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DIFFERENTIAL FARADAY ROTATION AND POLARIMETRIC SAR\ast 

MIKHAIL GILMAN\dagger AND SEMYON TSYNKOV\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . The propagation of linearly polarized electromagnetic waves through the Earth's
ionosphere is accompanied by Faraday rotation (FR), which is due to gyrotropy of the ionospheric
plasma in the magnetic field of the Earth. FR may cause distortions of the images taken by space-
borne polarimetric synthetic aperture radar (SAR). We show that the mechanism of those distortions
is related to the variation of the FR angle within the bandwidth of the interrogating signals sent by
the radar. This effect has not been analyzed previously in the context of SAR imaging. We also
propose a special matched filter that we call the polarimetric matched filter (PMF). The PMF helps
correct the FR-induced distortions and provides a provably superior SAR performance compared to
the case of the traditional polarimetric SAR signal processing.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . inverse scattering, scattering matrix, gyrotropy, electromagnetic waves, polariza-
tion, rotation of polarization plane, radar signal bandwidth, radar ambiguity theory, polarimetric
matched filter, Earth's ionosphere, magnetic field of the Earth

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 35B20, 35R30, 45Q05, 78A35, 78A40, 78A45, 78A46, 78A55,
78A99, 78M35, 86A22, 86A25, 94A08, 94A12

\bfD \bfO \bfI . 10.1137/17M114042X

1. Introduction. Synthetic aperture radar (SAR) is an overhead imaging tech-
nology that uses microwave radio frequencies to obtain images of the surface of the
Earth. The actual imaged quantity in SAR is referred to as the target reflectivity. In
polarimetric SAR (PolSAR), the images are obtained in several scattering channels
defined by the polarization of the incident and scattered (i.e., received) waves. In this
way, PolSAR can help derive more than one characteristic of the imaged scene, as
opposed to the case of the scalar (i.e., single-polarization) imaging. The additional
information provided by PolSAR can be utilized in applications such as classification
of the terrain and vegetation, soil moisture measurement, sea vessel detection, and
ice thickness measurement; see [14, 17, 22].

When the SAR antenna is mounted on a satellite (spaceborne SAR), the signals
it emits travel through the ionosphere on their way back and forth between the an-
tenna and the target. The ionospheric plasma distorts the propagating radar signals.
The distortions decrease as the carrier frequency of the radar increases, and for many
current spaceborne SAR systems they appear insignificant. However, certain tasks,
such as foliage and ground penetration, benefit from longer wavelengths (i.e., lower
frequencies). Therefore, in a number of contemplated spaceborne SAR missions, the
system parameters have to be chosen such that the ionospheric distortions appear
quite substantial [13, 21]. In our prior work [10, Chapter 3], we have proposed to
mitigate those distortions with the help of dual carrier probing. Other relevant pub-
lications in the literature include [16, 2, 19, 1, 15].
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DIFFERENTIAL FARADAY ROTATION AND POLARIMETRIC SAR 1423

One particular effect of transionospheric propagation, called the Faraday rotation
(FR), is especially important in the context of PolSAR because it is the effect of
rotation of the polarization plane of the emitted and scattered signals. This effect
is due to gyrotropy of the ionospheric plasma in the external magnetic field (the
magnetic field of the Earth). When the complete polarization information is available
(the so-called quad-pol imaging) and the FR angle is known, the effect of FR on
SAR can be mitigated by means of a simple linear transformation applied to the four
imaging channels, as described, e.g., in [7]. However, this approach assumes that every
part of the signal is rotated by the same angle. Yet the FR angle is a function of the
propagating frequency, and typical SAR signals have a certain bandwidth. Hence,
different frequency components of the signal will be rotated by different angles; this
effect will be called the differential Faraday rotation (dFR). In the case of linear
frequency modulated (LFM) signals, the instantaneous frequency of a signal is a
linear function of time; hence, a linearly polarized LFM signal becomes twisted as
it propagates through a magnetized plasma. As the variation of the FR angle for a
given signal approaches \pi , the polarization information gets compromised, and the
aforementioned traditional image-based correction procedure becomes inadequate.

In this work, we introduce the concept of a polarimetric matched filter (PMF),
which is a quad-pol signal processing formulation that addresses the aforementioned
twisting effect. The main novelty of the PMF is that it takes into account all polar-
ization channels at the signal processing stage, whereas in the traditional polarimetric
technique, the compensation of FR is done as postprocessing of the images in individ-
ual channels. We show that, unlike the traditional approach, the PMF can essentially
eliminate the distortions due to dFR. We also analyze the performance of the tra-
ditional (i.e., image-based) correction procedure and derive the expressions for the
resulting polarimetric error. The dFR effect on single-polarization SAR has been an-
alyzed in [10, Chapter 5]. Note that coupled processing of polarization channels has
been introduced as a means of extracting the polarimetric target information from
isotropic clutter [23]. Including FR into the SAR processor has also been proposed
in [24], although not in the context of dFR.

Section 2 provides the necessary background information used throughout this
work. Section 3 presents the analysis of dFR and its effect on radar imaging in the
simplified single-pulse framework. The full-fledged SAR geometry is considered in
section 4. In section 5, we show how our analysis of dFR appears relevant for certain
SAR applications. In doing so, we use the parameters of a hypothetical P-band
spaceborne SAR system that is strongly affected by transionospheric propagation;
see Table 1. For comparison, we also use in section 5 the parameters of the future
BIOMASS mission as presented in [13]. Table 2 provides the list of acronyms used in
this work.

Executive summary. The FR angle \varphi F is assumed to be given by formula
(2), where all the quantities are known. When the transmitted waveform is a linearly
polarized chirp as given by (11), (12), then the measure of distortions of the traditional
polarimetric imaging is given by (94), (91) and illustrated in Figure 2. In order to
reduce those distortions, the image should be formed according to (84), where the
data matrix M is given by (8), A and \chi are given by (12), tgr is introduced by (18),
and R is given by (3).

2. FR of a monochromatic wave scattered by a point target. We will
introduce the fundamentals of our discussion using the basic example of a monochro-
matic linearly polarized electromagnetic wave that propagates through a homogeneous
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1424 MIKHAIL GILMAN AND SEMYON TSYNKOV

Table 1
Typical values of the ionospheric and SAR system parameters.

Parameter Notation Value Reference
Magnitude of geomagnetic field | \bfitH 0| 0.5Gauss (2)

Typical plasma electron frequency in the ionosphere
\omega pe

2\pi 
9MHz (2)

Radar carrier frequency \omega 0
2\pi 

300MHz (11)

Pulse (chirp) duration \tau 5 \cdot 10 - 5s (12)

Bandwidth B
2\pi 

8MHz (13)

One-way distance from the antenna to the target | x| , R 1000km (38)

Total electron content in the ionosphere NH 5 \cdot 1013cm - 2 (78)
Look angle \theta 60\circ (79)
Length of synthetic aperture LSA 50km (77)

Table 2
List of acronyms.

Acronym Meaning Reference
SAR synthetic aperture radar ---
PolSAR polarimetric SAR ---
PolInSAR polarimetric SAR interferometry section 5
FR Faraday rotation (3)
dFR differential Faraday rotation (15), (19)
TEC total electron content (78)
PSF point spread function (29), (36), (48)
PMF polarimetric matched filter (25)
ISLR integrated sidelobe ratio (57), (58)
PPCM point-based polarimetric contamination metric (61)
APCM area-based polarimetric contamination metric (64)

plasma and is scattered by a point target. The time dependence for the wave field is
\propto e - i\omega t, where the frequency \omega is considered constant throughout this section. The
point source (antenna) is located at \bfitx , and the scatterer is located at \bfitz . We assume
that the scatterer reflects the electromagnetic waves in all polarimetric channels. Let
eH and eV be two unit vectors orthogonal to each other and to the direction of propa-
gation:1 (eH, eV) = 0, eV\times eH = \bfitz  - \bfitx 

| \bfitz  - \bfitx | . These unit vectors will denote the horizontal

and vertical linear polarization, respectively. For an incident electromagnetic wave
emitted by the antenna, the electric field \bfitE i is orthogonal to the propagation direc-
tion. Therefore, it can be thought of as a vector with two components: Ei

H = (eH,\bfitE 
i)

and Ei
V = (eV,\bfitE 

i), where (\cdot , \cdot ) denotes the dot product of three-dimensional vectors.
The propagation with no FR is given by

(1)

\biggl( 
Ei

H

Ei
V

\biggr) 
(t, \bfitz ) = Kei\omega R\bfitz /vph

\biggl( 
Ei

H

Ei
V

\biggr) 
(t,\bfitx ),

where R\bfitz = | \bfitz  - \bfitx | is the distance between the antenna and the target, vph is the
phase velocity of electromagnetic waves in the ionospheric plasma,2 and K is a scalar

1For the given \bfitz and \bfitx , these conditions define the vectors \bfe H and \bfe V up to a common rotation
about \bfitz  - \bfitx . If the target is a point scatterer, it is not necessary to specify these vectors any further.
Otherwise, when we have a distributed scatterer (planar or mostly planar) as in section 4, and \bfitz  - \bfitx 
is not necessarily orthogonal to the corresponding plane, then \bfe H should be chosen parallel to the
plane and \bfe V pointing from the source \bfitx toward the plane, as explained in [3, section 2.1].

2In a homogeneous ionosphere, vph is a constant that slightly exceeds the speed of light c; see
(17).
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DIFFERENTIAL FARADAY ROTATION AND POLARIMETRIC SAR 1425

that accounts for the possible signal attenuation.3

The FR is a manifestation of double circular refraction. A linearly polarized wave
impinging on a layer of anisotropic material (e.g., gyrotropic plasma) can be repre-
sented as the sum of two circularly polarized (helical) waves with opposite directions
of polarization. In the material, the latter will propagate with slightly different phase
speeds. This difference translates into a slow rotation of the polarization plane of the
original linearly polarized wave. In the case of a cold magnetized plasma, the FR
angle \varphi F is given by (see, e.g., [20, 11])

(2) \varphi F =  - R\bfitz 

2c

\omega 2
pe\Omega e cos\beta 

\omega 2
, where \omega 2

pe =
4\pi Nee

2

me
, \Omega e =  - e| \bfitH 0| 

mec
.

In (2), \omega pe and \Omega e are the electron plasma frequency and gyrofrequency, respectively,
me and  - e are the mass and charge of the electron, Ne denotes the electron number
density in the ionosphere, and \bfitH 0 is the magnetic field of the Earth. The quantity \beta 
in formula (2) is the angle between the direction \bfitz  - \bfitx and \bfitH 0. We see that \varphi F is a
function of \bfitz , but as long as we consider a given point target and a continuous wave
with a fixed frequency \omega , the FR angle \varphi F can be thought of as a constant. Until
section 4, we will also be assuming that \omega pe, \Omega e, and \beta are constant.

When the wave propagates along the external magnetic field, the direction of
FR in plasma is clockwise if looking down the propagation direction; otherwise, it is
counterclockwise. To describe the evolution of the electric field in space, we introduce
the rotation matrix R = R(\varphi F) as follows (see, e.g., [7]):

(3) R(\varphi F)
def
=

\biggl( 
cos\varphi F sin\varphi F

 - sin\varphi F cos\varphi F

\biggr) 
,

such that

(4)

\biggl( 
Ei

H

Ei
V

\biggr) 
(t, \bfitz ) = Kei\omega R\bfitz /vphR(\varphi F) \cdot 

\biggl( 
Ei

H

Ei
V

\biggr) 
(t,\bfitx )

(cf. formula (1)). If the propagation is oblique yet not normal to the magnetic field
(technically, if

\bigm| \bigm| \Omega e

2\omega 

\bigm| \bigm| \ll | cos\beta | < 1), then one can observe the additional small varia-
tions of the complex field amplitude with distance. The reason for their appearance
is the elliptical (rather than circular) polarization of obliquely propagating helical
waves. However, the ratio of semiaxes of the corresponding polarization ellipses dif-

fers from one by only about
\bigm| \bigm| \Omega e sin

2 \beta 
2\omega cos \beta 

\bigm| \bigm| (see, e.g., [11, section 11]). For the systems

that we are considering the value of
\bigm| \bigm| \Omega e

\omega 

\bigm| \bigm| \approx 5 \cdot 10 - 3 is small; see Table 1. Therefore,
the aforementioned amplitude variations can be ignored, and formula (4) can be used
the way it is.

Scattering by a point target (located at \bfitz ) is described by the matrix S that
relates the horizontal and vertical components of the incident field \bfitE i and scattered
field \bfitE s. We will be using the following indexing convention:4

(5)

\biggl( 
Es

H

Es
V

\biggr) 
(t, \bfitz ) =

\biggl( 
SHH SHV

SVH SVV

\biggr) 
\cdot 
\biggl( 
Ei

H

Ei
V

\biggr) 
(t, \bfitz ).

3The field amplitude at the point source is singular. This well-known fact is not important for
our subsequent discussion. The attenuation factor K will be disregarded after (9).

4A different indexing convention is used, e.g., in [7].
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1426 MIKHAIL GILMAN AND SEMYON TSYNKOV

The propagation of the scattered field from \bfitz back to \bfitx can be described using the
same frame of reference that involves the vectors eH and eV; this approach is called the
backward scattering alignment; see [3, section 2.1] and [7] for details. Then, similarly
to (4), we have

(6)

\biggl( 
Es

H

Es
V

\biggr) 
(t,\bfitx ) = K2e2i\omega R\bfitz /vphR(\varphi F) \cdot S \cdot R(\varphi F) \cdot 

\biggl( 
Ei

H

Ei
V

\biggr) 
(t,\bfitx ).

We see that for the two-way propagation, the FR angle doubles rather than cancels.
Suppose that the antenna emits two monochromatic signals of equal amplitude E0

in two basic linear polarizations, horizontal (H) and vertical (V):

(7)

\biggl( 
Ei

H

Ei
V

\biggr) 
(H,V)

(t,\bfitx ) = \bfitE (H,V)e
 - i\omega t, where \bfitE (H)

def
=

\biggl( 
E0

0

\biggr) 
, \bfitE (V)

def
=

\biggl( 
0
E0

\biggr) 
.

Denote the received data (i.e., the scaled reflected fields at \bfitx ) as follows:

(8)

\biggl( 
MHH

MVH

\biggr) 
(t)

def
=

1

K2E0

\biggl( 
Es

H

Es
V

\biggr) 
(H)

(t,\bfitx ) and

\biggl( 
MHV

MVV

\biggr) 
(t)

def
=

1

K2E0

\biggl( 
Es

H

Es
V

\biggr) 
(V)

(t,\bfitx ),

where the vector (Es
H, E

s
V)

T for each polarization is given by (6). Then, the data
matrix M(t) is related to the scattering matrix S by

(9) M(t) = e - i\omega (t - 2R\bfitz /vph)R(\varphi F) \cdot S \cdot R(\varphi F).

Note that the scalar K - 2 could have been incorporated into the scattering matrix S
rather than into the definition of M, thereby resolving the issue of the dependence of
attenuation on the propagation distance (i.e., on \bfitz ) when S becomes a function of \bfitz ;
see (24) in section 3.1. From here on, this scalar will be disregarded.

Equation (3) implies, in particular, that R(\varphi 1 + \varphi 2) = R(\varphi 1) \cdot R(\varphi 2). Using
this property, one can reconstruct the scattering matrix of a point scatterer from the
data (9) as follows:

(10) S = ei\omega (t - 2R\bfitz /vph)R( - \varphi F) \cdot M(t) \cdot R( - \varphi F).

As M(t) \propto e - i\omega t (see (7)--(9)), formula (10) yields S that is independent of t, as
expected. It is worth noting that the reconstruction formula (10) remains valid re-
gardless of the value of the FR angle, including those cases where the received field
is orthogonal or nearly orthogonal to the emitted field, i.e., \varphi F \approx \pi n

2 + \pi 
4 , n \in \BbbZ .

As far as the potential applications are concerned, formula (10) represents an ide-
alized situation: a point scatterer at a known distance from the antenna. Besides the
distance R\bfitz , the signal processing procedure M  - \rightarrow S requires knowledge of the pa-
rameters of the propagation medium, in particular, the electron plasma frequency \omega pe

and the magnetic field of the Earth \bfitH 0. In transionospheric SAR imaging, these pa-
rameters can be estimated from the measurements of the total electron content (TEC;
see definition (78) in section 4) combined with geomagnetic data [10]. Hereinafter, we
assume that these parameters are available.

