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Standard numerical methods often fail to solve the Helmholtz equation accurately near 
reentrant corners, since the solution may become singular. The singularity has an 
inhomogeneous contribution from the boundary data near the corner and a homogeneous 
contribution that is determined by boundary conditions far from the corner. We present 
a regularization algorithm that uses a combination of analytical and numerical tools to 
distinguish between these two contributions and ultimately subtract the singularity. We 
then employ the method of difference potentials to numerically solve the regularized 
problem with high-order accuracy over a domain with a curvilinear boundary. Our 
numerical experiments show that the regularization successfully restores the design rate 
of convergence.

© 2017 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

We consider a time-harmonic wave problem on a bounded 2D domain with a reentrant corner, as shown schematically 
in Fig. 1. Problems with reentrant corners are difficult because the solution may become singular near the corner, i.e., the 
derivatives of the solution become unbounded. Standard numerical methods perform poorly near singularities, so they must 
be modified before use on singular problems. Wave problems with reentrant corners may arise, for instance, when analyzing 
the scattering of radar waves near an air–ocean–sea ice interface [23]. Marin et al. have solved several Helmholtz-type 
equations on domains with reentrant corners in [29] and [28] with the boundary element method (BEM) and the method 
of fundamental solutions (MFS), respectively. Martinsson [30] has applied an efficient spectral method to the Helmholtz 
equation on an L-shaped domain, though the method cannot handle arbitrarily-shaped boundaries and there is no attempt 
to remove the singularity. A variety of techniques [2], such as the Method of Particular Solutions (MPS) [6,42], have been 
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Fig. 1. A schematic for the domain � with a reentrant corner.

applied to the eigenvalue problem for the Laplacian on an L-shaped domain. Reentrant corners have been studied most 
thoroughly in the civil and mechanical engineering literature in the context of loaded elastic bodies, see [21] for a survey.

A somewhat different approach to the numerical treatment of near-boundary singularities does not tackle those singular-
ities directly. It rather smoothes out the corners and replaces them with sharply bent yet smooth curves. Then, the solution 
near the “corners” is no longer singular; it formally remains regular although its derivatives are large and the sharper the 
boundary curve the larger the derivatives. This approach has been applied, in particular, in work [12] to computing the 
Laplace eigenvalues on an L-shaped domain similar to that studied in [6].

In this paper, we use regularization (also known as singularity subtraction) and the method of difference potentials [38]
to achieve high-order accuracy near a corner. Singular solutions to the boundary value problem (BVP) that are expected to 
hamper numerical convergence are first subtracted out to produce a regularized problem, whose solution is known ahead 
of time to be smooth enough to be solved numerically without loss of accuracy. The regularized problem is then solved nu-
merically with the method of difference potentials. Finally the solution to the original boundary value problem is obtained 
by adding the singular solutions back to the regular solution. Our algorithm computes the regularization with sufficient 
accuracy to restore the intended high-order convergence rate of the method of difference potentials. This is an improve-
ment over previous works, e.g. by Marin et al. [29,28], that did not present data on the rate of convergence. High-order 
accuracy is particularly important for highly oscillatory wave propagation problems because it limits the pollution effect 
[5,3], so this is a significant advantage of our method. Regularization also performs better than the classical approach of 
local mesh refinement in the vicinity of the singularity, see e.g. [43], since the mesh must be refined very aggressively near 
the singularity to maintain high-order accuracy (which leads to a deterioration of conditioning).

The issue of regularization is difficult because there may be two contributions to the singularity which must be handled 
individually. If we temporarily ignore the boundary condition on the outer boundary �3, we can write the solution u to the 
Helmholtz equation over the domain � as u = v + w , where v is a particular solution that satisfies the boundary conditions 
on the sides of the wedge and w is an arbitrary linear combination of solutions that satisfy the homogeneous boundary 
conditions. Both the particular solution v and the linear combination w may be singular. We refer to the singularity in v
as the inhomogeneous contribution to the singularity, and the singularity in w as the homogeneous contribution to the 
singularity. The inhomogeneous contribution is local, in the sense that it is determined by the boundary conditions in the 
vicinity of the corner. On the other hand, the homogeneous contribution is nonlocal, since the unknown coefficients that 
characterize w are determined by the data at the outer boundary �3. To compute these unknown coefficients for use in the 
regularization, we must know what portion of the boundary data on �3 is from w , and what portion is from v . When both 
v and w are nonzero, “splitting” the data on �3 becomes a challenging issue. In this way, our work is more general than 
that of Marin et al. [29,28], who considered problems with only homogeneous contributions to the singularity.

While we choose to solve the regularized problem using the method of difference potentials due to its versatility and 
high-order accuracy, we emphasize that the regularized problem can be solved using whatever method is deemed most 
appropriate, such as the finite element method (FEM), BEM, or a spectral element method. This flexibility in choosing the 
numerical method is enabled by the partition between the regularization and the numerical solution per se. It is a key 
advantage of our approach over strategies for addressing the singularity that are reliant on a specific numerical method, 
such as FEM with special elements [1].

The method of difference potentials [37,38,36,44,31,32,10,33], introduced by Ryaben’kii, uses discrete counterparts to 
Calderon’s operators to accommodate general curvilinear boundaries while leveraging the accuracy and efficiency of high-
order finite difference schemes. In this way, the method of difference potentials overcomes a primary limitation of finite 
difference methods, their inability to accurately handle boundaries that do not conform to the discretization grid. The 
method of difference potentials has the same asymptotic complexity as finite difference schemes on regular structure grids. 
In FEM, on the other hand, high-order accurate approximations can be built for arbitrarily shaped boundaries only in fairly 
sophisticated and costly algorithms with isoparametric elements, see e.g. [4, Chapter 4]. In discontinuous enrichment/dis-
continuous Galerkin methods and GFEM [16,22,17,46], high-order accuracy also requires additional degrees of freedom. The 
downside of these methods for the predominantly smooth problems (geometrically large regions with smooth material 
parameters separated by several interface boundaries) is their substantial redundancy, which entails an additional compu-
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tational cost. Difference potentials also have several advantages over the methods based on classical integral equations, like 
BEM: singular integral kernels do not have to be evaluated, and variable coefficients (inhomogeneous media) and nonstan-
dard boundary conditions can be handled naturally [31,10]. In our subsequent development, we combine the method of 
difference potentials with a fourth order accurate finite difference scheme on a compact 3 × 3 stencil [9]. Note that sixth 
order accurate schemes on the same compact stencil have also been constructed for both the constant coefficient Helmholtz 
equation [41] and variable coefficient Helmholtz equation [45]. Compact schemes are beneficial as they only need the 
boundary conditions of the original BVP — additional artificial boundary conditions are unnecessary.

In our earlier work [11], we have already used the method of difference potentials to compute singular solutions to 
the Helmholtz equation with high-order accuracy. In that paper, however, the singularity was due to a discontinuity in the 
boundary data, while the boundary itself remained smooth. As a result, there was no homogeneous contribution to the 
singularity (more precisely, the corresponding part of the expansion was regular), and the overall formulation proved easier 
to analyze. The authors of [25,24,26], on the other hand, apply the method of difference potentials for computing singular 
solutions caused by the geometry of the domain. Yet that work does not pursue the high-order accuracy. Another example 
of employing the method of difference potentials for computing solutions with singularities is the recent work [39], as well 
as [47,48], where the authors simulate fractures in linear elasticity with second order accuracy.

1.1. Formulation and basic analysis of the problem

We solve the Helmholtz equation, which governs the propagation of time-harmonic acoustic waves or electromagnetic 
waves without polarization. In particular, we consider the homogeneous Helmholtz equation with a constant wavenum-
ber k,

�u + k2u = 0.

The computational domain �, shown schematically in Fig. 1, has a reentrant corner at the origin. Let α > 0 be the angle of 
the reentrant corner, measured exterior to the domain, and denote the segments of the boundary � by �1, �2, and �3 as 
shown in the figure. The boundary value problem is formulated with Dirichlet boundary conditions on each piece of �,

�u + k2u = 0 on �, (1a)

u
∣∣
�1

= ϕ1, u
∣∣
�2

= ϕ2, u
∣∣
�3

= ϕ3. (1b)

We assume that the solution u = u(r, θ) of the BVP (1) exists and is unique, i.e., that −k2 is not a Dirichlet eigenvalue of 
the Laplacian on �. If −k2 proves to be such an eigenvalue, then problem (1) is said to have an interior resonance. We do 
not address this case, since the solution is not unique. However, even when −k2 is near a resonance rather than exactly 
at a resonance, solving problem (1) may be problematic because the resulting discrete operator (a matrix) will be nearly 
singular and hence poorly conditioned. Therefore, in practice we must require that not only problem (1) be non-resonant, 
but also that −k2 be sufficiently far away from all resonances.

Hereafter, we assume that the solution u to problem (1) is bounded, although we allow the derivatives of u to be 
unbounded near the corner. The Dirichlet boundary condition on �, defined piecewise by ϕ1, ϕ2, and ϕ3, is assumed to 
guarantee that the solution u of the BVP (1) is sufficiently regular away from the corner. When ϕ1 and ϕ2 have unbounded 
derivatives near the corner, the solution u will be singular. Yet, we will show that there are also singular solutions equal to 
zero on both sides of the wedge.

We assume we know a function v = v(r, θ) that satisfies the Helmholtz equation (1a), as well as the boundary conditions 
on the sides of the wedge, but does not necessarily satisfy the boundary condition at the outer boundary:

�v + k2 v = 0, (2a)

v
∣∣
�1

= ϕ1, v
∣∣
�2

= ϕ2. (2b)

The function v of (2) may also be singular at the origin, but does not necessarily coincide with the solution u of the 
boundary value problem (1). Consider the difference of the two functions:

w = u − v.

The function w = w(r, θ) is a solution of the following BVP:

�w + k2 w = 0 on �, (3a)

w
∣∣
�1

= 0, w
∣∣
�2

= 0 (3b)

w
∣∣
�3

= ϕ̃3 = ϕ3 − v
∣∣
�3

. (3c)

The general solution to equation (3a) subject to the homogeneous boundary conditions (3b) on the sides of the wedge 
can be sought for in the form of a series (obtained by separation of variables):

w(r, θ) =
∞∑

ŵm(r) sin(mν(θ − α)), where ν = π

2π − α
. (4)
m=1
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We adopt the convention that the coordinate θ is in the interval [α, 2π ] for every point in the closure �̄, so that there 
is no ambiguity when evaluating the functions sin(mν(θ − α)), which are not 2π -periodic. Due to the special choice of ν , 
each term of the series (4) satisfies zero Dirichlet boundary conditions on the sides of the wedge. We apply the Helmholtz 
operator to w to determine the Fourier coefficients ŵm(r). We recall that in polar coordinates, the Laplacian is

� = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
.

As the sine functions in (4) are orthogonal on the interval α ≤ θ ≤ 2π for the different values of m, substitution of the 
series (4) into the Helmholtz equation (3a) yields the following ODE for each ŵm(r), m = 1, 2, . . .:

d2 ŵm

dr2
+ 1

r

dŵm

dr
+ k2 ŵm − m2ν2

r2
ŵm = 0. (5)

Denoting kr = x, we transform the previous equation into the Bessel equation for ŵm:

x2 d2 ŵm

dx2
+ x

dŵm

dx
+ (x2 − m2ν2)ŵm = 0. (6)

Equation (6) is a second-order ODE, so its general solution is a linear combination of two linearly independent solutions. 
Hence, ŵm(x) = am Jmν(x) +bmYmν(x), where Jmν and Ymν are the Bessel functions of the first and second kind, respectively, 
with order mν . We require the solution u to be bounded. But, Ymν(x) is unbounded as x → 0+ , so we have

ŵm = am Jmν(x) = am Jmν(kr).

Hence, the series (4) becomes:

w(r, θ) =
∞∑

m=1

am Jmν(kr) sin(mν(θ − α)). (7)

The coefficients am are referred to as “flux intensity factors” in [27,29,28], and are analogous to the “stress intensity factors” 
in elastostatics, see [21]. We will simply call them intensity factors. The intensity factors are currently unknown, but can be 
determined by enforcing the boundary condition (3c):

w
∣∣
�3

= ϕ̃3 = ϕ3 − v
∣∣
�3

.

If the angle α is acute, then 1/2 < ν < 2/3, for ν defined in (4). For m = 1 and small kr, we can write Jν(kr) =O((kr)ν), 
which means that though the Bessel function Jν itself is bounded at the origin, its first derivative is already unbounded. For 
m = 2 we have J2ν(kr) = O((kr)2ν), so the first derivative is bounded but the second derivative is unbounded. Subsequent 
terms of the series (7) will have increasing regularity at the origin. Here we assumed that α was acute only for illustrative 
purposes — the regularity of the terms improves with m for any α ∈ (0, 2π).

Altogether, we conclude that the singularity of the solution u to BVP (1) at the origin (r = 0) has an inhomogeneous 
contribution due to v of (2) and a homogeneous contribution due to w of (3). We write the inhomogeneous contribution as 
a log-power series using a method proposed by Fox and Sankar [18] in 1969, in which each term has increased regularity 
than the previous term. The homogeneous contribution comes from the terms of the Fourier–Bessel series (7), which also 
have increasing regularity. Our goal is to calculate several leading terms of the series for the homogeneous and inhomo-
geneous contributions. Then, subtracting these singular terms from the original BVP (1) for u will yield a problem that is 
smooth enough to be solved by difference potentials.

