This means that we do not consider poly-
nomially growing solutions. For the small matrices Q (8 x 8) one can easily verify
numerically that Jordan blocks of order more than 1 are absent in the canonical form
of Q (see 6).

Thus, the boundary conditions of the type (3.9) for system (4.8) should prohibit
at m 0 all solutions which are nondecreasing to the left. They should also prohibit
at rn M all solutions which are increasing to the right. It is easy to see that one
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can write such. conditions as follows:

(4.13) S,y(k)9o, O, k O, +1, +2, J,

+ 9 =0, k=0,+l +/-2 d:d,S,r(k) M,

where
(4.14) S;, (k) H (Q #(k)I),

S+n,y (k) H (Q #(k)I).
lu()l<l

I in (4.14) is an identity matrix of the eighth order and the matrix products are
computed according to the eigenvalues multiplicities. The eigenvalues #(k), s

1,... ,8, k -J,..., J were calculated numerically with the help of standard NAG
routines while the computations were carried out. The accuracy of such calculations
for the matrices of low order (8 x 8) is extremely high. Boundary conditions (4.13)
actually select the solutions of (4.8) according to the character of their growth for any
matrix Q. In particular, Q may have no basis consisting of eigenvectors; i.e., there
may be Jordan blocks of order more than 1 in the canonical form of Q. A rigorous
proof of this statement is contained in the Appendix (7).

Thus, it is now possible to give the final formulation of the difference AP: to
find a solution to the system (4.2) in D on the grid N" (see (4.1)) with periodic
conditions (4.3) in the y-direction and boundary conditions (4.13) at a: 0 and
z X. Conditions (4.13) are imposed on the Fourier components (4.5), (4.7) of the
difference solution and the matrices S,(k) S+h,(k) involved are defined by means
of the relations (4.14), (4o12), (4.9), (4.10).

"Disagreement" still exists in this case. We recall that conditions (4.13) con-
structed above permit in certain situations the solutions which are nondecreasing to
the right. On the other hand, one should be able to make the solution of the coupled
problem (1.2) asymptotically more precise by means of the size of Din enlargement (see
1). This requirement means that the solution of the linearized problem has to vanish
while Iz] ---+ cx. In the case of I#.(k)l - 1 both a decrease and an increase of the
solutions under investigation have an exponential character (see Appendix (7)). It
is, therefore, easy to check the validity of (1.5) directly. However, the case I  (k)l 1
requires separate consideration.

We do not rigorously justify here the possibility of using conditions (4.13) because
it presents significant difficulties to obtain analytical expressions for eigenvalues of
Qk. However, the computations performed for different flow regimes and for different
grids show that there are no eigenvalues with unit module for all k 0, gk

+l,+/-2,...,+J I#.(k)l 1, 1,...,8. And only for k 0 the (multiple)
eigenvalue I#(0)l 1 exists. Having no opportunity to verify it experimentally we

assume that this property takes place not only for the finite Fourier series (4.4) but
also for the infinite one (3.10); i.e., the eigenvalue with unit module may appear only
for k 0. Proceeding from the Fourier series (3.10) to the integral (2.5) or similarly
from (3.3) to (3.1) corresponds formally to the "diminution of the weight of each
coefficient ok" to zero since ck y-t ha, where Y ---+ +oc , h ---+ +0 (see
(3.2)). Therefore, if the matrices Q(a), a G (-oc, +oc) from (2.8) are such that
RAg(a) 0 may occur only for a 0, then one has reason to believe that in reality
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the solution of the continuous AP will nevertheless vanish while x +oe although
the conditions (2.9) formally guarantee only its boundedness in such a case.

Note that As(0) 0 corresponds to a constant or oscillating solution of (2.8)
just as I#s(0)l 1 corresponds to constant or oscillating solutions of (4.8). We do
not consider here the polynomial growth since we suppose that the eigenvectors of
Q(0) always form a complete linearly independent system (compare with the remark
on page 1.373). The following lemma shows the behavior of the solution to AP for

LEMMA 4.1o Let (X, c) be a bounded absolutely integrable function while
a (-,+) and let (x, a) (X, a)e-() for x > X, () is a continu-
ous function, NA(0) 0, V5 > 0" minl,25 A(a) > 0. Then Ve > 0 2 2(e) such
that for all x and for all y (-, +) the estimate lw(x, y)l < e holds, where
w(x, y) 1/L(x, )eiayd.

The condition of Lemma 4.1 corresponds exactly to the definition of the operator
S+(a) from (2.9). Indeed, this operator prohibits the solutions which grow while
x +. Moreover, the function (x, a) decreases exponentially while x +
for all a except a 0 which corresponds to the remark on page 1373.

Proof. Let 5 > 0.