3. Single-pulse imaging. In this section, we introduce the polarimetric matched
filter (PMF) in a simplified setting where the target is probed by just one radar pulse.
This setting allows us to analyze, with few exceptions, the effect of FR on SAR with-
out having to address the complications due to the three-dimensional geometry. (The
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DIFFERENTIAL FARADAY ROTATION AND POLARIMETRIC SAR 1427

latter will be considered in section 4.) In particular, for a single probing signal, the
imaged area can be represented by an interval of a straight line, and the antenna can
be located on the same line. This line, which we also take as the coordinate axis, is
assumed parallel to the external magnetic field so that cos\beta = 1 in formula (2). In
doing so, we place the origin in the target area and denote the scalar coordinates of
the antenna, image, and target by x, y, and z, respectively. The direction of the axis
is taken from the antenna to the target, so x < y and x < z.

To probe the target, we will emit a single pulse in each of the two basic linear
polarizations from the location x = const and process the returns received in two
polarizations as well. This yields a one-dimensional polarimetric image. In SAR
terms, it corresponds to quad-pol signal processing in fast time only. For simplicity,
the propagation medium, i.e., the ionosphere, is still considered homogeneous in this
section. Moreover, the plasma electron frequency and the gyrofrequency (see formula
(2)) needed for the construction and application of the PMF are assumed known.
A nonhomogeneous medium, as well as a realistic three-dimensional geometry that
requires a sequence of pulses emitted from different antenna locations (i.e., a full-
fledged SAR), will be considered in section 4.

3.1. PMF. Instead of the monochromatic waves (7), the radar emits narrow-
band interrogating pulses. The most commonly used are linear frequency modulated
(LFM) pulses, also known as chirps:

(11)

\biggl( 
Ei

H

Ei
V

\biggr) 
(H,V)

(t, x) = \bfitE (H,V)A(t)e - i\omega 0t,

where

(12) A(t) = \chi \tau (t)e
 - i\alpha t2 , \chi \tau (t) =

\Biggl\{ 
1, t \in [ - \tau /2, \tau /2],

0 otherwise.

In (11), \omega 0 is the carrier frequency, \alpha is the chirp rate, and \chi \tau is the indicator
function for a pulse of duration \tau . One can derive the expression for the instantaneous
frequency by differentiating (11) with respect to t inside the support of A(t):

(13) \omega (t) = \omega 0 + 2\alpha t = \omega 0 +
B

\tau 
t, | t| \leqslant \tau 

2
,

where B = 2\alpha \tau > 0 is the chirp bandwidth.5 For a narrowband signal, we have
B \ll \omega 0.

It is known that when a narrowband pulse propagates through a dispersive medium,
the pulse envelope moves with the group velocity, while the carrier oscillation propa-
gates with the phase velocity. The expression for the pulse waveform can be obtained
by Fourier transforming the initial waveform, propagating each individual harmonic
with the corresponding phase velocity, and then applying the inverse Fourier trans-
form [10, section 3.2]. For the case of a magnetized plasma, the FR should also be
taken into account. The propagation of LFM signals through a magnetized plasma
was considered in [9] and [10, section 5.2]. In this case, the propagation formula (4)
is replaced with

(14)

\biggl( 
Ei

H

Ei
V

\biggr) 
(H,V)

(t, z) = A\delta (t - Rz/vgr(\omega 0))e
 - i\omega 0(t - Rz/vph(\omega 0))R( \u \varphi F) \cdot \bfitE (H,V),

5The quantity B in (13) is the bandwidth expressed in radians per second. In Table 1, the
bandwidth B/2\pi is given in Hz.
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1428 MIKHAIL GILMAN AND SEMYON TSYNKOV

where \bfitE (H) and \bfitE (V) are introduced in (7), while the attenuation coefficient K has
been dropped per the discussion right after (9). The structure of the matrix R( \u \varphi F)
in (14) is given by (3) with

(15) \u \varphi F =  - Rz

2c

\omega 2
pe\Omega e

\omega 2(t - Rz/vgr(\omega 0))
.

A\delta in (14) represents a new scalar pulse envelope with the modified chirp rate and
duration (see also [10, section 3.2]):

(16) A\delta (t) = \chi \tau  - \delta \tau (t)e
 - i(\alpha +\delta \alpha )t2 , \delta \tau =

B

\omega 0

Rz

c

\omega 2
pe

\omega 2
0

, \delta \alpha = \alpha 
\delta \tau 

\tau 
,

where Rz = | z  - x| \equiv z  - x, and vph,gr denote the phase and group velocities in
plasma, respectively:

(17) vph =
\sqrt{} 

\omega 2
pe + k2c2/k, vgr = kc2/

\sqrt{} 
\omega 2
pe + k2c2.

The quantity k in formulae (17) is the wavenumber (see, e.g., [11]): k \equiv k(\omega ) =\sqrt{} 
\omega 2  - \omega 2

pe/c = 2\pi /\lambda . Note that the expressions for vph and vgr contain no terms

associated with the external magnetic field. As shown in [10, section 5.1], one can
use these simplified phase and group velocities because for the typical ionospheric
and radar parameters of interest (see Table 1) we have \omega pe \ll \omega 0 and | \Omega e| \ll \omega pe.
Moreover, the velocities vph and vgr do not vary in space, because the ionosphere
is currently assumed homogeneous, i.e., \omega pe = const. Thus, the only effect of the
external magnetic field on signal propagation in formula (14) is the FR described by
the factor R( \u \varphi F), where, unlike in (2), the angle \u \varphi F is no longer constant; see (15).
The instantaneous frequency \omega = \omega (t) in the expression (15) for \u \varphi F is given by (13).
At the same time, we assume that the scattering formula (5) remains unchanged,
which means, in particular, that the scattering is dispersionless, i.e., the matrix S
does not depend on the frequency.

Introduce the two-way phase and group retarded times as

(18) tph,gr(t, z)
def
= t - 2Rz/vph,gr(\omega 0),

and define (cf. formula (15))

(19) \varphi F(t, z) =  - Rz

2c

\omega 2
pe\Omega e

\omega 2(tgr(t, z))
\equiv  - Rz

2c

\omega 2
pe\Omega e

\omega 2(t - 2Rz/vgr(\omega 0))
.

The dependence of \varphi F on the signal time described by formula (19) will be called the
differential Faraday rotation (dFR). Note that the definitions of tph,gr(t, z) correspond
to the round-trip retardation (phase and group), while the FR angle \varphi F(t, z) in (19)
is only one half of the full round-trip FR angle. This notation will prove useful for
future derivations. In particular, consider the scattering by a point target located at
z and characterized by the matrix S (as defined by formula (5)). The signal received
at the antenna is affected by the two-way transionospheric propagation subject to
FR and the scattering event at the target, which occurs exactly at the middle of the
round trip. Given that \varphi F(t, z) of (19) equals one half of the round-trip FR angle,
one can conveniently represent the received signal as follows (cf. formula (9)):

(20) M(t) = e - i\omega 0tph(t,z)A2\delta (tgr(t, z))R(\varphi F(t, z)) \cdot S \cdot R(\varphi F(t, z)),
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DIFFERENTIAL FARADAY ROTATION AND POLARIMETRIC SAR 1429

where

(21) A2\delta (t) = \chi \tau  - 2\delta \tau (t)e
 - i(\alpha +2\delta \alpha )t2 .

In (21), A2\delta is the modified pulse envelope with twice the propagation effect on the
chirp rate and duration compared to that in (16). Taking into account that whenever
A2\delta (t) \not = 0, A - 1

2\delta (t) \equiv A2\delta (t) with the overbar denoting complex conjugate, one can
easily invert (20) and obtain a counterpart of (10) for an LFM signal:

(22) S = ei\omega 0tph(t,z)A2\delta (tgr(t, z))R( - \varphi F(t, z)) \cdot M(t) \cdot R( - \varphi F(t, z)).

This relation can be verified directly for any t such that | tgr(t, z)| \leqslant (\tau  - 2\delta \tau )/2
by substituting M(t) of (20) into the right-hand side of (22), using R(\varphi 1 + \varphi 2) =
R(\varphi 1) \cdot R(\varphi 2), and arriving at the identity S = S. The latter means, in particular,
that the right-hand side of (22) does not depend on t.

The scattering matrix S can be reconstructed from the data M(t) taken at any
given moment of time t within the interval | tgr(t, z)| \leqslant (\tau  - 2\delta \tau )/2 where (22) is valid.
One can also choose the expression that utilizes the entire interval; the result will be
called the image and denoted by I:

(23) I =

\int 
ei\omega 0tph(t,z)A2\delta (tgr(t, z))R( - \varphi F(t, z)) \cdot M(t) \cdot R( - \varphi F(t, z)) dt.

Note that there is no dependence of the image given by (23) on the coordinate; this
will change in (25). The integration limits in (23) are determined by the indicator
function in the definition of A2\delta (tgr(t, z)); see (21). As the integrand in formula (23)
is constant, the integral reduces to I = \tau \prime \prime S, where \tau \prime \prime = \tau  - 2\delta \tau is the length of the
integration interval (equal to the duration of the received chirp). The direct propor-
tionality between the image I and the unknown quantity S is a key desired property
of the polarimetric remote sensing system. Similarly to the exact reconstruction for-
mula (10), it is achieved because the location z of the point scatterer is known ahead
of time, and hence the integrand in (23) appears constant.

Let us now consider a more general imaging scenario, where instead of the point
scatterer at a given fixed location we consider a distributed target. The reflectivity of
the latter is described by the scattering matrix S = S(z), which is defined according
to the same indexing convention as in (5) and also becomes a function of the spatial
coordinate z. Then, the received radar signal can be represented as follows (cf. formula
(20)):

(24) M(t) =

\int 
e - i\omega 0tph(t,z)A2\delta (tgr(t, z))R(\varphi F(t, z)) \cdot S(z) \cdot R(\varphi F(t, z)) dz.

In formula (24), we disregard the multiple scattering (see [10, Chapter 7] for more
details).

Our goal is to reconstruct S(z) given M(t). The pointwise reconstruction for-
mula (23) can be extended to the case of a distributed target as follows. First, we
evaluate S according to (22) for every moment of time t, using the reference vari-
able y instead of z, and then integrate the result over t as in (23). This yields the
polarimetric image I(y):

(25) I(y) =

\int 
ei\omega 0tph(t,y)A2\delta (tgr(t, y))R( - \varphi F(t, y)) \cdot M(t) \cdot R( - \varphi F(t, y)) dt.
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1430 MIKHAIL GILMAN AND SEMYON TSYNKOV

In the scalar case (where R is the identity matrix), formula (25) applies the matched
filter

(26) ei\omega 0tph(t,y)A2\delta (tgr(t, y))

to the radar data. One can show that the matched filter (26) provides the best signal-
to-noise ratio in the mean-square sense (i.e., in the sense of L2) when the inversion of
the data is done in the presence of noise; see, e.g., [4, section 4.1]. In the full vector
case, formula (25) defines the polarimetric matched filter (PMF), which will be at the
center of our study.

Note that in the mapping M(t) \mapsto \rightarrow I(y) rendered by formula (25), the FR angle \varphi F

depends on the fast time t. To apply the PMF, one obviously needs to know this
dependence explicitly. It is given by formula (19), and the corresponding parameters
that characterize the ionosphere and the magnetic field of the Earth, namely, the
plasma electron frequency \omega pe and gyrofrequency \Omega e (see (2)), are assumed available.

The integration limits in (25) are determined by suppA2\delta (tgr(t, y)). Substi-
tuting (24) and changing the order of integration, we obtain the imaging operator
S(z) \mapsto \rightarrow I(y):

(27) I(y) =

\int 
dz ei\Phi 

\int 
A2\delta (tgr(t, y))A2\delta (tgr(t, z))R(\Delta \varphi F) \cdot S(z) \cdot R(\Delta \varphi F) dt,

where

(28) \Phi =  - 2k0(y  - z), k0 = k(\omega 0), \Delta \varphi F \equiv \Delta \varphi F(t, y, z) = \varphi F(t, z) - \varphi F(t, y).

The kernel of the imaging operator (27), called the point spread function (PSF)
and denoted by W , can be defined using tensor notation:

(29) Wiklj(y, z) = ei\Phi 
\int 

A2\delta (tgr(t, y))A2\delta (tgr(t, z))Rik(\Delta \varphi F)Rlj(\Delta \varphi F)dt,

so that

(30) Iij(y) =
\sum 
kl

\int 
Wiklj(y, z)Skl(z) dz, i, j, k, l \in \{ H,V\} .

In the case of single-polarization imaging, W is a scalar function of two spatial
arguments, y and z (see, e.g., [10, Chapter 2]). Ideally, one would want to have
W \propto \delta (y  - z), in which case the imaging operator provides the exact reconstruction.
Due to the various limitations (e.g., a given fixed bandwidth), this cannot be achieved
in practice, and real imaging systems are always subject to certain imperfections, such
as finite resolution and the presence of sidelobes.

In the polarimetric case, W is a 2\times 2\times 2\times 2 tensor whose entries are functions of
the same two arguments y and z. The ideal coordinate dependence of each individual
(nonzero) entry of this tensor would still be Wiklj \propto \delta (y  - z). Yet for a polarimetric
system, there is another desired property. It has to do with the adequate representa-
tion of target reflectivities in different polarimetric channels relative to one another.
We will call this property the polarimetric fidelity. In terms of the PSF, the higher the
fidelity, the closer the desired tensor structure of the PSF to the one that keeps the
scattering channels completely separate, i.e., Wiklj \propto \delta ik\delta lj . Indeed, all other nonzero
entries of the tensor would contaminate the image in one channel by contributions
due to other scattering channels. We will show that in the presence of FR, there will
always be some level of contamination. Our goal is to obtain quantitative estimates
of the contamination and propose an approach to its minimization.
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3.2. PMF versus traditional polarimetry. At this point, it will be instru-
mental to compare the PMF procedure given by (25) with the traditional polarimetry
in the presence of FR (see, e.g., [14, section 10.4]). The latter usually consists of two
stages. At the first stage, the scalar matched filter (26) is applied to each channel
separately, which yields the intermediate image matrix:

(31) Ypq(y) =

\int 
ei\omega 0tph(t,y)A2\delta (tgr(t, y))Mpq(t) dt, pq \in \{ HH,HV,VH,VV\} .

At the second stage, the rotation matrices R( - \varphi \ast 
F) are applied to the intermediate

image:

(32) Itrad(y) = R( - \varphi \ast 
F) \cdot Y(y) \cdot R( - \varphi \ast 

F).

The rotation angle \varphi \ast 
F used in formula (32) is constant, as if the signal were monochro-

matic. Substituting (24) and (31) into (32), one can show that the imaging operator
in the case of traditional polarimetry is still given by (27), yet the expression (28)
for \Delta \varphi F changes:

(33) \Delta \varphi F = \varphi F(t, z) - \varphi \ast 
F.

The quantity \varphi \ast 
F in formula (33) can be thought of as an estimate of the FR angle for

a certain distance R\ast = z\ast  - x, taken at \omega = \omega 0:
6

(34) \varphi \ast 
F =  - 

\omega 2
pe\Omega e

2c

R\ast 

\omega 2
0

,

where z\ast is a point in the target area. Because of the variation of the actual FR an-
gle with frequency (i.e., dFR), the conventional polarimetric reconstruction (31), (32)
involves a filter mismatch, which can be demonstrated by applying (27) to a point scat-
terer S(z) = S0\delta (z  - z0) and considering the resulting polarimetric image at y = z0.
Indeed, for the PMF case we will have a fully matched filter leading to I(z0) = \tau \prime \prime S0

(as was the case for (23)), because the scalar part A2\delta ( \cdot )A2\delta ( \cdot ) cancels out and
the rotational part will consist of identity matrices due to (28): \Delta \varphi F(t, z0, z0) \equiv 0.
However, the expression (33) for \Delta \varphi F does not, generally speaking, turn into zero for
all t even when y = z0 = z\ast . Hence, the rotational part of the imaging operator (27)
cannot be fully compensated for. Therefore, some mismatch remains, and the propor-
tionality relation between I(z0) and S0 does not hold (one may, e.g., obtain a nonzero
entry of the matrix I(z0) that would correspond to a zero entry of the reflectivity
matrix S0). In section 3.4, we will build the PSF for the traditional polarimetric
processing and analyze the resulting distortions.

