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Abstract—Compensation of the Faraday rotation (FR) effect
in polarimetric synthetic aperture radar (PolSAR) involves a
rotation matrix, with the FR angle determined by the magnetic
field, total electron content, signal frequency, and propagation
direction. We analyze the conditions where the signal frequency
and/or propagation direction cannot be considered constants.
In other words, the rotation matrix based on the main look
direction and central radar frequency may have a significant
mismatch with the received signal in fast or slow time. We
derive estimates for the resulting polarimetric distortions and
their effect on applications such as instrument calibration in
space and measurement of the aboveground biomass.

Index Terms—polarimetric synthetic aperture radar, Faraday
effect, matched filters, biomass

I. INTRODUCTION

Usage of SAR for applications such as ground and foliage
penetration, biomass measurement, etc., mandates usage of
low carrier frequencies, possibly in UHF/VHF range, where
the effect of ionosphere on imaging cannot be ignored [3],
[9], [12]. Ionospheric plasma is dispersive and gyrotropic, and
propagation of radar pulses through such a medium results in
their modification, such that the signal received by the antenna
does not match the emitted signal. Modifications to the signal
processing procedure are required to preserve the system
characteristics such as resolution. A number of publications
has been devoted to the mitigation of the effect of dispersive
propagation through the ionospheric plasma, see, e.g., [2], [6],
[16] and references therein. As far as the Faraday rotation (FR)
is concerned, the discussion is mostly concentrated around
estimating the rotation angle. Given the rotation angle, the
standard correction procedure is application of the rotation
matrix to the vector of received polarimetric channels, see.
e.g., [13], [14].

In this work, we consider the case where dispersive ef-
fects are corrected and focus on FR, specifically, on the
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dependence of the rotation angle on propagation direction and
instantaneous frequency. In order to increase resolution in the
range and azimuthal direction, the bandwidth and, respectively,
aperture length should be increased. Each of these increases
potentially leads to an increase of the range of rotation angles
for a single image acquisition. If, for example, the emitted
signal is linear frequency modulated (LFM) where the instan-
taneous frequency is increasing (the so-called “upchirp”), then
the low-frequency part emitted early during the transmit period
will be rotated by a bigger angle than the high-frequency part
emitted later. Hence, the contribution of one scattering channel
into the received signal in another channel becomes frequency-
dependent. Due to a one-to-one relation between the signal
time (also called fast time) and instantaneous frequency, this
dependence can equivalently be formulated as a dependence of
the FR angle on fast time. Similarly, movement of the antenna
over the aperture leads to variation of the propagation angle
w.r.t. the direction of the external magnetic field; this may
be treated as a dependence of the FR angle on slow time.
Neither of these situations can adequately be described by a
single rotation matrix. Because of this, the inversion using
a single rotation matrix will be inaccurate and, hence, will
result in the filter mismatches and, eventually, distortions in
the reconstruction of polarimetric properties of the target.

In [7], we have considered a procedure that takes into
account the dependence of the FR angle on fast and slow
times. A new signal processing kernel, henceforth called the
polarimetric matched filter (PMF), has been suggested. The
PMF combines the standard matched phase multiplier with two
rotation matrices, in which the rotation angle depends on slow
and fast times. We have shown that usage of PMF instead of
the traditional procedure significantly improves polarimetric fi-
delity of the resulting images. Here we analyze the effect of the
varying FR angle on the system calibration in space and on the
biomass measurement. In particular, we demonstrate that for
a certain combination of system and ionospheric parameters,
a popular formula for the assessment of aboveground forest
biomass from the backscattering intensity in the HV channel
can be seriously compromised when used with the traditional
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signal processing. Hence, transition to the PMF processing
will be justified because it almost completely eliminates this
kind of distortions.

II. PROPAGATION OF RADAR PULSES IN THE PRESENCE OF
THE FARADAY ROTATION

Scattering by a point target located at z is described by the
matrix S that relates the horizontal and vertical components
of the incident field E i and scattered field E s:(

Es
H

Es
V

)
(t, z ) =

(
SHH SHV
SVH SVV

)
·
(
Ei

H
Ei

V

)
(t, z ), (1)

or E s(t, z ) = SE i(t, z ). For distributed targets in a single-
scattering (or Born) approximation, entries of this matrix can
be functions of the target coordinate, i.e., S = S(z ).