+ e(x, +

/

We estimate separately the integrals over finite and infinite intervals. By virtue of the
conditions imposed on (X, c), inequalities

<_ b15, 4- <_ be-’min
5

(Ctmin) andhold where bl const > 0, b2 const > 0, "min "min " Ctmin
argminll>_5 A(c). Evidently, /min > 0. Now choose 5 e/(2hi) and thereafter
2(e) -(In ((/2b2)//min). Then we obtain: Iw(x, Y)I < e for all (x, y) (2, +oc) x

Note that the functions w, in Lemina 4.1 are scalar, but generalization to the
vector case is evident.

Thus, although the solution of the difference AP obtained for each specific com-
putation variant can really contain components nondecreasing along the downstream
direction, the nearer it is to the true continuous solution the smaller is the relative
contribution of these components; i.e., in the case of convergence (see Definition 3.2)
the limitary function decreases while x----. :t:.

Finally, the questions of well-posedness for the general systems of ordinary dif-
ference equations are studied in detail in [15]. We do not repeat the corresponding
analysis here’, notice, however, that by virtue of the S,y (k) and S+h,Y (k) definitions

(see (4.14)), the following equality rankS,y(k)+ rankS-,/(k) 8 always holds (see
Appendix (7)); i.e., boundary conditions (4.13) are noncontradictory. We also note
(see [15]) that for all k -J, J problem (4.8), (4.13) is uniquely solvable Vg,,k^0
and well conditioned. A convenient technique for solving (4.8), (4.13) is the Godunov
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algorithm of orthogonal successive substitution [16]. The method [16] is suitable for
integration of stiff systems including the case of variable coefficients. In our case we
have modified and simplified the original algorithm using the fact that the coefficients
of (4.8) are constant.

After the computation of the solution to (4.8) for each wavenumber k -J,..., J
one obtains the solution of the whole difference AP on the grid Af (see (4.1)) by means
of the inverse Fourier transform (4.4). Therefore, the Green operator Gh,Y Fh,Y --+

U of the difference AP is defined. We will need this operator for constructing theh,Y
difference ABCs.

5. Difference ABCs. We describe in the current section the constructions of
the DPM (see [8] for details) as applied to the setting of ABCs at the boundary F. We
emphasize here that the ABCs will be developed below directly for the finite-difference
formulation of the problem. The DPM [8] provides us with such an opportunity, which
is most convenient for practical computations.

The space U of the solutions to the difference AP is determined on theh,Y

grid Af from (4.1) and the space of its right-hand sides Fh,Y on the grid 0 de=
0\ {(Xm, yj) m 0, m M, j 0, 2J + 1} F contains all the grid func-h,Y
tions determined on A4, Designate Dy D N Dex and define the grid sets:

J0 NY}
-/ in {(Xm,Yj) I(Xm, Yj) E N Din}

Let St,,j be the stencil of the difference operator L (see formula (4.2)), with its
center in the node (x,, yy); i.e.,

U
m =m-- 1, m, m+
j’--j--l,j,j+l

Then

(Xm ,Yj )E./ (Xm ,yj )E./in

def
Stm,i; 7 JV’n.Afin.

We will call the set 7 the grid boundary (by analogy with the continuous boundary
F). Evidently, 7 consists of those nodes of the grid Af which are located "not far
from" F. Thereafter introduce the operators: O restriction of the domain of grid
function from A/ to A//, O complement of the grid function determined on
by zero on jtA\dUf -/in, as well as the operators Of and Ov acting analogously
for the sets Af and Af, respectively. Define the following spaces of grid functions:

(5.1)

Yh,Y and Uh,y from (5.1) are the analogues of F+ and U+ from 2. Here we do
not introduce the spaces with superscript "+" since by virtue of the F definitionh,Y

Vf,y F Oo(AA)f y F We will define the action of the differenceh,Y h,Y
operator Lh Uh,y Fh,y with the help of (4.2) in the same manner as the action
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of L. Moreover, we introduce the operator C-h,y Fh,y --’-’+ Uh,Y; fh,Y E Fh,Y
we define it as follows: Gh Yfh Y

def Afl0 l%fh,Y (compare with 2, page 1363)h,Y
The space of difference clear traces h [8] consists of all the 4-component vector
functions h defined on the grid boundary /, and the difference clear trace operator
[8] Wrh Uh,y ’--> .’..h simply truncates the domain of the corresponding function
from Af to /. Difference potential [8] (see also [7]) with the density from the space
h of clear traces is defined by the formula

PArCh Uh,y Ch,YLhUh,y, P./v" h Uh,y,

where Uh,Y Uh,Y in (5.2) is such that TFhuh,Y h and arbitrary in the rest. It is
shown in [8] that the potential Pfh depends only on h and not on the choice of uh,y
in the formula (5.2). Therefore, we can choose uh,y Uh,y, TrhUh,y h, in (5.2) in
such a way that it will turn into zero everywhere except in some neighborhood of the
set /or even simply everywhere except 7. Then, since the operator Lh acts according
to local formulae, the function LhUh,y Fh,y will, generally speaking, differ from zero
also in some small neighborhood of (we mean here the "grid neighborhood," i.e.,
neighboring nodes). Thus, we can really consider only the functions with compact
support as the right-hand sides for AP (see page 1360). Evidently, the potential
P satisfies the boundary conditions of AP (4.3), (4.13), and it is a solution of the
homogeneous equation LhUh,y O.