Computing the intensity factors {am} via relation (3c) proves challenging for problems with nonzero boundary conditions 
on the sides of the wedge, because we need to know v to evaluate ϕ̃3. The function v can be any solution of the homo-
geneous Helmholtz equation (2a) that satisfies the nonzero boundary conditions (2b) on the sides of the wedge. Because 
there is no boundary condition on the outer boundary, v is not unique; to see this, assume v satisfies the Helmholtz equa-
tion (2b) and boundary conditions (2b). But (2a) and (2b) will still be satisfied if any term Jmν(kr) sin(mν(θ − α)) of the 
Fourier–Bessel series is added to v , since this Fourier–Bessel term is zero on the sides of the wedge.

We only need some function v satisfying (2). Hence, not only doesn’t this lack of uniqueness hurt us, it can be used 
to our advantage (see Section 2). Additionally, v only needs to be evaluated on the outer boundary �3, so it suffices to 
formulate and solve a boundary value problem for v on a larger intermediate domain that contains the curve �3. We take 
the outer boundary of this intermediate domain to be an arc that encloses �3 and employ a method based on separation of 
variables to define the boundary condition.

A specific question of central importance for any numerical method applied to the Helmholtz equation is how this 
method would scale with respect to the wavenumber k. For the method that we propose in the current paper, the answer 
to this question is two-fold. On one hand, our regularization algorithm employs a series representation of the solution 
and subtracts several leading singular terms of this series so that the remaining part of the solution becomes sufficiently 
smooth. For higher wavenumbers, such a series may converge slower, because the magnitude of its individual terms may 
increase as k increases, and hence more terms would be needed to reach a given threshold for the residual. However, the 
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conventional convergence of the series does not directly affect the performance. In fact, the series by Fox and Sankar [18]
is, generally speaking, asymptotic, and its convergence is not guaranteed at all. What we actually require from the series 
used for regularization is not the convergence per se; it is rather the increasing regularity of its successive terms. As shown 
in Section 2.1, this property is not related to the value of k.

On the other hand, the regularized problem is already guaranteed to have a well-behaved solution, and is solved numer-
ically. For that purpose, we use the method of difference potentials [38], which relies on a finite difference approximation. 
Moreover, whereas the number of leading singular terms in the regularizing expansion that one needs to use does not 
depend on k, the coefficients in front of those terms (referred to as the intensity factors, see equation (7)) are computed 
using an auxiliary numerical procedure that also involves finite differences (see Section 2.4). It is well-known that any finite 
difference approximation of the Helmholtz equation is prone to numerical pollution [5]. It means that the approximation 
error is proportional to the quantity kphp+1, where h is the grid size and p is the order of accuracy. Thus, to maintain a 
fixed discretization error the number of points per wavelength kh must grow as k1/p . For higher order schemes this growth 
is slower. Therefore, we use a fourth order accurate compact scheme [8] for computing the intensity factors and a similar 
scheme [40] in the core of our difference potentials algorithm. We also note that the pollution effect manifests itself for 
FEM the same way as it does for finite differences, see [3,15].

In Section 2, we describe our regularization method in full detail. In particular, Section 2.7 contains a concise step-by-step 
overview of the algorithm. Section 3 covers the method of difference potentials, with a focus on practical implementation 
rather than the underlying theory (see [31] for a recent account of difference potentials in combination with compact high 
order schemes for the Helmholtz equation). In Section 4, we present our numerical results. In Section 5, we summarize our 
findings and make suggestions for future work.

2. Regularization method

We begin the in-depth discussion of our regularization method by summarizing the results of Fox and Sankar [18], who 
derive a power series representation for the solution in a neighborhood of the corner. We then use this series as part of a 
procedure for defining and solving a boundary value problem for v . Once v is computed, we reduce the full problem (1) to 
a homogeneous problem (3) with zero boundary conditions on the sides of the wedge, and enforce boundary condition (3c)
to calculate the leading intensity factors. Then, the final step is to subtract the homogeneous and inhomogeneous terms of 
the regularization from the full problem.

The goal is to create a regularized problem whose solution is “sufficiently smooth”, i.e. smooth enough to restore the 
accuracy of the main numerical method near the corner. As such, the meaning of the term “sufficiently smooth” depends on 
which numerical method is used for the main solve. To keep our analysis general, we call a function sufficiently smooth/reg-
ular if the function and its first d derivatives are bounded in �. For the numerical experiments in Section 4, we found d = 4
to be sufficient for our fourth order difference potentials formulation.

2.1. The method of Fox and Sankar

The work [18] of Fox and Sankar enables one to remove the inhomogeneous contribution of the singularity and serves 
as a starting point for defining the boundary value problem for v . They describe a procedure for computing u in the form 
of an infinite series that contains pure power and log-power terms w.r.t. r (the powers may be fractional). The series can be 
expressed as

u(r, θ) ∼
∞∑

m=1

[
v(m)(r, θ) + am w(m)(r, θ)

]
, (8)

where

∞∑
m=1

v(m) =
∞∑

m=1

r(m−1)+η(Am(θ) ln r + Bm(θ)), η ≥ 0, (9)

is an asymptotic series for the function v that satisfies the Helmholtz equation (2a) and the Dirichlet boundary conditions 
on the sides of the wedge (2b). On the other hand, the series

∞∑
m=1

am w(m) (10)

is an arbitrary linear combination of functions w(m) that satisfy the homogeneous Helmholtz equation (3a) and homoge-
neous Dirichlet boundary conditions (3b) on the wedge.

Fox and Sankar’s analysis provides a constructive procedure for determining the terms of the series (9) unambiguously 
from the Helmholtz equation (2a) and the boundary conditions (2b); in doing so, the next term in the series is explicitly 
computed based on the previous terms. So while v is not unique, the functions {v(m)} are. For the series (10), we take 
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w(m)(r, θ) = Jmν(kr) sin(mν(θ −α)) since the Fourier–Bessel series (7) is the general solution to problem (3a)–(3b) that can 
be derived by separation of variables. Fox and Sankar propose to compute each function w(m) as a power series, similar 
to (9), instead of using separation of variables. This is done apparently because the methodology of [18] is more general 
and allows for the wavenumber k to vary. For our analysis and computations, we will rather use the genuine separation 
of variables and the Fourier–Bessel series (7). This approach only applies when k is constant, but it is more intuitive and 
straightforward to use.

The method of Fox and Sankar [18] is not equivalent to the true separation of variables, because the individual terms 
of the series (9) are not solutions to the homogeneous Helmholtz equation (2a). It is similar in the sense that each sub-
sequent term of the series (9) is more regular than the previous term. The terms of the series 

∑∞
m=1 v(m) which are not 

sufficiently regular are what we refer to as the inhomogeneous contribution to the singularity. Similarly, the terms of the 
series 

∑∞
m=1 am Jmν(kr) sin(mν(θ − α)) which are not sufficiently regular are referred to as the homogeneous contribution to 

the singularity. We remove both contributions of the singularity via the regularization

u = u(reg) + v(1) + . . . + v(Mv ) +
Mw∑

m=1

am Jmν(kr) sin(mν(θ − α)). (11)

Here, the fixed integers Mv and Mw should be chosen large enough that the regularized solution u(reg) = u(reg)(r, θ) has d
bounded derivatives at the corner. The first terms of the asymptotic series (8) that are not removed by the regularization 
(11) are v(Mv +1) and w(Mw +1):

v(Mv+1)(r, θ) = r(Mv )+η(AMv+1(θ) ln r + B Mv+1(θ)), η ≥ 0, (12a)

w(Mw+1)(r, θ) = J (Mw+1)ν(kr) sin((Mw + 1)ν(θ − α)). (12b)

Thus if Mv + η ≥ d, then v(Mv +1) has d bounded derivatives. For small values of kr we have Jmν(kr) = const · (kr)mν +
o
(
(kr)mν

)
, so w(Mw +1) has d bounded derivatives if and only if (Mw + 1)ν ≥ d. In conclusion, u(reg) will be sufficiently 

regular when the constants Mv and Mw satisfy

Mv ≥ d − η and Mw ≥ d

ν
− 1. (13)

For any α > 0, we have ν > 1/2, so Mw = 2d − 1 will always be sufficient. The regularization (11) will eventually be used 
to convert the original boundary value problem (1) for u into a regularized boundary value problem for u(reg). Before doing 
that, the undetermined intensity factors a1, . . . , aMw must be computed.

2.2. Splitting the inhomogeneous and homogeneous contributions to the singularity

The intensity factors are determined by the boundary conditions, yet they cannot be computed directly from the original 
boundary value problem (1), since the boundary data ϕ3 on the outer boundary �3 includes a contribution from v as well 
as from the Fourier–Bessel series (7). If we obtain v , then we can isolate the contribution to ϕ3 that is due to the Fourier–
Bessel series. The function v is required to satisfy the homogeneous Helmholtz equation (2a) and boundary conditions (2b), 
because this allows us to reduce the original boundary value problem (1) to a boundary value problem (3) with zero data 
on the sides of the wedge by considering w = u − v . Since the boundary value problem (3) for w has zero data on the sides 
of the wedge, its solution must be in the form of a Fourier–Bessel series (7). Then the leading Mw intensity factors may be 
determined by enforcing the boundary condition on w at �3. Specifically, we require that the Fourier–Bessel series equals 
ϕ̃3 = ϕ3 − v|�3 on �3, see (3c).

As mentioned previously, v is not unique because any term Jmν(kr) sin(mν(θ − α)) of the Fourier–Bessel series can be 
added to v , and it will still satisfy the Helmholtz equation and boundary conditions (2b) on the sides of the wedge. Thus

∞∑
m=1

v(m)(r, θ) +
∞∑

m=1

ãm Jmν(kr) sin(mν(θ − α)) (14)

is an asymptotic series for v for any choices of the coefficients {ãm}. Then,

ϕ̃3 =
[
(am − ãm) Jmν(kr) sin(mν(θ − α))

]∣∣∣
�3

, (15)

where the coefficients {am} are the intensity factors of the original, full problem. Then equating the Fourier–Bessel series 
with ϕ̃3 of (15) via boundary condition (3c) yields {am − ãm}m≤Mw as the intensity factors. To recover the intensity factors 
{a1, . . . , aMw } needed to regularize the original BVP (1), the numbers {ã1, . . . , ̃aMw } must be known. Suppose we are able 
compute a v such that ã1 = · · · = ãMw = 0, i.e., a v that has the asymptotic series1

1 Note that the difference between formulae (14) and (16) is in the summation range for the second sum.
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∞∑
m=1

v(m)(r, θ) +
∞∑

m=Mw+1

ãm Jmν(kr) sin(mν(θ − α)) (16)

for some choice of constants ãMw +1, ̃aMw +2, . . . . Then enforcement of boundary condition (3c) will produce the desired 
intensity factors a1, . . . , aMw , since all the coefficients {ãm}m≤Mw are 0. The condition that v admits the asymptotic series 
(16) is equivalent to requiring that the singularity in v comes from the inhomogeneous contribution only. It makes intuitive 
sense that this condition is necessary to obtain the intensity factors, because the reason for partitioning u as v + w is to 
separate the two contributions to the singularity.

We cannot compute v by summing the asymptotic series (16), since the series 
∑∞

m=1 v(m) from the method of Fox and 
Sankar [18] is not necessarily convergent. Instead, we first subtract the Mv singular terms from v so that the difference 
ṽ = v − v(1) − . . . − v(Mv ) satisfies [cf. problem (2)]

�ṽ + k2 ṽ = f , (17a)

ṽ
∣∣
�1

= ϕ̃1, ṽ
∣∣
�2

= ϕ̃2. (17b)

Note that, as the individual terms v(m) built according to Fox and Sankar [18] are not solutions to the homogeneous 
Helmholtz equation, equation (17a), unlike equation (2a), develops an inhomogeneity that we denote f :

f := −(� + k2 I)
(

v(1) + . . . + v(Mv )
)
. (18)

By design, the function f that is defined by (18) and appears on the right-hand side of equation (17a), is such that the 
solution ṽ is non-singular, i.e., has at least d bounded derivatives.

Moreover, subtracting only the leading terms v(1) + . . . + v(Mv ) does not make the boundary conditions on the wedge 
(17b) homogeneous either, as we have:

ϕ̃1 = ϕ1 − (
v(1) + . . . + v(Mv )

)∣∣
�1

,

ϕ̃2 = ϕ2 − (
v(1) + . . . + v(Mv )

)∣∣
�2

.

Neither ϕ̃1 nor ϕ̃2 is necessarily equal to zero on its respective domain (�1 or �2). Nevertheless, the inhomogeneity of 
the boundary conditions (17b) can be removed by an easy modification of both ṽ and f , which still keeps the solution 
non-singular at the tip of the wedge. We provide the details in Section 2.3. In the meantime, we recast problem (17) as

�ṽ + k2 ṽ = f̃ , (19a)

ṽ
∣∣
�1

= 0, ṽ
∣∣
�2

= 0. (19b)

Any solution ṽ to problem (19) can be represented as the sum of a particular solution to the inhomogeneous equation and 
the general solution to the homogeneous equation:

ṽ = ṽp(r, θ) +
∞∑

m=Mw+1

ãm Jmν(kr) sin(mν(θ − α)). (20)

While the coefficients ãm on the right-hand side of (19) can be arbitrary, our key constraint is that the expansion for the 
general solution to the homogeneous equation should start from m = Mw + 1, i.e., as in (16). This will guarantee that the 
homogeneous contribution remains non-singular. As for the inhomogeneous contribution ṽp(r, θ), it is non-singular2 by 
construction, because ṽ is obtained from v by subtracting the Mv leading singular terms according to Fox and Sankar.