In turn, propagation of the signal emitted from the antenna
position x to the target at z through gyrotropic medium
is characterized by propagation delay and rotation of the
polarization plane:

E i(t, z ) = KR(ϕF) ·E i(t−Rz/c,x ), (2)

where we have ignored the difference between the speed of
light and the phase speed of propagating waves because we
assume that the dispersion-related effects are compensated (see
[6, Chapter 3] for more detail). In (2), Rz = |z − x |; K is
the attenuation factor, and

R(ϕF)
def
=

(
cosϕF sinϕF
− sinϕF cosϕF

)
. (3)

In (3), the Faraday rotation angle ϕF for propagation through
magnetized plasma is defined as

ϕF = −Rz

2c

ω2
peΩe cosβ

ω2
, (4)

where the electron plasma frequency and gyrofrequency are
given by

ω2
pe =

4πNee
2

me
and Ωe = −e|H0|

mec
, (5)

respectively, Ne is the electron number density, −e and me are
the electron charge and mass, respectively, and β is the angle
between the propagation direction and the external magnetic
field H0. For an inhomogeneous medium such as the Earth’s
ionosphere, we assume that the electron number density and
external magnetic field are averaged over the propagation path.

We specify the incident waveform in either polarization as
a linear frequency modulated (LFM, or chirp) signal

E(t,x ) = E(H,V)P (t), where P (t) = A(t)e−iω0t, (6)

E(H) = (E0, 0)T and E(V) = (0, E0)T are the linear polariza-
tion vectors, and

A(t) = χτ (t)e−iαt
2

, χτ (t) =

{
1, t ∈ [−τ/2, τ/2],

0, otherwise.
(7)

For instantaneous frequency of the signal, we have

ω(t) = ω0 + 2αt = ω0 +
B

τ
t, |t| 6 τ

2
, (8)

where B is the bandwidth: |ω(t)− ω0| 6 B/2.
We will calculate two reflected field vectors E s given

by (1) resulting from the field emitted in two basic linear
polarizations. Then we combine these vectors into a single data
matrix M and will take its values at the antenna position x .
In two-way signal propagation, the travel delay and Faraday
rotation are applied to the signal twice. Denote the retarded
time by

t = t− 2Rz/c.

Then, ignoring the difference between the speed of propa-
gation of the pulse envelope (i.e., the group speed, see [6,
Chapter 5] for more detail) and the speed of light, we have

M(t,x ) =

∫
P (t)R(ϕF) · S(z ) ·R(ϕF) dz . (9)

In this equation, we have incorporated the constant E0 and the
slowly varying attenuation factor K into the matrix S. The FR
angle in (9) depends on several variables:

ϕF ≡ ϕF(t,x , z ) = −|x − z |
2c

ω2
peΩe cosβ(x , z )

ω2(t(t,x , z ))
, (10)

see (4), where ω(t) is defined by (8). We will consider
variations of z of the order of resolution, while x varies at
the scale of the synthetic aperture; hence, we will ignore the
dependence of ϕF on z .

The task of the polarimetry is to reconstruct the matrix S(z )
from the data M(t,x ).

III. TWO APPROACHES TO SIGNAL PROCESSING

In traditional polarimetry (see, e.g., [11]), images in all
channels are built independently. Mathematically, it can be
expressed as

Ypq(y) =

∫∫
P (t)Mpq(t, s) dt ds, (11)

where pq ∈ {HH,HV,VH,VV}, the slow time s parametrizes
the antenna trajectory: M(t, s) ≡ M(t,x (s)), and t ≡
t(t, s,y) = t − 2|x (s) − y |/c. Here, P (t) is the standard
matched filter that can also be used in scalar imaging. Further,
if the ionospheric conditions are found such that the FR is
present, then the matrix resulting from (11) is “rotated” as
follows:

Itrad(y) = R(−ϕ∗
F) ·Y(y) ·R(−ϕ∗

F). (12)

The constant rotation angle ϕ∗
F above can be calculated us-

ing ω = ω0 and the center of the synthetic aperture as x
in (4).