3.3. Performance estimate for the PMF. Let us introduce an alternative
and, perhaps, more convenient representation of the imaging operator (27). It is
obtained by recasting the 2\times 2 matrices I and S as four-dimensional vectors:

(35) \bfitI (y) =

\int 
W(y, z) \cdot \bfitS (z) dz,

6Note that the intermediate image (31) offers a venue for estimating the FR angle \varphi \ast 
F from the

received data; see, e.g., [6]. However, only the values of \varphi \ast 
F mod \pi /4 (or \varphi \ast 

F mod \pi /2 when some
auxiliary data are available) can be reconstructed in this way. Although this approach does not
take into account dFR, the resulting information appears sufficient for implementing the procedure
described by (31), (32). Its outcome can be useful as long as dFR is small, as will be shown in
section 3.4. However, the function \varphi F(t, y) needed for the PMF approach (25) cannot, generally
speaking, be reconstructed using this procedure. Indeed, for a P-band system with the parameters
summarized in Table 1, the estimates of the FR angle yield \varphi F \gg 1.
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1432 MIKHAIL GILMAN AND SEMYON TSYNKOV

where \bfitI (y) = (IHH, IHV, IVH, IVV)
T and \bfitS (y) = (SHH, SHV, SVH, SVV)

T. In formula
(35), W is a 4\times 4 matrix:

(36) W(y, z) = ei\Phi 
\int 

A2\delta (tgr(t, y))A2\delta (tgr(t, z))V(\Delta \varphi F) dt,

where

(37) V(\phi )
def
=

\left(    
cos2 \phi  - cos\phi sin\phi cos\phi sin\phi  - sin2 \phi 

cos\phi sin\phi cos2 \phi sin2 \phi cos\phi sin\phi 
 - cos\phi sin\phi sin2 \phi cos2 \phi  - cos\phi sin\phi 
 - sin2 \phi  - cos\phi sin\phi cos\phi sin\phi cos2 \phi 

\right)    .

The ideal form of the matrices V(\Delta \varphi F) and W(y, z) is diagonal, which is achieved
if \Delta \varphi F = 0. However, in the presence of FR this condition does not hold unless y = z;
see (28).

Recalling that the origin of the coordinate system is in the target area, we intro-
duce

(38) \varphi F0
=  - | x| 

2c

\omega 2
pe\Omega e

\omega 2
0

as a scale of the total FR angle. We also assume that | y| \ll | x| and | z| \ll | x| , which
is typical for spaceborne SAR imaging. The calculation of \Delta \varphi F = \varphi F(t, z) - \varphi F(t, y)
requires some caution because the leading term \varphi F0

cancels, while | y  - z| /| x| \ll 1.
For the expression

(39) \Delta \varphi F = \varphi F(t, z) - \varphi F(t, y) \approx 
\partial \varphi F(t, z)

\partial z
\cdot (z  - y)

we have from (19)

(40)
\partial \varphi F(t, z)

\partial z
=  - 

\omega 2
pe\Omega e

2c

\partial 

\partial z

Rz

\omega 2(tgr(t, z))
=  - 

\omega 2
pe\Omega e

2c\omega 2

\Bigl( 
1 + 4

Rz

vgr(\omega 0)\tau 

B

\omega 

\Bigr) 
,

where we took into account that \partial Rz/\partial z = 1. The dependence of the right-hand side
of (40) on t is via \omega (tgr(t, z)). However, as the variation of \omega , i.e., the bandwidth, is
small compared to the central carrier frequency, B \ll \omega 0, the leading term of (39) is
obtained by replacing \omega with \omega 0 in (40). For similar reasons, we replace Rz with | x| 
in (40) and get

(41) \Delta \varphi F \approx \partial \varphi F(0, 0)

\partial z
\cdot (z  - y) =  - (z  - y)

2c

\omega 2
pe\Omega e

\omega 2
0

\Bigl( 
1 + 4

| x| 
vgr(\omega 0)\tau 

B

\omega 0

\Bigr) 
.

We will show below that if we use expression (41) for \Delta \varphi F, formula (36) reduces
to

(42) W(y, z) = V
\bigl( 
\Delta \varphi F(\omega 0)

\bigr) 
ei\Phi 

\int 
A2\delta (tgr(t, y))A2\delta (tgr(t, z)) dt.

The integral on the right-hand side of (42) is encountered in the case of the scalar
imaging as well. It can be evaluated by symmetrizing the integration interval (see
[10, Chapters 2 and 3] for more details) and changing the integration variable t \mapsto \rightarrow \~t:

(43) \~t = t - Ry +Rz

vgr(\omega 0)
= t - y + z

vgr(\omega 0)
 - 2| x| 

vgr(\omega 0)
, T =

Ry  - Rz

vgr(\omega 0)
=

y  - z

vgr(\omega 0)
.
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For simplicity, we will henceforth neglect the effect of ionospheric dispersion on
the signal envelope given by (16) (see also (21)), i.e., drop the small corrections
| \delta \alpha | /\alpha = | \delta \tau | /\tau \lesssim 10 - 3 to the chirp rate and duration; see [8] and [10, section 3.2].
For the scalar case, when the corrections to the chirp parameters are incorporated
into the filter as in (26), it has been shown in [10, section 3.11] that imaging with the
corrected filter in the presence of dispersion7 is essentially equivalent to the standard
matched filter ei\omega 0(t - 2Ry/c)A(t - 2Ry/c) for dispersionless propagation. While a sim-
ilar analysis for the polarimetric case may require additional attention, hereafter we
will rather concentrate on the dFR effects.

To show that (42) indeed holds, we will use A(t) of (11) instead of A2\delta (t) defined
in (21) and simplify the scalar part of the integrand in (36) (which is also the entire
integrand in (42)) as follows:

(44) A(tgr(t, y))A(tgr(t, z)) = e - 4i\alpha T \~t \equiv e - 2i\xi \~t/\tau , where \xi = BT = B
y  - z

vgr(\omega 0)
.

In (44), | \~t| \leqslant \tau /2  - | T | . Compared to (44), the dependence of V(\Delta \varphi F) in (36) on
\~t (or, equivalently, t; see (43)) is slow. To show this, we take the time derivative of
expression (28) and linearize the result with respect to (y  - z), as done in (39)--(41),
to obtain

(45)
\partial \Delta \varphi F

\partial \~t
\approx 2

\xi 

\tau 

\biggl[ 
\varphi F0

vgr
| x| \omega 0

\biggl( 
1 + 6

| x| 
vgr(\omega 0)\tau 

B

\omega 0

\biggr) \biggr] 
.

The quantity in the square brackets on the right-hand side of (45) is much smaller
than one. Hence, in the presence of the factor (44) under the integral in (36), we can
disregard the dependence of V(\Delta \varphi F) (see (37)) on the integration variable t. This
justifies the use of expression (41) for \Delta \varphi F, so that (36) is reduced to (42).

We have suppA(tgr(t, y))
\bigcap 
suppA(tgr(t, z)) \not = \emptyset as long as \tau  - 2| T | \geqslant 0, or

| \xi | \leqslant B\tau /2. Performing the integration in (42), we introduce (see [10, section 2.4] for
more details)
(46)

F (B\tau )(\xi ) = \chi B\tau (\xi )
1

\tau 

\int \tau /2 - | T | 

 - \tau /2+| T | 
e - 2i\xi \~t/\tau d\~t = \chi B\tau (\xi )

\biggl( 
1 - 2| \xi | 

B\tau 

\biggr) 
sinc

\biggl[ 
\xi 

\biggl( 
1 - 2| \xi | 

B\tau 

\biggr) \biggr] 
,

where sinc \xi 
def
= sin \xi /\xi and the indicator function \chi is defined in (12). Then,

(47) W(y, z) = V(\Delta \varphi F)e
i\Phi \tau F (B\tau )(\xi ) \equiv V(\Delta \varphi F)W

(B\tau )(\xi ),

where we have defined the scalar PSF as

(48) W (B\tau )(\xi )
def
= \tau ei\Phi F (B\tau )(\xi ).

The function W (B\tau )(\xi ) given by (48), which is a common factor in the expressions
for all polarimetric channels, can indeed be interpreted as the PSF for single-channel
imaging. It would relate a scalar image I(y) to a scalar reflectivity function S(z)
via a scalar counterpart of (35) (or (30)). Typically, for high-resolution imaging
the compression ratio of the chirp is high: B\tau \gg 1. Then, for | \xi | \ll B\tau we can

7This filter is the same as the one that appears in the scalar part of the integrand on the right-
hand side of (25).
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replace
\bigl( 
1 - 2| \xi | /(B\tau )

\bigr) 
in (46) with one. Accordingly, the functions F (B\tau )(\xi ) of (46)

and W (B\tau )(\xi ) of (48) simplify to

(49) \scrF (\xi )
def
=

1

\tau 

\int \tau /2

 - \tau /2

e - 2i\xi \~t/\tau d\~t =

\int 1/2

 - 1/2

e - 2i\xi udu = sinc \xi 

and

(50) \scrW (\xi )
def
= \tau ei\Phi \scrF (\xi ) \equiv \tau ei\Phi sinc \xi ,

respectively. The main lobe of the scalar PSF \scrW (\xi ) given by (50) corresponds to the
following interval of its argument: | \xi | \leqslant \pi . Equivalently, we have

(51) | Ry  - Rz| \equiv | y  - z| \leqslant \Delta R \equiv \pi c

B
,

where \Delta R is called the resolution.8 The use of \scrW instead of W (B\tau ) is justified for
the main lobe of the PSF because | \xi | \leqslant \pi implies | \xi | \ll B\tau (see [10, section 2.4] for
details).

Let us now introduce

(52) \eta =  - \varphi F0

2B

\omega 0
,

where \varphi F0 is given by (38). In section 3.4, it will be shown (see, in particular,
formula (70)) that it is the parameter \eta of (52) that controls the magnitude of the
dFR effect in the case of traditional polarimetric SAR processing. In the meantime,
analyzing the last factor on the right-hand side of (41) and taking the typical values
from Table 1, we notice that 4| x| B

\big/ \bigl( 
vgr(\omega 0)\tau \omega 0

\bigr) 
\gtrsim 1. For future convenience, let us

also recast \Delta \varphi F of (41) as

(53) \Delta \varphi F =
2C\tau 

B\tau 
\eta \xi , where C\tau = 1 +

\omega 0

4B

vgr(\omega 0)\tau 

| x| 
= \scrO (1).

The 4 \times 4 matrix W given by (36), (37) has only three different entries (up to the
sign):

(54) W =

\left(    
W0  - W1 W1  - W2

W1 W0 W2 W1

 - W1 W2 W0  - W1

 - W2  - W1 W1 W0

\right)    ,

where

W0(\xi , \eta ) = cos2
\biggl( 
2C\tau 

B\tau 
\eta \xi 

\biggr) 
W (B\tau )(\xi ),(55a)

W1(\xi , \eta ) = cos

\biggl( 
2C\tau 

B\tau 
\eta \xi 

\biggr) 
sin

\biggl( 
2C\tau 

B\tau 
\eta \xi 

\biggr) 
W (B\tau )(\xi ),(55b)

W2(\xi , \eta ) = sin2
\Bigl( 2C\tau 

B\tau 
\eta \xi 

\Bigr) 
W (B\tau )(\xi ),(55c)

8In the context of SAR, the quantity \Delta R is specifically referred to as the range resolution. Note
that the expression on the right-hand side of (51) contains the speed of light c rather than the group
velocity vgr(\omega 0) that helps define \xi in (44). This simplification is possible because for the typical
parameters of interest given in Table 1 the difference between the two velocities is small (see [10,
section 3.8] for further details).
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DIFFERENTIAL FARADAY ROTATION AND POLARIMETRIC SAR 1435

and \xi is proportional to (y  - z); see (44). The explicit dependence of the PSF on \eta 
that we have introduced in (55) will later facilitate the comparison of the PMF with
traditional polarimetric SAR processing. For the typical parameters given in Table 1,
we have | \eta | \lesssim 1. Therefore, within the main lobe of the PSF \scrW (\xi ) of (50), | \xi | \leqslant \pi ,
the argument of the trigonometric functions in (55) is small, so the following relations
hold:

W0 \approx \scrW and | Wp| = \scrO 
\bigl( 
\tau \cdot (B\tau ) - p

\bigr) 
, p = 0, 1, 2.

In particular, we see that the image of a point scatterer in the vicinity of its maximum
is insignificantly affected by FR (because B\tau \gg 1).

To provide a quantitative assessment of polarimetric contamination, let us first
recall some key measures of radar performance in the single-polarization case. To do
so, we write down the scalar counterpart of (35):

(56) I(y) =

\int 
W (y, z)S(z)dz,

where W (y, z) = \scrW (\xi ) is given by (50). As has been mentioned previously (see the
discussion at the end of section 3.1), we would ideally want the PSF in (56) to be
equal to the \delta -function, W (y, z) = \delta (y  - z), in which case the image I(y) would
coincide with the target reflectivity S(z). In reality, this cannot be expected, and it
is therefore important to be able to quantify the difference between the actual PSF
and the corresponding \delta -function. One of the commonly used metrics is the width of
the main lobe of \scrW (\xi ), i.e., the resolution size \Delta R; see (51). To characterize the role
of the sidelobes, i.e., those y for which | y  - z| > \Delta R, one can employ the integrated
sidelobe ratio (ISLR). ISLR is defined as the ratio of the power in the sidelobes of
a PSF to that in its main lobe, and is usually measured in decibels (see, e.g., [5,
section 2.8]). For the simplified PSF \scrW (\xi ) defined in (50), the main lobe is given
by | \xi | \leqslant \pi , and it can be shown that

(57) ISLR(\scrW ) = 10 log10

\Biggl[ \biggl( \int 
| \xi | >\pi 

| \scrW (\xi )| 2 d\xi 
\biggr) \biggl( \int 

| \xi | \leqslant \pi 

| \scrW (\xi )| 2 d\xi 
\biggr)  - 1

\Biggr] 
.

Given that \scrW (\xi ) \propto sinc \xi in (50), the right-hand side of formula (57) evaluates to
approximately  - 9.68dB. This means that about 90\% of the total power of \scrW is
contained in its main lobe. In other words, the ISLR basically shows how well defined
the central peak is compared to the background given by sidelobes. As sidelobes can
be thought of as ``spreading,"" one can also say that ISLR indicates to what extent a
given point source may adversely affect other areas of the image. The ISLR is of key
importance for the analysis of distributed radar targets.

To define the ISLR for a more general PSF W (B\tau )(\xi ) of (48), we first notice that

its main lobe is given by | \xi (1 - 2| \xi | 
B\tau )| \leqslant \pi ; see (46). For B\tau \gg 1, this is approximately

equivalent to | \xi | \leqslant \pi + 2\pi 2

B\tau , and the integration intervals in the definition of ISLR
should, technically speaking, be changed accordingly. However, while this new interval

of \xi is not the same as | \xi | \leqslant \pi , it is very close to | \xi | \leqslant \pi because 2\pi 2

B\tau \ll \pi (see [10,

section 2.4] for more details). As the value of | W (B\tau )(\xi )| 2 in the vicinity of \xi = \pi is
also small, one can expect that the effect of changing the integration interval on the
resulting value of ISLR will be negligible. As such, hereafter we will take | \xi | \leqslant \pi as
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1436 MIKHAIL GILMAN AND SEMYON TSYNKOV

the definition of the main lobe of W (B\tau ). This yields9

(58)

ISLR(W (B\tau ))
def
= 10 log10

\Biggl[ \biggl( \int 
| \xi | >\pi 

| W (B\tau )(\xi )| 2 d\xi 
\biggr) \biggl( \int 

| \xi | \leqslant \pi 

| W (B\tau )(\xi )| 2 d\xi 
\biggr)  - 1

\Biggr] 
.

As for the matrix PSF W given by (54), its diagonal entry W0 differs from
W (B\tau )(\xi ) of (48) by the factor cos2( \cdot ); see (55a). This factor is equal to 1 if \eta = 0,
but one can show that for \eta varying within | \eta | \leqslant 2.5, the corresponding value of
ISLR(W0) defined as in (58) will exhibit only insignificant variations---by no more
than 0.1dB. Hence, about 90\% of the total power of W0 is contained in its main lobe
as well. It should be noted, though, that in real systems the sidelobes (and, hence,
the ISLR) are affected by several additional factors such as the antenna radiation
pattern. On the other hand, the ISLR can be lowered, e.g., by introducing amplitude
windowing in the filter (26); see, e.g., [5, section 2.6]. The effect of windowing will
not be considered in the current paper.

In the case of polarimetric imaging, the cross-channel contamination presents an
additional source of image distortions, beyond the finite (nonzero) resolution and the
spreading characterized by ISLR. This contamination manifests itself through the
off-diagonal entries of the matrix W of (54). Indeed, if W were diagonal, then the
image in each of the four polarization channels would have been characterized by the
scalar PSF W0 of (55a) completely independently of the three remaining channels.
Yet in reality a more complex scenario transpires where the radar performance in a
given channel is affected by contributions from all other channels.

To quantify the cross-channel contamination, we need to compare the magnitude
of the off-diagonal entries of W relative to that of its diagonal entries. To do so, let us

first introduce D
def
= diagW = diag\{ W0,W0,W0,W0\} . Then, the relative magnitude

of the off-diagonal entries can be characterized by the quantity

(59) \| W  - D\| \cdot \| D\|  - 1
,

where \| . . . \| is an appropriate norm on the space of 4\times 4 matrices. As all norms on
linear spaces of finite dimension are equivalent, we can choose one that would be easy
to evaluate. Hereafter, we will be using the Frobenius norm, which is the l2 norm of
a 4\times 4 matrix interpreted as a vector with 16 components; see, e.g., [12, Chapter 5].