Further, introduce the difference boundary projection [8]

(5.3) P Zh ---+ h, p de__f TrhPar.

The following proposition takes place for P (see [8])" the equality

(5.4) h P,h =0

is valid for those and only those h h which are the trace h WrhUh,Y of some
solution Uh,y Uh,y to the homogeneous equation LhUh,Y 0. In the case when
(5.4) holds, the equation LhUh,y --0 has a unique solution uh,y Uh,y with trace
h, WrhUh,Y h. This solution can be computed by means of the generalized
difference Green formula [8]

(5.5) Uh,y PArCh.

Thus, we have reduced the difference boundary-value problem in Dy to equation
(5.4) at the grid boundary /. Now let us show how one can use (5.4) for constructing
the ABCs.

Assume for simplicity that we are solving the Navier-Stokes equations in Din by
means of some finite-difference technique using the "O"-type grid. The curve F is the
last but one closed coordinate line of this grid. Designate as /2 the set of "O"-type
grid nodes belonging to F. F1 is the last closed coordinate line;/21 is the set of nodes
belonging to F1. Let the space stencil of the scheme used in Din be not more than
3 3. Then, to obtain a complete system of difference equations in Din, one essentially
requires some additional relations between the unknowns in the nodes/2 and /21 since
the center of the scheme stencil cannot coincide with any of the /21 nodes. These
additional relations will be obtained from the solution of the linear problem since all
the nodes /21 already belong to that region where the flow is governed by the linear
equations. That is, we consider the parameters at F (more exactly, in the nodes/2) as
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the known values and using them as boundary data for the external linear problem
in .De we find the corresponding parameters in the nodes ul.

Recall that in 2 we introduced the space -Z of continuous clear traces consisting of
vector functions with the components representing the values of the solution and its
normal derivatives at F. Now introduce some finite-dimensional approximation to the
space .. and designate it . We can approximate functions E E with the help
of local splines [8] depending on the values in some finite set of base points co c F, then. are the values in these points. It is also possible to use trigonometrical polynomials,
then are the corresponding Fourier coefficients (expansion in terms of finite system).
Since are the vector functions the finite-dimensional approximation is implemented
componentwise. The dimensionality of F. is 81col where c corresponds to each
component. If R" F_ --+ is an operator of spline or trigonometric interpolation
then we will certainly require the fulfillment of the approximation property" Ve > 0
there exists a set a) of sufficiently large dimension co such that V E E 3 G F_
II{- R{lIr < e where I1" lie is the norm chosen in an appropriate way (see [8], [7]).

Since { contains information both about the functions u, v, p, p themselves (i.e.,
perturbations with respect to the free stream background), and about their normal
derivatives at F, one can easily compute h using the first two terms of the Taylor
formula (recall that h is the 4-component vector function containing only u, v, p, p
themselves and the points 3’ where {h is defined are located near P). We introduce
the special operator re" Eh to designate the procedure of boundary data
continuation from the boundary to the domain.

Let us note here that data continuation from the boundary to the domain (i.e.,
frown co to 3’) is actually one of the main elements of the DPM [8] when applied to the
solution of boundary-value problems. The procedure of data continuation is always
based on the Taylor formula and therefore involves boundary values of the solution
and its normal derivatives. We now make the following remark.

Remark. The construction of a clear trace E involving nknown functions and
their normal derivatives at F which is used in this paper (see 2) is not a unique
possibility. It is shown in [8] that for any specific problem one can define .. and po-
tential in different ways. Of course, constructions of clear traces and potentials should
be correlated to each other, they then possess the main property; namely, boundary
equation with projection is equivalent to the original equation on the domain.

For our current purposes the construction of E used here (2) is presumably the
most convenient. Indeed, our final goal is simply to coInplete the system of difference
equations in Di, i.e., to relate the values of the solution at inner (F) and outermost
(F1) coordinate lines. To do this, we have to represent the solution outside F (i.e.,
outside Dn) in the form of a generalized potential depending on (u, v, p, P)lr and
then to use it for determining (, v, p, P)lr" Therefore, we actually need "a resolved
form of the projection," i.eo, an operator expressing normal derivatives in terms of
functions (see below). Using this operator and the Taylor forInula we will be able to
continue any specific data from F to 3’, and then from 3’ to F using the potential
itself as well as some interpolation procedure (see below).