By contrast, in what we call application of a polarimetric
matched filter (PMF) [7], we perform rotation and matched
filtering in a single step by taking into account the dependence
of the rotation angle on the fast and slow times:

IPMF(y) =

∫
P (t)R(−ϕF) ·M(t, s) ·R(−ϕF) dt ds, (13)

where ϕF ≡ ϕF(t, s,y) is obtained with the help of (10) by
using x (s) and y in place of x and z , respectively.



IV. IMAGING OPERATOR

The imaging operator S(z ) 7→ I(y) for both traditional and
PMF approached can be represented as

Iij(y) =
∑
kl

∫
Wiklj(y , z )Skl(z ) dz , (14)

where i, j, k, l ∈ {H,V}. The kernel of the imaging operator
in (14) can be calculated by taking into account expression (9)
for the reflected signal:

Wiklj(y , z ) =

∫∫
A(t(t, s,y))A(t(t, s, z ))

eiΦRik(∆ϕF)Rlj(∆ϕF)dt ds,

(15)

where Φ = −2ω0(|x (s) − y | − |x (s) − z |)/c, and we have
two different expression for ∆ϕF:

∆ϕtrad
F = ϕF(t, s, z )− ϕ∗

F

and
∆ϕPMF

F = ϕF(t, s, z )− ϕF(t, s,y).

Ideally, the matrix structure of W should follow

Wiklj ∝ δikδlj , (16)

whereas any other non-zero term of the tensor W describes a
contamination of one polarimetric channel by another channel.
The latter amounts to a distortion of the polarimetric recon-
struction.

V. ANALYSIS OF DISTORTIONS

In order to perform the analysis, we assume a linear flight
trajectory at constant height H: x (s) = (sLSA,−L,H), |s| 6
1/2, where LSA is the length of the synthetic aperture, L is
the distance from the target to the ground track, and the origin
of coordinates is in the target area. We assume that LSA � R,
where R = (L2 +H2)1/2.

Due to the form of the rotation matrix R given by (3), the
tensor W has three essentially different entries:

W0,1,2(y , z ) =

∫∫
A(t(t, s,y))A(t(t, s, z ))

eiΦf0,1,2(∆ϕF)dt ds,

(17)

where
f0(∆ϕF) = cos2 ∆ϕF,

f1(∆ϕF) = cos ∆ϕF sin ∆ϕF,

f2(∆ϕF) = sin2 ∆ϕF.

(18)

The “non-contaminating” (in the sense of (16)) entries of
the imaging kernel are given by Wiijj(y , z ) = W0(y , z )
for any i and j, while the “contaminating” entries are given
by the other two functions, e.g., WHHHV(y , z ) = W1(y , z ),
WHVVH(y , z ) = −W2(y , z ), etc. Hence, the level of dis-
tortions may be characterized using the norms of Wj , e.g.,
‖W1‖2/‖W0‖2 and ‖W2‖2/‖W0‖2, where ‖·‖ is the L2-norm:
for f(y , z ) = f(y − z ) (which will be the case for all entries

of W with both the traditional and PMF type processing), it
is defined as

‖f‖2 =

∫∫
(z ,e3)=0

|f(z )|2 dz . (19)

The expression for the dominant term of ∆ϕF in the case of
traditional processing is different from the case of PMF. For
the former, we have

∆ϕtrad
F = ηAs+ ηRt/τ, (20)

where

ηA = −ϕF0
(eH , e1)

LSA

R
, ηR = −ϕF0

2B

ω0
cosβ∗,

eH = H0/|H0|, β∗ is the angle between eH and the baseline
propagation direction vector −x (0), and

ϕF0
= −R

2c

ω2
peΩe

ω2
0

.

Formula (17) transforms into

Wj(y , z ) = τeiΦ
∫ 1/2

−1/2

ds

∫ τ/2

−τ/2
dt

e−2iξAs−2iξRt/τfj(ηAs+ ηRt/τ),

(21)

where

ξA =
ω0(y1 − z1)LSA

Rc
, ξR =

B(y2 − z2)L

Rc
, (22)

and j ∈ {0, 1, 2}. Using (18), functions Wj can be computed
either numerically or analytically [7].