We emphasize that problem (19) is not a proper BVP for the Helmholtz equation because it is not closed — there is no 
outer boundary condition. Accordingly, this problem has multiple solutions. To find a solution ṽ to problem (19) in the form 
(20), we first represent it as a Fourier sine series:

ṽ =
∞∑

m=1

Ṽm(r) sin(mν(θ − α)). (21)

Using separation of variables, one immediately sees that the radial functions Vm(r) on the right-hand side of (21) satisfy 
the inhomogeneous ordinary differential equations [cf. equation (5)]:

d2 Ṽm

dr2
+ 1

r

dṼm

dr
+ k2 Ṽm − m2ν2

r2
Ṽm = ˆ̃fm, (22)

where ˆ̃fm = ˆ̃fm(r) are the sine Fourier coefficients of f̃ (r, θ) from the right-hand side of (19a).

2 Being non-singular is understood here in the sense of Section 2.1; see, in particular, equation (13).
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Fig. 2. A schematic for the intermediate domain �int (solid lines) that contains � (dashed lines).

For our subsequent analysis, it will be convenient to split the sum (21) into two:

ṽ =
Mw∑

m=1

Ṽm(r) sin(mν(θ − α))

︸ ︷︷ ︸
ṽ1

+
∞∑

m=Mw +1

Ṽm(r) sin(mν(θ − α))

︸ ︷︷ ︸
ṽ2

. (23)

The second sum on the right-hand side of (23) that we have denoted ṽ2 contains, in particular, the entire homogeneous 
contribution given by the Fourier–Bessel series on the right-hand side of (20).

To actually obtain ṽ2 = ṽ2(r, θ), we formulate a boundary value problem for each Ṽm(r), i.e., for each differential equa-
tion (22), m = Mw + 1, Mw + 2, . . . . To do so, we first notice that according to (12a), i.e., according to the regularity 
requirement for ṽ , we have Ṽm(0) = 0. As for the outer boundary condition for Ṽm(r), the existing flexibility in ãm al-
lows one to specify it at any sufficiently large r = Rarc even though the true outer boundary �3 is not an arc and does 
not allow the separation of variables. The value of Rarc should be chosen such that for every point (r, θ) on �3 we have 
r < Rarc, see Fig. 2. Moreover, the key advantage of the split (23) is that for any m ≥ Mw + 1 the boundary condition for 
Ṽm(r) at r = Rarc can be arbitrary. Indeed, the non-singular behavior of ṽ2 is guaranteed ahead of time by the particular 
form of f , see formula (18), and the specific values of the coefficients ãm in (20) do not matter. The simplest choice is to set 
Ṽm(Rarc) = 0 for m = Mw + 1, Mw + 2, . . . . Then, we can say that ṽ2 delivers a bounded solution to the following boundary 
value problem [cf. problem (19)]:

�ṽ2 + k2 ṽ2 = f̃2, (24a)

ṽ2
∣∣
�1

= 0, ṽ2
∣∣
�2

= 0, ṽ2
∣∣
r=Rarc

= 0, (24b)

where

f̃2 :=
∞∑

m=Mw+1

ˆ̃fm(r) sin(mν(θ − α)).

In doing so, we are assuming that −k2 is not a Dirichlet eigenvalue of the Laplacian on the auxiliary domain bounded by 
the segments �1, �2 and the arc r = Rarc, see Fig. 2. In other words, we are assuming that r = Rarc is not a root of any of 
the Bessel functions Jmν(kr), m = 1, 2, . . . . The latter requirement can be relaxed. It is sufficient that Jmν(kRarc) 	= 0 only 
for m = 1, 2, . . . , Mw , because the values of ãm for m ≥ Mw + 1 in (20) can be arbitrary.

To obtain ṽ1 of (23), we need to solve the differential equations (22) for m = 1, 2, . . . , Mw . Unlike in the case of ṽ2, 
however, the resulting solutions Ṽm(r) may not contain any Bessel functions Jmν(kr), since this would create a homogeneous 
contribution to singularity. Therefore, each equation (22), m = 1, 2, . . . , Mw , shall be solved as an initial value problem (IVP). 
From (12a), we conclude that the initial conditions can be specified as

Ṽm(0) = 0,
dṼm(0)

dr
= 0. (25)

Solving IVPs (22), (25) for m = 1, 2, . . . , Mw on the interval 0 ≤ r ≤ Rarc, we obtain a non-singular ṽ1 for (23), or, equiva-
lently, a non-singular particular solution ṽp in (20). Moreover, as we only need to solve finitely many initial value problems 
(22), (25), and their number Mw remains fixed,3 there is no potential for ill-posedness or discrete instability.

3 Mw depends only on the desired degree of regularity, see (13), and does not depend on the parameters of the discretization that need to be chosen 
later.
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2.3. The boundary value problem for v

In Section 2.2, we have shown how one can distinguish between the inhomogeneous and homogeneous contribution to 
singularity, which enabled a constructive approach to regularization for the original boundary value problem (1). In practice, 
the regularization described in Section 2.2, i.e., the functions ṽ1 and ṽ2 of (23), shall be computed. Therefore, in this section 
we introduce a somewhat different yet equivalent approach to building a regularization that proves more convenient for 
numerical implementation. We also provide the details that were omitted in the previous section.

In particular, we find it more efficient not to specify any boundary (or initial) conditions right at the corner. Instead, we 
will take a small step away from the corner and state a counterpart to BVP (24) over the intermediate domain shown in 
Fig. 2,

�int = {(x, y) ∈R
2 : α < θ < 2π, R0 < r < Rarc},

where R0 is small. Since the corner is not in �int , the singularity does not disrupt the numerical convergence on �int . Next, 
in Section 2.2 we considered the function ṽ = v − (

v(1) + . . . + v(Mv )
)
, since subtracting the leading terms of the series of 

Fox and Sankar [18] eliminates the inhomogeneous contribution to the singularity. Now that the corner is outside �int , we 
no longer need to subtract these terms ahead of time and can solve for the entire v rather than for ṽ .

We now return to problem (2):

�v + k2 v = 0,

v
∣∣
�1

= ϕ1, v
∣∣
�2

= ϕ2.

The functions ϕ1 = ϕ1(r) and ϕ2 = ϕ2(r) are defined for 0 ≤ r ≤ R , since the radial segments �1 and �2 are assumed to be 
of length R . The auxiliary domain extends to the larger value of r = Rarc, so we create arbitrary smooth extensions of ϕ1
and ϕ2 to the larger set [0, Rarc]. Rather than introducing new notation, we simply redefine the symbols ϕ1 and ϕ2 to refer 
to their extensions. Any smooth extensions will work, since v only needs to satisfy the original boundary conditions (2b), 
which are stated for 0 ≤ r ≤ R . We also show that convergence is restored for two distinct choices of the extension in our 
numerical experiments, see Section 4.

So far, we have the following conditions for v on the intermediate domain �int:

�v + k2 v = 0 on �int, (26a)

v
∣∣
θ=α

= ϕ1(r), R0 ≤ r ≤ Rarc, (26b)

v
∣∣
θ=2π

= ϕ2(r), R0 ≤ r ≤ Rarc. (26c)

We now transform the incomplete BVP (26) so that it admits a Fourier sine series solution [cf. equation (21)]:

v =
∞∑

m=1

Vm(r) sin(mν(θ − α)). (27)

For such a solution to exist, the Dirichlet boundary conditions on the sides of the wedge must be made homogeneous. To do 
this, we take an arbitrary smooth function g = g(r, θ) defined on �int that matches the boundary conditions (26b), (26c):

g
∣∣
θ=α

= ϕ1(r),

g
∣∣
θ=2π

= ϕ2(r), R0 ≤ r ≤ Rarc.

Specifically, we take

g(r, θ) = θ − 2π

α − 2π
ϕ1(r) + θ − α

2π − α
ϕ2(r). (28)

Then, rewriting the conditions (26) on v for the new function v g := v − g , we obtain

�v g + k2 v g = −(� + k2 I)g =: f g on �int, (29a)

v g
∣∣
θ=α

= 0, R0 ≤ r ≤ Rarc, (29b)

v g
∣∣
θ=2π

= 0, R0 ≤ r ≤ Rarc. (29c)

Subtracting g from v creates an equivalent problem with zero data on the sides of the wedge, at the cost of developing a 
nonzero right-hand side f g . Now, we check if the functions {Vm} in the sine series (27) can be chosen so that conditions 
(29) are satisfied. Applying the Helmholtz operator (� + k2 I) to (27), we obtain:

�v + k2 v =
∞∑[

d2 Vm

dr2
+ 1

r

dVm

dr
+
(

k2 −
(mν

r

)2
)

Vm

]
sin(mν(θ − α)). (30)
m=1
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Hence, the series (27) can only satisfy Helmholtz equation (29a) if the right-hand side f g = −(� + k2 I)g is expressible as 
a Fourier sine series. Yet in general, the Fourier series of f g may have nonzero cosine terms. Thus, we must modify (29) so 
that the right-hand side of the PDE is guaranteed to be 0 on the sides of the wedge.

To do this, we construct a smooth function q on �int such that

q
∣∣
θ=α

= q
∣∣
θ=2π

= 0,

(� + k2 I)q
∣∣
θ=α

= f g(r,α),

(� + k2 I)q
∣∣
θ=2π

= f g(r,2π), 0 ≤ r ≤ Rarc.

(31)

To break up this task, we define q as the sum q1 + q2, where the functions q1 and q2 are chosen so that

q1
∣∣
θ=α

= q1
∣∣
θ=2π

= 0, q2
∣∣
θ=α

= q2
∣∣
θ=2π

= 0,

(� + k2 I)q1
∣∣
θ=α

= f g(r,α), (� + k2 I)q2
∣∣
θ=α

= 0,

(� + k2 I)q1
∣∣
θ=2π

= 0, (� + k2 I)q2
∣∣
θ=2π

= f g(r,2π).

We accomplish this by requiring that q1, q2, and their first and second radial derivatives are zero on the sides of the wedge. 
Then, the only contribution to (� + k2 I)q1 and (� + k2 I)q2 will come from the 1

r2
∂2

∂θ2 term of the Laplacian. In particular, 
one can take

q1(r, θ) = r2 · 1

2
(θ − α)2 f g(r,α) P2

(
α − θ

2π − α
+ 1

)
,

q2(r, θ) = r2 · 1

2
(θ − 2π)2 f g(r,2π) P2

(
θ − 2π

2π − α
+ 1

)
,

(32)

where P2(x) = 10x3 − 15x4 + 6x5 is a polynomial such that P2(0) = 0 and P2(1) = 1, with the first two derivatives equal to 
0 at x = 0, 1. It can be verified directly that q = q1 + q2, with q1 and q2 as defined in (32), meets the requirements (31).

Then, substituting v gq := v g − q into equations (29), we obtain:

�v gq + k2 v gq = f g − (� + k2 I)q =: f gq on �int, (33a)

v gq
∣∣
θ=α

= 0, R0 ≤ r ≤ Rarc, (33b)

v gq
∣∣
θ=2π

= 0, R0 ≤ r ≤ Rarc. (33c)

The new right-hand side f gq equals 0 when θ = α or θ = 2π , so f gq can be written as a sine series at each r:

f gq(r, θ) =
∞∑

m=1

f̂m(r) sin(mν(θ − α)). (34)

Then, setting

v gq(r, θ) =
∞∑

m=1

Vm(r) sin(mν(θ − α)), (35)

separation of variables implies [cf. equation (22)]:

d2 Vm

dr2
+ 1

r

dVm

dr
+
(

k2 −
(mν

r

)2
)

Vm = f̂m(r), R0 < r < Rarc, m = 1,2, . . . . (36)

We now split the series (35) for v gq , as was done earlier in (23),

v gq =
Mw∑

m=1

Vm(r) sin(mν(θ − α))

︸ ︷︷ ︸
v1

+
∞∑

m=Mw+1

Vm(r) sin(mν(θ − α))

︸ ︷︷ ︸
v2

. (37)

The Bessel functions Jmν(kr) are sufficiently regular for m ≥ Mw + 1, so the boundary condition on v2 at the outer arc may 
be chosen arbitrarily. For simplicity, we take [cf. the last equation of (24b)]:

v2
∣∣
r=Rarc

= 0, α ≤ θ ≤ 2π. (38)

Section 2.2 suggests calculating ṽ1 by solving Mw ODE initial value problems (22), (25), and calculating ṽ2 by solving 
a PDE boundary value problem (24). Yet directly applying this strategy to v1 and v2 of (37) could make it challenging to 
recover the entire v gq from the differing discretizations of v1 and v2. Instead, it will be more convenient to formulate and 
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numerically solve a single BVP for the entire v gq . To do so, however, we need to have an outer boundary condition for v1
and to obtain that, in turn, we will still solve Mw auxiliary IVPs for the ODEs (36).

Recall that the outer boundary condition for v1 must be chosen precisely so as to not introduce a homogeneous contribu-
tion to the singularity. Suppose we supplement the ODEs (36) with appropriate initial conditions and numerically integrate 
to obtain approximations V ∗

m(Rarc) of the function Vm at the outermost point r = Rarc. Then we can formulate the boundary 
condition

v1
∣∣
r=Rarc

=
Mw∑

m=1

V ∗
m(Rarc) sin(mν(θ − α)), α ≤ θ ≤ 2π. (39)

Adding together boundary conditions (38) and (39), we obtain a boundary condition for v gq itself:

v gq
∣∣
r=Rarc

=
Mw∑

m=1

V ∗
m(Rarc) sin(mν(θ − α)), α ≤ θ ≤ 2π. (40)

Now that we have constructed a boundary condition at the outer arc r = Rarc, only the boundary condition on the inner arc 
r = R0 of the intermediate domain �int is missing.