We also note that many authors develop and use the so-called Poincar-Steklov
operators, mainly for domain decomposition techniques (see, e.g., [17] and references
there). These operators are similar in structure to our "resolved projections" although
their means of derivation are actually less general.

As was previously mentioned, we consider all the parameters (u, v, p, P)rl,
u U in the nodes as known values. Now let us construct a special interpolation
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operator R. U, --+ .. (depending on the structure of F_ space; convergence is
evidently required in doing so). R. u, yields those components of which contain, the
values of functions themselves but not the derivatives (i.e., a half of components)
Namely, if ((1),((2))T where the vector (1) contains the functions (u, v, p, p)
and c(2) contains their normal derivatives at F then .(() R,u.. Further, by applying
the operator 7c: h 7c de__ 7r(1)(1)+ 7r()( 7c(.)R,u, + 7r()(2) and substituting
this expression into (5.4), we get

(5.6) O(1)u, + Q(2)(9.) 0,

where Q. de__f I- P., I is an identity operator, Q() Qr(1)R,, Q(2) Q.Tr(2)
Equation (5.6) with respect to () is, generally speaking, overdetermined and has no
solution. We define its generalized solution in the sense of the least squares method,
introducing some Euclidean norm I1" Iv in Eh for this purpose. Namely, let

4

/=1

where c[ is the/th component of the vector function h. We define the norm.

as follows"

2 1 2

j’ St5vj r:1
Oj ,j

2

where j is a subscript enumerating nodes from. , J/J is the total number of nodes in

Sts is a five-node stencil "right cross" with its center at /j, and Oj,j, iS the distance
between /j and

Introduce the scalar product in Eh putting for a, b Eh.,

4

ajbj
/=l j,

In doing so, one can specify a symmetric linear operator A Eh --=h such that
the norm introduced above would be written in the form.

Define the generalized solution to (5.6) as the solution, to the variational problem

The necessary conditions of minimum for (57) (the Lagrange-Euler equations) are
provided by the following linear system:

Q(2)rAQ(2) f() -Q()r

AQ()u
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to be solved with respect to (2), i.e., actually with respect to the normal derivatives
of solution u at F.

One can find the solution to (5.8) by means of a direct technique (see below):

(5.9) (w2) golZz,uu,

K de__f Q(2)TAvQ(), K. de__f _Q(2)TAvQ(1),
and then obtain

(5.10) h 7r(1)R,u + 7r()KlK.u.o
Note that the operator Kjo K. from (5.9) is actually "the resolved form of projection"
we were discussing above. We use quotation "o" here since Kjo1K, itself is no longer a
projection. It relates the values of functions and normal derivatives at F and therefore
allows us to obtain h on the basis of u, (fbrmula (5.10)).

We then have to find the solution in ul-nodes. To do this we will use formula
(5.5) with slight modifications. Namely, we will find the values u, with the help
of interpolation from the grid 3/. Designate as that subset of Af nodes where it
is necessary to know the solution Uh,y Ph in order to implement an interpola-
tion procedure of sufficiently high order, e.g., interpolation by quadratic polynomials
Evidently, is the grid set located near F1. Write instead of (5.5),

(5.11) u,1 P.lh,

def
where P,1 RIP, R,I is an interpolation operator from to u. Substituting
(5.10) into (5.11)we get

(5.12) u,- P. (-()R. + (2)KK.)u. T u..

The relation (5.12) yields the connection between u. and u. required for comple-
tion of the system of difference equations in Din. Let us now point out the following
important circumstance. All the operators considered in this section, in particular
A, Q, K, K., R., 7r, R.I, P,, T, act in finite-dimensional spaces and conse-
quently can be computed in the form of matrices with respect to corresponding bases.
(Then, in particular, it is possible to solve (5.8) by means of a direct method.) The
computation of these matrices requires, generally speaking, the repeated (8]01) solu-
tion of difference AP. However, this procedure (solution of AP in order to compute
Q and P.) does not demand a lot of computer time (even without fast Fourier
transform usage) since the right-hand sides are concentrated near " (see page 1377)
and the solution is to be known only in the nodes 7 tJ n. These subsets of the grid Af
are located not far from the artificial boundary and the number of nodes in 7 and n
does not depend on Y while hz, by, and X are constant. Therefore, the number of
operations required here for the implementation of both direct and inverse discrete
Fourier transforms is O(M. J), and no longer O(M. j2) as in the case of solving
the problem on the whole grid Af. On the other hand, the computation of matrix
T provides significant advantages from the viewpoint of the numerical realization of
these ABCs. For example, if one uses some explicit pseudo-time integration technique
for the solution of the Navier-Stokes equations inside Din then the matrix relation
(5.12) is simply applied at each iteration to complement the values u,. If the stencil
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of scheme in Din is more than 3 3 then one has to compute u with the help of a
potential not only on /21 but also on the extra one or few coordinate lines external to
F. The computation technique itself is not changed in such a case.

