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Abstract We consider fourth order accurate compact schemes, in both space and time,
for the second order wave equation with a variable speed of sound. We demonstrate that
usually this is much more efficient than lower order schemes despite being implicit and only
conditionally stable. Fast time marching of the implicit scheme is accomplished by iterative
methods such as conjugate gradient and multigrid. For conjugate gradient, an upper bound
on the convergence rate of the iterations is obtained by eigenvalue analysis of the scheme.
The implicit discretization technique is such that the spatial and temporal convergence orders
can be adjusted independently of each other. In special cases, the spatial error dominates the
problem, and then an unconditionally stable second order accurate scheme in timewith fourth
order accuracy in space is more efficient. Computations confirm the design convergence rate
for the inhomogeneous, variable wave speed equation and also confirm the pollution effect
for these time dependent problems.
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1 Introduction

The acousticwave equation describes the propagation ofwaves in the atmosphere and can also
be used as a simplification formodeling electromagneticwaves or elasticwaves in a solid. The
methods developed here for the acoustic wave equationmay be extended tomore complicated
hyperbolic systems. In particular, the fourth order scheme in time is applicable to any second
order equation in time (i.e., in which second time derivatives appear). If first order time
derivatives also appear, then an extension of the method described here is straightforward. In
the proposed scheme, the time and space portions are discretized separately. Hence, a fourth
order approximation in space depends only on a similar fourth order discretization for the
time harmonic version of the equation. The resulting spatial equation in this case is positive
definite elliptic rather than non-positive as with the Helmholtz equation.

Even though the formulation is implicit, the overall scheme remains efficient due to the
high order of accuracy and the use of rapidly converging iterative methods for timemarching.
Since the spatial equation at each time step is symmetric positive definite, conjugate gradient
(CG) andmultigrid (MG) can be used. Performance is improved by using a 2nd order accurate
initial guess at each time step from the standard explicit scheme, and this further reduces the
number of iterations per time step.

Kreiss and Oliger [28] showed for a simple convective equation that the error increases
nonlinearly with time and that the rate depends on the order of the scheme. Bayliss et al. [6]
and later Babushka and coworkers [4,18] demonstrated a similar effect for the Helmholtz
equation: the error increases nonlinearly with the wave number, but this increase is slower for
high order schemes. For example, the test solution u = U (x, y) cosΩt to the wave equation
has wavenumber k = Ω

c . The pollution effect dictates that, for a pth order time accurate
scheme, the quantity k p+1h p should remain constant in order for the error to remain constant
as the wavenumber k increases. This means that higher order methods can achieve the same
error while using fewer grid nodes, making them more efficient in terms of both storage
and CPU time than low order methods. This applies to both the temporal [28] and spatial
errors [4,6,18]. Our results computationally verify the pollution effect for the wave equation
and the increased efficiency of the higher order schemes. Moreover, the results demonstrate
improved efficiency of the higher order method despite the need to invert an elliptic equation
at every time step. We stress that the only way to achieve a compact high order scheme (i.e.,
higher than second order) is to use an implicit scheme.

In this work we only consider second order equations rather than a first order approach,
e.g. [5,23]. The straightforward way to achieve higher spatial accuracy is to increase the
stencil size, such as in [14,37,43]. This method can also be extended to treat boundaries
and interfaces with either conforming or nonconforming grids using the summation-by-parts
technique [27,34,41,42] (see also the reviews [19,39]). One can extend this to higher order
accurate formulae in time [36]. The fourth order time scheme we develop is based directly
on the PDE and results in a compact spatial scheme that involves only three time levels (see,
e.g., [11,13,20,43]). As a result, no special difficulties arise at the initial time step beyond
that of the usual wave equation.

Some early papers to consider high order methods, in space or time, for the acoustic wave
equation were [3,13,16]. Alford considered a fourth order method in space while Ciment
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considered a compact fourth order in space and time scheme. Implicit portions were inserted
in various operators and solved by ADI. The scheme of Dablain involved a very large stencil
to achieve very high order in space. The scheme of Henshaw [25] solves the wave equation
explicitly with 4th order in both time and space using only 3 time levels; however, the spatial
scheme does not use a compact stencil and hence additional numerical boundary conditions
are required to maintain high order accuracy. Several authors, e.g. [2,11,12,15,20,24,26],

consider the ODE ∂2u
∂t2

+ Au = 0. They develop a scheme which is fourth order accurate in
time by considering the θ scheme and replacing higher order time derivatives by powers of
A or equivalently replace a fourth time derivative by fourth space derivatives. This has the
disadvantage of either requiring large matrix vector multiplications and/or results in a non-
compact scheme in space. The approach of Chabassier et al. is based on finding an optimal
scheme for a given problem, whereas our focus is on simplicity and, in addition, utility for
the method of difference potentials [9,35]. An ADI approach is considered in [1,13,32,33]
while [17] includes a discussion of splitting errors.

Our scheme is compact in both space and time and so has no special difficulties with
initial conditions or at boundaries, even for complicated boundary conditions (see, e.g., [9]).
Compact schemes also result in matrices with lower bandwidths, which can be inverted more
efficiently. Compact spatial schemes of 4th and 6th order for the Helmholtz equation have
been developed [8,38,40]. Since the bandwidth is small and the spatial equation is positive
definite, efficient iterative schemes such as multigrid or conjugate gradient are applicable. In
the present work, we solve the resultant (modified) Helmholtz equation by both direct and
iterative methods to compare their efficiency.

Furthermore, we have developed the scheme for the inhomogeneous and variable
wavespeed equation, as in our previous work on the Helmholtz equation [8]. The speed
of sound in the wave equation is a function of the media properties. In many applications the
speed is not constant with respect to the density, pressure, or temperature of the material. We
will assume that the material properties do not vary in time but only in space, i.e., that the
speed of sound is independent of time. In some cases the Laplacian term can also have variable
coefficients. This occurs primarily in electromagnetic problems. Themethod described herein
also extends to this case as long as the Laplacian is in divergence form (i.e., div(grad u)).
For general shaped domains, we suggest using difference potentials [9,35] rather than a grid
transformation, and thus we keep the original Cartesian or polar form of the Laplacian.

The structure of the paper is as follows. In Sect. 2, we derive a parameterized scheme
in time for the inhomogeneous, variable coefficient wave equation. The scheme is compact
in time. We also provide a stability analysis which shows unconditional stability in the 2nd
order case and provides a stability condition in the 4th order case. In Sect. 3, we specify a 4th
order compact FD solver in space and address Dirichlet and Neumann boundary conditions.
Section 4 discusses the use ofCGandMGas solvers for timemarching of the implicit scheme,
and an eigenvalue analysis for general compact FD schemes for the modified Helmholtz
equation is presented. This result is used to prove fast convergence of CG for the steady-state
equation resulting from our implicit discretization of the wave equation using the FD scheme
of Sect. 3. We present numerical results in Sect. 5 confirming the design rate of the scheme,
demonstrating the pollution effect for solutions of increasing frequency, and comparing direct
and iterative solvers for timemarching of the implicit scheme. Concluding remarks and future
directions are given in Sect. 6. Additional numerical investigations of iterative solvers for the
modified Helmholtz equation are provided in “Appendix A”.
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2 High Order Discretization of the Wave Equation in Time

2.1 Derivation of the Time-Marching Scheme

We consider the variable coefficient wave equation in 2D:

utt = c2Δu + F, (1)

where c = c(x, y) and F = F(x, y, t) are given. The Laplacian term Δu can be extended

to ∂
∂x

(
A(x, y) ∂u

∂x

) + ∂
∂y

(
B(x, y) ∂u

∂y

)
in a straightforward manner [8] . We wish to solve the

interior initial-boundary value problem on a square domain of side length 2s centered at the
origin. Consider the initial boundary value problem:

�x,y=±s(u) = φ(x, y, t),

u(x, y, t = 0) = u0(x, y),

ut (x, y, t = 0) = ψ(x, y), (2)

where � is either the identity (Dirichlet) or normal derivative (Neumann) operator along each
edge.

We consider a semi-discrete approach by first discretizing the equation in time and later in
space. Denote by ht the uniform time step so that tn = nht , and let δ2t be the second central
difference operator, δ2t u

n = un+1 − 2un + un−1. The time derivative of (1) is approximated
by

untt = 1

h2t
δ2t u

n − h2t
12

unttt t + O (
h4t

)
.

Differentiating the wave equation (1), we replace the fourth time derivative as follows:

untt = 1

h2t
δ2t u

n − h2t
12

(
c2Δuntt + Fn

tt

) + O (
h4t

)
. (3)

We then replace Δutt and Ftt by 2nd order central differences in time, resulting in a fourth
order approximation in time:

untt = 1

h2t
δ2t u

n − c2

12
δ2t Δun − 1

12
δ2t F

n + O (
h4t

)
. (4)

We consider the following approximation to Eq. (1) centered at the time tn using a free
parameter θ (sometimes referred to as the θ -scheme, see, e.g., [11,31]):

1

h2t
δ2t u

n = c2Δ(un) + θc2δ2t Δ(un) + Fn + θδ2t F
n . (5)

Observe from (4) that the choice θ = 1
12 results in a 4th order approximation of the wave

equation in time. Rearranging (5) to gather the upper time level terms yields

θΔ(un+1) − un+1

c2h2t
= 2

(
θΔ(un) − un

c2h2t

)
−

(
θΔ(un−1) − un−1

c2h2t

)
− Δ(un)

− 1

c2
Fn − θ

c2
δ2t F

n . (6)

From (6) we observe that, for any space discretization, the scheme (5) is

– explicit and second order in time if θ = 0,
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– implicit and equivalent to the second order Crank–Nicolson scheme if θ = 1
2 ,

– implicit and fourth order in time if θ = 1
12 . Therefore the scheme must be implicit in

order to have a fourth order accurate scheme in time which uses only three time levels.

We now consider the implementation of (5). The most straightforward idea is to solve (6) for
un+1. We define f n := Δ(un) − 1

θc2h2t
un and F̃n := − 1

θc2
Fn − 1

c2
δ2t F

n . We then rewrite

(6) as

Δ(un+1) − 1

θc2h2t
un+1 = 2 f n − f n−1 − 1

θ
Δ(un) + F̃n . (7)

By the definition of f n , we substitute Δ(un) = f n + 1
θc2h2t

un into (7) and gather like terms

to obtain

Δ(un+1) − 1

θc2h2t
un+1 =

(
2 − 1

θ

)
f n − f n−1 − 1

θ2c2h2t
un + F̃n .

This suggests the recurrence

f n+1 =
(
2 − 1

θ

)
f n − f n−1 − 1

θ2c2h2t
un + F̃n (8)

for the right-hand side. We now solve the following spatial equation at each time step:

Δ(un+1) − 1

θc2h2t
un+1 = f n+1. (9)

Denote the spatial finite difference operator on the left-hand side of (9) by 1
h2x
Lh . Rather than

approximating the terms such asΔun− 1
θc2h2t

un on the right-hand side of (6) at each step by the

matrix multiplication f n = 1
h2x
Lhun (which also requires storing two previous time levels of

the solution), we only need to store two previous time levels of f n and one previous time level
of the solution and then perform the additions and subtractions of (8). Thus, the recurrence
relation (8) efficiently computes the right-hand side at each step. Furthermore, computing
the terms f n = 1

h2x
Lhun by matrix multiplication would require further consideration at the

boundary since the 4th order compact FD schemes in spacewill require that an approximation
ofΔ be applied to the right-hand side. By computing f n+1 from the recurrence (8), we avoid
approximatingΔ2,which is difficult to achieve compactly at the boundary nodes for boundary
conditions other than Dirichlet. Even though f n contains Δun in its definition, the use of
the recursion formula (8) for the right-hand side circumvents this issue since f 0 and f 1 are
known on the entire grid from the initial condition, so that f n+1 is known on the entire grid
at each time step.