However, when evaluating the norms in (59), one also needs to take into account
that the entries of W (and D) are functions rather than plain numbers; see formulae
(55). Therefore, the quantity (59) itself becomes a function of the argument \xi , whereas
\eta remains a parameter that characterizes the dFR effect; see (52). Accordingly, to
provide a comprehensive measure of the cross-channel contamination, we integrate
with respect to \xi and replace (59) with

(60)

\biggl( \int 
\| W  - D\| 2d\xi 

\biggr) \biggl( \int 
\| D\| 2d\xi 

\biggr)  - 1

=

\biggl( \int \bigl( 
2| W1(\xi , \eta )| 2 + | W2(\xi , \eta )| 2

\bigr) 
d\xi 

\biggr) \biggl( \int 
| W0(\xi , \eta )| 2d\xi 

\biggr)  - 1

.

9For B\tau = 2\pi \cdot 400 as in Table 1, the right-hand side of (58) evaluates to roughly  - 9.7dB. The
difference between this value and that in (57) is due to a finite support of W (B\tau ), while the effect
of changing the integration limits in (58) from | \xi | = \pi to the actual boundaries of the main lobe
of W (B\tau ) would be even smaller.
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DIFFERENTIAL FARADAY ROTATION AND POLARIMETRIC SAR 1437

For future convenience, we are using the square of the Frobenius norm in formula (60)
rather than the plain norm as in (59). The right-hand side of (60) was obtained by
taking into account the actual structure of the matrix W of (54). The quantity (60)
appears at least superficially similar to the one under the logarithm in the definition
of ISLR; see (57) and (58).

The integration limits are not yet specified explicitly in formula (60). This can
be done in a variety of ways, which allows us to introduce (at least) two somewhat
different measures of the cross-channel contamination; see sections 3.3.1 and 3.3.2.

3.3.1. Point-based polarimetric contamination metric. First, we construct
a metric that applies to point targets. In this case, one may be interested in quan-
tifying the distortions in a given polarimetric channel due to the contributions from
the other channels at the same point, as opposed to the sidelobes of the same channel
that characterize the spreading. Then, the integration in (60) shall be performed over
the main lobe of the diagonal entries of the PSF, because it is this lobe that yields the
``useful"" part of the image of a point target. For the diagonal PSF W0(\xi ), the main
lobe is taken as | \xi | \leqslant \pi per the discussion that precedes formula (58). This leads to the
following definition of what we will call the point-based polarimetric contamination
metric (PPCM):

(61) PPCM(W, \eta )
def
= 10 log10

\Biggl[ \biggl( \int 
| \xi | \leqslant \pi 

\bigl( 
2| W1(\xi , \eta )| 2 + | W2(\xi , \eta )| 2

\bigr) 
d\xi 

\biggr) 

\cdot 
\biggl( \int 

| \xi | \leqslant \pi 

| W0(\xi , \eta )| 2d\xi 
\biggr)  - 1

\Biggr] 
.

Note that on the left-hand side of formula (61) we have specified the explicit de-
pendence on \eta , while on the right-hand side we use the logarithm of the quantity
introduced in (60) to make the result look similar to the ISLR of (57) or (58).

Due to the factor sin(\Delta \varphi F) = sin
\bigl( 
2C\tau 

B\tau \eta \xi 
\bigr) 
present in both W1 and W2 (see for-

mulae (55b) and (55c)), the first integral on the right-hand side of (61) appears very
small. Indeed, using | sin \xi | \leqslant | \xi | and | cos \xi | \leqslant 1, we obtain

(62)

\int 
| \xi | \leqslant \pi 

| W1(\xi , \eta )| 2 d\xi \lesssim 2\pi \tau 2
\Bigl( 2C\tau 

B\tau 
\eta 
\Bigr) 2

,

\int 
| \xi | \leqslant \pi 

| W2(\xi , \eta )| 2 d\xi \lesssim 
2\pi 3

3
\tau 2
\Bigl( 2C\tau 

B\tau 
\eta 
\Bigr) 4

.

At the same time, according to the definition of ISLR, the second integral in (61) is
about 0.9 \cdot \pi \tau 2 (see (57)). Then, given that for the parameters from Table 1 we have

(63) 10 log10
1

B\tau 
\approx  - 34dB,

the PPCM(W, \eta ) of (61) will not exceed  - 60dB for | \eta | \lesssim 1. From the discussion in
section 5, we will see that in practice such a low level of distortions can be completely
disregarded.

3.3.2. Area-based polarimetric contamination metric. An alternative met-
ric can be built that would apply to distributed rather than point targets. For a
distributed target, the image intensity at a certain point includes contributions from
the sidelobes of scatterers located around this point. To account for the sidelobes, we
integrate over the entire real axis in (60) and introduce the area-based polarimetric
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1438 MIKHAIL GILMAN AND SEMYON TSYNKOV

contamination metric (APCM) (cf. formula (61)),

(64) APCM(W, \eta )
def
= 10 log10

2\| W1\| 22(\eta ) + \| W2\| 22(\eta )
\| W0\| 22(\eta )

,

where for a function of two variables f = f(\xi , \eta ), its L2 norm is obtained by integration
with respect to \xi , while \eta remains a parameter:

(65) \| f\| 22(\eta )
def
=

\int \infty 

 - \infty 
| f(\xi , \eta )| 2d\xi .

In evaluating the APCM, we expect that \| W1\| 2 and \| W2\| 2 will be small. The reason
for this, similarly to the case of PPCM (61), is the factor sin(\Delta \varphi F) = sin

\bigl( 
2C\tau 

B\tau \eta \xi 
\bigr) 

present in W1 and W2; see (55b) and (55c). As a function of | \xi | , this factor peaks
well outside suppW (B\tau )(\xi ) \equiv supp\chi B\tau (\xi ), while near the maximum of | W (B\tau )(\xi )| ,
this factor is small. Recalling once again that | sin \xi | \leqslant | \xi | , | cos \xi | \leqslant 1, we obtain the

following estimates: | W1(\xi , \eta )| \leqslant \tau 
\bigm| \bigm| 2C\tau 

B\tau \eta 
\bigm| \bigm| and | W2(\xi , \eta )| \leqslant \tau 

\bigm| \bigm| 2C\tau 

B\tau \eta 
\bigm| \bigm| 2| \xi | . Then, taking

into account that suppF (B\tau )(\xi ) \subset ( - B\tau /2, B\tau /2) and | F (B\tau )(\xi )| \leqslant 1, we have

(66) \| W1\| 22 \leqslant \tau 2
4

B\tau 
C2

\tau \eta 
2, \| W2\| 22 \leqslant \tau 2

4

3B\tau 
C4

\tau \eta 
4.

At the same time, for \| W0\| 2 the bulk of the integral (65) comes from the main lobe
| \xi | \leqslant \pi , per the discussion that follows (57). Then, replacing cos2(\cdot ) and W (B\tau ) in the
definition of W0 in (55) with 1 and \scrW , respectively, we obtain \| W0\| 22 \approx \| \scrW \| 22 = \pi \tau 2.
Using (66) in (64), we arrive at the following estimate for the APCM:

(67) APCM(W, \eta ) \lesssim 10 log10

\biggl( 
1

B\tau 

4

\pi 

\Bigl( 
2C2

\tau \eta 
2 +

1

3
C4

\tau \eta 
4
\Bigr) \biggr) 

.

Though much greater than the estimates for PPCM,10 the values of APCM given by
(67) are still below  - 30dB even for | \eta | \sim 1 (see (63) and (53)), whereas for | \eta | \ll 1
they are considerably smaller. We can thus conclude that the resulting polarimetric
contamination is negligible for most practical purposes (see section 5 for a brief dis-
cussion of the relevant SAR applications). This is achieved because of a low level of
the residual mismatch guaranteed by the application of the PMF (see formulae (41)
and (45)).

In the next section, we show that in the case of the traditional polarimetric SAR
processing, as opposed to the PMF, the distortions of images due to dFR may be
much larger.

3.4. Performance estimate for the traditional SAR polarimetry. As indi-
cated in section 3.2, the traditional polarimetric processing (see, e.g., [14, section 10.4])
takes a certain value of the FR angle \varphi \ast 

F (see (34)) that is assumed constant across the
entire image (unlike in (25)), as if the radar pulse were monochromatic. The imag-
ing operator S(z) \mapsto \rightarrow I(y) for the traditional polarimetric SAR is described by the
same expression (27) as the PMF operator, while expression (28) for \Delta \varphi F is replaced
with (33): \Delta \varphi F = \varphi F(t, z) - \varphi \ast 

F. The quantity \varphi \ast 
F = \varphi F(t

\ast , z\ast ) can also be represented

10This can be seen by comparing the powers of B\tau in the argument of log10 in (67) with those on
the right-hand sides of (62).
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DIFFERENTIAL FARADAY ROTATION AND POLARIMETRIC SAR 1439

by formula (19), where z\ast is the same as in (34) and t\ast is such that tgr(t
\ast , z\ast ) = 0,

i.e., t\ast = 2R\ast /vgr(\omega 0). Then,

(68) \Delta \varphi F = \Delta \varphi F(t, z) =  - 
\omega 2
pe\Omega e

2c

\biggl( 
Rz

\omega 2(tgr(t, z))
 - R\ast 

\omega 2
0

\biggr) 
.

As the FR angle varies with frequency (which is the effect of dFR), expression (68)
shows that there is a filter mismatch for all y (coordinate of the image) and z (coor-
dinate of the target). We are going to estimate the resulting image distortions.

We approximate \Delta \varphi F(t, z) by expanding \varphi F(t, z) in Taylor series near z\ast and t\ast :

\varphi F(t, z) \approx  - 
\omega 2
pe\Omega e

2c

\biggl[ 
R\ast 

\omega 2
0

+
\partial 

\partial z

Rz

\omega 2(tgr(t, z))

\bigm| \bigm| \bigm| \bigm| 
t\ast ,z\ast 

(z - z\ast )+R\ast \partial 

\partial t

1

\omega 2(tgr(t, z))

\bigm| \bigm| \bigm| \bigm| 
t\ast ,z\ast 

(t - t\ast )

\biggr] 
.

Then, with the help of (34), (38), and (43), formula (68) yields

(69) \Delta \varphi F = \varphi F0

\biggl[ 
(z  - z\ast )

| x| 
 - 2B

\omega 0

R\ast 

| x| 
T

\tau 
 - 2B

\omega 0

R\ast 

| x| 
\~t

\tau 

\biggr] 
.

The first term in the brackets on the right-hand side of (69) represents the variation
of the FR angle at the carrier frequency over the image. The absolute value of this
term is controlled by the size of the image and the accuracy of reconstruction of \varphi \ast 

F.
For large images, the standard polarimetric procedure can easily be adjusted for this
effect, e.g., by segmenting the image. As this term is not related to dFR, we will not
consider it hereafter.

To estimate the second term, we notice that in our development of the SAR
ambiguity theory, we are primarily interested in considering the locations y and z that
would be sufficiently close to one another, within the resolution distance as defined
by (51). Then, for the quantity T introduced in (43), we can assume that | T | \lesssim 1/B.
Given also that R\ast \approx | x| , the absolute value of the second term on the right-hand
side of (69) appears to be about 2

\omega 0\tau 
. The third term depends on \~t and reaches B/\omega 0

at the endpoints of the interval ( - \tau 
2 ,

\tau 
2 ). The latter value is about B\tau \gg 1 times

larger than the estimate of the second term.11 Hence, only the largest term on the
right-hand side of (69) will be included into our subsequent analysis:

(70) \Delta \varphi F \approx  - \varphi F0

2B

\omega 0

\~t

\tau 
= \eta 

\~t

\tau 
,

where the parameter \eta is still defined by (52). Taking into account that \varphi \ast 
F = const

in (33), we can see from (70) that the variation of the FR angle over the duration of
the pulse is equal to the absolute value of \eta because | \~t/\tau | \leqslant 1/2.

To distinguish between the PMF and traditional processing, we will denote the
traditional PSF matrix by \~W. The structure of \~W is similar to that of W; see (54).
The three different entries (up to the sign) \~W0, \~W1, and \~W2 can be obtained using
the double angle formulae in (36), (37) (e.g., cos2 \Delta \varphi F = (1+cos(2\Delta \varphi F))/2) and also

11It is easy to see that the second term is similar to that in the PMF case (see (53)), accurate to
a factor C\tau = \scrO (1).

D
ow

nl
oa

de
d 

05
/3

1/
18

 to
 1

52
.1

.2
52

.1
01

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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with the help of (44):

(71)

\~W0(\xi , \eta )
def
= ei\Phi 

\int \tau /2

 - \tau /2

e - 2i\xi \~t/\tau cos2(\Delta \varphi F)d\~t =
\tau ei\Phi 

2

\bigl( 
\scrF (\xi ) + F0(\xi , \eta )

\bigr) 
,

\~W1(\xi , \eta )
def
= ei\Phi 

\int \tau /2

 - \tau /2

e - 2i\xi \~t/\tau cos(\Delta \varphi F) sin(\Delta \varphi F)d\~t =
\tau ei\Phi 

2i
F1(\xi , \eta ),

\~W2(\xi , \eta )
def
= ei\Phi 

\int \tau /2

 - \tau /2

e - 2i\xi \~t/\tau sin2(\Delta \varphi F)d\~t =
\tau ei\Phi 

2

\bigl( 
\scrF (\xi ) - F0(\xi , \eta )

\bigr) 
,

where \scrF (\xi ) = sinc \xi is defined in (49) and we have additionally introduced the notation

(72)

F0(\xi , \eta ) =
1

\tau 

\int \tau /2

 - \tau /2

e - 2i\xi \~t/\tau cos(2\eta \~t/\tau ) d\~t =
1

2

\bigl( 
sinc(\xi  - \eta ) + sinc(\xi + \eta )

\bigr) 
,

F1(\xi , \eta ) =
i

\tau 

\int \tau /2

 - \tau /2

e - 2i\xi \~t/\tau sin(2\eta \~t/\tau ) d\~t =
1

2

\bigl( 
sinc(\xi  - \eta ) - sinc(\xi + \eta )

\bigr) 
.

Dependence of the integration limits on T = \xi /B has been dropped in (71) and (72)
(cf. formula (46)). One can show that this dependence has a negligibly small effect
on the results of calculations in this section.

While max\xi | \scrF (\xi )| = 1, we have max\xi ,\eta | F0(\xi , \eta )| = 1 and

(73) max
\xi ,\eta 

| F1(\xi , \eta )| \approx 0.6 = \scrO (1) attained at | \xi | = | \eta | = 1

2
| argmin

\zeta 
sinc \zeta | \approx 2.2.

If \eta = 0, we have F0(\xi , 0) \equiv \scrF (\xi ) and F1(\xi , 0) \equiv 0, so \~W0(\xi , 0) \equiv \scrW (\xi ) (see (50)) and
\~W1(\xi , 0) \equiv \~W2(\xi , 0) \equiv 0. In other words, for \eta = 0 the polarimetric contamination
vanishes and the matrix \~W becomes diagonal.

For an arbitrary \eta , a direct calculation using (71) in (64) yields

(74) APCM( \~W, \eta ) = 10 log10
5 - sinc 2\eta  - 4 sinc \eta 

3 + 4 sinc \eta + sinc 2\eta 
.

While no analytic expressions for PPCM( \~W) are available, the corresponding quadra-
tures can easily be computed numerically. We present the plots of PPCM( \~W, \eta ) and
APCM( \~W, \eta ) in Figure 1.12

If | \eta | \ll 1, then we can also obtain the following asymptotic expressions for the
entries of the matrix \~W:

(75)

\~W0(\xi , \eta ) \approx \tau ei\Phi 
\biggl[ 
sinc \xi  - \eta 2

2\xi cos \xi + (\xi 2  - 2) sin \xi 

4\xi 3

\biggr] 
,

\~W1(\xi , \eta ) \approx 
1

i
\tau ei\Phi \eta 

sin \xi  - \xi cos \xi 

2\xi 2
,

\~W2(\xi , \eta ) \approx \tau ei\Phi \eta 2
2\xi cos \xi + (\xi 2  - 2) sin \xi 

4\xi 3
.