Note, in addition that since we use the difference potential (5.2) (see also (5.5))
for solving the linear problem then the questions of approximation and convergence
are of great importance. We mean here an approximation to a continuous potential
by the difference potential and convergence of the difference periodic solution to the
continuous periodic solution (it is "a half" of Definition 3.2) while the grid size h
vanishes and la;I consistently grows (see [8]). These questions are studied in detail
in [8]. In particular, it is shown there that the type of norm providing convergence
and the convergence rate depend on the order of approximation to the differential
operator L by the difference operator Lh and also on the order of the Taylor formula
in the operator r. In our case, one can expect convergence of the difference solution
together with the first difference derivatives [8].

6. Computational results. In this section, we present the results of our numer-
ical experiments. We begin with some model computations related to the estimates
from 3 as well as to the remark on page 1373. Then we describe some results of
computation of the viscous flow past an airfoil.

6.1. Eigenvectors of Q0- For the various flow regimes considered (differing by
the values of Ma and Re) and for various grids, the matrix Q0 (see (4.12)) has a
quintuple eigenvalue with the unit module: I#(0)l 1, s 3,...,7, (Ittl(0)l <
1, 1#2(0)1 < 1, I#s(0)l > 1). As was previously mentioned, for all the remaining
k 0 the absolute values of all the eigenvalues differ from 1. Special computations
show that there exist five linearly independent eigenvectors corresponding to I# (0)
1, s 3,..., 7; i.e., the remark on page 1373 is valid. This verification was carried
out as follows. The whole space Cs of the solutions to the homogeneous system (4.8)
(for k 0) can be represented as a direct sum Cs C1 (R) CI where

(q0 0,

Vv E Ci (Q0- #s(0)I)v 0.

The proof of this statement is the same as that of the formulae (4.13), (4.14) (see
Appendix (7)). Then, an arbitrary element vo E Cs is chosen and the powers of the
Q0 matrix are applied to this element, and the projection onto the subspa,ce C1 is
implemented a.t each step

(6.2) v, Q0v,._l, rn 1 2,...

Ii where vm C, vm C(6.3) v, v, v,

The representation (6.3) is evidently unique. The computations show that the esti-
mate IIv,ll <_ coast holds for sufficiently large ra 103 + 104. It confirms that there
is now polynomial growth and consequently that there are no Jordan blocks of order
more than 1 corresponding to [#(0)[ 1, s 3.o., 7 in the canonical form of the
matrix Q0.
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6.2. Computation of the operator T. Now let us consider some results of
calculating the operators T from (5.12). We carried out these computations for Ma
0.5, Re 500, Pr 0.72; F and F1 are concentric circles with radii r 1.0 and
rl 2.4, respectively, with center (0, 7c), X 27c; the grid of AP consists of square
cells with sizes hx hy 27c/M, M is an integer number; sets and 1 consist of

I1 I+1 I= 25 nodes. We recall here that the operator T should connect the values
of tile solution at the inner and outermost coordinate lines of the grid used inside .Din.
The particular choice of F and F1 here models these two coordinate lines, respectively;
see 5 for details. The parameters M, Y, as well as Icl (the latter is the dimension
of finitely dimensioned space Z approximating _; see page 1377), were varied for
different computation variants.

The series of computations were performed for M 17 and M 33 in order to
clarify the character of tile operator T (see (5.12)) dependence on the value of period
Y. Namely, the sequence of problems for Y+ =/ Y, s 1, 2,. Y X, 2,
was solved and the behavior of the value

IITs-+-i T(6.4)
0.5 (IIT,++II[ + IIT II)

as depends on s was studied, or8 from (6.4) evidently characterizes the variation of
T caused by the change of period. Grid sizes in this case remain constant. The
operator norm in (6.4) is induced by the norms of functions u and u the Hilbert
norm 19 was used while cotnputing. Since we consider sufficiently smooth solutions it
is possible to assume that the dependence of c8 on s has the same character as the

0dependence of the value Ilu,,+, u,,y, on (see designations of 3). By virtue
of the evident inequality

-u < u II + Ilu ,Y -UuB II
and the same arguments used to derive (3.16), the following estimate takes place:

(opt (l/s) -- (CYs -Jr- Cys.+_ I1o

The right-hand side of (6.5) depends Oil Y and Oil h in the same way as .opt(h, Y)
does; see formulae (3.16) and (3.17). Moreover, if cr cs const (see page 1368)
then the first term on the right-hand side of (6.5) characterizes the influence of period
and the second one is responsible for the influence of grid size. The values of c& for
the different parameters used are presented in Table 6.1 (recall that h and hy do not
depend on s).