The definition of f n in the spatial equation (9) solved at each new time step implicitly
contains Δun . Therefore, we consider an alternative form of the scheme (6) which has a
simpler expression for the right-hand side. From (5), we have

1

h2t c2
δ2t u

n = Δ(un + θδ2t u
n) − θ F̃n . (10)

We introduce a new variable

vn+1 = un + θδ2t u
n, θ �= 0. (11)
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which implies δ2t u
n = vn+1−un

θ
. Substituting (11) into (10) yields the spatial equation

Δvn+1 − 1

θc2h2t
vn+1 = − 1

θc2h2t
un + θ F̃n := f n+1

v , (12)

which is solved for vn+1 at each time step. The solution of the wave equation at the upper
time level is then given by solving for un+1 in (11):

un+1 = 2un − un−1 + vn+1 − un

θ
.

The right-hand side f n+1
v of the spatial equation (12) at each step involves the solution

itself at the prior time step but not its derivatives. The two versions are linearly equivalent,
and computations with the two variants yielded almost identical results. There might be
advantages to each schemewhen considering difference potentials [35] for the wave equation
to handle general geometries.

2.2 Stability Analysis

The stability analysis presented below is a generalization of the proof by Z. Li [30]. He
considered a modified wave equation in one dimension using a second order spatial scheme.
We consider the original wave equation with a variable wave speed in multiple dimensions.
The following analysis is general provided that the spatial scheme is self-adjoint negative
definite. For example, the wave equation can be extended to include a self-adjoint Laplacian
with variable coefficients. Hence, we have added several improvements to the proof of Li.

We consider the stability analysis for a generalized wave equation

1

c2
∂2u

∂t2
= Lu. (13)

Let 1
h2x
Lh be the numerical approximation to L (in Sect. 2.1, L ≡ Δ), where hx is the uniform

spatial step size and the operator Lh has the following properties:

1. Lh is negative definite, i.e., there exists a real inner product so that (u, v) = (v, u) and
(−Lhu, u) ≥ 0. Further, we require that 0 < L lower‖u‖2 ≤ (−Lhu, u) ≤ Lupper‖u‖2.

2. Lh is self-adjoint, so that (Lhu, v) = (u, Lhv). Hence there exists a symmetric or an anti-
symmetric matrix M which satisfies M2 = Lh . Thus (Lhu, u) = (Mu, Mu), showing
that (−Lhu, u) is a norm. Note that in the case of a one-dimensional PDE Lh is a second
derivative while M is a first derivative which is anti-symmetric.

The θ scheme is given by

um+1 − 2um + um−1

c2h2t
= 1

h2x
Lh

(
θum+1 + (1 − 2θ)um + θum−1)

= 1

h2x
Lh

(
θ(um+1 − um) − θ(um − um−1) + um

)
. (14)

For convenience, define vm+1 = um+1−um . Observe that vm+1−vm = um+1−2um+um−1.
Multiplying both sides of (14) by h2x and taking the inner product with um+1 − um−1 =
vm+1 + vm , we obtain

h2x
c2h2t

(vm+1 − vm, vm+1 + vm) = (Lhu
m + θLh(v

m+1 − vm), vm+1 + vm).
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Define λ(
−→x ) = c(−→x )ht

hx
, which we shall refer to as the Courant–Friedrichs–Lewy (CFL)

number. Simplifying, we obtain

1

λ2
(‖vm+1‖2 − ‖vm‖2) = (Lhu

m, vm+1 + vm) + θ(Lh(v
m+1 − vm), vm+1 + vm).

(15)

Since Lh is self-adjoint, the cross term in the last term of (15) is zero, so that (15) reduces
to

1

λ2
(‖vm+1‖2 − ‖vm‖2) = (Lhu

m, vm+1 + vm) + θ(L(vm+1, vm+1) − (Lhv
m, vm)),

and rearranging yields

1

λ2
‖vm+1‖2 − θ(Lvm+1, vm+1) = 1

λ2
‖vm‖2 − θ(Lhv

m, vm) + (Lhu
m, vm+1 + vm).

(16)

We rewrite the last term in (16) using the following identity vm+1 + vm = um+1 − um−1 and

(Lhu
m, um+1) − (Lhu

m, um−1)

= 1/4
[
(Lhv

m, vm) − (Lhv
m+1, vm+1)

−(Lh(u
m + um−1), um + um−1) + (Lh(u

m + um+1), um + um+1)
]
. (17)

This is verified by expanding the right hand side. Combining (16) with (17) we get

1

λ2
‖vm+1‖2 + (1/4 − θ)(Lhv

m+1, vm+1) − 1/4(Lh(u
m+1 + um), um+1 + um)

= 1

λ2
‖vm‖2 + (1/4 − θ)(Lhv

m, vm) − 1/4(Lh(u
m + um−1), um + um−1). (18)

Define

Sm = 1

λ2
‖vm‖2 + (1/4 − θ)(Lhv

m, vm) − 1/4(Lh(u
m + um−1), um + um−1).

Then (18) is equivalent to
Sm+1 = Sm,

meaning that the quantity Sm is constant through the calculation.
We now check the stability of the scheme in two cases:

1. θ ≥ 1/4
Since Lh is negative definite, every term in Sm is positive. Hence, defining ‖u‖2E= Sm ,
we have energy conservation of ‖u‖E , and the scheme is unconditionally stable.

2. 0 ≤ θ < 1/4
We now use the assumption that 0 < L lower‖u‖2 ≤ (−Lhu, u) ≤ Lupper‖u‖2. We then
get

(
1

λ2
− (1/4 − θ)Lupper

)
‖vm‖2 + L lower

4
‖um + um−1‖2 ≤ Sm ≤

(
1

λ2
+ (1/4 − θ)L lower

)
‖vm‖2 + Lupper

4
‖um + um−1‖2.
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Therefore, Sm is equivalent to the norm ‖um −um−1‖2 +‖um +um−1‖2, which is equivalent
to ‖um‖2 + ‖um−1‖2 if and only if 1

λ2
− (1/4 − θ)Lupper ≥ 0. Thus, when θ < 1/4 the

scheme is stable provided that

max−→x
λ(

−→x )2 ≤ 1

(1/4 − θ)Lupper
. (19)

For θ = 1/12, this yields λ2 ≤ 6
Lupper

which is 50% larger than for the explicit scheme
θ = 0. For the five point second order central difference stencil, Lupper = 8 and the stability
condition is λ ≤ √

0.75. For a fourth order space approximation to the Helmholtz equation,
the value of Lupper depends on the details of the scheme (to be discussed in the next section).

3 High Order Spatial Discretization

The two schemes (9) and (12) share the form of a modified Helmholtz equation

Δw − k2w = g, (20)

with k2 = 1
θc2h2t

. Since, k2 > 0, Eq. (20) differs substantially from the conventional

Helmholtz equation. The quantity k is not a physical wavenumber. It is rather a parame-
ter of the discrete approximation that depends primarily on the time step ht . We note that
the wave equation (1) can be reduced to the conventional Helmholtz equation by a Fourier
transform in time. In doing so, the resulting Helmholtz equation is parameterized by the
dual Fourier variable ω, which is called the frequency, or, equivalently, by the wavenumber
k = ω/c. From the standpoint of solving Eq. (1) numerically though, it may only be practical
to use the aforementioned reduction if it is known ahead of time that the original solution
of Eq. (1) contains no more than a small number of discrete frequencies. Otherwise, in the
case of a continuous spectrum or a broadband solution, it is efficient to integrate equation (1)
directly in the time domain rather than replace it with a collection of Helmholtz equations in
the frequency domain.

We solve the two-dimensional equation (20) by the compact finite difference scheme given
in [38] on a Cartesian grid which is equally spaced in both directions with step size hx = hy .
The scheme developed in [8] is for an equation with a variable coefficient Laplacian, and
we note that for the equation with constant coefficients in the Laplacian term the schemes of
[38] and [8] coincide.

Let us and uc denote, respectively, the sums of the four side and corner points:

us = um+1,n + um−1,n + um,n+1 + um,n−1

uc = um+1,n+1 + um+1,n−1 + um−1,n+1 + um−1,n−1.

Let gs and gc denote the corresponding sums for the inhomogeneous term of (20). Then any
compact scheme for the Helmholtz equation (20) may be written in the form

A0um,n + Asus + Acuc = B0gm,n + Bsgs + Bcgc, (21)

where A0, As, and Ac represent, respectively, the coefficients of the center, side, and corner
nodes of the compact stencil acting on the solution u. Then the 4th order scheme described
in [38] is given by

A0 = −10

3
+ 2

3
k2h2x , As = 2

3
+ k2h2x

12
, Ac = 1

6
. (22)
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We define the stencil operating on the right-hand side of (20) by Bi corresponding to the Ai .
Then

B0 = 2h2x
3

, Bs = h2x
12

, Bc = 0. (23)

Note that 1
h2x
Lh in the stability analysis of Sect. 2.2 is the approximation to the Laplace

operator, which corresponds to the case k = 0 but still includes the right-hand side. Formula
(22) can be extended to the more general Laplacian of the form div(A(x, y)grad u) using the
finite difference scheme in [8]. It can also be extended to polar coordinates with fourth order
accuracy, see [7].

In Sect. 2.2 we derived the stability condition (19) in terms of the bound Lupper. We
now evaluate the stability constant for the case of constant coefficients. For an implicit
scheme, Lh = P−1Q. Because we use central differences, both P and Q are symmetric.
For constant coefficients, P and Q commute. Since P−1 is positive definite (see (22)) we
can introduce a new norm (u, v)P = (P−1u, v). Since Q is negative definite and self adjoint
(see (23)), the stability arguments of Sect. 2.2 apply to the implicit scheme. For the fourth
order implicit scheme it is easier to evaluate Lupper in the Fourier domain. For a periodic
boundary problem, we apply the Fourier transform to these finite difference formulae. For a
Dirichlet boundary condition, we use a sine transform. By Parseval’s theorem, the stability
condition of the Fourier transform in L2 implies the same stability condition of the original
finite difference formula. Recall from (13) and the ensuing stability analysis that 1

h2x
Lh is the

discrete approximation to the Laplacian (i.e., k = 0), and we denote the Fourier transform
of 1

h2x
Lh as L, which is a scalar function of ξ and η. The negative of the Fourier transform of

the left-hand side of Eq. (21) with coefficients (22–23) and k = 0 is then given by

− L =
10
3 − 4

3 (cos(ξ) + cos(η)) − 2
3 cos(ξ) cos(η)

2
3 + 1

6 (cos(ξ) + cos(η))
. (24)

A MATLAB search verifies that the maximum occurs at (ξ, η) = (π, π). In physical space
this represents the mode which oscillates between+1 and−1, u = (−1)i+ j . Therefore, (24)

is bounded by |L| ≤ 10
3 + 8

3− 2
3

1
3

= 16. Substituting this into (19), we arrive at the stability

condition λ2 ≤ 3
8 , from which we may compute the CFL number, λ = cht

hx
. For example,

choosing c = 0.9 gives the stability condition ht
hx

≤
√

.375
.9 ≈ .67.

Remark – c(−→x ) appears in the term of δ2t u. There are no assumptions on c except that it
is not a function of time, which is standard.

– The only assumption on Lh is that it is symmetric negative definite. Hence, Lh can contain
variable coefficients and also boundary conditions that satisfy this condition.