The asymptotic series (16) provides an accurate approximation of v in the neighborhood of the corner and can thus 
provide this last boundary condition. Namely, for a given number of terms MI we have:

v(r, θ) −
MI∑

m=1

v(m)(r, θ) = O(v(MI +1)) = O(rMI ), as r → 0.

Thus we can formulate the approximate boundary condition for v at the inner arc of the intermediate domain:

v
∣∣
r=R0

=
MI∑

m=1

v(m)(R0, θ), α ≤ θ ≤ 2π. (41)

This boundary condition can be transformed into a boundary condition for v gq by subtracting (g + q) on the right-hand 
side of (41). The error of approximation in boundary condition (41) is O(R0

MI ), so the radius R0 and number of terms 
MI should be chosen so that this error is smaller than the expected accuracy of the overall method. Our choice of MI is 
discussed in Section 4.

It only remains to derive the appropriate initial conditions for the ODEs (36), m = 1, . . . , Mw , at r = R0 that would 
replace initial conditions (25) from Section 2.2. These initial conditions and the resulting boundary condition (39) for v1
should guarantee that there will be no homogeneous contribution to the singularity. In that regard, we recall that initial 
conditions (25) were derived based on the expression (12a) for the leading term of ṽ upon removing the inhomogeneous 
contribution to singularity following Fox and Sankar [18]. Unlike in Section 2.2, in this section we use the full v rather 
than ṽ . Therefore, the initial conditions for the ODEs (36), m = 1, . . . , Mw , should be derived from the boundary condition 
(41) at the inner arc r = R0 and the analogous relation for the derivative ∂v

∂r . The functions {Vm} are the Fourier coefficients 
of v gq = v − g − q, so we transform (41) by subtracting g and q, and taking the Fourier transform. Accordingly, consider the 
Fourier coefficients {S(0)

m } and {S(1)
m } such that

∞∑
m=1

S(0)
m sin(mν(θ − α)) =

[
MI∑

m=1

v(m) − (g + q)

]∣∣∣∣
(R0,θ)

(42a)

∞∑
m=1

S(1)
m sin(mν(θ − α)) =

[
MI∑

m=1

∂v(m)

∂r
− ∂

∂r
(g + q)

]∣∣∣∣
(R0,θ)

. (42b)

Then, the set of initial value problems to be solved for obtaining (39) is [cf. IVPs (22), (25)]

d2 Vm

dr2
+ 1

r

dVm

dr
+
(

k2 −
(mν

r

)2
)

Vm = f̂m(r), R0 < r < Rarc, (43a)

Vm(R0) = S(0)
m ,

dVm

dr

∣∣∣∣
r=R0

= S(1)
m , m = 1, . . . , Mw . (43b)

The IVPs (43) define the previously undetermined Fourier coefficients V 1(r), . . . , V Mw (r). Each of the Mw initial value prob-
lems (43) has its coefficients and the right-hand side smooth and bounded for R0 ≤ r ≤ Rarc, and thus can be solved by a 
wide variety of standard numerical ODE integrators to obtain the quantities V ∗

m(Rarc), m = 1, . . . , Mw .
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Bringing together (33), (40), and (41), we obtain a fully-specified BVP for v gq :

�v gq + k2 v gq = f gq on �int, (44a)

v gq
∣∣
θ=α

= 0, R0 ≤ r ≤ Rarc, (44b)

v gq
∣∣
θ=2π

= 0, R0 ≤ r ≤ Rarc, (44c)

v gq
∣∣
r=R0

=
MI∑

m=1

v(m)(R0, θ) − (g + q)
∣∣
(R0,θ)

, α ≤ θ ≤ 2π, (44d)

v gq
∣∣
r=Rarc

=
Mw∑

m=1

V ∗
m(Rarc) sin(mν(θ − α)), α ≤ θ ≤ 2π. (44e)

Following the framework established in Section 2.2, we transformed the problem (2) for v so that it would have a Fourier 
series solution. We then used the method of separation of variables to obtain a sequence of IVPs (43), which, when solved, 
provide a boundary condition for v gq at the outer arc.

2.4. Numerical computation of v

This section covers the practical numerical solution of the sequence of independent IVPs (43) and the BVP (44) from 
the previous section. In particular, we discuss the computational cost of solving the IVPs and introduce a compact finite 
difference scheme for the BVP.

When numerically integrating the IVPs (43), the primary cost comes from evaluating the right-hand side f̂m(r), defined 
in (34) as the m-th Fourier sine coefficient of f gq . We evaluate f̂m by performing a Discrete Sine Transform (DST) on f gq at 
each r-value considered. The DST of a real sequence can be thought of as one half of a full discrete Fourier transform (DFT) 
applied to the sequence twice the length, which is obtained by reflecting the original sequence anti-symmetrically about 
an endpoint. We are able to use the DST because it is known ahead of time that f gq equals zero at the endpoints θ = α, 
θ = 2π and hence only has sine functions in its Fourier series. Likewise, the coefficients S(0)

m and S(1)
m that specify the initial 

conditions are calculated by performing the DST on the right-hand sides of (42a) and (42b) respectively.
For a given r = r̃, the n-point DST returns the first n coefficients f̂1(r̃), f̂2(r̃), . . . , f̂n(r̃). Then, since n ≥ Mw for any 

reasonable choice of n, a single DST yields the value of the right-hand side at r = r̃ for all of the initial value problems 
(43), m = 1, . . . , Mw . Therefore, using the same grid r0, r1, . . . , rn for each of the initial value problems may lower the 
computational cost, by allowing a single DST to be “shared” among the different IVPs. There is a trade-off, however, since a 
grid that is near-optimal for one IVP may be suboptimal for the others. If one chooses to use an explicit method, we expect 
linear multistep methods (e.g., Adams–Bashforth) to have a lower computational cost than Runge–Kutta methods, because 
multistep methods reuse evaluations of the right-hand side from previous steps.

Once the quantities V ∗
m(Rarc) are obtained from the numerical solutions of the IVPs (43), the BVP (44) for v gq can be 

formed. Its numerical solution, however, does not have to be based on separation of variables. Accordingly, it is no longer 
necessary to continue including the contributions of g and q into the BVP. Instead, we can recast the BVP (44) in terms of 
v = v gq + g + q:

�v + k2 v = 0 on �int, (45a)

v
∣∣
θ=α

= ϕ1, R0 ≤ r ≤ Rarc, (45b)

v
∣∣
θ=2π

= ϕ2, R0 ≤ r ≤ Rarc, (45c)

v
∣∣
r=R0

=
MI∑

m=1

v(m)(R0, θ), α ≤ θ ≤ 2π, (45d)

v
∣∣
r=Rarc

=
Mw∑

m=1

V ∗
m(Rarc) sin(mν(θ − α)) + (g + q)

∣∣
(Rarc,θ)

, α ≤ θ ≤ 2π. (45e)

Now we solve the boundary value problem (45) numerically.
As the intermediate domain �int is a polar rectangle, problem (45) is easy to approximate using finite differences. 

Moreover, �int does not include the reentrant corner, so the singularity in v is outside the computational domain. We 
define a polar grid, uniform in each direction:

{(rm, θl) : rm = R0 + mhr, θl = α + lhθ },
hr = Rarc − R0

N
, m = 0, . . . , N, hθ = 2π − α

N
, l = 0, . . . , N. (46)
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We represent the solution v on the grid as vm,l = v(rm, θl). We employ the fourth order accurate scheme for Helmholtz 
equation in polar coordinates from our earlier work [8]. Since the Helmholtz equation (45) is homogeneous, all terms of the 
scheme that involve the right-hand side and its partial derivatives vanish. Thus, the scheme is

1

rm

1

hr

(
rm+1/2

vm+1,l − vm,l

hr
− rm−1/2

vm,l − vm−1,l

hr

)

+ 1

r2
m

vm,l+1 − 2vm,l + vm,l−1

h2
θ

− h2
r

12

[
−k2 vm+1,l − 2vm,l + vm−1,l

h2
r

]

+ 1

12h2
θ

[
1

r2
m+1

(
vm+1,l+1 − 2vm+1,l + vm+1,l−1

)
− 2

r2
m

(
vm,l+1 − 2vm,l + vm,l−1

)

+ 1

r2
m−1

(
vm−1,l+1 − 2vm−1,l + vm−1,l−1

)]

− h2
r

12rm

[
−k2 vm+1,l − vm−1,l

2hr
(47)

− 1

2hrh2
θ

(
1

r2
m+1

(
vm+1,l+1 − 2vm+1,l + vm+1,l−1

)

− 1

r2
m−1

(
vm−1,l+1 − 2vm−1,l + vm−1,l−1

))]

− h2
r

12r2
m

(
−k2 vm,l − 1

r2
mh2

θ

(
vm,l+1 − 2vm,l + vm,l−1

))

+ hr

12r3
m

(
vm+1,l − vm−1,l

)

+ h2
θ

12

[
k2 vm,l+1 − 2vm,l + vm,l−1

h2
θ

]

+ 1

12h2
r rm

[
rm+1/2(vm+1,l+1 − vm,l+1) − rm−1/2(vm,l+1 − vm−1,l+1)

− 2
(
rm+1/2(vm+1,l − vm,l) − rm−1/2(vm,l − vm−1,l)

)
+ rm+1/2(vm+1,l−1 − vm,l−1) − rm−1/2(vm,l−1 − vm−1,l−1)

]
+ k2 vm,l = 0.

The discretization of the partial differential equation is supplemented with the discrete analogs of the Dirichlet boundary 
conditions (45b)–(45e),

vm,0 = ϕ1(rm), (48a)

vm,N = ϕ2(rm), m = 0, . . . , N, (48b)

v0,l =
MI∑

m=1

v(m)(R0, θl), (48c)

v N,l =
Mw∑

m=1

V ∗
m(Rarc) sin(mν(θl − α)) + (g + q)

∣∣
(Rarc,θl)

, l = 1, . . . , N − 1. (48d)

Note that discretization (48) of the Dirichlet boundary conditions (45b)–(45e) is straightforward and does not require any 
special steps for achieving high-order accuracy. Together, the scheme (47) and discrete boundary conditions (48) define a 
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linear system with (N + 1)2 equations and (N + 1)2 unknowns. The matrix of this system is sparse, and we use a standard 
direct solver for sparse linear systems to compute the solution.4

Now that we know v on the polar grid (46), we use interpolation to approximate v on the curvilinear boundary �3, 
since this is necessary to form the function ϕ̃3 = ϕ3 − v|�3 , see equation (3c). The polar grid is uniform and forms a 
rectangle with respect to the coordinates (r, θ), so high-order interpolation is possible. We use two-dimensional quintic 
spline interpolation, which has sixth order accuracy. Alternatively, the more widely used cubic splines, which are fourth 
order accurate, should still be enough to guarantee that the overall method is fourth order.

2.5. Calculation of intensity factors

The leading intensity factors a1, . . . , aMw which characterize the homogeneous contribution to singularity are unknown 
at this point. These intensity factors must be computed so that the homogeneous contribution can be removed as a part 
of the regularization. The overall strategy for calculating the intensity factors is to 1) obtain a function v that satisfies (2)
and (16) through the methodology of Sections 2.2, 2.3, and 2.4, 2) form the data ϕ̃3 = ϕ3 − v|�3 , and 3) enforce boundary 
condition (3c). To enable this analysis, we assume that the outer boundary �3 can be parameterized as

�3 = {(x, y) ≡ (r cos θ, r sin θ) ∈ R
2 : α ≤ θ ≤ 2π, r = r3(θ)} (49)

in terms of the smooth single-valued5 function r3(θ). Clearly, r3 should be such that r3(α) = R = r3(2π) so that �3 connects 
with the radial segments �1, �2 of length R . Furthermore, we characterize the deviation of �3 from the true arc of radius 
R by the quantity

β := max
α≤θ≤2π

|r3(θ) − R| . (50)

An important part of our analysis requires that the value of β be sufficiently small, see Section 2.5.1. The boundary data on 
�3 can also be expressed as a function of the polar angle, ϕ3 = ϕ3(θ), so that boundary condition (3c) becomes

∞∑
m=1

am Jmν(kr) sin(mν(θ − α)) = ϕ̃3(θ), α ≤ θ ≤ 2π. (51)

We calculate the leading intensity factors by discretizing this boundary condition.
The next steps are to define a discretization grid on the perturbed boundary, and sample the Fourier–Bessel functions 

and ϕ̃3 on the grid. Using the notation of Section 2.1, let w(m) denote the m-th term of the Fourier–Bessel series (7),

w(m)(r, θ) = Jmν(kr) sin(mν(θ − α)).

Then, let w(m) denote the restriction of w(m) to �3, parameterized by θ , that is, w(m)(θ) = w(m)(r3(θ), θ), α ≤ θ ≤ 2π . The 
NW -node discretization grid on �3 is defined by θi = i · 2π−α

NW +1 for i = 1, . . . , NW . The infinite series in boundary condition 
(51) needs to be truncated before implementation on the computer, so we take the first Ma terms, where Mw ≤ Ma < NW . 
For each m = 1, . . . , Ma , we define a vector whose entries are the trace of the m-th Fourier–Bessel term on the grid:

w0
m := [wm(θi)]NW

i=1 = [ Jmν(kr3(θi)) sin(mν(θi − α))]NW
i=1, m = 1, . . . , Ma. (52)

Let W 0 be an NW × Ma matrix that has the vectors {w0
m} as its columns, and let p be the trace of ϕ3 on the grid: 

p = [ϕ3(r3(θi), θi)]NW
i=1 . The overdetermined linear system W 0a = p should have an “almost classical” solution when Ma and 

NW are sufficiently large, because the Fourier coefficients {am} decay to 0 as m increases. We solve this system in the sense 
of least squares. Then the first M terms of a will be approximations of the required coefficients a1, . . . , aMw .