A monotonic decrease of a in all the computations justifies that the assumption
cy c const is true. In the opposite case when cy increases with an increase of
Y one has to first observe a decrease and then a growth of

The values of a. are sufficiently small for large Y which is presumably caused
by the phenomenon of convergence (also on the finite set (0, X)x (-, )) of the
difference periodic solution to the difference nonperiodic one, i.e., to the solution
formally determined in Do on the infinite grid with constant size. As for the difference
between each difference solution and the corresponding continuous one, it remains tile
same and is determined by the grid size h. Therefore it makes no sense to choose too
large a Y for the fixed h. As regards size h itself of the grid A/, its value is to be
connected with the size of the grid used inside Din for the integration of the Navier-
Stokes equations. Namely, the accuracy of the solution to the linear problem is to
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TABLE 6.1

]1 17

1 0.345

2 0.212

3 7.556 10-2

4.794.10-2

31’893.10-2

M 33

w[---- 19

0.361

0.267

0.158

9.191 10-2

0.290

0.206

0.125

7.296. 10-2

4.552. 10-2 3.558.10-2

2.936-10-2

be at least not worse than the accuracy of the solution to the nonlinear one. An
application experience of the analogous ABCs for the Euler equations [3], [11] shows
that it is always sufficient to choose h in such a way that the average distance between
F and F1 would be about several cells of the grid Af. Concerning the value lull, it is
shown in [8] that once the quadratic interpolation is used (operators 7r and R,; see
pages 1378, 1378) then the relation h lull -2 has to hold; i.e., one ought to increase

lull consistently with the grid A/ refinement. However, it should be noted here that
if the grid in Din is prescribed then it is not worth choosing lull > lul.

6.3. Viscous flow past an airfoil. Here we are going to present and discuss
some results of our ABCs’ implementation to computations of real viscous flows.
Namely, we study a gas flow past the NACA0012 airfoil for Mach number at infinity
Ma 0.63 and attack angle a 2. This regime is well known while being inviscid. It
is studied in numerous papers including [11]; see also the bibliography in [3] as well as
the reviews [1], [2]. However, here we compute this flow for the laminar viscous regime
Re 4000. From the pure gasdynamic viewpoint it is a subcritical, i.e., fully subsonic
flow, and once the viscosity is introduced the flow also appears to be separated (a
separation zone is located near the trailing edge). To integrate the Navier-Stokes
equations inside Din we use a pseudo-time multigrid iteration procedure realized in
the finite-volume code [18]---[20]. The computations are implenented on the C-type
curvilinear boundary-fitted grid of 256x64 nodes generated around the airfoil. An
"average radius" of computational domain for this specific case is about 5.5 chords of
the airfoil. In doing so, both F and F1 are nonsmooth (each has two "corner points").
However, experience at solving the boundary-value problems by means of the DPM
in the domains with nonsmooth boundaries [8] provides us with reasons to calculate
T for this case exactly as was described above. The only slight difference is in the
construction of the operator .Tr (page 1378) of boundary data continuation near these
"break points," but it is not essential for current consideration.

While integrating the Navier Stokes equations we use four levels of multigrid
with W-cycles and iInplement the ABCs (5.12) at each iteration only on the finest
level; for the coarser levels we retain the boundary values provided by the finest one.
We compare our results with those obtained while implementing standard external
boundary conditions included in the code [18]--[20]. The latter are based on the anal-
ysis of characteristic variables a.t inflow and extrapolation at outflow. An advantage
of these conditions is their algorithmic simplicity as well as very low computational
expenditure.

In Fig. 6.1 we present the convergence dynamics (dependence of p-residual in the
C-norm on the nuinber of iterations) for this computation. We use three different op-
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FIG. 6.1. Convergence dynamics for NACAO012: c 2, Ma 0.63 Re 4000. Logarithm of
p-residual in C-norm versus number of iterations.

erators T which correspond to three curves marked nonlocal_2, nonlocal_3, nonlocal_4.
The number (2, 3, 4) here represents the value of period Y in units of computational
domain diameter. It turns out that it is more convenient to measure Y in these units
and not in airfoil chords.