12Fixed integration limits given in formula (61) are still used for the calculation of PPCM( \~\bfW ),
even though the width of the main lobe of \~W0, which is the diagonal entry of \~\bfW , depends on \eta ;
see (71). The rationale is that the fraction of energy in the main lobe of \~W0 that is outside the fixed
interval ( - \pi , \pi ) can be shown to be no greater than 10 - 4 for the entire plotted range of \eta .
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DIFFERENTIAL FARADAY ROTATION AND POLARIMETRIC SAR 1441

Fig. 1. Left panel: Plots of
\bigl( \int 

| \~Wp(\xi , \eta )| 2d\xi 
\bigr) \bigl( \int 

| \~W0(\xi , \eta )| 2d\xi 
\bigr)  - 1

for p = 1 (solid line) and p =
2 (dashed line) (cf. formula (60)). Right panel: Comparison of the two metrics of polarimetric error
for traditional polarimetry.

All three fractions in (75) are regular functions of \xi in the vicinity of \xi = 0, and are
at most \scrO (1). As | \eta | \rightarrow 0, we can derive from (74) (cf. formula (67))

(76) APCM( \~W, \eta ) \approx 10 log10
\eta 2

6
.

Obviously, the leading term in the expression for APCM given by (76) is due to \~W1

in (74); see formulae (75) and Figure 1. Expression (76) yields the errors that are
much larger than those for the PMF case because there is a large factor of B\tau \gg 1
in the denominator of (67).

We should also note that the distortion metrics we have introduced may still
fail to provide a complete characterization of the resulting image matrix \~I(y) and its
``deviation"" from the original scatterer S(z). Notice, for example, that \~W0 is an even
function of \xi with a peak at \xi = 0, whereas \~W1 is an odd function of \xi ; see (71),
(72). Consider a hypothetical point target, S(z) = S0\delta (z  - z0), with SHH as the
only nonzero entry of the scattering matrix S0. The corresponding image in the HH-
channel, i.e., \~IHH(y), will have a single peak, whereas \~IHV(y) will have two intensity
peaks separated by a distance comparable to the resolution size; see (75) and (73).
More sophisticated distortion criteria may be needed to capture this or similar effects.

3.5. Summary for the single-pulse case. Our main observation thus far has
been that the polarimetric fidelity of the PMF is far superior to that of the traditional
SAR polarimetry. In terms of the APCM, the presence of B\tau in the denominator on
the right-hand side of (67) yields a difference of about 10 log10 B\tau (or, according
to (63), more than 30dB) compared to the traditional case; see (74) and (76). This is
a very significant reduction of distortions.

If expressed via PPCM (see section 3.3.1), the difference turns out to be even
bigger due to the sidelobe properties of W1 and W2; see (55b), (55c). Indeed, for the
typical parameters from Table 1 we have B\tau \gg 1, C\tau = \scrO (1), and | \eta | \lesssim 1. Then, for
1 \lesssim | \xi | \ll B\tau the argument of cos(\cdot ) and sin(\cdot ) in (55) is small. Hence, using (48)

and (55), we obtain | W1(\xi , \eta )| \approx \tau 
\bigm| \bigm| 2C\tau 

B\tau \eta 
\bigm| \bigm| | sin \xi | and | W2(\xi , \eta )| \approx \tau 

\bigm| \bigm| 2C\tau 

B\tau \eta 
\bigm| \bigm| 2| \xi sin \xi | . We

see that for | W1| , the leading local maxima with respect to \xi are essentially constant,
while for | W2| the local maxima initially increase as | \xi | increases. In either case, these
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1442 MIKHAIL GILMAN AND SEMYON TSYNKOV

maxima are nondecreasing and all of them, with the exception of the two closest
to \xi = 0, are outside of the main lobe of W0(\xi ). Hence, a considerable portion of
the energy of W1 and W2 is contained in their sidelobes, which, however, do not
contribute to the first integral in (61). As such, in the PMF case the numerator on
the right-hand side of (64) will be many times bigger than the first integral in (61),
while the difference between the denominator on the right-hand side of (64) and the
second integral in (61) will be insignificant; see (57). This leads to a substantial
difference between the PPCM and APCM for the PMF case. At the same time, for
the functions \~W1 and \~W2 that pertain to the traditional polarimetry (see (71)), the
percentage of energy in the sidelobes is much smaller, and the values of PPCM( \~W)
and APCM( \~W) appear comparable, as can be seen in Figure 1.

In section SM1 of the supplementary materials, we outline how the current con-
siderations are related to the single-polarization SAR imaging in the presence of FR,
the case that we analyzed in our earlier work; see [10, Chapter 5].

4. Polarimetric imaging with a synthetic aperture. Transition to a re-
alistic (i.e., three-dimensional) setup with the two-dimensional target (an area on
the surface of the Earth) requires several principal modifications to the approach of
section 3. First, the coordinates of the antenna, image, and target become three-
dimensional, and we will denote these by \bfitx , \bfity , and \bfitz , respectively. Second, in order
to obtain a cross-range (i.e., azimuthal) resolution, we will need to employ a synthetic
array, which is a set of equally spaced transmit and receive times and locations of
the antenna denoted by (tn,\bfitx 

n). Third, we will be using the full formula (2) for the
FR angle; i.e., we will be taking into account the angle \beta between the direction of
propagation and that of the magnetic field. Accounting for the angle \beta will give rise to
the dFR in slow time, because the factor R\bfitz cos\beta in the expression for the FR angle
may vary with the position of the antenna indexed by the slow time parameter n.

We assume the satellite trajectory to be a straight line parallel to the ground, at
altitude H and horizontal distance L from the target (such that R =

\surd 
H2 + L2 is

the slant range), with the broadside direction of the antenna beam. The synthetic
aperture (or synthetic array) is an interval of antenna locations \bfitx n such that a given
point of the target appears within the beam footprint for all n from this interval.
The length of the synthetic aperture LSA is equal to the size of the beam footprint in
the direction along the trajectory (i.e., azimuth). The coordinate indices 1, 2, and 3
will correspond to the azimuth (along-track), ground range (cross-track), and vertical
directions, respectively. Accordingly, for the image and target coordinates \bfity and \bfitz ,
we will assume y3 = z3 = 0, and for antenna positions,

(77) \bfitx n = (xn
1 , - L,H) such that | xn

1 | \leqslant LSA/2.

One more important modification to be made when considering the realistic SAR
imaging configuration is the variation of the electron number density with eleva-
tion. Formula (2) for the FR angle is derived for the propagation through a ho-
mogeneous plasma. However, this expression can easily be extended to describe the
inhomogeneous propagation as well, for example, in a vertically stratified ionosphere:
Ne = Ne(h). It can be done provided that the wavelength is much shorter than the
scale of variation of the electron number density, which is a constraint that almost
universally holds. The key integral characteristic of a vertically stratified ionosphere
is called the total electron content (TEC):

(78) NH
def
=

\int H

0

Ne(h)dh.

D
ow

nl
oa

de
d 

05
/3

1/
18

 to
 1

52
.1

.2
52

.1
01

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DIFFERENTIAL FARADAY ROTATION AND POLARIMETRIC SAR 1443

Ignoring the ray curvature (see [10, section 3.3] for details), for the propagation of a
monochromatic wave we can write

(79) \varphi F =  - \Omega e cos\beta 

2c\omega 2 cos \theta 

\int H

0

\omega 2
pe(h) dh =  - R\bfitz 

2c

\=\omega 2
pe\Omega e cos\beta 

\omega 2
,

where s is the distance along the ray (i.e, signal path), \theta is the angle between the ray
and e3, and

(80) \=\omega 2
pe =

1

H

\int H

0

4\pi e2

me
Ne(h) dh =

4\pi e2

me

NH

H
.

Hereafter, we will be using \=\omega 2
pe instead of \omega 2

pe in the expressions for the FR angle;
see (79). If necessary, the foregoing procedure can be extended to include spatial
variations of the external magnetic field. We, however, consider the magnetic field of
the Earth to be constant, which allows us to characterize the variation of the angle \beta 
between the magnetic field and the line of sight over the length of the synthetic array;
see formula (82) below.

The ionospheric TEC (78) is a very important parameter that determines the
level of distortions in transionospheric SAR. The actual value of the TEC depends on
many factors including the geographic location, time of the day, and solar cycle. The
value that we use in this work for performing quantitative estimates (see Table 1) is
on the higher end of the range of physical measurements. For the parameters from
Table 1, the maximum two-way FR angle is about 26 radians, which is more than
four full revolutions.

4.1. PMF with synthetic aperture. We modify expressions (11) to describe
a series of identical pulses emitted from multiple antenna positions indexed by n:

(81)

\biggl( 
Ei

H

Ei
V

\biggr) n
(H,V)

(t,\bfitx n) = \bfitE (H,V)A(t - tn)e
 - i\omega 0(t - tn).

Moreover, we consider the antenna at a standstill (\bfitx n fixed) during the emission of
the pulse. This assumption is a part of what's known as the start-stop approximation
(see [10, Chapter 6] for more details).

It is convenient to immediately eliminate tn by shifting the time variable in (81)
by tn. This is possible if no two reflected pulses can be received simultaneously at the
same point, a condition we assume to be satisfied. Denote \bfitR n

\bfitz = \bfitz  - \bfitx n, Rn
\bfitz = | \bfitR n

\bfitz | ,
e\bfitH = \bfitH 0/| \bfitH 0| , where \bfitH 0 is the external magnetic field. Using (79), we modify
expression (19) to obtain the FR angle accumulated along the signal path between
\bfitx n and \bfitz :

(82) \varphi n
F(t, \bfitz ) =  - (\bfitR n

\bfitz , e\bfitH )

2c

\=\omega 2
pe\Omega e

\omega 2(t - 2Rn
\bfitz /\=vgr(\omega 0))

.

In formula (82), the instantaneous frequency \omega = \omega (t) is still given by (13), i.e.,
\omega (t) = \omega 0+2\alpha t, and \=vgr is calculated according to (17) but with \=\omega 2

pe of (80) substituted
instead of \omega 2

pe. Similarly to (19), \varphi n
F(t, \bfitz ) in (82) is one half of the two-way FR angle.

The derivation of the PMF formulation for the full-fledged SAR and the analysis
of its accuracy follow the corresponding developments for single-pulse imaging in
sections 3.1 and 3.3. The details are given in section SM2 of the supplementary
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1444 MIKHAIL GILMAN AND SEMYON TSYNKOV

materials, and the key points are as follows. Instead of expression (24) for the pulse
scattered by a distributed target, we use

(83) M(t,\bfitx n) = \chi 
LSA

(xn
1  - z1)

\int 
e - i\omega 0t

n
ph(t,\bfitz )A(tngr(t, \bfitz ))

R(\varphi n
F(t, \bfitz )) \cdot S(\bfitz ) \cdot R(\varphi n

F(t, \bfitz )) d\bfitz ;

see also (SM2). As the target is two-dimensional, we have d\bfitz = dz1dz2 (see [10,
Chapter 7] for more details). Obviously, the phase and the rotation angle of a signal
in (83) depend on both the slow time and the fast time. Hence, similarly to (25), we
obtain the image by means of a filter that matches the phase and the rotation angle
of the received signal in fast and slow time:

(84) I(\bfity ) =
\sum 
n

\chi 
LSA

(xn
1  - y1)

\int 
ei\omega 0t

n
ph(t,\bfity )A(tngr(t,\bfity ))

R( - \varphi n
F(t,\bfity )) \cdot M(t,\bfitx n) \cdot R( - \varphi n

F(t,\bfity )) dt;

see also (SM3). The imaging operator in the matrix form is similar to (35),

(85) \bfitI (\bfity ) =

\int 
W(\bfity , \bfitz ) \cdot \bfitS (\bfitz ) d\bfitz ,

whereas the expression for W in (85) is obtained in (SM13),

(86) W(\bfity , \bfitz ) = V(\Delta \varphi F)e
i\Phi 0WA(\xi A)WR(\xi R),

where

WA(\xi A) = \chi 4\pi \frakF (\xi A)N

\biggl( 
1 - | \xi A| 

2\pi \frakF 

\biggr) 
sinc

\biggl[ 
\xi A

\biggl( 
1 - | \xi A| 

2\pi \frakF 

\biggr) \biggr] 
,

WR(\xi R) = \chi B\tau (\xi R)\tau 

\biggl( 
1 - 2| \xi R| 

B\tau 

\biggr) 
sinc

\biggl[ 
\xi R

\biggl( 
1 - 2| \xi R| 

B\tau 

\biggr) \biggr] 
,

\Phi 0 =  - 2k0(y2  - z2) sin \theta , \xi A = k0(y1  - z1)LSA/R, \xi R = B(y2  - z2) sin \theta /\=vgr(\omega 0), and
\frakF = L2

SA/(R\lambda 0) is the Fresnel number computed for the aperture of size LSA. In turn,
the expression for \Delta \varphi F that appears on the right-hand side of (86) is given by

(87) \Delta \varphi F \approx 1

2\pi \frakF 
\eta A\xi A +

2CR

B\tau 
\eta \xi R,

where

(88) \eta A =  - \varphi F0
(e\bfitH , e1)

LSA

R
, CR =

(e\bfitH , e2)

sin \theta 

\omega 0

4B

\=vgr\tau 

R
 - (\bfitx c, e\bfitH )

R

(see (SM14) and (SM15)), and \eta is given by (52). Similarly to C\tau of (53), we have
CR = \scrO (1). In traditional PolSAR, the new parameter \eta A will control the strength
of the dFR effect in azimuth, as shown in section 4.2; see (90).

The overall estimate for APCM(W) for the full-fledged SAR case is given by
formulae (SM16) and (SM21):

(89) APCM(W, \eta A, \eta ) \sim 10 log10

\biggl[ 
max

\biggl( 
\eta 2A
\frakF 
,
C2

R\eta 
2

B\tau 
,
\eta 4A
\frakF 
,
C4

R\eta 
4

B\tau 

\biggr) \biggr] 
.

As \eta A and \eta are comparable, and as long as \frakF and B\tau are of the same order of magni-
tude (see Table 1), the resulting estimates of distortions are not significantly different
from estimate (67) obtained for the single-pulse case. Thus, the key conclusion that
the PMF guarantees a low level of distortions still holds.
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4.2. Traditional PolSAR. In traditional PolSAR (see section 3.2), one first
obtains the intermediate image Y(\bfity ) by applying the scalar part of the matched filter
ei\omega 0t

n
ph(t,\bfity )A(tngr(t,\bfity )) to each received channel as in formula (31). Then, similarly

to (32), the intermediate image is converted into the final image using a constant
FR angle \varphi \ast 

F that is independent of \bfity , t, or n (i.e., \~x). In the single-pulse (or one-
dimensional) setting, the polarimetric distortions that characterize this approach are
due to leaving out the dependence of the FR angle on the instantaneous frequency. In
the full formulation with the synthetic aperture, we expect that this effect will have a
comparable magnitude. Moreover, there is an additional source of polarimetric filter
mismatches---the coefficient (\bfitR n

\bfitz , e\bfitH ) in the expression for the FR angle (82). Indeed,
this factor depends on the antenna location xn

1 and, consequently, varies with n in the
azimuthal sum, while using a constant \varphi \ast 

F neglects this variation. In our subsequent
analysis, we will extend the method of section 3.4 to account for these two sources of
polarimetric distortions.