– The Fourier space was used only to calculate the upper bound Lupper. The assumption
is that this upper bound is not sensitive to variable coefficients or boundary conditions.
Hence, we use a periodic domain with constant coefficients. In practice, the stability
bound is always used with a safety factor for such reasons.

3.1 Boundary Conditions

In the present work we consider both Dirichlet and Neumann boundary conditions. At each
time step we solve a modified Helmholtz equation. For Dirichlet BCs, it is straightforward
to impose the boundary condition within the Helmholtz solver.
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The following Neumann BC procedure for compact schemes is introduced in [38]. We
consider a Neumann condition on the right edge of the square domain, ∂u

∂x

∣
∣
x=xN

= φ(y, t).
For simplicity, we assume that thewave equation (1) is homogeneous (F ≡ 0) with a constant
wavenumber c. This assumption implies no loss of generality as one can always consider
that the inhomogeneity and/or variable speed of sound are present only “well inside” the
domain. On the other hand, allowing, for example, the wave equation (1) to have a non-zero
right-hand side F all the way up to the boundary can lead only to insignificant modifications
of the approach described below in this section.

We begin with a second order approximation of the boundary condition at the right edge
using grid nodes along the line of ghost points xN+1 = xN + hx which lie outside of the
computational grid and will be eliminated from the final expressions:

unN+1, j − unN−1, j

2hx
= ∂unN , j

∂x
+ h2x

6

∂3unN , j

∂x3
+ O (

h4x
)
. (25)

Solving for the ghost point unN+1, j yields

unN+1, j = unN−1, j + 2hx
∂unN , j

∂x
+ h3x

3

∂3unN , j

∂x3︸ ︷︷ ︸
:=ζ nN , j

+O
(
h5x

)
. (26)

At each time step, a linear system is obtained from the implicit time discretization (9) and
the compact spatial scheme (21), with the right-hand side f n+1 for each time step defined
recursively by (8). TheNeumannBC is enforced by substituting (26) into the discrete equation
(21) at the right boundary x = xN , and we divide by 2 to maintain symmetry of the system:

1

2
A0u

n
N , j + 1

2
As

(
2unN−1, j + unN , j+1 + unN , j−1

)
+ Ac

(
unN−1, j+1 + unN−1, j−1

)

= 1

2

(
B0 f

n+1
N , j + Bs f

n+1
s

)
− 1

2

(
Asζ

n
N , j + Ac

(
ζ n
N , j+1 + ζ n

N , j−1

))
.

Note that the term f n+1
s contains the term f n+1

N+1, j with values on the ghost line.We substitute
(26) into (9) to obtain

f n+1
N+1, j = Δun+1

N+1, j − k2un+1
N+1, j = Δun+1

N−1, j − k2un+1
N−1, j + Δζ n+1

N , j − k2ζ n+1
N , j

= f n+1
N−1, j + Δζ n+1

N , j − k2ζ n+1
N , j .

(27)

We now show how to evaluate the terms ζ n
N , j and Δζ n

N , j at the right-hand boundary using
equation-based substitution of the wave equation along with the Neumann boundary condi-
tion. For ζ n

N , j ,wemust showhow to compute thefirst and third derivatives ofunN , j with respect

to x . The first derivative is immediate from the Neumann boundary condition,
∂unN , j

∂x = φn
j .

For the third derivative, we differentiate the wave equation (1) and solve for uxxx to obtain

uxxx = 1

c2
uxtt − uxyy, (28)

which at time tn can be evaluated at the grid node (xN , y j ) by substituting the y and t
derivatives of the boundary condition:

∂3unN , j

∂x3
= 1

c2
∂2φn

j

∂t2
− ∂2φn

j

∂y2
. (29)
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The terms φt t and φyy can be computed either analytically or by 2nd order central differences
so that (25) is 4th order accurate. If, on the other hand, F �= 0 in Eq. (1), then instead of
(28) we will have uxxx = 1

c2
uxtt − uxyy − Fx , where F is known, and the corresponding

expressions below, in particular, formulae (28′), will change accordingly.
To compute Δζ n

N , j , we have

Δζ = 2hx

(
∂3u

∂x3
+ ∂3u

∂x∂y2

)
+ h3x

3

(
∂5u

∂x5
+ ∂5u

∂x3∂y2

)

. (30)

At the right boundary, ∂3u
∂x3

is evaluated by (29) and as before
∂3unN , j

∂x∂y2
= ∂2φn

j

∂y2
. To obtain expres-

sions for the higher order derivatives of (30) at the right boundary that contain only known
quantities, we differentiate (28) twice with respect to x , y, and t to obtain the expressions

uxxxyy = 1

c2
uxyytt − uxyyyy,

uxxxtt = 1

c2
uxttt t − uxyytt ,

uxxxxx = 1

c2
uxxxtt − uxxxyy = 1

c4
uxttt t − 2

c2
uxyytt + uxyyyy,

(28′)

where the final expression for the fifth x derivative is obtained by substitution of the previous
two formulas. At the right boundary of the square, we thus compute the h3x terms of (30) by

∂5unN , j

∂x3y2
= 1

c2
∂4φn

j

∂y2∂t2
− ∂4φn

j

∂y4
,

∂5unN , j

∂x5
= 1

c4
∂4φn

j

∂t4
− 2

c2
∂4φn

j

∂y2∂t2
+ ∂4φn

j

∂y4
,

where all y and t derivatives of the function φ along the right boundary x = s of the square
are assumed to either be known analytically or with sufficient accuracy by finite differences.

In summary, the Eq. (26) enforce the Neumann boundary condition at the right boundary
x = xN with fourth order accuracy, with the right-hand side computed using (27). The
resulting system is symmetric positive definite. The same procedure can be used to treat a
Neumann BC on other edges of the square. Examples of more general boundary conditions
can be found in [8,9,35,40].

4 Iterative Solvers for the Modified Helmholtz Equation

We now present an analysis of conjugate gradient and multigrid solvers for the modified
Helmholtz equation with specific emphasis on the case which arises in the implicit dis-
cretization of the wave equation. We begin with an eigenvalue analysis of general compact
schemes for the modified Helmholtz equation. Using this analysis, we compute the condi-
tion number of the FD matrix for the scheme (22), which provides an upper bound on the
convergence rate of the conjugate gradient method for the wave equation, see Sect. 4.1. For
multigrid methods using a damped Jacobi smoother, the same eigenvalue analysis facilitates
the computation of the optimal parameter for damping the high-frequency modes for the
wave equation, which we derive in Sect. 4.2. Section 4.3 discusses choices of initial guess for
iterative solvers for the wave equation using the previously computed numerical solutions
from prior time steps.
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Consider the following generalization of the Helmholtz equation (20) in negative definite
form,

− Δw − Kw = −g, (31)

which is the usual Helmholtz equation if K = k2 > 0 or the modified Helmholtz equation if
K = −k2 < 0. For the purpose of analysis, we consider (31) in 2D on a square domain of
side length π , S = {0 ≤ x, y ≤ π}, with homogeneous Dirichlet boundary conditions on the
edges in both the x and y directions. Let A be a general Cartesian FD scheme on the compact
3 × 3 stencil with uniform grid spacing hx = hy = π

M , so that there are M nodes in each
direction. In this paper, we are primarily interested in the special case where the modified
Helmholtz equation results from the discretization of the wave equation by the θ method;
however, the following analysis can be applied to more general cases as well.

The Fourier eigenfunctions on the interior satisfying the Dirichlet BC can be expressed
as the product of sines in each direction:

φ(k1,k2)
m,n = sin(mk1hx ) sin(nk2hx ), 1 ≤ m, n, k1, k2 ≤ M − 1. (32)

We seek the eigenvalues of A, λk1,k2(A), using the Fourier modes (32) by solving Aφ(k1,k2) =
λk1,k2(A)φ(k1,k2). We will make use of the trigonometric identity

sin(α + β) ± sin(α − β) = 2
(
1 − 2 sin2 β/2

)
sin α (33)

to simplify sums of the Fourier modes. First, observe that

φ
(k1,k2)
m+1,n + φ

(k1,k2)
m−1,n = sin((m + 1)k1hx ) sin(nk2hx ) + sin((m − 1)k1hx ) sin(nk2hx )

= 2

(
1 − 2 sin2

k1hx
2

)
φ(k1,k2).

(34)

An analogous argument applies to the remaining terms of φ(k1,k2)
s , which added together with

(34) yields

φ(k1,k2)
s = 4

[
1 −

(
sin2

k1hx
2

+ sin2
k2hx
2

)]
φ(k1,k2).

Using the same identity, we simplify the sum of the corner points multiplied by Ac:

φ
(k1,k2)
m+1,n±1 + φ

(k1,k2)
m−1,n±1 =

(
2

[
1 − 2 sin2

k1hx
2

]
sin(mk1hx )

)
sin((n ± 1)k2hx ). (35)

The identity (33) can be applied a second time to the sum of the corner points in (35), which
yields

φ(k1,k2)
c = 4

[
1 − 2

(
sin2

k1hx
2

+ sin2
k2hx
2

)
+ 4 sin2

k1hx
2

sin2
k2hx
2

]
φ(k1,k2). (36)

Combining (34) and (36), it follows that the eigenvalues satisfying Aφ(k1,k2) = λk1,k2(A)

φ(k1,k2) are given by:

λk1,k2(A) = A0 + 4(As + Ac) − 4(As + 2Ac)

(
sin2

k1hx
2

+ sin2
k2hx
2

)

+ 16Ac sin
2 k1hx

2
sin2

k2hx
2

.

(37)
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4.1 Conjugate Gradient

For the Conjugate Gradient method with a Hermitian positive definite linear system Ax = b,
it is well known that the error of the nth iteration, en , is bounded by

‖en‖A

‖e0‖A
≤ 2

(√
κ − 1√
κ + 1

)n

, (38)

where κ = λmax (A)
λmin(A)

is the condition number of A (see, for example, [22]).

Equation (37) represents the eigenvalues of a general compact scheme. Using the values
of the coefficients A0, As, and Ac of the fourth order scheme (22), we have

A0 + 4(As + Ac) = 10

3
− 2

3
Kh2x + 4

[
−2

3
− 1

12
Kh2x − 1

6

]
= −Kh2x ,

and

As + 2Ac =
[
−2

3
− 1

12
Kh2x

]
+ 2

(
−1

6

)
= −1 − 1

12
Kh2x .

Substituting into (37), the eigenvalues of A are given by

λk1,k2(A) = −Kh2x +
(
4 + 1

3
Kh2x

) (
sin2

k1hx
2

+ sin2
k2hx
2

)

− 8

3
sin2

k1hx
2

sin2
k2hx
2

.

For simplicity, assume that Kh2x ≤ −12 , so that the coefficients of all the sine terms are
negative (note that this condition is satisfied for the steady-state equation of interest in this
paper). Because sine is monotonic on the interval [0, π

2 ] and all sine terms have negative
coefficients, their sum (and, therefore, the eigenvalues themselves) will be monotonic with
respect to k1, k2. We then conclude that the largest and smallest eigenvalues will result from
the cases k1 = k2 = 0 and k1 = k2 = M , respectively. This results in

λ0,0(A) = −Kh2x ,

λM,M (A) = 16

3
− 1

3
Kh2x .

Note that the eigenvalues are all positive since we assume Kh2x ≤ −12 and thus the smallest
and largest eigenvalues are λmin(A) = λM,M and λmax(A) = λ0,0.