One can see that for all the cases where nonlocal ABCs are implemented the
theoretical convergence rate is more than three times faster than for extrapolation.
(The theoretical convergence rate is just a number of iterations required to reduce
the initial residual by a prescribed factor.) Of course, we also have to take into
account the additional computational expenditure caused by the nonlocal nature of
these ABCs. This additional expenditure consists of two parts. The first one is the
CPU time required for matrix-vector multiplication (see (5.12)) at each iteration,
with each iteration becoming about 10% more expensive. The second is the CPU
time required for the computation of T itself. This part, of course, depends on Y. It
turns out that for the specific case under investigation the computation of operator
T2 requires about 52’ of CPU time IBM RISC 6000/540, the operator T3 requires
about 80’, and T4 requires about 120’. Now compare these figures with the CPU time
required for the integration of the Navier-Stokes equations inside Din. One iteration
"costs" about 14.9" for the simplest extrapolation conditions (therefore, about 16.4"
for the nonlocal ABCs). If we assume that the accuracy 10-s is satisfactory (which
is natural) then we need 4600 usual iterations, which implies about 19 hours of CPU
time and only 1500 iterations with nonlocal ABCs which means 6 hours 49’ and an
additional 52’ for the T2 computation. The integral gain in convergence acceleration
still remains slightly less than three times, which is most essential.

We also have to analyze accuracy, namely, how the type of ABCs influences the
solution inside Din. Table 6.2 contains the values of dynamic force coefficients (Ct
lift and Cd drag) for the computations described above.
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TABLE 6.2

Extrapolation T2 T3
0.02509 0.02455 0.02470

0.03129 0.03147 0.03144

T4
0.02470

0.03139

One can easily see that the difference between the corresponding coefficients is
very slight from which we conclude the following. First, it is quite sufficient to use
only "cheap" operators T being computed for small values of Y. Second, all the
solutions obtained in the case of nonlocal ABCs’ implementation are reasonable which
in particular justifies the possibility of linearization (at least for this specific case).

We do not present here the results of other viscous flow computations. We have
been studying various flow regimes including turbulent and transonic ones. In addition
to drastic convergence acceleration we have found that while using nonlocal ABCs it
is possible to essentially shrink the computational domain preserving the accuracy of
computations.

We discuss the computational results in detail as well as some related topics and
generalizations in a new paper [21].

7. Appendix. Consider a linear space C of n-dimensional vectors with complex
components and some linear operator Q C --. Cn acting in this space. Let
C #s, s 1,..., g be all the different eigenvalues of operator Q, g _< n, ns are the

r Cmultiplicities of these eigenvalues, =1 ns n. Moreover, let es E s 1,...,
r 1,..., rs, 1 _< rs <_ ns be all the linearly independent eigenvectors of the mapping

(7ol) Oes
g r,p 2 < < r,g<-- s=lrs <_n. For the casers <ns theadjointvectorses -P-Ps of the

1 <r<rs"mapping Q exist for some es,

r,1 def r(7.2) Qe:’p #sets’p + ers’p-I, 2

_
p <_ prs, e es.

r rl inHere p is the order of the Jordan block corresponding to the eigenvector e e
the canonical form of the matrix Q. The following relation holds:

1E:P =n. The system of vectors {e’pll <_s<_., <_r_<rs 1 <_p<_ps}
is the basis in Cn; the matrix Q has a canonical Jordan form just in this basis.

Consider the linear span of all those elements of the basis {e,p} corresponding
to certain s; namely, C lin {e’P[ 1 _< r <_ rs, 1 _< p _< p }o C is the subspace of
dimension n in C. Moreover, by virtue of (7ol) and (7.2), C is an eigensubspace
of the operator Q; i.e., Vv E C Q v Cno Note that the constructions of
C guarantee that C Cn 0 if s : s2o Evidently, one can represent the
whole subspace C as the direct sum of the subspaces C corresponding to different
eigenvalues of the operator Q:

Cn-- ( Cns

Define the operator S d (Q_ #si)n where I is an identity operator. Let v
pr lr,p .r,p pC; i.e., v }-_ p= s 3, C. Since Ps < us- (r 1) always, then by
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virtue of (7.1) and (7.2), Sser’p O, r 1,... ,rs, p 1,... ,p, and, consequently,
Ssv 0o Conversely, now let v E C be some vector satisfying the condition Ssv
0. Expanding v in terms of the basis {e,p }" v 8,=1 z_,=lV’s’ _,p=lV’p:’ Ps,’’Pes,’ and
applying the operator S to this expansion we get

r,p(7.3) v= E EE/:;P(Q-#sI)n es’ =0"
s/=l r=lp=l
81#8

Taking into account that #s, =fi #8 for 8’ 8 we find from (7.1) and (7.2) the following:
(i) (q #I)n e:; (#8, #8)n e:; -- 0;
(ii) if ns < p then (Q #si)n r,p nes, Ez=0 (3s) (#8, #)n-t e:,,p-t 0 where

() (ns!)/(l! (n8 -1)!) are binomial coefficients;
p-1 ns-l .r,p-.1(iii) if n _> p then (Q #I)u esr’,p ’/=0 (nl)(tts’ Ps) es, O.