The dFR effect is always present in the actual scattered signal. Therefore, the
imaging operator in the case of traditional PolSAR is represented by the same formulae
(85), (86), but the argument of the matrix V(\Delta \varphi F) of (37) is given by \Delta \varphi F(t, \~x, \bfitz ) =
\varphi F(t, \~x, \bfitz ) - \varphi \ast 

F, which is a two-dimensional generalization of formula (33). Similarly
to the PMF case (see section 4.1), we will only summarize our findings hereafter, while
the detailed analysis is presented in section SM3 of the supplementary materials. It
can be shown that the expression for \Delta \varphi F in the case of traditional PolSAR has the
following form:

(90) \Delta \varphi F = \eta AuA + \eta RuR,

where

(91) \eta A =  - \varphi F0(e\bfitH , e1)
LSA

R
, \eta R =  - \varphi F0

2B

\omega 0

(\bfitz \ast  - \bfitx c, e\bfitH )

R

and uA = \~x/LSA, uR = \~t/\tau (cf. formula (70); see also (SM25) and (SM26)). Note
that the expression for \eta A coincides with that in (88), while the expression for \eta R
includes an additional factor, \eta R = \eta (\bfitz \ast  - \bfitx c, e\bfitH )/R, as compared to \eta of (52).
Clearly, this factor can be associated with cos\beta ; see (79) or (2). Unlike in the single-
pulse case described by formula (70), in (90) we have two parameters, \eta A and \eta R,
that characterize the variation of the FR angle in slow and fast time uA and uR,
respectively, where | uA,R| \leqslant 1/2. With \Delta \varphi F given by (90), the expression for the
kernel of the imaging operator becomes

(92) \~W(\bfity , \bfitz ) = N\tau ei\Phi 0

\int 1/2

 - 1/2

\int 1/2

 - 1/2

e - 2i\xi AuA - 2i\xi RuRV(\eta AuA + \eta RuR) duA duR

(see also (SM27)), where similarly to section 3.4, we use the tilde to distinguish
between the case of traditional signal processing and that of the PMF. We will use
the same notation for the individual entries of the matrix \~W as in formula (54)
and section 3.4, while keeping in mind that \~W0, \~W1, and \~W2 are now functions
of (\xi A, \eta A, \xi R, \eta R), with the L2 norms obtained by integration with respect to \xi A
and \xi R (cf. formula (65)):

\| f\| 22 (\eta A, \eta R)
def
=

\int \infty 

 - \infty 

\int \infty 

 - \infty 
| f(\xi A, \eta A, \xi R, \eta R)| 2d\xi A d\xi R.
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1446 MIKHAIL GILMAN AND SEMYON TSYNKOV

A direct computation leads to the following relations:\bigm\| \bigm\| \~W1

\bigm\| \bigm\| 2
2
(\eta A, \eta R)\bigm\| \bigm\| \~W0

\bigm\| \bigm\| 2
2
(\eta A, \eta R)

=
1 - sinc 2\eta A sinc 2\eta R

3 + sinc 2\eta A sinc 2\eta R + 4 sinc \eta A sinc \eta R
,(93a)

\bigm\| \bigm\| \~W2

\bigm\| \bigm\| 2
2
(\eta A, \eta R)\bigm\| \bigm\| \~W0

\bigm\| \bigm\| 2
2
(\eta A, \eta R)

=
3 + sinc 2\eta A sinc 2\eta R  - 4 sinc \eta A sinc \eta R
3 + sinc 2\eta A sinc 2\eta R + 4 sinc \eta A sinc \eta R

;(93b)

see formula (SM29) of the supplementary materials. According to (64) and (93), the
resulting expression for the polarimetric contamination metric due to the kernel (92)
is

(94) APCM( \~W, \eta A, \eta R) = 10 log10
5 - sinc 2\eta A sinc 2\eta R  - 4 sinc \eta A sinc \eta R
3 + sinc 2\eta A sinc 2\eta R + 4 sinc \eta A sinc \eta R

.

The right-hand side of (94) is symmetric with respect to \eta A and \eta R and reduces
to its single-pulse counterpart (74) if either of the arguments \eta A or \eta R turns into
zero, which is expected. Accordingly, we expect that the polarimetric error will be
significant if the absolute value of at least one of the dFR parameters, | \eta A| or | \eta R| , is
not small.

As max(| \eta A| , | \eta R| ) \rightarrow 0, we have the following asymptotic formulae for expres-
sions (93): \bigm\| \bigm\| \~W1

\bigm\| \bigm\| 2
2
(\eta A, \eta R)\bigm\| \bigm\| \~W0

\bigm\| \bigm\| 2
2
(\eta A, \eta R)

=
\eta 2A + \eta 2R

12
+\scrO 

\bigl( 
(\eta 2A + \eta 2R)

2
\bigr) 
,

\bigm\| \bigm\| \~W2

\bigm\| \bigm\| 2
2
(\eta A, \eta R)\bigm\| \bigm\| \~W0

\bigm\| \bigm\| 2
2
(\eta A, \eta R)

=
\eta 4A + \eta 4R

80
+

\eta 2A\eta 
2
R

24
+\scrO 

\bigl( 
(\eta 2A + \eta 2R)

3
\bigr) 
.

Hence, according to (64), the leading term in the asymptotic expression for APCM is

(95) APCM( \~W, \eta A, \eta R) \approx 10 log10
\eta 2A + \eta 2R

6
.

Similarly to the single-pulse case (76), this leading term is contributed by \~W1. Figure 2
(left panel) provides further comparison between \~W1 and \~W2.

In turn, the right panel of Figure 2 plots APCM( \~W) as a function of \eta R for
several constant values of \eta A. We can see a significant increase of distortions when
either of the arguments exceeds 1. We also notice that the distortions are bigger than
those characterized by the PMF expression (89) because the latter has large factors
of B\tau and \frakF in the denominators.

5. Discussion. We have proposed a novel signal processing procedure for polari-
metric SAR that compensates for the effect of dFR. It can help improve the quality of
spaceborne SAR images in the case where dFR is strong and the distortions it causes
are substantial. If, however, the dFR effect is not too strong, the traditional PolSAR
processing can still be used. It is therefore important to be able to determine the
maximum admissible level of dFR for which the traditional polarimetric imaging is
still acceptable. The answer to this question will, of course, depend on the maximum
admissible level of polarimetric contamination, which, in turn, is determined by a
specific application.

The most basic requirement for polarimetric fidelity is that the reflectivity in a
certain channel should mostly contribute to the received signal in the same channel,
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Fig. 2. Left panel: Expressions (93a) (solid curves) and (93b) (dashed curves). Right panel:
APCM( \~\bfW ) given by (94). The case \eta A = 0 corresponds to the single-pulse setting of section 3.4
with \eta \equiv \eta R; see the thick curves in Figure 1.

i.e.,

(96a)
\bigm\| \bigm\| \~W1

\bigm\| \bigm\| 2
2
\ll 

\bigm\| \bigm\| \~W0

\bigm\| \bigm\| 2
2
,

\bigm\| \bigm\| \~W2

\bigm\| \bigm\| 2
2
\ll 

\bigm\| \bigm\| \~W0

\bigm\| \bigm\| 2
2
,

which implies that APCM( \~W) will be a negative number of sufficiently large magni-
tude.

A stronger condition comes from polarimetric applications. For natural surface
types, the reflectivity in different channels may differ by up to 10dB, i.e., 10 times
in intensity (see, e.g., [6, Table I]). Consequently, the contamination of a channel by
another channel with much stronger reflectivity will compromise the measurement of
the former. Hence, the threshold given by (96a) should be reduced further:

(96b) APCM( \~W) \ll  - 10dB.

An even stronger limit on polarimetric contamination may be imposed by appli-
cations of polarimetric SAR interferometry (PolInSAR; see, e.g., [14, Chapter 9]), the
most common probably being the measurement of the height and structure of the
vegetation layer and determination of topography of the underlying terrain [17, 18].
The input data for PolInSAR processing is the coherence across the polarimetric
channels between two or more SAR acquisitions. The resolution in the cross-slant
direction (i.e., normal to the range and azimuth) is due to the elevation-dependent
polarimetric phase of the interferogram, whereas the distinction between the ground
and vegetation scattering is based on the assumption that the ground reflectivity is
almost perfectly correlated, while the vegetation scattering is uncorrelated. Yet in the
presence of dFR, the bare soil reflections will be superimposed on the polarimetric
range sidelobes (e.g., on the leading extrema of F1(\xi R, \eta R); see (72), and for more
details, see (SM28b) in the supplementary materials) from much stronger vegetation
scattering. For example, Table I from [6] shows that the bare soil reflectivity in one
channel may be about 100 to 1000 times (20 to 30dB) smaller than the reflectivity
from vegetation in a different channel. This lowers the threshold of (96a), (96b) even
further, to at least

(96c) APCM( \~W) \ll  - 20dB.

D
ow

nl
oa

de
d 

05
/3

1/
18

 to
 1

52
.1

.2
52

.1
01

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Given the various contamination thresholds (96a)--(96c), we can now assess the
significance of the dFR effect for the parameters listed in Table 1. Replacing the dot
products in (91) with the product of the corresponding absolute values, we obtain

(97) max | \eta A| \approx 0.65 and max | \eta R| \approx 0.7.

The actual values of | \eta A| and | \eta R| depend on the direction of the magnetic field,
and the foregoing maxima cannot be achieved simultaneously because the first one
requires \bfitH 0 \| e1, while the second one needs \bfitH 0 \bot e1 (note that distortions are
the smallest when \bfitH 0 is normal to the slant plane: in this case \varphi F \equiv 0). Taking
for definiteness \eta A = 0 and \eta R = 0.7, we obtain APCM( \~W) \approx  - 11dB as the level
of polarimetric contamination for traditional processing; see Figure 1. This level is
acceptable for basic reflectivity measurements (96a) and for polarimetry (96b), but
not for PolInSAR (96c). Switching to PMF processing will reduce the APCM by
approximately 10 log10 B\tau or, according to (63), by more than 30dB. Therefore, the
PMF puts the estimates of polarimetric contamination safely below the thresholds for
all of the aforementioned tasks (96a)--(96c). The reduction in PPCM can be expected
to be even more substantial, as explained in section 3.5.

Obviously, the error levels depend on the system and ionospheric parameters. In
particular, according to (91) and (38) there is a strong dependence of \eta A and \eta R on
the carrier frequency: \eta A \propto \omega  - 2

0 and \eta R \propto \omega  - 3
0 . Therefore, the susceptibility of a

SAR system to dFR distortions decreases rapidly as the carrier frequency increases.
Consider, for example, the radar parameters of the contemplated BIOMASS mission
(see [13]),

\omega 0 = 435MHz, B = 6MHz, H = 670km, \theta = 30\circ ,

and take the ionospheric parameters from Table 1 as before. Due mostly to higher car-
rier frequency (435MHz versus 300MHz), we obtain the value of max | \eta R| \approx 0.13, which
is about 5 times smaller than that in (97). Then, using the asymptotic formula (95)
or (76) that pertains to | \eta R| \ll 1, we arrive at APCM( \~W) \approx 10 log10

\bigl( 
3 \cdot 10 - 3) \approx 

 - 25dB for the case of traditional processing. The corresponding value of PPCM( \~W)
will be about 1dB lower; see Figure 1. These levels of distortions are borderline. They
may or may not be acceptable for PolInSAR requirements (see (96c)), even taking
into account that they may become smaller for a lower TEC and/or more ``favorable""
direction of the magnetic field. Yet the use of the PMF processing for this SAR
instrument would guarantee that the level of polarimetric contamination will always
remain negligible regardless of a particular task or conditions of the ionosphere.

Note also that throughout the paper we have only used rectangular windows such
as \chi \tau (t) of (12); see, e.g., the signal processing formulae (25) and (31). In practice,
smoothing windows are often employed to suppress the sidelobes; see, e.g., [5, section
2.6]. This may, in particular, reduce the ISLR, as we have indicated in the discussion
that follows (58). Given that in the case of the PMF processing the sidelobes of the
off-diagonal entries of matrix W are wide (see section 3.5), it is reasonable to expect
that windowing may significantly reduce the (already small) PMF errors. At the same
time, in the case of traditional processing the off-diagonal entries of \~W mainly peak
near the origin. Hence, no significant error reduction due to windowing should be
expected. We leave this topic for a future study.

Yet another subject that may require additional attention is the development of
even more subtle performance criteria, beyond the PPCM and APCM. These new
criteria should be able to handle the delicate phenomena, such as the double intensity
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peaks that may appear in polarimetric images due to the odd/even nature of the
various entries of the matrix PSF \~W; see the discussion toward the end of section 3.4.
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SUPPLEMENTARY MATERIALS: DIFFERENTIAL FARADAY
ROTATION AND POLARIMETRIC SAR\ast 

MIKHAIL GILMAN\dagger \mathrm{A}\mathrm{N}\mathrm{D} SEMYON TSYNKOV\ddagger 

SM1. Single-polarization SAR imaging with differential Faraday ro-
tation (dFR). Single-polarization SAR imaging is the imaging scenario where the
SAR instrument has the capacity to send and receive only one given linear polar-
ization. This limited capacity may be due to various engineering and technical con-
straints. Compared to the quad-pol imaging considered in this work, the analysis of
single-polarization imaging in the presence of dFR (see [SM1, Chapter 5]) encounters
additional difficulties.

In the quad-pol case, the transformation between the matrices S and M, see for-
mulae (20) and (22), is rendered by the orthogonal matricesR given by (3). Therefore,
we have \| S\| = \| M\| , which means, in particular, that the aforementioned transfor-
mation may not cause any amplification of the error.

The single-polarization case is different though. We do not have four equa-
tions that would relate the entries of the matrices M and S. Instead, we have
one relation, say, for the HH channel, which one can derive from (35) and (37):
M\mathrm{H}\mathrm{H} \propto 

\bigl( 
S\mathrm{H}\mathrm{H} cos2 \varphi \mathrm{F} + (S\mathrm{V}\mathrm{H}  - S\mathrm{H}\mathrm{V}) cos\varphi \mathrm{F} sin\varphi \mathrm{F}  - S\mathrm{V}\mathrm{V} sin2 \varphi \mathrm{F}

\bigr) 
. The previous rela-

tion shall be combined with the standard assumption on target reflectivity in the case
of single-polarization imaging, namely, that it is scalar and does not depend on the po-
larization (see [SM1, Section 5.3]): S\mathrm{H}\mathrm{V} = S\mathrm{V}\mathrm{H} = 0 and S\mathrm{H}\mathrm{H} = S\mathrm{V}\mathrm{V}. Then, denoting

S
\mathrm{d}\mathrm{e}\mathrm{f}
= S\mathrm{H}\mathrm{H} = S\mathrm{V}\mathrm{V}, we obtain the relation M\mathrm{H}\mathrm{H} \propto S(cos2 \varphi \mathrm{F}  - sin2 \varphi \mathrm{F}) = S cos 2\varphi \mathrm{F},

which is equivalent to the one used in [SM1, Chapter 5]. We thus see that the
inverse problem of reconstructing S given M\mathrm{H}\mathrm{H} appears poorly conditioned if (2\varphi \mathrm{F}

mod \pi ) \approx \pi /2, i.e., if the two-way FR makes the received polarization (nearly) or-
thogonal to the emitted polarization. Poor conditioning means that small errors in
M\mathrm{H}\mathrm{H} may cause large errors in S.

Moreover, taking into account the variation of \varphi \mathrm{F} along the chirp also proves
critical in the single-polarization case. Indeed, for a constant \varphi \mathrm{F}, we formally have
no problem with single-polarization imaging as long as cos 2\varphi \mathrm{F} \not = 0. As, however,
cos\varphi \mathrm{F} varies with frequency (i.e., fast time) and z, this variation will manifest itself
in the expressions for the signal received from a distributed target, see, e.g., (24).
As shown in [SM1, Section 5.7], the case where cos 2\varphi \mathrm{F} turns into zero, i.e., where
the amplitude of the received signal may become zero, requires special care for SAR
signal processing.

SM2. Formulations and estimates of distortions of polarimetric mat-
ched filtering in PolSAR. In this section, we provide a detailed treatment of the
case summarized in Section 4.1 in the main text. We are assuming that the emitted
field is a series of pulses, see (81), and the Faraday rotation angle for each pulse is
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given by (82).
Replacing A\delta with plain A in (14) per the discussion that follows (43), we obtain

the expression for the matrix M that represents the received signals due to the n-th
pulse scattered by a point target at \bfitz [cf. formula (20)]:

(SM1) M(t,\bfitx n) = e - i\omega 0t
n
\mathrm{p}\mathrm{h}(t,\bfitz )A(tn\mathrm{g}\mathrm{r}(t, \bfitz ))R(\varphi n

\mathrm{F}(t, \bfitz )) \cdot S \cdot R(\varphi n
\mathrm{F}(t, \bfitz )).

In formula (SM1), similarly to (19), tn\mathrm{p}\mathrm{h},\mathrm{g}\mathrm{r}(t, \bfitz )
\mathrm{d}\mathrm{e}\mathrm{f}
= t - 2Rn

\bfitz /\=v\mathrm{p}\mathrm{h},\mathrm{g}\mathrm{r}(\omega 0). The scattered
pulse in (SM1) is received at the same location \bfitx n where the original pulse was
emitted. In other words, the antenna is assumed motionless not only during the
emission of the pulse, but also during its entire round-trip time to the target and
back, as well as during its reception. This assumption constitutes the full-fledged
start-stop approximation. The effect of this approximation on the final quality of the
image is analyzed in [SM1, Chapter 6].

For the pulse scattered by a distributed target, we modify expression (24) as
follows:

(SM2) M(t,\bfitx n) = \chi 
L\mathrm{S}\mathrm{A}

(xn
1  - z1)

\int 
e - i\omega 0t

n
\mathrm{p}\mathrm{h}(t,\bfitz )A(tn\mathrm{g}\mathrm{r}(t, \bfitz ))

R(\varphi n
\mathrm{F}(t, \bfitz )) \cdot S(\bfitz ) \cdot R(\varphi n

\mathrm{F}(t, \bfitz )) d\bfitz .