In the casewherewewant to solve theHelmholtz equation (31) for anyfixed K , the quantity
|Kh2x | becomes smaller as the grid is refined (in contrast to the cases resulting from the wave
equation above, for which we assumed Kh2x < −12.) In particular, the eigenvalue λ0,0(A)

tends to 0 while λM,M (A) tends to 16
3 . Thus the condition number κ(A) = λmax(A)/λmin(A)

approaches infinity as the step size hx becomes smaller, and the convergence factor of CG
from (38) will tend to 1, indicating that convergence of CG iterations may become very slow
as the grid is refined. Our numerical tests confirm this analysis, and rapid convergence was
observed for the modified Helmholtz equation when Kh2x < −12 with slower convergence
as the grid is refined for the case when Kh2x → 0.
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For the wave equation discretized by the θ method, one obtains the generalized Helmholtz
equation (31) with Kh2x = − 1

θCFL2 .
1 Then the condition number of A is given by

κ = λmax(A)

λmin(A)
=

1
θCFL2

16
3 + 1

3θCFL2

= 3

16θCFL2 + 1
.

For the 4th order scheme in time, θ = 1
12 and the stability condition is CFL2 ≤ 3

8 . Taking
CFL2 = 3

8 gives the condition number

κ(A) = 3

16 · 1
12 · 3

8 + 1
= 3

3
2

= 2.

From (38) the convergence factor
√

κ+1√
κ−1

of CG iterations is

√
2 − 1√
2 + 1

≈ 0.17.

For the 2nd order scheme in time, θ ≥ 1
4 . Even though the scheme is unconditionally stable,

it is most efficient to take CFL = hx . In that case, the inequality Kh2x = − 1
θCFL2 < −12

is satisfied for h2x < 1
12θ and the condition number is

κ(A) = 3

16θh2x + 1
→ 3 as hx → 0.

Thus, from (38) the convergence factor of CG iterations for the scheme with θ ≥ 1
4 as the

grid is refined using CFL = hx is
√
3 − 1√
3 + 1

≈ 0.27.

In both cases, the condition number is well behaved and fast convergence of CG iterations is
guaranteed.

4.2 Multigrid

Classical iterative solvers such as Jacobi and Gauss–Seidel are well known to require large
numbers of iterations to converge, with the number of iterations increasing as the grid is
refined. Multigrid (MG) methods utilize computations on coarse grids to reduce the over-
all number of iterations required for iterative solvers. For the Poisson equation, it is well
established that the number of V-cycles (that is, MG iterations) needed to achieve conver-
gence using the full multigrid (FMG) algorithm is independent of the grid size, resulting in
a very efficient solution method. We consider the multigrid method for solving the modified
Helmholtz equation (31), both on its own and as the time marching step of implicit schemes
for the wave equation.

Let the number of grid points in each coordinate direction be Nhx = 2n + 1. Coarsening
the grid by a factor of 2 results in N2hx = 2n−1 + 1 grid points that coincide with the fine

1 For the (4,4) scheme, θ = 1
12 and thus Kh2x = − 1

θCFL2
< −12 whenever CFL < 1, which is already

guaranteed by the stability condition (see Sect. 3).
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grid at every other node. We choose the injection operator to project from a fine grid to a
coarse grid, which can be written as

v2hx = I 2hxhx
vhx .

To interpolate from a coarse grid to a fine one, we use full weighting, which we write
in operator form as vhx = I hx2hx

v2hx . The iterative method used in conjunction with MG
is known as a “smoother” and performing iterations as “smoothing.” The most common
smoothers are damped Jacobi and Gauss–Seidel.

We introduce a damping factor ω. Then the damped Jacobi iteration matrix is Rω =
I − ωD−1A, and therefore the asymptotic convergence rate of the residual is equal to the
spectral radius ρ(Rω) = 1 − ω

A0
ρ(A). The eigenvalues are λk1,k2(Rω) = 1 − ω

A0
λk1,k2(A)

with λk1,k2(A) given by (37) for a general compact scheme.
The convergence of damped Jacobi requires ρ(Rω) < 1. For the purposes of multigrid, the

damping parameter ω should be chosen so that the absolute value of the largest eigenvalue of
the high order modes of Rω is minimized. We proceed by enforcing the following condition
on the eigenvalues of the highest Fourier modes in both x and y:

− λ M
2 , M2

(Rω) = λM,M (Rω), (39)

which is a necessary condition for the optimal high-mode damping parameter. For k1 =
k2 = M

2 , we have sin
2 k1hx

2 = sin2 k2hx
2 = sin2 π

4 = 1/2, and similarly k1 = k2 = M gives

sin2 k1hx
2 = sin2 k2hx

2 = sin2 π
2 = 1. The eigenvalue associated with the middle modes (i.e.,

the left-hand side of condition (39)) reduces to

λ M
2 , M2

(Rω) = 1 − ω

A0

[
A0 + 4(As + Ac) − 4(As + 2Ac)

(
1

2
+ 1

2

)
+ 16Ac · 1

2
· 1
2

]

= 1 − ω

A0
(A0 + 4As + 4Ac − 4As − 8Ac + 4Ac)

= 1 − ω.

(40)
Thus, for any compact scheme, the eigenvalue of A associated with the middle modes is
simply A0 and results in an eigenvalue of 1− ω for the damped Jacobi iteration matrix. The
eigenvalue associated with the highest modes which appears on the right-hand side of (39)
becomes

λM,M (Rω) = 1 − ω

A0
[A0 + 4(As + Ac) − 4(As + 2Ac) (1 + 1) + 16Ac · 1 · 1]

= 1 − ω

A0
(A0 + 4(Ac − As)) .

(41)

Therefore the eigenvalue of A for the highest mode is λM,M (A) = A0 + 4(Ac − As). We
now solve (39) for ω using (40) and (41):

− λ M
2 , M2

(Rω) = ω − 1 = 1 − ω

A0
(A0 + 4(Ac − As)) = λM,M (Rω)

ω

[
1 + A0 + 4(Ac − As)

A0

]
= 2

ω = A0

A0 + 2(Ac − As)
,

(42)
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where we assume that A0 + 2(Ac − As) �= 0; otherwise, (39) is false. Using ω from (42),
the eigenvalues of the iteration matrix Rω are given by

λk1,k2(Rω)

= 1 −
(

A0

A0 + 2(Ac − As)

)
1

A0

[
A0 + 4(As + Ac)

− 4(As + 2Ac)

(
sin2

k1hx
2

+ sin2
k2hx
2

)
+ 16Ac sin

2 k1hx
2

sin2
k2hx
2

]

= −2(Ac + 3As) − 4(As + 2Ac)(sin2
k1hx
2 + sin2 k2hx

2 ) + 16Ac sin2
k1hx
2 sin2 k2hx

2

A0 + 2(Ac − As)
.

(43)
We now compute the largest eigenvalue, in absolute value, of the iteration matrix for

the high-frequency modes. Using hx = π
M , the arguments of the sines in (43) are π

4 ≤
k1π
2M , k2π

2M ≤ π
2 for the high-frequency modes M

2 ≤ k1, k2 ≤ M − 1. Since the sine function
is monotonic on the interval

[
π
4 , π

2

]
, it attains its maxima and minima only at the boundaries

of this interval. We consider the following cases:

Case 1 If m = n = M
2 , we have from (40) that

∣∣∣λ M
2 , M2

(Rω)

∣∣∣ =
∣∣∣∣1 − A0

A0 + 2(Ac − As)

∣∣∣∣ =
∣∣∣∣

2(Ac − As)

A0 + 2(Ac − As)

∣∣∣∣ .

The case m = n = M is identical due to condition (39).
Case 2 If m = M

2 , n = M , then from (37) we have

∣∣∣λ M
2 ,M (Rω)

∣∣∣ =
∣∣∣∣1 − ω

A0

[
A0 + 4(As + Ac) − 4(As + 2Ac)

(
1

2
+ 1

)
+ 16Ac · 1

2
· 1

]∣∣∣∣

=
∣∣∣∣

2Ac

A0 + 2(Ac − As)

∣∣∣∣ .

The case m = M, n = M
2 is identical by symmetry of (43) with respect to k1 and k2.

Therefore, the largest eigenvalue of Rω for the modes M
2 ≤ k1, k2 ≤ M is

max
M
2 ≤k1,k2≤M

{
λk1,k2(Rω)

} = max

{∣∣∣∣
2(Ac − As)

A0 + 2(Ac − As)

∣∣∣∣ ,
∣∣∣∣

2Ac

A0 + 2(Ac − As)

∣∣∣∣

}
. (44)

Note that we have already assumed the denominator of (44) is nonzero in order to find the
parameter ω in (42). Using the values of the coefficients A0, As, and Ac of the fourth order
scheme (22), we have

A0 + 4(As + Ac) = −Kh2x ,

and

As + 2Ac = −1 − 1

12
Kh2x .

Substituting into (37), the eigenvalues of A are given by

λk1,k2(A) = −Kh2x +
(
4 + 1

3
Kh2x

) (
sin2

k1hx
2

+ sin2
k2hx
2

)

− 8

3
sin2

k1hx
2

sin2
k2hx
2

.
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For the compact 4th order scheme (22), the optimal damping parameter (42) is given by

ω = A0

A0 + 2(Ac − As)
= 4Kh2x − 20

3Kh2x − 26
. (45)

If Kh2x → 0, which includes the Poisson equation K = 0, we have ω = 10
13 ≈ 0.77. This is

near the value of the optimal damping parameter for the Poisson equation using the standard
5-point central difference stencil in 2D, which isω = 0.8. For K �= 0, we require Kh2x �= 26

3 .
For the eigenvalues, we reduce the following expressions from the general form (43):

A0 + 2(Ac − As) = 1

6

(
26 − 3Kh2x

)

and

Ac + 3As = −7

6
− 1

12
Kh2x .

Substituting into (43), the eigenvalues of the iteration matrix Rω are

λk1,k2(Rω) = 1

26 − 3Kh2x

[
−7 − 1

2
Kh2x + (

24 + 2Kh2x
)
(
sin2

k1hx
2

+ sin2
k2hx
2

)

− (
16 + Kh2x

)
sin2

k1hx
2

sin2
k2hx
2

]
.

(46)
Then ∣∣∣λ M

2 , M2
(Rω)

∣∣∣ = ∣∣λM,M (Rω)
∣∣ =

∣∣∣∣
2(Ac − As)

A0 + 2(Ac − As)

∣∣∣∣ =
∣∣∣∣
−Kh2x − 6

3Kh2x − 26

∣∣∣∣ , (47)

and ∣∣∣λ M
2 ,M (Rω)

∣∣∣ =
∣∣∣λM, M2

(Rω)

∣∣∣ =
∣∣∣∣

2Ac

A0 + 2(Ac − As)

∣∣∣∣ =
∣∣∣∣

2

3Kh2x − 26

∣∣∣∣ .

Observe that for the Laplace equation, K = 0, the maximum eigenvalue for the high modes
is 3

13 ≈ 0.23, which is an improvement over the five-point stencil, which has a largest
high-mode eigenvalue of 1

3 for K = 0 (this can be seen from the preceding analysis with
A0 = 4, As = −1, Ac = 0).

When solving themodifiedHelmholtz equationwith a fixed K < 0, the quantity Kh2x van-
ishes as the grid is refined. Then ω → 10

13 and the largest high-mode eigenvalue approaches
3
13 ≈ 0.23. When the modified Helmholtz equation results from the implicit time discretiza-

tion of the wave equation, we have Kh2x = − h2x
θc2h2t

= − 1
θCFL2 . The (2,4) scheme (θ ≥ 1

4 ) is

unconditionally stable. Nevertheless, it is most efficient to equalize the space and time errors
by choosing ht ≈ h2x or, equivalently, CFL ≈ hx . In this case, the quantity Kh2x = − 1

θh2x
approaches negative infinity as the grid is refined, and the absolute value of the largest high-
mode eigenvalue of Rω is given by (46) and approaches 1

3 .
The fourth order time scheme (θ = 1

12 ) is conditionally stable with the requirement that

CFL ≤
√

.375
c . The stability condition for the high order scheme does not depend on the grid

size hx , and therefore the quantity Kh2x = 1
θCFL2 will remain fixed as the grid is refined.