Therefore all the coefficients :;P in (7.3) are equal to zero: :;P 0, s’ s, r
1,...,r8,, p 1,...,p,; i.e., v E C.

Thus we have proved the following lemma.
LEMMA 7.1. The condition Ssv 0 is necessary and su]ficient for the inclusion

vCns

COROLLARY 7.2. Let v C1, 1 <_ sl <_ g. Then the inclusion Ss.v cn81
takes place for an arbitrary s2 {1,..., g}. Moreover, if v # 0 then Sv : 0 for
82 #81.

Proof. cns, is the eigensubspace of the operator Q; therefore, CI is an eigen-
subspace for any operator (Q-/.tI) V# E C, Vt N. Consequently, S.v C1. If
v 0 and S,v 0, then, because of Lemma 7.1, v C.. According to the con-
dition of Corollary 7.2, v CI where s2 :/: s l, which means v E Cns, C 0.
The contradiction obtained proves the corollary: Ssv 0. E]

Now choose an arbitrary subset" {Sq}= c {1,o ,g} and consider the subspace
cn:

(7.4)

Cns. cns2 () Cnsqo

Evidently, C is the eigensubspace of the operator Q. Construct the operator

(7.5) S’= 1--[ $8 l-[ (Q- pSqI) ’q
q=l q-1

Let v C; this means that some unique set of vectors {Vq Cnsq q 1, (1}
exists such that v qq= Vq. Then, taking into account Corollary 7.2 we obtain
S’v O.

Conversely, now let v C be an arbitrary vector satisfying the condition S’v
O. Obviously, the unique expansion

g

(7.6) v=Evs, v8 Cn

8---1
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exists. Applying the operator S’ to this expansion we get

(7.r) S’v -o.
8--1

By virtue of the construction of operator S’ (see (7.5)) and because of Corollary 7.2
each term in (7.7) belongs to a corresponding subspace Cn. Therefore, the equality
(7.7) yields v 0, s {Sq}{= or, in other words, v C’ (see (7o6)), Titus we come
to the following lemma.

LEMMA 7.3. For v C (see (7.4)) it is necessary and sufficient that S’v 0
(where the operator S’ is defined by the formula (7.5)).

Now let us consider the following homogeneous system (here we assume that
det Q : 0):

(7.8) v, + Q v,_ 0

with respect to the unknowns v,, rn 0, 1, 2, (7.8) is an analogue of the homo-
geneous variant of (4.8). Using the basis {e,v} we can write the general solution of
(7.8) as follows:

g vs Ps min{rn, p--

(7.9) vm /3:’v (-1) (7)
s=l r=l p=l /=0

where/3,v C are arbitrary constants. One can evidently rewrite the formula (7.9)
in the form

(7.10) vm (#)m V,m,

where Vs,m Cn, s 1,..., g are some functions of the argument rn growing while
m increases not faster than a polynomial of finite degree (namely, of degree n-- 1).

The formula (7.10) represents the whole space of the solutions to the homogeneous
system (7.8). assume (see the remark on page 1373) that if 1 then r n,. In
such a case the degree of the corresponding polynomial is zero. Then all the solutions
of (7.8) which are bounded while m ----+ oc and only those solutions can be represented
in the form

(7.11) v (s)rn Vs,rn C-t’ dej Cn
I,u,l<l I,u 1._<_1

By virtue of Lemma 7.3, v C+ => S-/v 0, where

(7.12) S+ 1-I (q- #,I)"
I/**l_<l

Further, one can also consider the system (7.8) for the negative rn 0,
in the following form:

(7.1,3) v,,_ q- Q-iv 0.
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Eigenvalues of the matrix O-1 are obviously equal /_t-1, s 1, g. Arguments
analogous to ones presented above enable us to affirm that the subspace C- of those
solutions to (7.13) which vanish, while rn -- -oc is selected by the condition

(7.14) S-’v=0 vEC-,

where

(#s)-I I) ns

The subspace C- is evidently not changed if one changes the operator S-’ in (7.14)
multiplying it by some nonsingular matrix as well as by some nonzero constant. Let
rz.- Es: I(s)---11<1 n. Putting S- (-1)n (IIs: i(,s)..ll<l#)Qn S-’ we obtain

(7.16) S- H (Q- #I)nS S--v=O vEC-.

The operators S- (see (7.16)) and S+ (see (7.12)) select the solutions of (7.13)
and (7.8) according to their growth The definitions of these operators coincide with
the formulae (4.14). (Recall that the computation of matrix products in (4.14) is also
realized with regard to the multiplicities of eigenvalues.) Furthermore, it is evident
that the direct sum of subspaces of the solutions decreasing to the left, and the solutions
nonincreasing to the right yields the whole space of the solutions to the homogeneous
system: C C+ (R) C- (taking into account the remark on page 1373).
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