We will consider here a hypothetical high-resolution P-
band SAR system with the following parameters: ω0/(2π) =
300MHz, B/(2π) = 8MHz, τ = 5 · 10−5s, H = 500km,
LSA = 50km, and θ = 60◦. As compared to the planned
BIOMASS mission, see [10], it has the carrier frequency
1.45 times smaller and the bandwidth 1.33 times larger.
Taking a high value of the total electron content (TEC) of
50TECU ≡ 5 · 1013cm−2, and β∗ = 0, we obtain |ηR| ≈ 0.7,
ηA = 0. The level of distortions can now be assessed by
substituting the numerical values of ηR and ηA into (21).
Although the distortions are characterized by the parameter ηR
that is not small for our choice of parameters, their impact
depends on the application.

Consider first the problem of radiometric calibration of
the instrument while in space. A typical external calibration
procedure includes corner reflectors on the ground (see [18,
Section 4.4], and also [4], [8]). Since corner reflectors don’t
reflect cross-polarizations, we are interested only in the values
of WHVVH and WVHHV of the tensor W in (14)–(15). Both
these entries are expressed via f2 in (18). Calculating the
norms of (21) as shown in (19), we obtain ‖W2‖2/‖W0‖2 ≈
3 · 10−3; we can get for this ratio even a smaller value
of ≈ 1.4 ·10−3 if we consider the energy in a single pixel and,
accordingly, restrict integration in (19) further to the domain
of |ξA| 6 π and |ξR| 6 π, see (22). Although these levels of
distortions are small by themselves, they are still comparable



to the maximum level of cross-talk between the polarimetric
channels selected for the future BIOMASS mission [15].

The situation gets more aggravated if a strongly reflect-
ing channel contaminates a weak channel. For example, a
popular scaling formula for the aboveground biomass uses
the backscattering cross-section in the HV channel as an
input, see [15]. The signal in this channel will be influenced
by the co-polarized channels with much higher reflectivity.
Accordingly, the relation between the contaminated and true
measurements of the biomass b may be expressed as

bcont

btrue
∼
(
|SHV|2 +Q(|SHH|2 + |SVV|2)

|SHV|2

)p
, (23)

where p ≈ 2.4 [15], and Q = (1/2)‖W1‖2/‖W0‖2, see (17).
In (23), we will use |SHH|2/|SHV|2 ∼ 10 for the forested areas,
see [5, Table I], and Q ≈ 2 · 10−2 according to formula (21).
This results in bcont/btrue ∼ 1.22.4 ≈ 1.5, i.e., an error of 50%.

The analysis above can be an indication that for the biomass
measurements involving high-resolution low-frequency Pol-
SAR with traditional signal processing, careful control of
ionospheric distortions is necessary. Note that the calibration
of the SAR system using images of distributed targets such
as Amazon rainforest, see, e.g., [1], [17], can only partially
alleviate this problem because the ionospheric conditions are
subject to changes. Alternatively, we can always get reliable
polarimetric measurements if we process the signal using the
PMF of (13). Indeed, for the PMF, the dominant term of ∆ϕF
is

∆ϕPMF
F = (p, z − y), (24)

where

p =
eH
R

+ 4
B cosβ∗

ω0cτ

∂|z − x (0)|
∂z

∣∣∣
z=0

(25)

(for the system described above, the first term in (25) is much
smaller than the second). The analysis carried out in [7] leads
to the following estimate:

‖W1‖2

‖W0‖2
. max

(
(p, e1)2LSA∆A, (p, e2)2cτ∆R

R

2L

)
. (26)

The terms on the right hand side of (26) are of the same
order, and each is about three orders of magnitude smaller than
that for the traditional processing. This level of distortions is
negligibly small.

VI. CONCLUSION

In SAR imaging through the magnetized ionosphere, the
Faraday rotation angle may depend on fast and slow time.
The effect on PolSAR is equivalent to the channel cross-
talk: the measurements in one polarimetric channels have
contributions from other channels. Calculations demonstrate
that in certain situations, this effect cannot be ignored. A
mitigation procedure, called the polarimetric matched filter,
is suggested; its usage lowers the level of distortions of
polarimetric reconstruction by several orders of magnitude.

REFERENCES

[1] Benjamin Brautigam, Jaime Hueso Gonzalez, Marco Schwerdt, and
Markus Bachmann. TerraSAR-X instrument calibration results and
extension for TanDEM-X. IEEE Transactions on Geoscience and
Remote Sensing, 48(2):702–715, 2010.