For example, if we take a constant wave speed c = 1, then the largest CFL satisfying the
stability condition is CFL2 = 0.375, which gives Kh2x = −32. The absolute value of the
largest high-mode eigenvalue of Rω with γ = 0 is given by (47), |λmax| = 13

61 ≈ 0.21.
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4.3 Initial Guess for Implicit Solution of the Wave Equation

When solving the steady-state equation (20) resulting from the implicit discretization of the
wave equation, convergence of iterative methods can be improved by using the computed
solution at previous time steps to calculate an initial guess. The formulation (9) already
utilizes two backwards time levels. A first order backwards interpolation is given by un+1 ≈
un + O (ht ), and 2nd order is given by un+1 ≈ 2un − un−1 + O (

h2t
)
. Numerical results

show that using either of these approximations as an initial guess improves the convergence
of both CG and MG.

Intuitively, the reduction in the number of iterations is due to the fact that we begin with
a low-order initial guess and only the high order behavior is left to be resolved. From this
insight, we observe that a better second-order initial guessmay be obtained using the standard
2nd order explicit scheme,

xn+1
0 = 2un − un−1 + h2t

(
c2Δ2u

n + Fn) , (48)

where Δ2 is the 2nd order 5-point central difference operator. The initial guess (48) has the
form of the 2nd order explicit scheme, but takes as its inputs the 4th order approximations un

and un−1 rather than 2nd order approximations. Hence, the accuracy of this initial guess will
exceed that of the true 2nd order explicit scheme at time tn+1. These initial guess choices are
compared for the conjugate gradient method in Sect. 5.

5 Numerical Results

The following computations are for the two dimensional wave equation. We solve the wave
equation (1) on a square domain of side length 2s centered at the origin. The initial data u0

and u0t = ψ are given (see (2)). One then obtains an approximation to u1 by combining the
Taylor expansion with an equation-based procedure as follows:

u1 = u0 + htu
0
t + h2t

2
u0t t + h3t

6
u0t t t + h4t

24
u0t t t t + O

(
h5t

)
,

= u0 + htu
0
t + h2t

2

(
c2Δu0 + F0) + h3t

6
(c2Δu0t + F0

t )

+ h4t
24

(
c2Δ

(
c2Δu0 + F0) + F0

t t

) + O
(
h5t

)
.

(49)

If u0 and u0t are given by explicit formulae, then the expressions of (49) can be computed
exactly to give the desired approximation. Otherwise, (49) can be approximated by difference
formulae. The initial conditions for a scheme of order p should be accurate, in time, to order
p + 1 [29].

We consider test solutions of the form

u(x, y, t) = V (x, y)Φ(t). (50)

Then

utt = V (x, y)Φ ′′(t)
Δu = ΔV (x, y)Φ(t).

Substituting into the wave equation, the corresponding right-hand side F(x, y, t) for the test
solution is
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F(x, y, t) = Φ ′′(t)V (x, y) − c2(x, y)ΔV (x, y)Φ(t). (51)

The general initial procedure (49) reduces to

u0 = V (x, y)Φ(0),

u1 = V (x, y)

(
Φ(0) + htΦ

′(0) + h2t
2

Φ ′′(0) + h3t
6

Φ ′′′(0) + h4t
24

Φ ′′′′(0)
)

+ O
(
h5t

)
,

(52)

where (52) is truncated to O (
h3t

)
accuracy for the 2nd order method in time and O (

h5t
)
for

the 4th order method in time. The Dirichlet boundary condition at time tn for this case is
given by

u(x,±s, tn) = V (x,±s)Φ(tn),

u(±s, y, tn) = V (±s, y)Φ(tn).

We also consider examples in which a Neumann condition is specified at the right-edge of
the square with Dirichlet is considered elsewhere,

u(−s, y, tn) = V (−s, y)Φ(tn),

u(x,±s, tn) = V (x,±s)Φ(tn),

∂u

∂x
(s, y, tn) = Vx (s, y)Φ(tn),

where the Neumann condition is enforced by Eq. (26).
The design accuracy of the scheme (9) in time is determined by the parameter θ , so

the scheme is 4th order accurate in time when θ = 1
12 and 2nd order in time otherwise.

The scheme is unconditionally stable and 2nd order in time for θ ≥ 1
4 . Tests which are

2nd order in time will use only the particular cases θ = 1
2 , which reduces to the Crank–

Nicolson scheme, and θ = 1
4 , which is the smallest θ that allows unconditional stability. We

represent the time and space order of the scheme as an ordered pair so that, for example,
a (2,4)-order scheme represents a 2nd order scheme in time and 4th order in space. We
refer to this simply as a (2,4) scheme. The 4th order FD scheme in space is described in
Sect. 3. For the (2,2)-order simulations of the following sections, a simple 2nd order FD
scheme in space is used by approximating the Laplacian by central differences on a five point
stencil.

The numerical results in Sects. 5.1, 5.2 and 5.3 are obtained using a direct LU solver,
while the subsequent numerical sections investigate the efficiency of conjugate gradient and
multigrid as solvers. Additionally, a comparison is made to the standard explicit scheme,
which is a (2,2) scheme with θ = 0, as well as a (4,4) explicit scheme described in Sect. 5.8.
For the (2,2) explicit scheme, we also use the five point central difference to approximate the
Laplacian in space, while the (4,4) explicit scheme uses a 4th order non-compact 9-point star
stencil at the interior nodes and 2nd order central differences at the boundaries (it is described
in more detail in Sect. 5.8). In the ensuing discussion, we distinguish between the temporal
error et and the spatial error ex .

The simulations are implemented in MATLAB using the built-in sparse LU command
lu as a direct solver as well as the built-in conjugate gradient implementation pcg. All
of the multigrid routines, including the Jacobi and Gauss–Seidel smoothers, were written
in MATLAB. All computations were performed on a Mac Pro with 64 GB of RAM and a
12-core Intel Xeon Processor E5-v2 at 2.7 GHz.

123



796 J Sci Comput (2018) 76:777–811

5.1 Constant Coefficient Examples

Let s = π
2 , V (x, y) = cos ax cos by, and Φ(t) = cosΩt , with Ω = c

√
a2 + b2 and

c(x, y) = c0 constant. Substitution into the wave equation (1) shows that this is a solution
to the homogeneous equation, F(x, y, t) = 0. The test solution u = cos ax cos by cosΩt
is zero along the boundary x = ±π

2 , y = ±π
2 . The initial condition u0 is given, and we

approximate the first time step u1 by a Taylor expansion (52). For the 2nd order scheme in

time (i.e., θ �= 1
12 ), it is sufficient to take O (

h3t
)
accuracy in (52): u1 = 1 − Ω2h2t

2 . In order
to maintain 4th order accuracy in time, we require O (

h5t
)
accuracy in the expansion (52),

which yields u1 = 1 − Ω2h2t
2 + Ω4h4t

24 .
In Tables 1 and 2, we take a = b = 1 and c = 0.9, so that Ω = 0.9

√
2. For the (4,4)-

order scheme, it was shown in Sect. 3 that the stability condition for these parameters is
ht
hx

≤ 0.67, and we choose the CFL number λ so that ht is below this threshold. The Dirichlet
boundary conditions in this case simplify to u(t) = 0 at all the edges of the square, and
the Neumann condition at the right edge is given by ∂u

∂x (π/2, y, t) = Vx (π/2, y, t)Φ(t) =
−α cosβy cosΩt . The final time is chosen to be tF = 2.

The results of Table 1 clearly demonstrate the design convergence rate of each scheme.
The (2,2) and (2,4) schemes each achieved better errors when using the smaller value of
θ = 1

4 . While the (2,4)-order scheme does not appear to have an advantage over the (2,2)-
order scheme in Table 1, this is because we have only considered a fixed CFL of 0.9. In
Table 2 we see that the (2,4)-order scheme can achieve much smaller errors on a fixed grid by
reducing the CFL number. Since et = O (

h2t
)
and ex = O (

h4x
)
, we expect this behavior up

to the point that ht ≈ h2x . Convergence tables based on lowering the CFL for the (2,2)-order
and (4,4)-order schemes are therefore omitted since the time error et will quickly become
smaller than the space error ex , making the convergence rate in time unobservable in this
manner.

We see that the errors for the (2,4) scheme are only slightly better than the (2,2) scheme for
moderate CFL numbers. However, Table 2 demonstrates that the error can be dramatically
improved by taking smaller CFL numbers with the (2,4) scheme. It has been found that one
should reduce the CFL so that the temporal error matches the spatial error for a (2,4) scheme
(see [21]). The results in terms of CPU time for this test problem are shown in Table 3.

Observe that the error of the (4,4)-order scheme on an 8×8 grid fromTable 1 is 1.03·10−5,
which is already smaller than the (2,2)-order and (2,4)-order scheme on a 128 × 128 grid.
We wish to directly compare the relative costs associated with the (2,2)-order, (2,4)-order,
and (4,4)-order schemes. In Table 3, we consider an example using a test solution of the
same form as the above examples but with a = 2 and b = 5, so that Ω = 0.9

√
29 ≈ 4.85.

Using the result of the (4,4)-order scheme on a 32 × 32 grid as the standard, we seek the
number of grid nodes for which the error of the (2,2)-order and (2,4)-order schemes will
be approximately the same. We then compare the CPU times for each method. Note that
for a fixed number of grid nodes the implicit methods will have approximately the same
cost per time step; therefore, we expect the higher order implicit schemes to exhibit better
efficiency than the (2,2) scheme. We also include the (2,2) explicit scheme (i.e., θ = 0) in
the comparison. Further comparison of the (4,4) implicit scheme with explicit schemes is
conducted in Sect. 5.8. We demonstrate the impact of taking a smaller CFL number (i.e.,
ht ≈ h2x ) for the (2,4)-order scheme. The findings are summarized in Table 3.