As the target is two-dimensional, we have d\bfitz = dz1dz2 (see [SM1, Chapter 7] for
more detail). The factor \chi 

L\mathrm{S}\mathrm{A}
(xn

1  - z1) specifies the size of the beam footprint in the

azimuthal direction.
Obviously, the phase and rotation angle of a signal in (SM1) and (SM2) depend

on both the slow time and fast time. Hence, similarly to (25), we obtain the image
by means of a filter that matches the phase and rotation angle of the received signal
in fast and slow time:

(SM3) I(\bfity ) =
\sum 
n

\chi 
L\mathrm{S}\mathrm{A}

(xn
1  - y1)

\int 
ei\omega 0t

n
\mathrm{p}\mathrm{h}(t,\bfity )A(tn\mathrm{g}\mathrm{r}(t,\bfity ))

R( - \varphi n
\mathrm{F}(t,\bfity )) \cdot M(t,\bfitx n) \cdot R( - \varphi n

\mathrm{F}(t,\bfity )) dt.

The factor \chi 
L\mathrm{S}\mathrm{A}

(xn
1  - y1) defines the span of antenna locations \bfitx n in the sum (SM3).

It is the synthetic array of size L\mathrm{S}\mathrm{A} centered about xn
1 = y1.

In our subsequent analysis, we will switch from the discrete ``slow time"" n to the
continuous variable \~x as follows:

(SM4) n\Delta x1 = n
L\mathrm{S}\mathrm{A}

N
= xn

1 = x\mathrm{c}
1 + \~x, where x\mathrm{c}

1 =
y1 + z1

2
, | n| \leqslant N

2
.

In formula (SM4), N is the number of pulses in the sum (SM3). The transition from
n to \~x is possible provided that \Delta x1 is sufficiently small, see [SM1, Section 2.4.2].
Substituting (SM2) and (SM4) into (SM3), we obtain the imaging operator, which is
convenient to represent in the matrix form [cf. formula (35)]:

(SM5) \bfitI (\bfity ) =

\int 
W(\bfity , \bfitz ) \cdot \bfitS (\bfitz ) d\bfitz .
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Similarly to (36), the imaging kernel in formula (SM5) is given by

(SM6) W(\bfity , \bfitz ) = \chi 
L\mathrm{S}\mathrm{A}

(y1  - z1)
N

L\mathrm{S}\mathrm{A}\int 
dt

\int L\prime 
\mathrm{S}\mathrm{A}/2

 - L\prime 
\mathrm{S}\mathrm{A}/2

d\~x ei\Phi (\bfitx ,\bfity ,\bfitz )A(t\mathrm{g}\mathrm{r}(t,\bfitx ,\bfity ))A(t\mathrm{g}\mathrm{r}(t,\bfitx , \bfitz ))V(\Delta \varphi \mathrm{F}).

where L\prime 
\mathrm{S}\mathrm{A} = L\mathrm{S}\mathrm{A}  - | y1  - z1| ,1 the structure of the matrix V remains the same as in

the single-pulse case, see (37), and

(SM7) \Phi (\bfitx ,\bfity , \bfitz ) =  - 2k0(R\bfity  - R\bfitz ), \Delta \varphi \mathrm{F} = \varphi \mathrm{F}(t, \~x, \bfitz ) - \varphi \mathrm{F}(t, \~x,\bfity ).

In the multi-pulse setting, we call the kernel W(\bfity , \bfitz ) of the imaging operator (SM5)
the generalized ambiguity function (GAF). Note that while the span of xn

1 in (SM3) is
centered around y1, the interval of \~x in (SM6) is centered around zero, which is similar
to having the integration interval in (42) symmetrized by means of a new integration
variable \~t defined in (43) (see [SM1, Chapter 2] for additional detail).

To calculate \Delta \varphi \mathrm{F}, we will extend the procedure (39)--(41) to two dimensions.

First, we replace (39) with \Delta \varphi \mathrm{F} \equiv \varphi \mathrm{F}(t, \~x, \bfitz )  - \varphi \mathrm{F}(t, \~x,\bfity ) \approx 
\Bigl( \partial \varphi \mathrm{F}

\partial \bfitz 
(t, \~x, \bfitz ), \bfitz  - 

\bfity 
\Bigr) 
. Then, we introduce the coordinate form of \bfitR \bfitz as \bfitR \bfitz = \bfitz  - \bfitx = (z1, z2, 0)  - 

(x1, - L,H) = (z1  - x1, z2 + L, - H) and define

(SM8) \bfits =
\partial | \bfitR \bfitz | 
\partial \bfitz 

\equiv \partial R\bfitz 

\partial \bfitz 
=

1

R\bfitz 
(z1  - x1, z2 + L, 0) \approx 

\Bigl( z1  - x1

R
, sin \theta , 0

\Bigr) 
,

where R =
\surd 
H2 + L2 is the distance between the origin of the coordinate system and

the antenna trajectory and L = R sin \theta . From (13) we have:

\partial \omega (t - 2R\bfitz /\=v\mathrm{g}\mathrm{r}(\omega 0))/\partial R\bfitz =  - 2B/
\bigl( 
\=v\mathrm{g}\mathrm{r}(\omega 0)\tau 

\bigr) 
,

so that

\partial 

\partial \bfitz 

1

\omega 2(t - 2R\bfitz /\=v\mathrm{g}\mathrm{r}(\omega 0))
=

\partial 

\partial R\bfitz 

1

\omega 2(t - 2R\bfitz /\=v\mathrm{g}\mathrm{r}(\omega 0))

\partial R\bfitz 

\partial \bfitz 
=

4B

\omega 3\=v\mathrm{g}\mathrm{r}(\omega 0)\tau 
\bfits .

Using the previous relations, we obtain the following expression:

(SM9)
\partial \varphi \mathrm{F}

\partial \bfitz 
=  - 

\=\omega 2
\mathrm{p}\mathrm{e}\Omega \mathrm{e}

2c

\Bigl( 1

\omega 2
e\bfitH + (\bfitR \bfitz , e\bfitH )

4B

\omega 3\=v\mathrm{g}\mathrm{r}(\omega 0)\tau 
\bfits 
\Bigr) 

which is a counterpart of the single-pulse formula (40). Therefore, similarly to (41),
we obtain:
(SM10)

\Delta \varphi \mathrm{F} \approx 
\Bigl( \partial \varphi \mathrm{F}

\partial \bfitz 
(0, 0,\bfzero ), \bfitz  - \bfity 

\Bigr) 
= \varphi \mathrm{F}0

\Bigl( (e\bfitH , \bfitz  - \bfity )

R
+ 4

( - \bfitx \mathrm{c}, e\bfitH )

R

B

\omega 0

(\bfits \mathrm{c}, \bfitz  - \bfity )

\=v\mathrm{g}\mathrm{r}(\omega 0)\tau 

\Bigr) 
,

where \varphi \mathrm{F}0 =  - R

2c

\=\omega 2
\mathrm{p}\mathrm{e}\Omega \mathrm{e}

\omega 2
0

and \bfits \mathrm{c} =
\partial | \bfitz  - \bfitx \mathrm{c}| 

\partial \bfitz 

\bigm| \bigm| \bigm| 
\bfitz =\bfzero 

.

1Note that, similarly to (46), the integration interval for \~x is determined by the intersection of
the angular support of the signal scattered by the actual point target at \bfitz and that scattered by the
assumed point target at \bfity , see [SM1, Section 2.3.2] for more detail.
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In the rest of the analysis, we proceed similarly to Section 3.3. We show below
that one can replace the GAF (SM6) with the following extension of the single-pulse
formula (42):

(SM11) W(\bfity , \bfitz ) = V(\Delta \varphi \mathrm{F})\chi 
L\mathrm{S}\mathrm{A}

(y1  - z1)
N

L\mathrm{S}\mathrm{A}\int 
dt

\int L\prime 
\mathrm{S}\mathrm{A}/2

 - L\prime 
\mathrm{S}\mathrm{A}/2

d\~x ei\Phi (\bfitx ,\bfity ,\bfitz )A(t\mathrm{g}\mathrm{r}(t,\bfitx ,\bfity ))A(t\mathrm{g}\mathrm{r}(t,\bfitx , \bfitz )),

where the argument of V is taken at \~t = 0, \~x = 0. Introducing the non-dimensional
variables u\mathrm{A} = \~x/L\mathrm{S}\mathrm{A} and u\mathrm{R} = \~t/\tau and taking into account that | \bfitz | , | \bfity | \ll L\mathrm{S}\mathrm{A} \ll R,
we use the Pythagorean theorem and obtain R\bfity  - R\bfitz \approx (y2 - z2) sin \theta  - (y1 - z1)\~x/R.
Hence, the integrand in (SM11) transforms into

(SM12) ei\Phi (\bfitx ,\bfity ,\bfitz )A(t\mathrm{g}\mathrm{r}(t,\bfitx ,\bfity ))A(t\mathrm{g}\mathrm{r}(t,\bfitx , \bfitz )) = ei(\Phi 0 - 2\xi \mathrm{A}u\mathrm{A} - 2\xi \mathrm{R}u\mathrm{R} - 2\xi \mathrm{A}
B
\omega 0

u\mathrm{A}u\mathrm{R}),

where \Phi 0 =  - 2k0(y2 - z2) sin \theta , \xi \mathrm{A} = k0(y1 - z1)L\mathrm{S}\mathrm{A}/R, \xi \mathrm{R} = B(y2  - z2) sin \theta /\=v\mathrm{g}\mathrm{r}(\omega 0).
To justify the transition from (SM6) to (SM11), we use the same reasoning as led from
(36) to (42). Namely, by evaluating the partial derivatives of \Delta \varphi \mathrm{F} given by (SM7),
linearizing with respect to (\bfity  - \bfitz ) [cf. formula (45)], and dropping the terms that

contain the factor L\mathrm{S}\mathrm{A}

R \ll 1, we have:
\partial \Delta \varphi \mathrm{F}

\partial \~t
\approx \varphi \mathrm{F}0

2B

\omega 0\tau R

\Bigl( 
e\bfitH +6

( - \bfitx \mathrm{c}, e\bfitH )

v\mathrm{g}\mathrm{r}(\omega 0)\tau 

B

\omega 0
\bfits \mathrm{c},\bfity  - 

\bfitz 
\Bigr) 
and

\partial \Delta \varphi \mathrm{F}

\partial \~x
\approx \varphi \mathrm{F}0

4B

\omega 0

1

Rv\mathrm{g}\mathrm{r}(\omega 0)\tau 

\Bigl( 
(e\bfitH , e1)\bfits +

( - \bfitx \mathrm{c}, e\bfitH )

R
e1,\bfity  - \bfitz 

\Bigr) 
. One can see

that compared to the scalar term (SM12), the dependence of V(\Delta \varphi \mathrm{F}) of (37) on the
integration variables t and \~x is slow and can thus be disregarded, which yields (SM11).

As B/\omega 0 is small, we will drop the last term in the exponent on the right-hand
side of (SM12), which allows us to factorize the two-dimensional integral in (SM11)
into a product of two one-dimensional integrals over \xi \mathrm{A} and \xi \mathrm{R} (it can be shown
that the corresponding factorization error is insignificant). Each of the resulting two
integrals is calculated similarly to (46). Thus, the GAF (SM11) becomes [cf. formula
(47)]

(SM13) W(\bfity , \bfitz ) = V(\Delta \varphi \mathrm{F})e
i\Phi 0W\mathrm{A}(\xi \mathrm{A})W\mathrm{R}(\xi \mathrm{R}),

where

W\mathrm{A}(\xi \mathrm{A}) = \chi 4\pi \frakF (\xi \mathrm{A})N
\Bigl( 
1 - | \xi \mathrm{A}| 

2\pi \frakF 

\Bigr) 
sinc

\Bigl[ 
\xi \mathrm{A}

\Bigl( 
1 - | \xi \mathrm{A}| 

2\pi \frakF 

\Bigr) \Bigr] 
,

W\mathrm{R}(\xi \mathrm{R}) = \chi B\tau (\xi \mathrm{R})\tau 
\Bigl( 
1 - 2| \xi \mathrm{R}| 

B\tau 

\Bigr) 
sinc

\Bigl[ 
\xi \mathrm{R}

\Bigl( 
1 - 2| \xi \mathrm{R}| 

B\tau 

\Bigr) \Bigr] 
,

and \frakF = L2
\mathrm{S}\mathrm{A}/(R\lambda 0) is the Fresnel number computed for the aperture of size L\mathrm{S}\mathrm{A}. As

SAR systems are specifically designed to operate in the near-field zone of the synthetic
array, we have \frakF \gg 1. In particular, for the values from Table 1, \frakF = 2.5 \cdot 103, which
is numerically very close to another large dimensionless parameter, the compression
ratio of the chirp B\tau .2

2In [SM1, Sections 2.4.6 and 2.6], we show that the linear variation of the local wavenumber
along the synthetic array can be interpreted as an azimuthal chirp of length L\mathrm{S}\mathrm{A}. Then, the ratio
of the Fraunhofer length of the array 2L2

\mathrm{S}\mathrm{A}/\lambda 0 to the distance R from the antenna to the target,
which is large by design and equal to 2\frakF , can be thought of as the compression ratio in the azimuthal
direction.
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Noticing that the first component of \bfits \mathrm{c} is small, see (SM8), we rewrite for-
mula (SM10) as follows:

(SM14) \Delta \varphi \mathrm{F} \approx 1

2\pi \frakF 
\eta \mathrm{A}\xi \mathrm{A} +

2C\mathrm{R}

B\tau 
\eta \xi \mathrm{R},

where

(SM15) \eta \mathrm{A} =  - \varphi \mathrm{F}0
(e\bfitH , e1)

L\mathrm{S}\mathrm{A}

R
, C\mathrm{R} =

(e\bfitH , e2)

sin \theta 

\omega 0

4B

\=v\mathrm{g}\mathrm{r}\tau 

R
 - (\bfitx \mathrm{c}, e\bfitH )

R
,

and \eta is given by (52). Similarly to C\tau of (53), we have C\mathrm{R} = \scrO (1). Hereafter,
we will also disregard the dependence of C\mathrm{R} on \bfitz . In traditional PolSAR, the new
parameter \eta \mathrm{A} will control the strength of the dFR effect in azimuth, as shown in
Section 4.2, see (SM25). For the matrix W defined in (SM13), we will use the same
notations of its entries as in (54), W0, W1, and W2, but keep in mind that these
entries will now be functions of \xi \mathrm{A}, \eta \mathrm{A}, \xi \mathrm{R}, and \eta .

In our subsequent analysis of image distortions, we will focus on the area-based
metric that was first introduced in Section 3.3.2.3 It is defined with the help of the
L2 norms of W0, W1, and W2 [cf. formula (64)]:

(SM16) APCM(W, \eta \mathrm{A}, \eta )
\mathrm{d}\mathrm{e}\mathrm{f}
= 10 log10

2\| W1\| 22(\eta \mathrm{A}, \eta ) + \| W2\| 22(\eta \mathrm{A}, \eta )
\| W0\| 22(\eta \mathrm{A}, \eta )

,

where for a function of four variables f = f(\xi \mathrm{A}, \eta \mathrm{A}, \xi \mathrm{R}, \eta ), its L2 norm is obtained by
integration with respect \xi \mathrm{A} and \xi \mathrm{R} [cf. formula (65)]:

\| f\| 22 (\eta \mathrm{A}, \eta )
\mathrm{d}\mathrm{e}\mathrm{f}
=

\int \infty 

 - \infty 

\int \infty 

 - \infty 
| f(\xi \mathrm{A}, \eta \mathrm{A}, \xi \mathrm{R}, \eta )| 2d\xi \mathrm{A} d\xi \mathrm{R}.

Similarly to Section 3.3.2, in order to estimate the argument of log10 in (SM16),
we will use | sin \xi | \leqslant | \xi | , | cos \xi | \leqslant 1; in particular, we write with the help of (SM14):

(SM17) | sin(\Delta \varphi \mathrm{F})| \leqslant | \Delta \varphi \mathrm{F}| \leqslant 
\bigm| \bigm| \bigm| \eta \mathrm{A}\xi \mathrm{A}
2\pi \frakF 

\bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| 2C\mathrm{R}\eta \xi \mathrm{R}
B\tau 

\bigm| \bigm| \bigm| .
Then, taking into account (55b), (SM13), and (SM17), recalling that sinc \xi = sin \xi /\xi ,
and using the standard properties of the norm, we get:

\| W1\| 2 (\eta \mathrm{A}, \eta ) \leqslant 
\bigm\| \bigm\| \bigm\| N \eta \mathrm{A}

2\pi \frakF 
\chi 4\pi \frakF (\cdot )

\bigm\| \bigm\| \bigm\| 
2
\cdot 
\bigm\| \bigm\| \bigm\| W\mathrm{R}(\cdot )

\bigm\| \bigm\| \bigm\| 
2
+

\bigm\| \bigm\| \bigm\| W\mathrm{A}(\cdot )
\bigm\| \bigm\| \bigm\| 
2
\cdot 
\bigm\| \bigm\| \bigm\| \tau 2C\mathrm{R}\eta 

B\tau 
\chi B\tau (\cdot )

\bigm\| \bigm\| \bigm\| 
2
,

where the norms on the right-hand side are one-dimensional as in (65). Combining
the previous inequality with \| W\mathrm{A}(\cdot )\| 2 \approx N

\surd 
\pi and \| W\mathrm{R}(\cdot )\| 2 \approx \tau 

\surd 
\pi , we obtain

\| W1\| 2 (\eta \mathrm{A}, \eta ) \leqslant N\tau 
\Bigl( 

| \eta \mathrm{A}| \surd 
\frakF 
+ 2

\surd 
\pi | C\mathrm{R}| | \eta | \surd 

B\tau 

\Bigr) 
. At the same time, an argument identical to

that of Section 3.3.2 yields \| W0\| 2 (\eta \mathrm{A}, \eta ) \approx \| W\mathrm{A}(\cdot )\| 2 \cdot \| W\mathrm{R}(\cdot )\| 2 \approx \pi N\tau . Hence, we
have:

(SM18)
\| W1\| 22 (\eta \mathrm{A}, \eta )
\| W0\| 22 (\eta \mathrm{A}, \eta )

\sim 
\Bigl( 2\surd 

\frakF 
| \eta \mathrm{A}| +

4
\surd 
\pi \surd 

B\tau 
| C\mathrm{R}| | \eta | 

\Bigr) 2

.