However, there is a difficulty, since the Bessel Jmν(kr) decays very rapidly as m increases. For example, J50(2.3) ∼
10−62. So as m increases from 1 to Ma , the entries in the columns w0

m become extremely small. As a result, W 0 will be 
rank-deficient in the numerical sense for large Ma . Fortunately, there is a simple way to remedy this problem by redefining 
the columns. As long as β of (50) is sufficiently small, Jmν(kR) will be near Jmν(kr3(θ)) for any θ ∈ [α, 2π ]. Let (w0

m)l
denote the l-th entry of the column w0

m . Then for any l we expect∣∣∣∣ (w0
m)l

Jmν(kR)

∣∣∣∣=
∣∣∣∣ Jmν(kr3(θl))

Jmν(kR)

∣∣∣∣ | sin(mν(θl − α))|

to about the same order of magnitude as | sin(mν(θ − α))|. Here, we assume that R is such that Jmν(kR) 	= 0 for any 
m = 1, 2, . . . , Ma . Thus, the problem of excessively small entries in the matrix can be resolved by redefining the columns: 
wm = w0

m/ Jmν(kR) for m = Mw + 1, . . . , Ma . The idea is that, by dividing these “small” columns by a number that is 
“similarly small”, we bring the entries of the columns back to “reasonable” numbers. The first Mw columns as left the same, 

4 In work [8] where scheme (47) was first built, we used an FFT based solver in a setting periodic in θ .
5 A region of R2 bounded by the curve that can be parameterized by means of a single-valued function r = r(θ), 0 ≤ θ ≤ 2π , is called star-shaped.
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wm = w0
m , m = 1, . . . , Mw , since the problem only arises as m becomes large. Let W denote the matrix with the modified 

columns, W = [wm]Ma
m=1. Then the linear system

W a = p (53)

is to be solved in the sense of least squares. Since the first Ma columns of the matrix were not modified, the first Ma terms 
of a will still yield approximations to a1, . . . , aMw .

We should emphasize, however, that even though the matrix W of system (53) has been modified so that no columns 
are excessively small, one may still wonder if W is necessarily full rank. This question is addressed in Section 2.5.1.

2.5.1. Proof of linear independence
The system (53) must have a unique least squares solution if the solution vector a is to yield reliable estimates of 

a1, . . . , aMw . Thus W must be full rank. When �3 is a true arc, the columns of W are orthogonal, and hence W is full 
rank and there is a unique least squares solution. In the case of a perturbed boundary, we will prove that finite sets of 
the functions {w(m)} defined by (52) are linearly independent when the quantity β of (50) is sufficiently small. Then, the 
columns {wm} will be linearly independent as well, provided that the grid on �3 is sufficiently fine. Thus, W will be full 
rank and there will be a unique least squares solution. The proof utilizes the theory of singular values for linear operators, 
a generalization of singular values for matrices.

Definition 1. Let A be a compact linear operator on a separable Hilbert space. Then the eigenvalues of the operator B =
(A∗ A)1/2 are called the singular values, or s-numbers, of A. We enumerate them in decreasing order, taking the multiplicities 
into account:

s j(A) = λ j(B), j = 1, . . . , rank(B).

If rank(B) < ∞, then we define s j(A) = 0 for all j > rank(B).

Definition 1 can be found in [19, p. 26].6 The reason we have introduced the singular values of compact operators is 
because the singular values tell us how much the operator would need to be perturbed to reduce its rank.

Theorem 1 (Allahverdiev). If A is a compact operator on a separable Hilbert space, then for each n ∈N,

sn(A) = inf{‖A −L‖ : L is an operator with rank < n},
where the norm is the operator norm induced by the norm of the Hilbert space.

Theorem 1, which appears in [19, p. 28], is the key result in our proof of linear independence. Theorem 1 refers to 
operators, while we wish to show the linear independence of a set of functions. We bridge the gap by creating an operator 
T0 that has range span{ Jmν(kR) sin(mν(θ − α))}n

m=1, for some n. The sine functions are orthogonal, hence T0 has rank n. 
Then we create a similar operator T that has range span{w(m)}n

m=1 = span{ Jmν(kr3(θ)) sin(mν(θ − α))}n
m=1. By reducing the 

value of β of (50), we can make Jmν(kr3(θ)) close to Jmν(kR), which will make the norm ‖T − T0‖ small. Thus, Theorem 1
will imply that both operators have rank n.

Proposition 1. Assume Jmν(kR) 	= 0 for any m = 1, . . . , n. Then ∃δ > 0 such that if β < δ, then the functions {w(m)}n
m=1 form a 

linearly independent set.

Proof. For each m ≤ n, let bm : [α, 2π ] → R be defined by bm(θ) = sin(mν(θ − α)), and let vm = Jmν(kR)bm . Let T0 :
L2[α, 2π ] → L2[α, 2π ] be defined by

T0ϕ =
n∑

m=1

〈ϕ, vm〉vm,

where 〈·, ·〉 is the L2[α, 2π ] inner product. T0 is linear and bounded. The range of the operator is R(T0) = span{bm}n
m=1, so 

rank(T0) = dimR(T0) = n. The operator T0 has finite rank and is therefore a compact operator. Let s1(T0), s2(T0), . . . be the 
singular values of T0. Theorem 1 implies that sn(T0) > 0, since T0 has rank n.

Let ε ∈ R be such that

0 < ε <
sn(T0)∑n

m=1 ‖vm‖L2 · ‖bm‖L2
. (54)

6 Monograph [19] states this definition and Theorem 1 for completely continuous operators. On a Hilbert space, an operator is completely continuous iff 
it is compact [14, p. 173]. We will use the more modern term, compact.
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For each m ≤ n, the Bessel function Jmν is continuous at r = R , so ∃δm > 0 such that |r − R| < δm ⇒ | Jmν(kr) − Jmν(kR)| < ε. 
Let δ = min{δ1, . . . , δn} and assume β < δ.

Define another operator T on L2[α, 2π ] by

Tϕ =
n∑

m=1

〈ϕ, vm〉w(m).

We want to use Theorem 1 to show that rank(T ) = n, so we estimate the operator norm of T − T0. Assume ‖ϕ‖L2 = 1. Then

‖(T − T0)ϕ‖L2 =
∥∥∥∥∥

n∑
m=1

〈ϕ, vm〉(w(m) − vm)

∥∥∥∥∥
L2

(55a)

≤
n∑

m=1

|〈ϕ, vm〉| · ‖( Jmν(kr3(θ)) − Jmν(kR))bm‖L2 (55b)

≤
n∑

m=1

‖ϕ‖L2 ‖vm‖L2 ε‖bm‖L2 (55c)

= ε

n∑
m=1

‖vm‖L2 ‖bm‖L2 < sn(T0), (55d)

where (55c) holds by Cauchy–Schwarz and since |r3(θ) − R| ≤ β < δ ≤ δm . In (55d), the final inequality follows from the 
assumption on ε, see formula (54). Hence ‖T − T0‖ < sn(T0) = inf{‖T0 − L‖ : L is an operator with rank < n}. As such, T
may not have rank smaller than n, so rank(T ) ≥ n. The range of T is span{w(m)}n

m=1, so {w(m)}n
m=1 is a linearly independent 

set. �
The columns wm of the matrix W are obtained by sampling the functions {w(m)}Ma

m=1 on the discretization grid 
θ1, . . . , θNW on the perturbed boundary. For m > Mw , the column is also multiplied by a constant. Assume that β is less 
than the δ supplied by Proposition 1 in the case n = Ma . Then {w(m)}Ma

m=1 is a linearly independent set, so the columns 
{wm}Ma

m=1 are linearly independent as well, provided the number of samples NW is large enough. Hence the matrix W is 
full rank, and the overdetermined linear system (53) has a unique least squares solution.

While one can use Proposition 1 to show that W is full rank, the proposition’s claim should not be exaggerated. Propo-
sition 1 does not imply that the countably infinite set {w(m)}∞m=1 is linearly independent. Recall that an infinite set is 
linearly independent iff any finite subset is linearly independent. The proof of Proposition 1 shows that, for any finite subset 
{w(m j)}n

j=1 of the countably infinite set, we can always choose β small enough to make the subset linearly independent. 
But this choice of β may depend on the indices m1, . . . , mn . We have not shown the existence of a single β > 0 that works 
for any finite subset of {w(m)}∞m=1.

2.6. The regularized problem

Standard numerical methods for PDEs including the method of difference potentials may lose convergence when the 
solution is singular. We remedy this issue by converting the original boundary value problem (1) to a regularized problem 
whose solution is known to have enough bounded derivatives to restore the rate of convergence. In Section 2.1, we proposed 
the regularization (11):

u = u(reg) + v(1) + . . . + v(Mv ) +
Mw∑

m=1

am Jmν(kr) sin(mν(θ − α))

and showed that u(reg) is sufficiently smooth when Mv and Mw are chosen large enough to satisfy inequalities (13). Now 
that we have identified a method for obtaining the leading intensity factors a1, . . . , aMw , see Section 2.5, the regularization 
(11) can be used in practical computation.

Before reformulating the original BVP (1) in terms of u(reg), we modify the regularization slightly. The term v(m) is of the 
form r(m−1)+η(Am(θ) ln r + Bm(θ)), η ≥ 0, which will become large as r increases for higher values of m. This is undesirable, 
because the sum v(1) + . . . + v(Mv ) may become many times larger than the solution u(reg). The terms v(m) are included in 
the regularization to remove the singularity at the corner r = 0, and therefore their behavior only matters in the vicinity of 
the corner. Thus, modifying the regularization at points away from the corner will not impact its effectiveness. We modify 
the regularization (11) so that the terms v(1), . . . , v(Mv ) are gradually tapered off as r increases. Consider the function

P6(x) =

⎧⎪⎨
⎪⎩

0, x < 0

x7(924x6 − 6006x5 + 16380x4 − 24024x3 + 20020x2 − 9009x + 1716), 0 ≤ x ≤ 1

1, x > 1
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from [11]. The piecewise polynomial function P6 smoothly transitions from 0 to 1 over the interval [0, 1]. Its first six 
derivatives are continuous, while there is a jump in the seventh derivative. This discontinuity is inconsequential when the 
required degree of regularity d is ≤ 6. If greater regularity is required, i.e. d > 6, then a piecewise polynomial of higher 
degree can be used in place of P6. Then, the tapered asymptotic expansion of v is

v(asym) =
[

v(1) + . . . + v(Mv )
]
· P6

(
1 − r − R0

R − R0

)
.

The factor P6

(
1 − r−R0

R−R0

)
equals 1 when r < R0 with a smooth transition to 0 over the interval [R0, R]. The choice of 

endpoints [R0, R] is mostly arbitrary, though an overly abrupt transition should be avoided. When r < R0, v(asym) is equal 
to the original sum of v(1) + . . . + v(Mv ) , so the new regularization

u = u(reg) + v(asym) +
Mw∑

m=1

am Jmν(kr) sin(mν(θ − α)), (56)

will still guarantee that u(reg) is sufficiently regular.
As discussed in Section 2.1, the individual terms v(1), v(2), . . . are not solutions to the homogeneous Helmholtz equa-

tion, since the method of Fox and Sankar [18] is not equivalent to a true separation of variables. Therefore, u(reg) satisfies 
an inhomogeneous Helmholtz equation. The inhomogeneity is obtained by applying the Helmholtz operator � + k2 I to 
regularization (56) [cf. formula (18)]:

f := −(� + k2 I)v(asym).

Since u(reg) is known to have d bounded partial derivatives w.r.t. r at the corner, it follows that f has d − 2 bounded radial 
derivatives. The regularized boundary value problem is then

�u(reg) + k2u(reg) = f on �, (57a)

u(reg)
∣∣
�1

= ϕ1 − v(asym)
∣∣∣
�1

, u(reg)
∣∣
�2

= ϕ2 − v(asym)
∣∣∣
�2

, (57b)

u(reg)
∣∣
�3

= ϕ3 − v(asym)
∣∣∣
�3

−
Mw∑

m=1

am Jmν(kr3(θ)) sin(mν(θ − α)). (57c)

The regularized problem (57) is solved by the method of difference potentials, which is described in Section 3.
Let us note that smoothing out the corners (the approach employed, e.g., in [12]) can also be thought of as a special 

form of regularization. It has the advantage of not requiring any expansions of the solution. However, its justification is 
more heuristic than rigorous. It assumes that the better the smooth curve approximates the actual corner, the closer the 
resulting solution will be to the actual singular solution. While intuitively this assumption holds, its justification may prove 
challenging. Moreover, in practical computations, if two different smooth curves approximate one and the same corner, then 
the resulting solutions will, generally speaking, be different as well.

Our regularization technique, on the other hand, is geared toward true corners with no smoothing. Even though the 
geometries that originate from real-life applications are often characterized by rounded corners, true corners provide a good 
model that is free from any ambiguities associated with the choice of smoothing. The advantage of our model is that it lends 
itself to rigorous analysis. Specifically, it enables accurate explicit subtraction of the singularity in the form of a truncated 
series, which is something we do not expect would be possible in the case of smoothed corners.