We observe from Table 3 that the (4,4)-order scheme is by far the most efficient, followed
by the (2,4)-order scheme with small CFL. Further reducing the CFL for the (2,4) scheme
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Table 1 Design convergence is observed for the homogeneous, constant coefficient wave equation

Grid Dirichlet Neumann

Error Convergence rate Error Convergence rate

(2,2)-Order, θ = 1/2, CFL=0.9

8 2.13 · 10−2 – 5.82 · 10−2 –

16 6.16 · 10−3 1.79 3.01 · 10−3 1.83

32 1.64 · 10−3 1.91 5.96 · 10−3 1.80

64 4.19 · 10−4 1.97 1.58 · 10−3 1.92

128 1.05 · 10−4 1.99 4.05 · 10−4 1.96

(2,2)-Order, θ = 1/4, CFL=0.9

8 1.07 · 10−2 – 9.52 · 10−3 –

16 3.01 · 10−3 1.83 7.43 · 10−3 0.36

32 7.89 · 10−4 1.93 2.50 · 10−3 1.57

64 2.01 · 10−4 1.97 7.02 · 10−4 1.83

128 5.04 · 10−5 1.99 1.85 · 10−4 1.92

(2,4)-Order, θ = 1/2, CFL=0.9

8 1.89 · 10−2 – 5.65 · 10−2 –

16 5.40 · 10−3 1.81 1.92 · 10−2 1.56

32 1.42 · 10−3 1.92 5.37 · 10−3 1.84

64 3.64 · 10−4 1.97 1.43 · 10−3 1.93

128 9.14 · 10−5 1.99 3.62 · 10−4 1.96

(2,4)-Order, θ = 1/4, CFL=0.9

8 7.97 · 10−3 – 6.91 · 10−3 –

16 2.21 · 10−3 1.85 5.68 · 10−3 0.28

32 5.73 · 10−4 1.95 1.91 · 10−3 1.62

64 1.45 · 10−4 1.98 5.36 · 10−4 1.83

128 3.65 · 10−5 1.99 1.41 · 10−4 1.93

(4,4)-Order, θ = 1/12, CFL=0.6

8 1.03 · 10−5 – 9.49 · 10−5 –

16 6.77 · 10−7 3.92 6.10 · 10−6 3.96

32 4.32 · 10−8 3.97 3.80 · 10−7 4.00

64 2.72 · 10−9 3.99 2.44 · 10−8 3.96

128 1.64 · 10−10 4.05 1.54 · 10−9 3.99

The test solution is u = cos x cos y cos 0.9
√
2t . The constant wave speed is c = 0.9 and the final time is

tF = 2

did not result in any gain in accuracy since this is the point at which the spatial and temporal
errors are roughly the same order, et ≈ ex . The largest possible CFL for stability was the
most efficient for the conditionally stable schemes, as we observed that lowering the CFL for
the (2,2) explicit scheme and (4,4) implicit scheme did not improve the error but increased
the computational cost. Lowering the CFL for the (2,2) implicit scheme did not improve the
accuracy.
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Table 2 (2,4)-Order convergence in time on a fixed 64 × 64 grid

CFL Dirichlet Neumann

Error Convergence rate Error Convergence rate

(2,4)-Order, θ = 1/2

3.6 5.40 · 10−3 – 1.91 · 10−2 –

1.8 1.42 · 10−3 1.92 5.37 · 10−3 1.83

0.9 3.64 · 10−4 1.97 1.41 · 10−3 1.92

0.45 9.14 · 10−5 1.99 3.62 · 10−4 1.96

0.225 2.29 · 10−5 2.00 9.15 · 10−5 1.98

0.1125 5.73 · 10−6 2.00 2.30 · 10−5 1.99

(2,4)-Order, θ = 1/4

3.6 5.40 · 10−3 – 5.69 · 10−3 –

1.8 1.42 · 10−3 1.92 1.91 · 10−3 1.57

0.9 3.64 · 10−4 1.97 5.36 · 10−4 1.83

0.45 9.14 · 10−5 1.99 1.41 · 10−4 1.93

0.225 2.29 · 10−5 2.00 3.61 · 10−5 1.97

0.1125 5.73 · 10−6 2.00 9.13 · 10−6 1.98

The test solution is u = cos x cos y cos 0.9
√
2t , which results in a homogeneous wave equation. The constant

wave speed is c = 0.9 and the final time is tF = 2

Table 3 Comparison of the
running time required to achieve
a similar error with different
schemes

Grid Error CFL # Time steps CPU time (s)

(4,4)-Order, θ = 1/12

32 3.85 · 10−4 0.68 30 0.014

(2,2)-Order, θ = 0 (explicit)

256 3.71 · 10−4 0.79 207 0.94

(2,2)-Order, θ = 1/4

512 4.19 · 10−4 0.5 652 33.44

480 3.53 · 10−4 0.25 1222 56.87

(2,4)-Order, θ = 1/4

320 3.72 · 10−4 0.5 407 10.71

49 3.64 · 10−4 0.064 487 0.24

For the (2,2) explicit scheme and
(4,4) implicit scheme, the CFL is
chosen to be the largest value that
still allows for stability. The test
solution is u = cos x cos y
cos 0.9

√
2t with a constant wave

speed c = 0.9 and final time
tF = 2

5.2 Variable Speed of Sound Examples

We next consider test problems where the speed of sound c(x, y) is variable. At each time
step, the modified Helmholtz equation (20) now has the variable parameter

k2(x, y) = 1

θc2(x, y)h2t
, c(x, y) �= 0.

All tests were performed on a square of side length 2 (i.e., s = 1) centered at the origin.
Because the (4,4)-order scheme is only conditionally stable, the largest allowable CFL will
depend on the maximum value of c(x, y) on the domain. As a result of the chosen test
solution, the wave equation becomes inhomogeneous with the right-hand side given by (51).
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Table 4 Design convergence of the (4,4) scheme for the inhomogeneous wave equation with variable wave

speed c2(x, y) = x2
4 + 1

Grid Error Convergence rate

8 3.34 · 10−2 –

16 2.23 · 10−3 3.90

32 1.42 · 10−4 3.97

64 8.98 · 10−6 3.98

128 5.65 · 10−7 3.99

The test solution is u = cos 5x cos 3y cosΩ0t with CFL=0.5, Ω0 = 5.85, tF = 4

Table 5 Design convergence of the (4,4) scheme for the inhomogeneous wave equation with variable wave

speed c2(x, y) = x2
4 + 1

Grid Error Convergence rate

8 6.41 · 10−3 –

16 4.29 · 10−4 3.90

32 2.76 · 10−5 3.96

64 1.79 · 10−6 3.95

128 1.13 · 10−7 3.98

The decaying test solution is u = cos 5x cos 5ye−Ω0t with CFL = 0.5, Ω0 = 5.85, and tF = 2

Since the wave speed is variable, we define Ω0 := c̄
√
a2 + b2 where c̄ is the average value

of c(x, y) on the domain.
For the first example, we take a test solution (50) with V (x, y) = cos(ax) cos(by), where

a = 5 and b = 2. Let c2(x, y) = x2
4 + 1. The maximum of c2(x, y) occurs along the left

and right boundaries and is equal to 1.25, so that the stability condition is approximately
ht
hx

≤ 0.54. We specify the time component of (50) to be Φ(t) = cos(Ω0t). The results are
summarized in Table 4.

We next specify a test solution which is decaying in time. Let Φ in (50) be given by
Φ(t) = e−Ω0t . Let V (x, y) and c(x, y) be given as in the previous example, with the final
time tF = 2. The results are summarized in Table 5.

Next, we consider the Yukawa potential for nuclear particle forces,

c2(r) = g2
e−σmr

r
,

where r = √
x2 + y2 is the polar radius, m represents the mass of a particle, and g and σ are

a scaling constants. We choose g2 = 1 to be the amplitude of the field and σm = 10. The
field goes to infinity at the origin r = 0. For the computations, we set the value at r = 0 to
match the value at r = hr = hx

√
2, so that

c2(0) ≈ c2(hr ) = c2(hx
√
2).
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Table 6 The test solution for the Yukawa potential is u = cos 10x cos 10y cos 10
√
2t with variable wave

speed c2(r) = e−10r

r

Grid CFL # Time steps (4,4) Scheme (2,4) scheme

Error Conv. rate Error Conv. rate

8 0.634 13 5.33 · 10−2 – 9.09 · 10−1 –

16 0.131 123 9.90 · 10−4 5.75 4.77 · 10−3 7.57

32 4.21 · 10−2 761 5.01 · 10−5 4.30 1.12 · 10−4 5.41

64 1.69 · 10−2 3792 2.97 · 10−6 4.08 4.36 · 10−6 4.68

128 7.56 · 10−3 16,940 1.81 · 10−7 4.04 2.19 · 10−7 4.31

The wave equation with this test solution and wave speed is inhomogeneous. The CFL constraint results from
the physics since c becomes larger at grid nodes closer to the origin as the grid is refined. The final time is
tF = 1

Recall from Sect. 3 the stability requirement of the (4,4)-order scheme is

ht
hx

≤
√
0.375

max c2(r)
=

√
0.375hr
e−10hr

=
√
0.75hx

e−10
√
2hx

. (53)

The CFL values for each grid determined by (53) are recorded in Table 6. This constraint
implies that the (4,4)-order scheme will require increasingly small time steps as the grid is
refined. We compare the results to the (2,4)-order scheme with θ = 1/4, which we expect
to perform similarly to the (4,4) scheme in this case since ht ∝ h2x in the CFL condition
(53). The test solution (50) is given by V (x, y) = cos(ax) cos(by) with a = b = 10 and
Φ(t) = cos(Ω1t) with Ω1 = √

a2 + b2 = 10
√
2. The final time for Table 6 is tF = 1. For

the Yukawa potential, the (4,4)-order scheme slightly outperforms the (2,4)-order scheme but
with a distinct advantage on coarse grids. Their computation times are similar since the same
CFL is used. Even though the (2,4)-order scheme is unconditionally stable, taking a larger
CFL increases the error and is less efficient [21]. Note that our choice of replacing c2(0) by
the value at c2(hr ) introduces a discontinuity in the first derivative of the wavenumber. In
Table 6, no loss of convergence is observed. This is because we use a test solution which is
known to be singularity free. In the general case, a smooth polynomial interpolation should
be used instead.

Tables 4, 5 and 6 demonstrate that the design convergence rate of the (4,4) scheme is
achieved for a variety of inhomogeneous and variable coefficient problems. The example
of the Yukawa potential (see Table 6) shows that in some cases the (2,4)-order scheme
may be as efficient as the (4,4)-order scheme due to the CFL constraint. We next construct
examples for which the (2,4)-order scheme is computationally more efficient. This may
happen, for example, if the frequency of the solution in time is substantially lower than
that of the frequency in space. Consider the test solution given by u = V (x, y)Φ(t) with
V (x, y) = cos(20x) cos(20y), Φ(t) = cos(

√
2t), and constant wavenumber c(x, y) = 1.

This results in an inhomogeneous wave equation with right-hand side F given by (51). The
advantage of taking a larger time step will be more pronounced over longer time intervals,
and so we take a final time of tF = 10 to reflect this in the following comparison.

The results of Table 7 show that the use of the (2,4)-order scheme with a larger CFL yields
similar overall errors at a significantly lower computational cost. The CFL numbers for the
(2,4) scheme were chosen by trial-and-error up to the point at which the overall error started
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Table 7 Comparison of
(4,4)-order and (2,4)-order
schemes for the test solution
u = cos 20x cos 20y cos

√
2t ,

which has higher frequency in
space than in time

Grid Error CFL # Time steps CPU time (s)

(4,4)-Order, θ = 1/12

64 9.27 · 10−4 0.60 534 0.464

128 5.86 · 10−5 0.60 1067 4.265

256 3.68 · 10−6 0.60 2134 42.61

(2,4)-Order, θ = 1/4

64 8.96 · 10−4 0.60 534 0.470

64 8.94 · 10−4 2 160 0.157

64 9.23 · 10−4 2.5 128 0.115

128 5.52 · 10−5 0.60 1067 4.074

128 3.21 · 10−5 10 64 0.221

128 6.55 · 10−5 16 40 0.144

128 9.99 · 10−5 17.5 37 0.149

256 3.61 · 10−6 0.60 2134 37.73

256 5.66 · 10−6 10 128 2.223

256 8.22 · 10−6 11 117 2.003

The equation is inhomogeneous
with constant wave speed c = 1,
and the final time is tF = 10

to grow (i.e., when et ≈ ex ). We observe that the largest CFL that maintains the same overall
error of the (2,4) scheme is much greater for finer grids in this case.

A similar situation arises from the use of nonuniform meshes (which we do not consider
here), in which case the time step is determined by the finest spatial mesh. We can simulate
such a case by taking a variable propagation speed c(x, y) which sharply increases from one
side of the medium to the other. Let

c2(x, y) = 1 + 3e20(y−1).