3It has been shown in Sections 3.3.1 and 3.3.2 that when the PMF is used, APCM yields a much
higher level of distortions than PPCM. Hence, studying the APCM corresponds to the ``worst case
scenario.""
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As the factors in front of | \eta \mathrm{A}| and | \eta | on the right-hand side of (SM18) are small, and
| \eta \mathrm{A}| , | \eta | \lesssim 1, the quotient on the left-hand side of (SM18) also appears small.

In turn, for \| W2\| 2 we have:

\| W2\| 2 \leqslant 
\bigm\| \bigm\| \bigm\| N\xi \mathrm{A}

\Bigl( \eta \mathrm{A}
2\pi \frakF 

\Bigr) 2

\chi 4\pi \frakF (\cdot )
\bigm\| \bigm\| \bigm\| 
2
\cdot 
\bigm\| \bigm\| \bigm\| W\mathrm{R}(\cdot )

\bigm\| \bigm\| \bigm\| 
2
+ 2

\bigm\| \bigm\| \bigm\| N \eta \mathrm{A}
2\pi \frakF 

\chi 4\pi \frakF (\cdot )
\bigm\| \bigm\| \bigm\| 
2
\cdot 
\bigm\| \bigm\| \bigm\| \tau 2C\mathrm{R}\eta 

B\tau 
\chi B\tau (\cdot )

\bigm\| \bigm\| \bigm\| 
2

+
\bigm\| \bigm\| \bigm\| W\mathrm{A}(\cdot )

\bigm\| \bigm\| \bigm\| 
2
\cdot 
\bigm\| \bigm\| \bigm\| \tau \xi \mathrm{R}\Bigl( 2C\mathrm{R}\eta 

B\tau 

\Bigr) 2

\chi B\tau (\cdot )
\bigm\| \bigm\| \bigm\| 
2
.

This leads to \| W2\| 2 \leqslant N\tau 
\Bigl( \eta 2\mathrm{A}\surd 

3\frakF 
+

4\surd 
\pi 

| C\mathrm{R}\eta \mathrm{A}\eta | \surd 
\frakF B\tau 

+
2
\surd 
\pi 

3

C2
\mathrm{R}\eta 

2

\surd 
B\tau 

\Bigr) 
, and, eventually, to

(SM19)
\| W2\| 22 (\eta \mathrm{A}, \eta )
\| W0\| 22 (\eta \mathrm{A}, \eta )

\sim 
\Bigl( \eta 2\mathrm{A}\surd 

3\frakF 
+

4\surd 
\pi 

| C\mathrm{R}\eta \mathrm{A}\eta | \surd 
\frakF B\tau 

+
2
\surd 
\pi 

3

C2
\mathrm{R}\eta 

2

\surd 
B\tau 

\Bigr) 2

.

For | \eta \mathrm{A}| \ll 1 and | \eta | \ll 1, this yields a much smaller quantity than (SM18). In
general,

(SM20)
\| W2\| 22 (\eta \mathrm{A}, \eta )
\| W0\| 22 (\eta \mathrm{A}, \eta )

\sim max
\Bigl( \eta 4\mathrm{A}
\frakF 
,
C4

\mathrm{R}\eta 
4

B\tau 

\Bigr) 
,

which is comparable to (SM18) but still much smaller than one. The overall estimate
for APCM(W) is obtained by substituting (SM18) and (SM19) into (SM16). In doing
so, the dominant term under the logarithm is as follows:

(SM21) max
\Bigl( \eta 2\mathrm{A}
\frakF 
,
C2

\mathrm{R}\eta 
2

B\tau 
,
\eta 4\mathrm{A}
\frakF 
,
C4

\mathrm{R}\eta 
4

B\tau 

\Bigr) 
.

This expression is used in formula (89) in the main text of the article.

SM3. Polarimetric distortions of traditional PolSAR. In this section, we
provide a detailed treatment of the estimation of distortions in the traditional PolSAR
outlined in Section 4.2.

The imaging operator in the case of traditional PolSAR is represented by the same
formulae (85)--(86) as the matched filter PolSAR, but the matrix V(\Delta \varphi \mathrm{F}) defined
by (37) is supplied the argument \Delta \varphi \mathrm{F}(t, \~x, \bfitz ) = \varphi \mathrm{F}(t, \~x, \bfitz ) - \varphi \ast 

\mathrm{F}, cf. formula (33).
Unlike in the single-pulse case, for a fixed FR angle \varphi \ast 

\mathrm{F} and antenna position \bfitx 
there is not one but an entire set of locations \bfitz \ast that satisfy

\varphi \ast 
\mathrm{F} =  - 

\=\omega 2
\mathrm{p}\mathrm{e}\Omega \mathrm{e}

2c

(\bfitz \ast  - \bfitx \mathrm{c}, e\bfitH )

\omega 2
0

.

For definiteness, we take z\ast 1 = x\mathrm{c}
1. Then [cf. formula (68)],

(SM22) \Delta \varphi \mathrm{F}(t, \~x, \bfitz ) =  - 
\=\omega 2
\mathrm{p}\mathrm{e}\Omega \mathrm{e}

2c

\Bigl( (\bfitR \bfitz , e\bfitH )

\omega 2(t\mathrm{g}\mathrm{r}(t, z))
 - (\bfitz \ast  - \bfitx \mathrm{c}, e\bfitH )

\omega 2
0

\Bigr) 
.

If we take t\ast = 2| \bfitz \ast  - \bfitx \mathrm{c}| /\=v\mathrm{g}\mathrm{r}, then \Delta \varphi \mathrm{F}(t
\ast , 0, \bfitz \ast ) = 0, and we can expand (SM22)

to obtain

\Delta \varphi \mathrm{F}(t, \~x, \bfitz ) =
\partial \Delta \varphi \mathrm{F}

\partial t
\cdot (t - t\ast ) +

\partial \Delta \varphi \mathrm{F}

\partial \~x
\cdot \~x+

\Bigl( \partial \Delta \varphi \mathrm{F}

\partial \bfitz 
, \bfitz  - \bfitz \ast 

\Bigr) 
,
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where the partial derivatives are taken at (t, \~x, \bfitz ) = (t\ast , 0, \bfitz \ast ). The derivative with
respect to \bfitz is given by (SM9), and the other two derivatives are

\partial \Delta \varphi \mathrm{F}

\partial t

\bigm| \bigm| \bigm| 
(t,\~x,\bfitz )=(t\ast ,0,\bfitz \ast )

=
\=\omega 2
\mathrm{p}\mathrm{e}\Omega \mathrm{e}

2c

2B

\omega 0

| \bfitz \ast  - \bfitx \mathrm{c}| 
\tau 

,
\partial \Delta \varphi \mathrm{F}

\partial \~x

\bigm| \bigm| \bigm| 
(t,\~x,\bfitz )=(t\ast ,0,\bfitz \ast )

=
\=\omega 2
\mathrm{p}\mathrm{e}\Omega \mathrm{e}

2c
(e\bfitH , e1).

This yields:

(SM23) \Delta \varphi \mathrm{F} =  - 
\=\omega 2
\mathrm{p}\mathrm{e}\Omega \mathrm{e}

2c\omega 2
0

\Bigl[ 
(e\bfitH , \bfitz  - \bfitz \ast ) - (e\bfitH , e1)\~x

+
2B

\omega 0
(\bfitz \ast  - \bfitx \mathrm{c}, e\bfitH )

\Bigl( 
 - t - t\ast 

\tau 
+ 2

(\bfits \ast , \bfitz  - \bfitz \ast )

\=v\mathrm{g}\mathrm{r}(\omega 0)\tau 

\Bigr) \Bigr] 
,

where \bfits \ast =
\partial R\mathrm{c}

\bfitz 

\partial \bfitz 

\bigm| \bigm| \bigm| 
\bfitz =\bfitz \ast 

. Substituting \~t of (43) into (SM23), using l1,2 = y1,2 - z1,2, and

keeping only the leading terms, we arrive at the following expression:

\Delta \varphi \mathrm{F} = \varphi \mathrm{F}0

\Bigl[ (e\bfitH , e2)(z2  - z\ast 2)

R\underbrace{}  \underbrace{}  
\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m} 1

 - 
\Bigl( (e\bfitH , e1)l1

2R
+

2B

\omega 0

(\bfitz \ast  - \bfitx \mathrm{c}, e\bfitH )

R

l2 sin \theta 

\=v\mathrm{g}\mathrm{r}(\omega 0)\tau 

\Bigr) 
\underbrace{}  \underbrace{}  

\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m} 2

 - 
\Bigl( 
(e\bfitH , e1)

\~x

R
+

2B

\omega 0

(\bfitz \ast  - \bfitx \mathrm{c}, e\bfitH )

R

\~t

\tau 

\Bigr) 
\underbrace{}  \underbrace{}  

\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m} 3

\Bigr] 
.(SM24)

Next, we will compare the right-hand side of (SM24) against its single-pulse counter-
part (69).

Apart from the coefficients of order one, the most significant difference between
(SM24) and (69) is the term proportional to \~x on the last line of (SM24). This term
will play the same role in the azimuthal integral as the term proportional to \~t plays
in the time integral, see Section 3.4. As for the terms 1 and 2 in (SM24), they are
independent of the integration variables and appear of the same order of magnitude as
their counterparts in (69). As the latter have been found insignificant in Section 3.4,
we drop the terms 1 and 2 in (SM24) and present the resulting expression in the
following form:

(SM25) \Delta \varphi \mathrm{F} = \eta \mathrm{A}u\mathrm{A} + \eta \mathrm{R}u\mathrm{R},

where

(SM26) \eta \mathrm{A} =  - \varphi \mathrm{F}0(e\bfitH , e1)
L\mathrm{S}\mathrm{A}

R
, \eta \mathrm{R} =  - \varphi \mathrm{F}0

2B

\omega 0

(\bfitz \ast  - \bfitx \mathrm{c}, e\bfitH )

R
.

Compared to the PMF expression (SM10), the dependence of \Delta \varphi \mathrm{F} on the fast and
slow time given by formula (SM25) cannot be replaced with the values taken at the
centers of the corresponding intervals, \~t = 0 and \~x = 0.4 Expressions (SM25)--(SM26)
are reproduced in the main text as formulae (90)--(91).

With \Delta \varphi \mathrm{F} given by (90), formula (SM6) transforms into

(SM27) \~W(\bfity , \bfitz ) = N\tau ei\Phi 0

\int 1/2

 - 1/2

\int 1/2

 - 1/2

e - 2i\xi \mathrm{A}u\mathrm{A} - 2i\xi \mathrm{R}u\mathrm{R}V(\eta \mathrm{A}u\mathrm{A} + \eta \mathrm{R}u\mathrm{R}) du\mathrm{A} du\mathrm{R},

4In the single-pulse case, this corresponds to the difference between (70) and (41).
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where similarly to Section 3.4, we use the tilde to distinguish between the case of
traditional signal processing and that of the PMF.

We will use the same notation for the individual entries of the matrix \~W as in
formula (54) and Section 3.4, while keeping in mind that \~W0, \~W1, and \~W2 are now
functions of (\xi \mathrm{A}, \eta \mathrm{A}, \xi \mathrm{R}, \eta \mathrm{R}). To derive the expressions for \~W0, \~W1, and \~W2, we use
the double angle formulae for the entries of V(\eta \mathrm{A}u\mathrm{A} + \eta \mathrm{R}u\mathrm{R}), see (37), followed by
expansions into the products of trigonometric functions of 2\eta \mathrm{A}u\mathrm{A} and 2\eta \mathrm{R}u\mathrm{R}. Then,
the double integrals in (SM27) split into plain integrals over u\mathrm{A} and u\mathrm{R}, which yields
[cf. formulae (71)--(72)]:

\~W0(\xi \mathrm{A}, \eta \mathrm{A}, \xi \mathrm{R}, \eta \mathrm{R}) =
N\tau ei\Phi 0

2

\bigl( 
\scrF (\xi \mathrm{A})\scrF (\xi \mathrm{R}) + F0(\xi \mathrm{A}, \eta \mathrm{A})F0(\xi \mathrm{R}, \eta \mathrm{R})(SM28a)

+ F1(\xi \mathrm{A}, \eta \mathrm{A})F1(\xi \mathrm{R}, \eta \mathrm{R})
\bigr) 
,

\~W1(\xi \mathrm{A}, \eta \mathrm{A}, \xi \mathrm{R}, \eta \mathrm{R}) =
N\tau ei\Phi 0

2i

\bigl( 
F1(\xi \mathrm{A}, \eta \mathrm{A})F0(\xi \mathrm{R}, \eta \mathrm{R})(SM28b)

+ F0(\xi \mathrm{A}, \eta \mathrm{A})F1(\xi \mathrm{R}, \eta \mathrm{R})
\bigr) 
,

\~W2(\xi \mathrm{A}, \eta \mathrm{A}, \xi \mathrm{R}, \eta \mathrm{R}) =
N\tau ei\Phi 0

2

\bigl( 
\scrF (\xi \mathrm{A})\scrF (\xi \mathrm{R}) - F0(\xi \mathrm{A}, \eta \mathrm{A})F0(\xi \mathrm{R}, \eta \mathrm{R})(SM28c)

 - F1(\xi \mathrm{A}, \eta \mathrm{A})F1(\xi \mathrm{R}, \eta \mathrm{R})
\bigr) 
.

Expressions (SM28) obtained for the full synthetic aperture (SA) formulation reduce
to their single-pulse (1P) counterparts (71) if either of the dFR parameters \eta \mathrm{A} or \eta \mathrm{R}
turns into zero, e.g.,

\~W \mathrm{S}\mathrm{A}
0 (\xi \mathrm{A}, 0, \xi \mathrm{R}, \eta \mathrm{R}) \equiv \~W 1\mathrm{P}

0 (\xi \mathrm{R}, \eta \mathrm{R}) or \~W \mathrm{S}\mathrm{A}
0 (\xi \mathrm{A}, \eta \mathrm{A}, \xi \mathrm{R}, 0) \equiv \~W 1\mathrm{P}

0 (\xi \mathrm{A}, \eta \mathrm{A}).

A direct computation of the L2 norms of \~W0, \~W1, and \~W2 leads to the following
relations: \bigm\| \bigm\| \~W1

\bigm\| \bigm\| 2
2
(\eta \mathrm{A}, \eta \mathrm{R})\bigm\| \bigm\| \~W0

\bigm\| \bigm\| 2
2
(\eta \mathrm{A}, \eta \mathrm{R})

=
1 - sinc 2\eta \mathrm{A} sinc 2\eta \mathrm{R}

3 + sinc 2\eta \mathrm{A} sinc 2\eta \mathrm{R} + 4 sinc \eta \mathrm{A} sinc \eta \mathrm{R}
,(SM29a)

\bigm\| \bigm\| \~W2

\bigm\| \bigm\| 2
2
(\eta \mathrm{A}, \eta \mathrm{R})\bigm\| \bigm\| \~W0

\bigm\| \bigm\| 2
2
(\eta \mathrm{A}, \eta \mathrm{R})

=
3 + sinc 2\eta \mathrm{A} sinc 2\eta \mathrm{R}  - 4 sinc \eta \mathrm{A} sinc \eta \mathrm{R}
3 + sinc 2\eta \mathrm{A} sinc 2\eta \mathrm{R} + 4 sinc \eta \mathrm{A} sinc \eta \mathrm{R}

.(SM29b)

These expressions are reproduced in the main text as formulae (93a) and (93b), re-
spectively.
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