2.7. Summary of the algorithm

This section provides a high-level step-by-step summary of the regularization algorithm.

1. Set the required degree of regularity d and find values of Mv and Mw that satisfy (13). For the fourth order accu-
rate difference potentials formulation described in this paper, see Section 3, d = 4 is sufficient. The value may differ 
depending on the type of the main numerical solver and the order of accuracy.

2. Follow the algorithm of Fox and Sankar [18] to obtain the terms v(1), . . . , v(MI ) . The integer MI should be chosen large 
enough so that S(0)

m , S(1)
m are computed with sufficient accuracy, see (42). For example, we chose MI = 10.

3. Use the functions g and q defined in (28) and (32), respectively, to arrive at the initial value problems (43). Then 
numerically solve the IVPs (43) for m = 1, . . . , Mw to obtain the corresponding quantities V ∗

m(Rarc).
4. Numerically solve the boundary value problem (45) over the intermediate domain �int with the fourth order finite 

difference scheme (47), (48) for the Helmholtz equation in polar coordinates. The result is a solution {vm,l} on the grid 
(46).
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Fig. 3. The domain � is embedded in a rectangular auxiliary domain �0.

5. Solve the linear system W a = p, see (53), in the sense of least squares. In the computation of the vector p, a bivariate 
quintic spline interpolation of the discrete solution {vm,l} from the previous step should be used to evaluate v|�3 . The 
first Mw entries of a are the required intensity factors a1, . . . , aMw .

6. Numerically solve the regularized problem (57). We choose to use the method of difference potentials for that purpose, 
see Section 3. However, our regularization algorithm is in no way specific to difference potentials. Other methods, such 
as FEM, can be used as well.

In the special case when �3 is a true arc, the foregoing procedure becomes considerably simpler. Since the outer bound-
ary is already a true arc, it makes sense to set Rarc = R , so that the outer boundary of the intermediate domain coincides 
with �3. Then step 4 and the interpolation in step 5 become unnecessary since we do not need to know v on the interior 
of �int. With the radius r3(θ) constant along �3, the boundary condition (51) becomes

∞∑
m=1

am Jmν(kR) sin(mν(θ − α)) = ϕ̃3, α ≤ θ ≤ 2π,

which implies that the numbers {am Jmν(kR)} are the Fourier sine coefficients of ϕ̃3. Hence, the intensity factors a1, . . . , aMw

can be calculated by applying the DST to ϕ̃3 and dividing by the constants Jmν(kR). The system W a = p can still be used, 
but it may be simpler from an implementation perspective to use the DST.

3. The method of difference potentials

The method of finite differences suffers a loss of accuracy for problems whose boundaries do not conform to the dis-
cretization grid. The method of difference potentials is based on finite differences, yet overcomes the method’s geometrical 
limitations using the theory of Calderon’s projections [38,37]. The method can also handle variable coefficients, nonstandard 
boundary conditions, and inhomogeneous media in a straightforward manner. The method supports the use of compact 
finite difference schemes [9,41,8,40,20], which are beneficial because they allow high-order accuracy without requiring any 
artificial boundary conditions. In the formulation presented here, we use a compact fourth order scheme for the Helmholtz 
equation [40].

The fundamental idea of the method is to reduce a differential equation over � to an operator equation on the boundary 
� = ∂�. The resulting boundary operator equation is combined with the boundary condition on �, which yields a boundary 
formulation equivalent to the original BVP on �. The boundary operator equation is stated in terms of Calderon’s projections 
and referred to as the Boundary Equation with Projection (BEP). The BEP relates the Dirichlet and Neumann boundary 
data of the solution and is convenient to combine with the boundary condition that is also formulated in terms of the 
Dirichlet and/or Neumann boundary data. The BEP is discretized by introducing a finite basis expansion for the Dirichlet 
and Neumann data and enforcing the equation on a discrete boundary γ that straddles the continuous boundary �. The 
Calderon’s projections in the continuous BEP are replaced with difference projections, their discrete analog. A difference 
projection is computed by solving the auxiliary problem (AP), a Helmholtz boundary value problem on an auxiliary domain 
�0 that contains �, see Fig. 3. The auxiliary domain �0 should not be confused with the intermediate domain �int from the 
regularization algorithm of Section 2. A difference projection is computed for each basis function, so the auxiliary problem 
must be solved repeatedly. Solution of the discretized BEP yields the unknown boundary data; for example, if the Dirichlet 
data is specified by the boundary condition, then solution of the BEP yields the Neumann data. Once both types of boundary 
data are known, the solution is computed throughout � in the form of a difference potential.

The current section is not meant to be a comprehensive account of the method of difference potentials [38]. Instead, 
it is meant to summarize the computational algorithm with special attention paid to the modifications that are required 
to handle domains with reentrant corners. Other than the modification to the equation-based extension of Section 3.6, the 
difference potentials formulation presented here does not differ from previously published accounts of the method in any 
substantial way. For more information on the method of difference potentials, we refer the reader to [31], which may be 
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considered an introduction. The additional works [32,11,10,33] address transmission/scattering problems, singularities due 
to discontinuous boundary data, nonstandard boundary conditions, and multiple scattering, respectively.

We apply the method of difference potentials to the Helmholtz boundary value problem

�u + k2u = f on �, (58a)

u
∣∣
�1

= ϕ1, u
∣∣
�2

= ϕ2, u
∣∣
�3

= ϕ3, (58b)

where the domain � and boundary � = �1 ∪�2 ∪�3 are as defined in Section 1.1. As before, the wavenumber k is assumed 
constant. While we are reusing the symbols u, f , ϕ1, ϕ2, and ϕ3, it must be understood that BVP (58) is distinct from 
the BVP (1). In particular, the solution to BVP (1) may well be singular, but we require that (58) have a sufficiently regular 
solution. This is to say, first the regularization algorithm of Section 2 should be applied to the original problem (1), and 
then the method of difference potentials can be applied to the regularized problem (57). Rather than use the cumbersome 
notation of the regularized problem (57), we have returned to the simpler notation (58). The rest of this section addresses 
the components of the algorithm in the following order: the fourth order compact scheme (Section 3.1), the auxiliary prob-
lem (Section 3.2), the discretization grids (Section 3.3), difference potentials and the BEP (Section 3.4), the basis expansion 
(Section 3.5), and finally the equation-based extension (Section 3.6).

3.1. The compact finite difference scheme

At its core, the method of difference potentials relies on finite difference schemes to approximate the PDE. We employ a 
fourth order compact equation-based scheme for the Helmholtz equation in Cartesian coordinates:

ui+1, j − 2ui, j + ui−1, j

h2
+ ui, j+1 − 2ui, j + ui, j−1

h2
+ k2ui, j

+ 1

6h2

[
(ui+1, j+1 − 2ui+1, j + ui+1, j−1) − 2(ui, j+1 − 2ui, j + ui, j−1)

+ (ui−1, j+1 − 2ui−1, j + ui−1, j−1)
]

(59)

+ k2

12

[
(ui+1, j − 2ui, j + ui−1, j) + (ui, j+1 − 2ui, j + ui, j−1)

]
= 1

12
( f i+1, j − 2 f i, j + f i−1, j) + 1

12
( f i, j+1 − 2 f i, j + f i, j−1) + f i, j.

The scheme is analyzed in [40,20] and has been applied successfully within the framework of difference potentials in [31]. 
The scheme is referred to as compact because it uses a small 3 ×3 stencil for the discrete solution ui, j := u(xi, y j). That is, to 
apply the scheme at the node (i, j), only the values of the solution at the nodes Ni, j = {(i + �i, j + � j) : �i, � j = −1, 0, 1}
are needed. The five node stencil Km = {(i ± 1, j), (i, j), (i, j ± 1)} is applied to the discrete right-hand side f i, j := f (xi, y j). 
High-order accuracy is possible on the compact 3 × 3 stencil because the Helmholtz equation itself is used to eliminate the 
leading terms of the truncation error.

3.2. Auxiliary problem

The discretized BEP is generated through repeated solves of the auxiliary problem (AP), an inhomogeneous Helmholtz 
BVP formulated on �0. The auxiliary domain �0 contains � and should be taken in a shape that will facilitate a simple and 
efficient numerical solution of the AP. We take �0 to be a square of a side length s centered at the origin, though a disc 
would also be a reasonable choice. Given a right-hand side g defined on �0, the auxiliary problem is to solve the Helmholtz 
equation

�u + k2u = g on �0

with appropriate boundary conditions. The boundary conditions can be anything, so long as the resulting boundary value 
problem is well-posed and has a unique solution for any g . We consider homogeneous Dirichlet boundary conditions on all 
sides of the auxiliary domain: u|∂�0

= 0. The homogeneous Dirichlet boundary conditions are simple to implement and will 
allow for an efficient numerical solution using separation of variables and FFT. However, if −k2 coincides with an eigenvalue 
of the Laplacian � on �0 with the same homogeneous boundary conditions, then there is a resonance and the solution to 
the AP will not be unique. The resonance can be avoided by choosing the side length s of the auxiliary domain such that 

k2 	= ( aπ
s

)2 +
(

bπ
s

)2
for any a, b = 1, 3, 5, . . . . Alternatively, in [10,33], the AP is formulated with Sommerfeld-type boundary 

conditions on the left and right edges of �0 and homogeneous Dirichlet boundary conditions on the upper and lower 
edges. The Sommerfeld-type BCs make the spectrum of the Laplacian complex so that the purely real number −k2 will 
never coincide with a Laplacian eigenvalue. However, there are drawbacks associated with the Sommerfeld-type BCs, which 
require more effort to accurately discretize and prevent us from solving the discrete problem using FFT in the x-direction.
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Fig. 4. Discretization grids for the compact scheme.

We define several discretization grids on �0 so that we can formally apply the finite difference scheme (59) to solving 
the AP. Let N0 = {(i, j) : i, j = 0, . . . , N} and consider the subsets M0 and K0 depicted in Fig. 4. In general the horizontal 
and vertical spacing of the grid is allowed to differ, but for convenience we take the same step size h = s/N in both 
directions, so that the coordinates corresponding to the node (i, j) of N0 are xi = −s/2 + ih and y j = −s/2 + jh. Enforcing 
the finite difference approximation (59) of �u +k2u = f at the interior nodes M0 yields a linear system, which we represent 
symbolically as

L(h)u = B(h)f. (60)

Here u = (um)m∈N0 is the discrete solution over the grid N0 and f = ( fm)m∈K0 is the discrete right-hand side. Clearly, there 
are more unknowns than equations, so the system (60) requires an additional constraint, which comes from the discrete 
boundary conditions

ui,0 = ui,N = u j,0 = u j,N = 0, i, j = 0, . . . , N. (61)

Then, for a given function g on M0, the discrete auxiliary problem is to solve the system

L(h)u = g (62)

subject to the boundary conditions (61). Since the boundary conditions are homogeneous and Dirichlet, the discrete AP (62)
can be solved efficiently with FFT. The discrete AP will be solved repeatedly throughout the algorithm, so it is convenient to 
introduce notation for the solution operator. Let G (h) be the Green’s function for the discrete AP, so that G (h)g denotes the 
solution u to the linear system L(h)u = g for the given function g.

3.3. Grid sets

The method of difference potentials works by enforcing the BEP at the boundary, yet in general the boundary � does 
not conform to the grid. Therefore we will instead enforce the BEP at a discrete boundary γ that straddles the continuous 
boundary �. Towards this end, we partition M0 into the set of nodes M+ = M0 ∩ � that lie inside the domain, and the set 
M

− = M0 ∩ � which lie outside. The discrete boundary γ is defined by applying the 3 × 3 stencil Nm at each node m of 
M

+ and M− , and then taking the intersection:

N
+ =

⋃
m∈M+

Nm, N
− =

⋃
m∈M−

Nm, γ = N
+ ∩N

−.

The interior, exterior, and boundary grid sets are shown schematically in Fig. 5. Additionally, let us define yet another grid 
set, this time in terms of the five node stencil Km on the right-hand side:

K
+ =

⋃
m∈M+

Km.

Computing B(h)f at a given interior node m ∈ M
+ makes use of the values of f at the adjacent nodes Km , so naturally f

must be defined on a larger grid K+ that contains the interior nodes M+ as well as a fringe of nodes slightly outside the 
domain.
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Fig. 5. The interior, exterior, and boundary grid sets for the wedge angle α = π/4.

3.4. Difference potentials

At last, we are ready to define the term difference potential. Again, we refer the reader to [31] for in-depth coverage of 
difference potentials and projections, especially for the continuous case. Let ξγ be a given function on the grid γ . Let w be 
a function on N0 such that its trace T r(h)w on the discrete boundary coincides with ξγ ,

T r(h)w = ξγ .