Define the test solution u = V (x, y)Φ(t) by V (x, y) = cos x cos y and Φ(t) = cos(
√
2t)

(i.e., a = b = 1). This results in an inhomogeneous wave equation with right-hand side F
given by (51). Note, that in this case the maximum of c2(x, y) is 4 at the top of edge of the
square, so the stability condition for the (4,4) scheme is approximately ht

hx
≤ 0.15. The final

time for the simulations is tF = 2. In Table 8, we compare the efficiency of the (2,4)-order
and (4,4)-order scheme for this problem. In contrast to Table 7, we observe that the largest
CFL that maintains the overall error becomes smaller as the spatial grid becomes finer.

5.3 Pollution Effect

Weconsider the homogeneouswave equation (1) and assume u(x, y, t) = eiΩt V (x, y) (more

generally, we consider the Fourier transform of u in time). Then V solves ΔV + Ω2

c2
V = 0.

We increase the frequency Ω on successive grids by a factor 24/5 ≈ 1.741 (this is the
predicted growth of the dispersion error for a 4th order scheme when doubling the number
of grid points [4,6]). We do so for the same variable-coefficient test solution used in Table 6,
and we increase the parameter Ω0 by a factor of 1.741 on each grid. We set a = b so that
Ω0 = c̄

√
a2 + a2 = c̄

√
2a. Therefore, the desired increase in the frequency of the test

solution is obtained by increasing a by a factor of 1.741 as the grid is refined by a factor
of 2. We begin in this case with a = 1 on the coarsest grid. On the square of side length 2
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Table 8 Comparison of
(4,4)-order and (2,4)-order
scheme for a sharply variable
wavespeed c2(x, y) = 1 +
3e20(y−1)

Grid Error CFL # Time steps CPU time (s)

(4,4)-Order, θ = 1/12

64 6.40 · 10−4 0.20 279 0.267

128 3.40 · 10−5 0.20 640 2.331

256 2.49 · 10−6 0.20 1280 23.79

(2,4)-Order, θ = 1/4

64 6.35 · 10−4 0.20 279 0.273

64 6.20 · 10−4 0.9 72 0.061

64 7.94 · 10−4 1.5 43 0.044

128 3.89 · 10−5 0.20 640 2.342

128 4.61 · 10−5 0.8 160 0.575

256 2.24 · 10−6 0.20 1280 22.29

256 2.84 · 10−6 0.40 640 11.33

256 4.50 · 10−6 0.50 512 8.905

The inhomogeneous test solution
is u = cos x cos y cos

√
2t with

final time tF = 2. A larger CFL
number results in similar
accuracy but at a lower
computational cost for the (2,4)
scheme

Table 9 The inhomogeneous wave equation with variable wave speed c2(x, y) = x2
4 + 1 is solved for the

test solution u = cos x cos y cosΩ0t with CFL = 0.4 and final time tF = 2

Grid Error Ω0

8 2.46 · 10−5 1.56

16 2.71 · 10−5 2.72

32 1.05 · 10−5 4.73

64 1.76 · 10−5 8.23

128 1.68 · 10−5 14.33

256 1.69 · 10−5 24.96

512 1.67 · 10−5 43.46

1024 1.14 · 10−5 75.66

As the frequencyΩ0 of the solution increases by a factor of 24/5 on each successive grid, the pollution quantity
k p+1h p remains constant

centered at the origin with c2(x, y) = x2
4 + 1, we have c̄ = 1.0885. The results using the

(4,4) implicit scheme are summarized in Table 9.

Since the error stays relatively constant in Table 9 as the wavenumber k2 = Ω2

c2
of the

associatedHelmholtz equation and number of grid nodes are varied according to the predicted
growth of the dispersion error, the pollution effect is confirmed.

5.4 Observations

The scheme exhibits the design rate of convergence of 2nd order in time when θ = 1
2 or

θ = 1
4 and 4th order in time when θ = 1

12 . θ = 1
4 (the smallest possible θ for unconditional

stability) yielded errors that were about half of the magnitude of the Crank–Nicolson scheme
(θ = 1

2 ).
Fourth order convergence of the scheme when θ = 1

12 for the inhomogeneous equation
with a variable speed of sound was confirmed. As evidenced by Table 3, the high order (4,4)
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scheme is typically more efficient than the (2,2)-order, and (2,4)-order implicit schemes
despite the CFL restriction and we have confirmed that the computational efficiency of the
(2,4) scheme is greatly improved using a CFL which is near the spatial step size hx . Using a
direct LU solver, the (4,4) scheme was also shown to be more efficient than the (2,2)-order
explicit scheme. In Sects. 5.5, 5.6 and 5.7 we investigate the use of conjugate gradient and
multigrid solvers, and in Sect. 5.8, we provide an additional comparison of the (4,4) implicit
scheme with the (2,2) explicit scheme as well as a higher order (4,4) explicit scheme.

Tables 4, 5 and 6 demonstrate the design convergence rate of the scheme even for a
variable speed of sound and inhomogeneous problems. Note that even though we do not
treat coordinate transformations in this work, the stability analysis of Sect. 2.2 extends to the
case of a self-adjoint Laplacian term and also polar coordinates. In the case of the Yukawa
potential of Table 6, the CFL restriction of the (4,4) scheme resulted in similar errors for the
(2,4) and (4,4) schemes but with no difference in computational cost. Tables 7 and 8 represent
special cases, such as when the solution exhibits substantially more variation in space than
in time or in the case of a nonuniform mesh, for which the (2,4) scheme is more efficient
than the (4,4) scheme. This is because the overall error is dominated by the spatial error in
these cases, even for a very large CFL number.

We remark that the parameter k of the modified Helmholtz equation (20) is inversely
proportional to the time step ht . Table 2 confirms that the convergence rate of the scheme is
unaffected by the growth of the parameter k in (20) on a fixed grid as the CFL is lowered.
Additionally, note that k becomes larger as the spatial grid becomes finer, and no loss of
convergence is observed. On the other hand, we see in Table 9 that when the wavenumber
of the associated Helmholtz equation (i.e., obtained by the Fourier transform for a particular
solution) grows, the pollution effect is observed.

5.5 Conjugate Gradient Solver

The analysis of Sect. 4.1 indicates that CG will converge rapidly for the modified Helmholtz
equation when Kh2x does not tend to zero, as is the case for the implicit time marching of
the wave equation. The parameters to be evaluated are the residual tolerance for terminating
the CG iterations and the effect of the initial guess x0 on the number of iterations needed.
Assuming that no error estimate is available, we take the residual tolerance for terminating
CG iterations to be 10−10 in all cases. Preconditioning is not likely to be beneficial for
these problems given that the number of CG iterations in all test cases is already small.
Preconditioning by an incomplete Cholesky factorization was found to reduce efficiency.

The choice of initial guess at time level tn+1 is denoted xn+1
0 . In Tables 10 and 11 we

consider the four cases discussed in Sect. 4.3: xn+1
0 = 0, xn+1

0 = un, xn+1
0 = 2un − un−1,

Table 10 The required number of CG iterations for the (4,4) scheme with c = 1 and CFL = 0.6

xn+1
0 Average # iterations Largest # iterations CPU time (s)

0 8.00 8 62.8

un 7.07 10 57.6

2un − un−1 6.78 10 55.7

un+1
explici t 4.80 8 44.8

The grid size is 256 × 256 with a final time of t f = 12, so that there are 1630 time steps. The homogeneous

test solution is u = sin 15x cos 3y cos
√
234t
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Table 11 The required number of CG iterations for the (2,4) scheme with c = 1 and CFL = hx

xn+1
0 Average # iterations Largest # iterations CPU time (s)

0 10 10 122

un 7.58 11 100

2un − un−1 5.96 7 85.3

un+1
explici t 3.99 6 68.8

The grid size is 128 × 128 with a final time of t f = 8, so that there are 13,280 time steps. The homogeneous

test solution is u = sin 15x cos 3y cos
√
234t

and xn+1
0 = un+1

explici t ,where u
n+1
explici t is computed from the solutions un and un−1 at prior time

levels by the explicit formula (48). The tables display the largest number of CG iterations
across all time steps as well as the average number of iterations per time step. The CPU
times for the entire wave equation calculation are presented using MATLAB’s built-in pcg
command.

Tables 10 and 11 demonstrate that the number of iterations at each time step is low, even
with a zero initial guess. However, a more accurate initial guess substantially reduces the
number of iterations per time step and the overall efficiency of the scheme.

5.6 MG Solver

When solving the wave equation by multigrid, the initial guess is provided by the explicit
formula (48) (see Sect. 4.3 and also Sect. 5.5). The domain and test solution are the same as in
Sect. 5.5. When using FMG for the modified Helmholtz equation, we found it advantageous
to use very coarse grids, with the coarsest being 2 × 2. However, for the wave equation,
only one coarsening of the original grid was used, and in our testing the use of coarser grids
beyond this made no improvement to the residual after each V-cycle.

Jacobi and Gauss–Seidel are tested as smoothers. Regarding damped Jacobi, the damping
parameter obtained for general compact schemes in Sect. 4.2 resulted in no advantage over
ω = 1 (i.e., Jacobi without damping), and is thus excluded from the tests.When usingGauss–
Seidel, alternating forward and backward sweeps are performed. For each smoother, we have
experimentally chosen the number of V-cycles, ν0, the number of smoothing steps before
moving to a coarser grid, ν1, and the number of smoothing steps after returning from a coarse
grid, ν2. The multigrid implementation, including the Jacobi and Gauss–Seidel smoothers,
is written in MATLAB.

Figure 1 shows that the number of V-cycles needed in order for the residual to converge
remains very small as the grid step size decreases. Convergence of the residual guarantees
that the discretization error of the FD scheme has been reached, although it may be achieved
sooner.

5.7 Comparison of Solvers

We now carry out a comparison of direct and iterative solvers. We take a test solution of the
form u(x, y, t) = V (x, y)φ(t) with

V (x, y) =
{

(x2 + y2)3(1 − (x2 + y2)3) sin
(
50 arctan y

x

)
,

√
x2 + y2 ≤ 1

0,
√
x2 + y2 > 1

, (54)
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Fig. 1 Average residuals per V-cycle on each grid using a Gauss–Seidel (left) or Jacobi (right) smoother with
ν1 = ν2 = 4. As the grid is refined, the residual converges in fewer V-cycles

Table 12 Total running times for direct LU and iterative CG and MG solvers for an inhomogeneous test
solution u = V (x, y) cos 4t with V (x, y) given in (54), CFL = 0.6, constant wave speed c = 1, and final
time tF = 1

Grid Error LU time CG time MG time (s)

64 5.32 · 10−2 0.052 0.18 0.098

128 3.13 · 10−3 0.28 0.77 0.47

256 7.64 · 10−5 3.07 6.70 4.01

512 4.25 · 10−6 31.0 43.6 34.6

1024 2.57 · 10−7 288 286 303

2048 1.60 · 10−8 2926 2139 2840

As the grid is refined, the iterative solvers become increasingly efficient compared to LU

and φ(t) = cos 4t on a square domain of side length 2s = π centered at the origin. The
test solution solves the inhomogeneous wave equation (1) with the right-hand side F given
by (51). For Table 12 we solve the problem with Dirichlet boundary conditions, and the
test solution is zero at the boundary. The final time is tF = 1. For both CG and MG, the
initial guess at each time step is given by the explicit formula (48). The tolerance for CG was
10−10. For MG, a Jacobi smoother is used with ν0 = 2 V-cycles and ν1 = ν2 = 2 pre- and
post-sweeps.