[2] Ramon Brcic, Alessandro Parizzi, Michael Eineder, Richard Bamler, and
Franz Meyer. Ionospheric effects in SAR interferometry: An analysis
and comparison of methods for their estimation. In Proceedings of the
2011 IEEE International Geoscience and Remote Sensing Symposium
(IGARSS’11), pages 1497–1500, Vancouver, Canada, July 2011. IEEE.

[3] K. Davies and E. K. Smith. Ionospheric effects on satellite land mobile
systems. IEEE Antennas and Propagation Magazine, 44(6):24–31,
December 2002.

[4] Anthony Freeman. SAR calibration: An overview. IEEE Transactions
on Geoscience and Remote Sensing, 30(6):1107–1121, 1992.

[5] Anthony Freeman. Calibration of linearly polarized polarimetric SAR
data subject to Faraday rotation. IEEE Transactions on Geoscience and
Remote Sensing, 42(8):1617–1624, 2004.

[6] Mikhail Gilman, Erick Smith, and Semyon Tsynkov. Transionospheric
Synthetic Aperture Imaging. Birkhäuser, Basel, 2017.

[7] Mikhail Gilman and Semyon Tsynkov. Differential Faraday rotation and
polarimetric SAR. SIAM J. Appl. Math., 78(3):1422–1449, 2018.

[8] A. Laurence Gray, Paris W. Vachon, Charles E. Livingstone, and Tom I.
Lukowski. Synthetic aperture radar calibration using reference reflectors.
IEEE Transactions on Geoscience and Remote Sensing, 28(3):374–383,
1990.

[9] Akira Ishimaru, Yasuo Kuga, Jun Liu, Yunjin Kim, and Tony Freeman.
Ionospheric effects on synthetic aperture radar at 100MHz to 2GHz.
Radio Science, 34(1):257–268, January-February 1999.

[10] T. Le Toan, S. Quegan, M. W. J. Davidson, Heiko Balzter, Ph. Paillou,
K. Papathanassiou, S. Plummer, F. Rocca, S. Saatchi, H. Shugart,
et al. The BIOMASS mission: Mapping global forest biomass to better
understand the terrestrial carbon cycle. Remote sensing of environment,
115(11):2850–2860, 2011.

[11] Jong-Sen Lee and Eric Pottier. Polarimetric Radar Imaging from Basics
to Applications. Optical Science and Engineering. CRC Press, Boca
Raton, 2009.

[12] F. J. Meyer. Performance requirements for ionospheric correction of
low-frequency SAR data. IEEE Transactions on Geoscience and Remote
Sensing, 49(10):3694–3702, October 2011.

[13] F. J. Meyer and J. B. Nicoll. Prediction, detection, and correction
of Faraday rotation in full-polarimetric L-band SAR data. IEEE
Transactions on Geoscience and Remote Sensing, 46(10):3076–3086,
October 2008.

[14] Xiaoqing Pi, Anthony Freeman, Bruce Chapman, Paul Rosen, and
Zhenhong Li. Imaging ionospheric inhomogeneities using spaceborne
synthetic aperture radar. J. Geophys. Res., 116(A4):1–13, April 2011.

[15] Shaun Quegan and Mark R Lomas. The interaction between Faraday
rotation and system effects in synthetic aperture radar measurements of
backscatter and biomass. IEEE Transactions on Geoscience and Remote
Sensing, 53(8):4299–4312, 2015.

[16] Paul A. Rosen, Scott Hensley, and Curtis Chen. Measurement and
mitigation of the ionosphere in L-band interferometric SAR data. In
Proceedings of the IEEE International Radar Conference, pages 1459–
1463, Arlington, VA, 2010.

[17] Masanobu Shimada, Osamu Isoguchi, Takeo Tadono, and Kazuo Isono.
PALSAR radiometric and geometric calibration. IEEE Transactions on
Geoscience and Remote Sensing, 47(12):3915–3932, 2009.

[18] Jakob J. van Zyl and Yunjin Kim. Synthetic aperture radar polarimetry.
John Wiley & Sons, Hoboken, NJ, 2011.