Then the difference potential with density ξγ is a function on N+ defined by

PN+ξγ = w − G(h)
(

L(h)w
∣∣
M+

)
,

where L(h) is the fourth order approximation of the Helmholtz operator, see (60), and G (h) is the solution operator to the 
discrete AP (62). The notation L(h)w

∣∣
M+ means that the operator L(h) should be applied to w , and then the result should 

be set to 0 at nodes not in M+ . Next, we introduce the notation Pγ for the difference boundary projection, obtained by 
restricting the difference potential to the discrete boundary:

Pγ ξγ = T r(h) PN+ξγ . (63)

Then discrete boundary equation with projection (BEP) is stated in terms of the projection (63),

Pγ ξγ + T r(h)G(h) B(h)f= ξγ , (64)

where f is an extension of the right-hand side f of the Helmholtz equation (58a) to the larger grid K+ ⊃ M
+ . The funda-

mental property of the discrete BEP is that ξγ satisfies (64) if and only if there exists a grid function u with T r(h)u = ξγ

that satisfies L(h)u = B(h)f on M+ . Finally, the solution u is obtained through use of the formula

u = PN+ξγ + G(h) B(h)f. (65)

Thus, the BEP reduces the problem L(h)u = B(h)f over the set of interior nodes M+ to a problem at the discrete boundary γ .
There are many functions ξγ that satisfy the discrete BEP (64), just as there are many functions u that satisfy the 

discretization L(h)u = B(h)f of the PDE on the interior nodes M+ . To make the BEP uniquely solvable, we must involve 
the boundary conditions on � = ∂�, yet the BEP is enforced at the fringe of nodes γ rather than on the continuous 
boundary �. We bridge the gap by expanding the boundary data relative to a finite set of basis functions, and then applying 
the equation-based extension. Consider the vector-valued function ξ� = (ξ0, ξ1)|� that represents the trace of the solution u
to the Helmholtz equation (58a) and its outwards normal derivative ∂u

∂n on the boundary. Given the density ξ� of the 
solution u, the equation-based extension defines an approximation Ex ξ� of u at the discrete boundary γ . It is the extension 
Ex ξ� that takes the place of ξγ in the BEP.

3.5. Expansion of boundary data

Initially, the density ξ� corresponding to the solution is not entirely known. For the Dirichlet boundary conditions (58b)
considered here, the Dirichlet data ξ0 is known, while the Neumann data ξ1 is unknown. To include the unknown Neumann 
data in the BEP, we expand the vector function ξ� with respect to a Chebyshev basis on each of the boundary segments 
�1, �2, �3. The Chebyshev polynomials are defined on [−1, 1], so we introduce the linear functions g j , j = 1, 2, 3 that map 
[−1, 1] onto the segment � j . The radii �1 and �2 are parameterized by the polar radius r, so g1 and g2 should return values 
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of r. Likewise, the outer boundary �3 is parameterized by θ , so g3 should return values of θ . In either case, the parameter 
(r or θ ) can take on any value in a certain interval [b0, B0] ([0, R] or [α, 2π ] respectively). If we take g j to be a bijection 
from [−1, 1] to the interval [b0, B0], then the endpoints of the boundary segments will correspond to endpoints of [−1, 1], 
where the derivatives of the Chebyshev polynomials are large. In previous numerical experiments, we have observed a loss 
of accuracy when these large derivative values enter into the extension procedure. The solution is to have g j map [−1, 1]
into the slightly larger interval [b0 − ε, B0 + ε], for a small positive number ε, e.g. ε = 10−3 in our experiments. Then, the 
functions g j can be taken in the form g j(t) = C jt + D j , j = 1, 2, 3 with

C1 = C2 = R

2
+ ε C3 = π − α

2
+ ε

D1 = D2 = R

2
D3 = π + α

2
.

We also consider the inverse functions g−1
j , given by g−1

j (a) = (a − D j)/C j .
Next, we define the vector-valued basis functions in terms of the Chebyshev polynomials {Tn}. For the radii � j , j = 1, 2, 

the basis sets for the Dirichlet data ξ0 and the Neumann data ξ1 are

ψ
(0, j)
n (r, θ) =

{
(Tn(g−1

j (r),0)) on � j

(0,0) on � \ � j
,

ψ
(1, j)
n (r, θ) =

{
(0, Tn(g−1

j (r))) on � j

(0,0) on � \ � j
, n = 0,1, . . . ,

respectively. The definition is the same for the outer boundary, except with the Chebyshev functions parameterized by θ
rather than r:

ψ
(0,3)
n (r, θ) =

{
(Tn(g−1

3 (θ),0)) on �3

(0,0) on � \ �3
,

ψ
(1,3)
n (r, θ) =

{
(0, Tn(g−1

3 (θ))) on �3

(0,0) on � \ �3
, n = 0,1, . . . .

Then we can represent the vector density ξ� as

ξ� =
3∑

j=1

N j−1∑
n=0

c(0, j)
n ψ

(0, j)
n

︸ ︷︷ ︸
(ξ0,0)

+
3∑

j=1

N j−1∑
n=0

c(1, j)
n ψ

(1, j)
n

︸ ︷︷ ︸
(0,ξ1)

, (66)

where N j denotes the number of basis functions on the segment � j . We are using a finite number of Chebyshev polynomi-
als, so the expansion (66) is only an approximation of the density ξ� . However, the Chebyshev expansion converges rapidly, 
so there will be no loss of accuracy when the number of basis functions N j , j = 1, 2, 3 is set appropriately; see Section 4. 
The coefficients {c(1, j)

n } are unknown and are included in the BEP. On the other hand, the Dirichlet data ξ0 is given by the 
boundary condition, so the coefficients {c(0, j)

n } are considered known quantities.7 In practice, these coefficients are obtained 
by performing a Chebyshev fit on each segment of the boundary. The functions g j map the Chebyshev polynomials to the 
larger interval [b0 − ε, B0 + ε], so the functions ϕ j , j = 1, 2, 3 which supply the boundary data must be smoothly extended 
to this larger set.

The grid function ξγ is defined by the equation-based extension, which has a homogeneous component from the bound-
ary data (ξ0, ξ1) and an inhomogeneous component from the source term f . Then, we may write

ξγ = Ex ξ� = ExH (ξ0, ξ1)|� + ExI f , (67)

where ExH and ExI denote the homogeneous and inhomogeneous components of the extension. Replacing ξ� with its 
expansion (66) and using the linearity of the extension, we see that

ξγ =
3∑

j=1

N j−1∑
n=0

c(0, j)
n ExHψ

(0, j)
n +

3∑
j=1

N j−1∑
n=0

c(1, j)
n ExHψ

(1, j)
n + ExI f . (68)

7 It is not even truly necessary to expand the known Dirichlet data ξ0 with respect to the basis, since the extension and difference projections can be 
computed for ξ0 itself rather than the individual basis functions. Such an approach will significantly reduce the computational cost, though it does not 
generalize to more complex boundary conditions and requires that the particular functions ϕ1, ϕ2, and ϕ3 for each problem be differentiated ahead of 
time, either manually or symbolically.
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Then, substitution of (68) into the discrete BEP (64) yields the following linear system:

3∑
j=1

Q (1, j)c(1, j) = −
3∑

j=1

Q (0, j)c(0, j) − T r(h)G(h) B(h)f, (69)

where the vectors of coefficient are defined by

c(i, j) =
[

c(i, j)
0 , . . . , c(i, j)

N j−1

]
, i = 0,1, j = 1,2,3.

Here, i = 0 and i = 1 correspond to the Dirichlet and Neumann data respectively. The matrices Q (0, j) and Q (1, j) are defined 
in terms of their columns,

Q (i, j) =
[
(Pγ − I)ExHψ

(i, j)
n

]N j−1

n=0
, i = 0,1, j = 1,2,3.

In the system (69), the Neumann coefficients c(1, j) , j = 1, 2, 3 are unknown, while the other terms are known. In particular, 
the Dirichlet coefficients c(0, j) , j = 1, 2, 3 have been obtained by performing a Chebyshev fit on each segment. The linear 
system (69) has one equation per each node of γ and N1 + N2 + N3 unknowns. For reasonable choices of the grid dimension 
and the sizes N1, N2, N3 of the basis sets, we have |γ | > N1 + N2 + N3, so that system (69) is overdetermined. Thus, we 
are seeking its weak solution in the sense of least squares. Nevertheless, the weak solution to system (69) will be “almost 
classical”, in that each equation is approximately satisfied, up to the accuracy of the discrete approximation. Solving system 
(69) gives the coefficients c(1, j) , j = 1, 2, 3 which approximate the Neumann boundary data of the solution to the boundary 
value problem. Once this Neumann data is available, the solution is computed in the interior of � via formula (65).

3.6. The equation-based extension

The equation-based extension constructs an approximation of the solution u to the Helmholtz equation (58a) on the 
discrete boundary γ given its vector density ξ� . Such an extension is necessary to incorporate the boundary conditions into 
the BEP, which is formulated at the discrete boundary γ . The extension is the area in which the version of the method of 
difference potentials presented here differs most from the standard formulation for domains without corners.

3.6.1. Smooth boundaries
The extension is built with the help of an alternate coordinate system that specifies the position of the node m ∈ γ

relative to the curve �. We begin by describing the new coordinate system in the case when � is smooth, and then move 
on to the more difficult case in which there are corners. Let � be parameterized by its arc length, � = {R(s) : 0 ≤ s ≤ S}, 
where R(s) is the radius vector. Then the coordinates of the node m ∈ γ are obtained by finding the point Em on � that 
minimizes the distance ‖Em − m‖2. The point Em is unique when � has sufficiently low curvature, and can be identified 
by “dropping a normal” from m to the boundary. Let n denote the signed length of the normal, with n positive when the 
normal points outward with respect to �, and negative when the normal points inward. Additionally, let s be the value of 
the arc length parameter such that Em = R(s). Then the ordered pair (n, s) are the coordinates associated with � for the 
node m. In practice, a root-finding algorithm like Newton’s method is used to calculate the coordinates (n, s).

Near �, we define a new function v(n, s) in the form of a Taylor polynomial,

v(n, s) = v(0, s) +
L∑

l=1

1

l!
∂ l v(0, s)

∂nl
nl, (70)

where v(0, s) and each of the normal derivatives ∂l v(0,s)
∂nl are calculated from the boundary data ξ� . Suppose the node m ∈ γ

has coordinates (n, s). Then, the value of the equation-based extension at m is given by v(n, s). The extension is referred to 
as “equation-based” because the formulas for the higher derivatives ∂l v(0,s)

∂nl , l = 2, 3, . . . , L are obtained by assuming that v
satisfies the Helmholtz equation (58a). In [31], it was found that taking L = p is sufficient when the method has the overall 
order of accuracy p.8 Thus, we take L = 4 in our implementation of the algorithm and present the formulas for the partial 
derivatives of v up to ∂4 v(0,s)

∂n4 .
The first two terms in the Taylor polynomial (70) are obtained directly from the density ξ� = (ξ0, ξ1)|� ,

v(0, s) = ξ0(s),
∂v(0, s)

∂n
= ξ1(s).

8 This finding is experimental. In [36], a more strenuous requirement was proven rigorously: L = p + 2, where 2 represents the order of the differential 
equation.
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Fig. 6. Extension to a node near the corner formed by �2 and �3.

The formulas for the higher order derivatives are obtained by rewriting the Helmholtz equation (58a) in terms of the 
coordinates (n, s), with the help of Lamé coefficients. This analysis has already been carried out in [33], so we shall state 
the results without repeating the derivation. First, we introduce a unit tangent τ = τ (s) and a unit normal ν = ν(s) of the 
boundary �. We assume the arc length parameterization R(s) is counterclockwise, so that the unit normal ν always points 
outwards. Then, the signed curvature is

ζ(s) =

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣dτ

ds

∣∣∣∣ , if
dτ

ds
· ν > 0,

−
∣∣∣∣dτ

ds

∣∣∣∣ , if
dτ

ds
· ν < 0.

The second and third derivatives in the Taylor polynomial are given by

∂2 v(0, s)

∂n2
= f (0, s) − k2ξ0(s) + ζ(s)ξ1(s) − ∂2ξ0(s)

∂s2
,

∂3 v(0, s)

∂n3
= ∂ f (0, s)

∂n
+
(
ζ 2 − k2

)
ξ1(s) + ζ

∂2 v(0, s)

∂n2
− ζ ′ ∂ξ0(s)

∂s
− 2ζ

∂2ξ0(s)

∂s2
− ∂2ξ1(s)

∂s2
.

The paper [33] allowed the wavenumber k to vary in space, so the expressions for the derivatives included contributions 
from the partial derivatives of k(n, s). We have dropped these terms, since we assume a constant wavenumber. The fourth 
derivative is

∂4 v(0, s)

∂n4
= ∂2 f (0, s)

∂n2
+ 2ζ 3ξ1(s) +

(
2ζ 2 − k2

) ∂2 v(0, s)

∂n2
+ ζ

∂3 v(0, s)

∂n3

− 6ζ ζ ′ ∂ξ0(s)

∂s
− 6ζ 2 ∂2ξ0(s)

∂s2
− 2ζ ′ ∂ξ1(s)

∂s
− 4ζ

∂2ξ1(s)

∂s2
− ∂4 v(0, s)

∂n2∂s2
,

where, for the final term, we have

∂4 v(0, s)

∂n2∂s2
= ∂2 f (0, s)

∂s2
+ ζ ′′ξ1(s) − k2 ∂2ξ0(s)

∂s2
− ∂4ξ0(s)

∂s4
+ 2ζ ′ ∂ξ1(s)

∂s
+ ζ

∂2ξ1(s)

∂s2
.

Thus, all terms of the Taylor series (70) can be computed from ξ� = (ξ0, ξ1)|� , the right-hand side f , and their partial 
derivatives. For the homogeneous component ExH of the extension, introduced in (67), the formulas for ∂l v(0,s)

∂nl should be 
evaluated with f ≡ 0 so that only the terms involving ξ0 and ξ1 make a contribution. Similarly, for the inhomogeneous ExI , 
the partials of v should be computed with ξ0, ξ1 ≡ 0, leaving only the contributions from f .