CGwas the most efficient for fine grids, and this was due in part to an observed decrease in
the average number of CG iterations per time step needed to meet the fixed residual tolerance
of 10−10 as the grid was refined (for example, the average number of CG iterations per
time step for the 64 × 64 grid was 12.91, but for the 512 × 512 grid it dropped to only
9.02). It is well known that direct solvers not only have large memory requirements, but
also their computational complexity scales poorly as the dimension increases. Moreover,
the Jacobi iterations used in MG are well suited to massively parallel computations, while
the implementation we have used is serial. The fact that only two grids are needed in the
multigrid V-cycle is also advantageous for parallel processing since this results in fewer idle
cores throughout the algorithm. Finally, we point out that MATLAB’s built-in pcg routine
is highly optimized and pre-compiled while our multigrid implementation is written entirely
in MATLAB, which is an interpreted language. Taking these factors into account, the results
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of Table 12 show that CG and MG will be very efficient solvers for 3D problems, and that
MG may be particularly efficient using parallel processing.

5.8 Comparison of Implicit and Explicit Schemes

In this test, we compare the implicit (4,4) scheme with the standard (2,2) explicit scheme
as well as a (4,4) explicit scheme. The test solution is given by V (x, y) = cos 7x cos 7y
and Φ(t) = cos 7

√
2t , resulting in a homogeneous wave equation, with Dirichlet boundary

conditions and final time tF = 3. The wave speed used is c = 1.
We construct an explicit scheme which is 4th order in both time and space as follows.

The step of substituting a central difference in time for Δuntt in Eq. (3) results in an implicit
equation; therefore, to obtain an explicit 4th order scheme we instead use a second order
backwards difference formula:

untt = 1

h2t

(
2un − 5un−1 + 4un−2 − un−3) + O (

h2t
)
.

Substituting into the wave equation (1) and rearranging for the upper time level, we obtain
the 4th order accurate in time explicit formula:

un+1 = 2un − un−1 + h2t c
2

12
Δ

(
14un − 5un−1 + 4un−2 − un−3) + h2t F

n − h4t
12

Fn
tt (55)

To obtain 4th order accuracy in space, the Laplacian Δ is approximated with 4th order
accuracy on the interior nodes by the 9-point star (non-compact) stencil. The 5-point (2nd
order) central difference stencil is used at the boundary nodes. The (4,4) explicit scheme
(55) requires additional backwards time levels, which are supplied at the initial time steps
by Taylor expansions similar to (49). The CFL condition for the (4,4) explicit scheme was
experimentally determined to be the same as that of the standard (2,2) explicit scheme for
this test problem.

The solver used for the implicit scheme was CG with a tolerance of 10−12 and the initial
guess xn0 = 2un − un−1 at each time step. For the explicit schemes, a CFL number of
2
3

√
3/8 ≈ 0.41 is the largest that allows for stability, while the stability requirement for

the implicit scheme allows a CFL of
√
3/8 ≈ 0.61 to be used. As noted in Sect. 2.2, the

CFL restriction is 50% larger for the implicit scheme than the explicit schemes. The results
are presented in Table 13. We observe graphically in Fig. 2 that the (4,4) implicit scheme
is similar in efficiency to the (4,4) explicit scheme and even appears to be more efficient
than the high order explicit scheme as the grid is refined. Both high order schemes are far
more efficient than the (2,2) explicit scheme. We stress that the (4,4) explicit scheme is not
compact.

6 Discussion

We have constructed an approximation to the variable coefficient two-dimensional wave
equation which is fourth order in space and time and also compact in both space and time
for Dirichlet and Neumann boundary conditions. Due to the compactness, high order global
accuracy is achieved without any special treatment of the initial and boundary conditions;
however, a compact high order scheme must be implicit. Even though the time discretization
is implicit, a bounded CFL condition is required to achieve stability for the (4,4)-order
scheme. A comparison with a (2,2)-order explicit scheme demonstrated the significant gain
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Table 13 Comparison of the running times and errors of the (4,4) implicit scheme (θ = 1/12) with the (2,2)
explicit scheme and a (4,4) explicit scheme

Grid (2,2) Explicit, CFL = 0.41 (4,4) Explicit, CFL = 0.41 (4,4) Implicit, CFL = 0.61

Error Time (s) Error Time (s) Error Time (s)

16 5.54 · 10−1 2.51 · 10−3 1.17 4.53 · 10−3 1.97 · 10−1 1.32 · 10−2

32 1.54 · 10−1 7.14 · 10−3 1.48 · 10−1 1.27 · 10−2 1.63 · 10−2 3.74 · 10−2

64 3.95 · 10−2 2.92 · 10−2 7.84 · 10−3 5.98 · 10−2 1.04 · 10−3 0.18

128 1.00 · 10−2 0.14 4.31 · 10−4 0.26 6.57 · 10−5 0.74

256 2.49 · 10−3 0.67 2.91 · 10−5 1.34 4.07 · 10−6 6.58

512 6.30 · 10−4 4.99 2.35 · 10−6 10.3 2.58 · 10−7 52.9

1024 1.58 · 10−4 51.8 2.22 · 10−7 112 2.36 · 10−8 398

The wave equation is homogeneous with constant wave speed c = 1 and test solution u =
cos 7x cos 7y cos 7

√
2t . The final time is tF = 3
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Fig. 2 The (4,4) implicit scheme solved by CG is similar in efficiency to a (4,4) explicit scheme up to an
error of about 10−6 and becomes more efficient than the explicit scheme beyond that point

in efficiency of the high order scheme despite being implicit. Additionally, the (4,4) implicit
scheme was shown to be similar in efficiency to a (4,4) explicit scheme. Comparisons with
implicit second order time schemes, which are unconditionally stable, show a great gain in
efficiency even though a large time step cannot be used for the (4,4)-order scheme. There are
special cases for which the (2,4) scheme may be more efficient than the (4,4) scheme. An
example occurs when a coarse resolution in time relative to the space resolution is sufficient
or when nonuniform wave speeds or grids determine the CFL number.

The implicitness of the schemes requires the solution of a positive definite elliptic system
in space at each step. In this paper, this systemwas solved directly by LU, aswell as iteratively
by conjugate gradient and multigrid. Iterative solvers performed comparably with the direct
solver in two dimensions for the scale of problems tested, and it was shown that the number
of iterations needed for convergence at each time step was small in all cases.
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Variable coefficient problems were easily treated. Our closely related work includes the
application of the finite difference scheme tested in this paper to the method of difference
potentials as an efficient means of solving the wave equation on nonconforming boundary
shapes with high order accuracy [10].

The main objective of the current work is to present a detailed analysis of the high order
accurate compact scheme for the wave equation, together with a set of supporting numerical
simulations, in the case of two space dimensions. Accordingly, its most natural extension,
which at the same time is very important from the standpoint of both analysis and applications,
would be to build a similar scheme in the case of three space dimensions.

The considerations of Sect. 2.1 that lead to the time-marching schemes (5) and (9) will
basically remain unchanged when moving from 2D to 3D, except that the Laplacian Δ will
need to be taken in 3D. The stability argument of Sect. 2.2 will stay unaffected as well,
except that the boundaries of the spectrum L lower and Lupper will depend on the specific
discrete approximation Lh of the operator L in 3D (in the simplest constant-coefficient case,
L ≡ Δ). The high order accurate spatial discretization of both the differential operator and
the boundary conditions in 3D will also be similar to the corresponding 2D constructs of
Sect. 3, except that the spatial stencil in 3D will contain 27 (rather than 9) nodes, and the
expression (24) for the Fourier symbol will be modified accordingly. The discretization of
the 3D modified Helmholtz equation with a variable speed of sound can be based on that
presented in [40].

The most significant changes between 2D and 3D will be in the area of solvers. The direct
LU solver will no longer provide a feasible approach because of memory and CPU require-
ments. In the case of constant coefficients, a very efficient solver can be built based on the
FFT. However, it will not generalize to variable coefficients. In the case of variable coeffi-
cients in 3D, iterative solvers will basically remain the only viable option. Both conjugate
gradients and multigrid in 3D will perform similarly to 2D (see Sects. 4, 5.5, and 5.6, as
well as “Appendix A”). These schemes perform well for the 3D Laplace equation. Therefore,
it is expected that they will converge even faster for the 3D modified Helmholtz equation,
which is even more positive definite. Hence, they will be dramatically more efficient than
direct methods (such as LU) for the solution of the spatial equation. The actual performance
of iterative solvers in 3D needs to be carefully studied both analytically and experimentally.
The 3D extension is currently underway, and the corresponding results will be reported in a
future publication.

A Numerical Study of Iterative Methods for the Modified Helmholtz
Equation

In the course of our study of iterative methods for the wave equation, some observations were
made regarding the use of MG and CG for solving the modified Helmholtz equation.

It is well known that the number of V-cycles needed for the Poisson equation when using
the second-order central difference stencil grows with the grid size when using a Jacobi
smoother without damping (i.e., ω = 1) and it is therefore advantageous to seek a damping
parameter for the high frequencies. In Fig. 3, we confirm this classical result for the 2nd order
central difference scheme with ω = 1; however the compact scheme converges with ω = 1
in a small number of V-cycles. The test solution is u = sin 5x sin 3y on a square domain of
side length s = π centered at the origin and Dirichlet boundary conditions on all edges. Each
V-cycle uses ν1 = ν2 = 4 pre- and post-sweeps of the Jacobi smoother. For the second order
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Fig. 3 For the 2nd order central difference scheme (left), Jacobi without damping leads to divergence for the
Poisson equation, which is well known. The 4th order compact scheme (right) exhibits convergence within a
small number of V-cycles even without damping for the Poisson equation

Table 14 The number of CG iterations increases for the modified Helmholtz equation with a fixed parameter
K = −50 while the number of MG V-cycles remains constant

Grid Error CG iterations MG V-cycles

16 1.22 · 10−2 17 7

32 1.17 · 10−3 36 10

64 7.95 · 10−5 74 13

128 5.12 · 10−6 149 14

256 3.22 · 10−7 294 13

512 2.02 · 10−8 576 12

The inhomogeneous test solution is u = sin 15x sin 13y. For MG, a Jacobi smoother (ω = 1) was used with
ν1 = ν2 = 4 pre- and post-smoothing iterations. The residual tolerance for CG was 10−10 on all grids

central difference scheme, a Jacobi smoother with ω = 1 was also divergent for the modified
Helmholtz equation with K < 0 but converged rapidly with ω = 4/5, the classical optimal
value for the Poisson equation in 2D. By contrast, use of the optimal damping parameter ω∗
(see (45), Sect. 4.2) conferred no advantage for the 4th order compact scheme either for the
Poisson or modified Helmholtz equation with K < 0.

In Sect. 4.1, our analysis showed that the error bound (38) for conjugate gradient was only
well behavedwhen Kh2x does not tend to zero as the grid is refined. Thewave equation resulted
in favorable cases in which the modified Helmholtz equation satisfied Kh2x = 1

θCFL2 , and
this quantity is constant for the (4,4) scheme and actually increasing with the grid size for the
(2,4) scheme with CFL = hx . In the following example, we solve the modified Helmholtz
equation with a fixed parameter K = −50 using the test solution u = sin 15x sin 13y on a
square of side length 2 centered at the origin and Dirichlet BCs. The residual tolerance for
terminating CG iterations is 10−10 in Table 14, while the number of MGV-cycles is the point
at which the residual converges.

Table 14 shows that the number of CG iterations doubles as the grid is refined by a factor
of 2 for the case when K is fixed while the number of MG V-cycles remains small. This
indicates that MG will in general be more efficient than CG when solving the modified
Helmholtz equation. We ran a set of computations for various constant values of K = k2 and
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found that the error was a function of kh, indicating that there is no pollution effect for the
modified Helmholtz equation.
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