3.6.2. Boundaries with corners
The coordinates (n, s) are defined unambiguously for each node of γ when the continuous boundary is smooth and has 

sufficiently low curvature. But the situation is less clear when the boundary has corners. Consider the node denoted by m∗
in Fig. 6. We can still identify the point Em∗ on � that is closest to m∗ , but the vector from Em∗ to m∗ will not be normal 
to the boundary, meaning that formula (70) cannot be used directly. An additional question arises when we recognize that 
there are independent systems of basis functions on each of the two segments that meet to form the corner. Consider Fig. 6: 
if we use the boundary data on �2 when extending to m∗ , then the corresponding equation in system (69) will be in terms 
of the coefficients c(2) . On the other hand, if we use the boundary data on �3, then this equation will be in terms of c(3) . 
We expect this choice to matter, since always choosing to use the coefficients c(3) , for example, would cause there to be 
no constraints on c(2) near the corner, thus decreasing the accuracy with which system (69) can reconstruct the unknown 
Neumann data.

There are likely multiple ways to resolve these issues and define the extension for nodes near the interfaces of two 
segments. The method we present has been found to work in practice. As illustrated in Fig. 6, the shortest vector between 
a given node of γ and the boundary may fail to be normal to the boundary. We address this problem by creating smooth 
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Fig. 7. γ1, γ2, and γ3 for α = π/4 on a 16 × 16 grid.

extensions �̃1, �̃2, �̃3 of each segment of the boundary. If � j , j = 1, 2, 3 is the curve {R j(s) : 0 ≤ s ≤ S j}, then its extension 
is

�̃ j = {R̃ j(s) : −ρ j ≤ s ≤ S j + ρ j}
for some ρ j > 0, with R̃ j an extension of R j . Then, the coordinates (n j, s j) associated with the curve �̃ j can be defined 
even for nodes like m∗ of Fig. 6, provided that ρ j is large enough. The coordinates are given the subscript j ∈ {1, 2, 3} to 
emphasize that nodes near the interface of two segments will be associated with two different segments and thus have two 
sets of coordinates. More precisely, we define the set of nodes associated with the segment � j as

γ j =
{

m ∈ γ : dist(m,� j) ≤ h√
2

}
,

where dist(m, � j) = inf(x,y)∈� j ‖m − (x, y)‖2. We have chosen the constant h√
2

because it is the distance between the central 
node and the corner nodes in the 3 × 3 stencil Nm . The sets γ1, γ2, and γ3 are shown in Fig. 7 for a coarse grid.

Previously, we said that there are two choices for building the extension to m∗ in Fig. 6, since we can either use the 
boundary data on �2, or instead use the data on �3. In ambiguous situations like this, our method works by computing 
both extensions and averaging them. To make this idea formal, we begin by introducing the “segment-specific” extension 
operator Ex j for each j = 1, 2, 3. Given a density ξ �̃ j

defined on the extended segment �̃ j , the operator Ex j defines a 
new function on γ j via the Taylor formula (70) using the coordinates (n j, s j) associated with �̃ j . The terms of the Taylor 
polynomial (70) should be computed by evaluating the extended density ξ �̃ j

and its derivatives at the point (0, s j) on 
�̃ j . The extended density ξ �̃ j

is obtained from ξ� using a Taylor approximation. The segment � j is given by R j(s j) for 
0 ≤ s j ≤ S j , so it is natural to parameterize the density in a similar way:

ξ �̃ j
= (ξ0(s j), ξ1(s j))

∣∣∣−ρ j≤s j≤S j+ρ j

.

When s j > S j , we shall build the Taylor approximation for ξ0(s j), ξ1(s j) at s0
j := S j , the closest point on the original curve 

� j . In the other case when s j < 0, we build the approximation at s0
j = 0. Then, the approximation is

ξ0(s j) = ξ0(s0
j ) +

L∑
l=1

1

l! ξ
(l)
0 (s0

j )(s j − s0
j )

l, (71a)

ξ1(s j) = ξ1(s0
j ) +

L∑
l=1

1

l! ξ
(l)
1 (s0

j )(s j − s0
j )

l, (71b)

where the superscript in ξ (l)
0 , ξ (l)

1 denotes the l-th derivative with respect to arc length. The number of derivatives in the 
extension (71) of the density should be greater than or equal to the number of derivatives in the main extension formula 
(70) to maintain the overall order of accuracy. We are including up to the L-th derivative in both formulas. Approximations 
for the derivatives of ξ0 and ξ1 with respect to the arc length s j may be obtained by differentiating the Taylor polynomials 
(71).
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The “global” extension operator Ex is defined in terms of the segment-specific extension operators Ex j , j = 1, 2, 3. 
For nodes that are only associated with a single boundary segment, the global extension and segment-specific extension 
coincide, while for nodes near the corners, the global extension is the average of two segment-specific extensions. Formally, 
for each node m ∈ γ we have

(Ex ξ�)m =
{

(Ex j ξ� j
)m, if m ∈ γ j and m /∈ γi for any i 	= j,

1
2

[
(Exi ξ �̃i

)m + (Ex j ξ �̃ j
)m

]
, if m ∈ γi ∩ γ j, i 	= j.

(72)

In the first case, we write the density as ξ� j
rather than ξ �̃ j

to emphasize that there is no need to define the density on 
an extended segment, since the node m is not near a corner. Near the beginning of this section, we wrote in the context of 
Fig. 6 that always favoring one segment-specific extension Exi over another Ex j would result in a dearth of constraints on 
the coefficients c( j) in system (69). By defining the global extension as the average of the two segment-specific extensions 
Exi and Ex j near the corner, we ensure that an appropriate number of constraints is placed on each of c(i) and c( j) . 
This approach has proven a reasonable solution as it has delivered the expected results in our numerical experiments, see 
Section 4. The relationship (72) between the global and segment-specific extension operators applies to the homogeneous 
and inhomogeneous extension operators ExH and ExI as well. The analog of (72) for the homogeneous and inhomogeneous 
extensions is obtained by replacing all instances of Ex with ExH or ExI , respectively.

In addition to extending the density ξ� to the discrete boundary, we also need to extend the function f to the larger 
grid the larger grid K+ ⊃ M

+ to compute the term T r(h)G(h) B(h)f in system (69). At the interior nodes M+ , we obtain f
simply by evaluating the source term f of the Helmholtz equation (58a) on the grid: fi, j = f (xi, y j). For the nodes K+ \M+
which lay slightly outside �, f is obtained via a smooth extension of f . Such an extension can be calculated, for example, by 
using the gradient and Hessian of f to construct a Taylor series approximation. While we use a five term Taylor polynomial 
for the equation-based extension (70), two fewer terms are sufficient for extending f , since it is the right-hand side of 
a second order differential equation. For the node (xi, y j) ∈ K

+ \ M
+ , consider the point (x̃, ỹ) on � that minimizes the 

distance δ = ‖(xi, y j) − (x̃, ỹ)‖2, and define the unit vector

v = 1

δ

[
(xi, y j) − (x̃, ỹ)

]
.

Then, we can define fi, j by means of the Taylor formula

fi, j = f (x̃, ỹ) + δ v · ∇ f (x̃, ỹ) + δ2

2
v · D2 f (x̃, ỹ) · vᵀ,

where D2 f is the Hessian of f .

4. Numerical results

In this section, we present the convergence results for the algorithm for various choices of the boundary data and outer 
boundary. For all of our experiments, we take the length R of the radial segments �1 and �2 to be 2.3. We consider two 
choices for the wedge angle, α = π/6 and α = π/2. The outer boundary is specified by the function r3(θ), α ≤ θ ≤ 2π , so 
we introduce Boundaries A, B, C, and D by defining the corresponding functions r3 = r3(θ) [cf. formula (49)]:

A: r3(θ) = R − β sin(ν(θ − α)), β = 0.5,

B: r3(θ) = R + β

κ
(θ − α)(θ − π)(θ − 2π), κ = (91

√
91 − 136)π3

2916
, β = 0.075,

C: r3(θ) = R + β sin(ν(θ − α)), β = 0.15,

D: r3(θ) = R + β sin(7ν(θ − α)), β = 0.025.

The parameter β = maxα≤θ≤2π |r3(θ) − R| given by formula (50) quantifies the magnitude of deviation of the true boundary 
�3 for the arc r = R . Thus we see that Boundary A (β = 0.5) has the largest deviation, while Boundary D (β = 0.025) has the 
smallest.9 The extension procedure requires the creation of extensions �̃1, �̃2, �̃3 of the boundary segments. The segments 
�1 and �2 are line segments, so it is natural to take the corresponding extended segments to be line segments as well. The 
extended outer boundary �̃3 is defined by the same function r3 = r3(θ) that describes �3, except we allow θ to take on 
values slightly outside the interval [α, 2π ]. For the intermediate domain that features in the regularization algorithm, see 
Fig. 2, we take R0 = 0.1 for the inner radius and Rarc = R + β for the outer radius. We set s = 2π for the side length of the 
square auxiliary domain �0, shown in Fig. 3.

9 For small values of β , the boundary �3 can be considered a perturbation of the arc r = R . In that regard we note that the idea of considering the 
general boundary as a perturbation of a regular shape has proven useful for computing the Dirichlet-to-Neumann maps and constructing the artificial 
boundary conditions for the numerical simulation of the scattering of waves, see, e.g., [34,35,13,7].
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Table 1
Convergence results and the sizes of the basis sets for boundary value problem (73) with k = 6.75 and α = π/6.

Grid Convergence rate Basis dimensions

Boundary A 
ϕ2(r) = Jν/2(kr)

Boundary A 
ϕ2 given by (75)

Boundary B 
ϕ2(r) = Jν/2(kr)

N1, N2 N3

16 × 16 9 21
32 × 32 9 28
64 × 64 5.1914 4.7202 4.132 17 34
128 × 128 1.7401 1.7984 3.536 24 40
256 × 256 4.2435 4.2284 4.1531 29 45
512 × 512 6.6806 6.6900 5.891 29 45
1024 × 1024 4.6762 4.6307 4.4284 29 45
2048 × 2048 3.7948 3.7857 3.8657 29 45

Consider the test problem

�u + k2u = 0 on �, (73a)

u
∣∣
�1

= ϕ1(r) = 0, u
∣∣
�2

= ϕ2(r) = Jν/2(kr), (73b)

u
∣∣
�3

= ϕ3(θ) = Jν/2(kr3(θ))
θ − α

2π − α
, (73c)

where �3 may be Boundary A, B, C, or D. We can take v to be v(r, θ) = Jν/2(kr) sin
(
ν
2 (θ − α)

)
, since this function matches 

the boundary conditions on the sides of the wedge and satisfies the homogeneous Helmholtz equation. The derivatives of 
the Bessel function Jν/2(kr) become unbounded as r → 0, so there is an inhomogeneous contribution to the singularity 
from v . There is also a homogeneous contribution to the singularity from the Fourier–Bessel series, since v(r, θ) does not 
satisfy the boundary condition on �3. To build the asymptotic series (9) for v(r, θ), we simply use several leading terms 
of the power series expansion for Jν/2, rather than apply the algorithm of Fox and Sankar [18]. The power series for the 
Bessel function of arbitrary order σ is

Jσ (x) =
∞∑

l=0

(−1)l

l!�(l + σ + 1)

( x

2

)2l+σ
. (74)

We use the convention that v(m)(r, θ) = r(m−1)+η(Am(θ) ln r + Bm(θ)) with η > 0 (see equation (9)) so for v(r, θ) =
Jν/2(kr) sin

(
ν
2 (θ − α)

)
we take

v(2l+1)(r, θ) = (−1)l

l!�(l + ν/2 + 1)

(
kr

2

)2l+ν/2

sin
(ν

2
(θ − α)

)
, v(2l+2) = 0, l = 0,1,2, . . . .

The number of terms v(m) that must be included in the regularization depends on the required degree of regularity d. For 
our fourth order difference potentials formulation, d = 4 is sufficient. Then the inequalities (13) tell us that it is sufficient 
to include Mv = 4 terms of the asymptotic expansion (9) for v and Mw = 7 terms of the Fourier–Bessel series (7) in the 
regularization. In this case, the terms v(m) are 0 for even values of m, so the inhomogeneous portion of the regularization 
only contains 2 nonzero terms.

We utilize the SciPy function odeint for solving the initial value problems (43), with the absolute and relative tolerance 
set to 10−12. The initial value problems are independent, but we solve all Mw of the ODEs with a single call to the numerical 
ODE integrator to reduce the number of Discrete Sine Transforms that must be performed. This performance consideration 
has been discussed in Section 2.4. Later in the regularization algorithm, when we form the linear system W a = p (see 
equation (53)) we take the dimension NW of the discretization grid on �3 to be 2048. The parameter Ma that determines 
the horizontal dimensional of matrix W also needs to be set. We have used Ma = 200 in our experiments, though a careful 
numerical study would be required to make more general recommendations about the value of Ma , since the optimal choice 
may depend on the shape and size of the boundary perturbation, among other factors. After obtaining the intensity factors, 
we create the regularized problem (57) and apply the method of difference potentials. On coarse grids, the method of 
difference potentials is fairly sensitive to the sizes of the Chebyshev basis sets. We determined appropriate sizes of the basis 
sets on coarse grids by testing many different choices for N1, N2, and N3 under the constraint N1 = N2. Then, we chose the 
dimensions that minimized the difference between the numerical and expected solution for a smooth test problem with a 
known solution. On finer grids, the method is less sensitive to the basis dimensions, but highly oscillatory solutions naturally 
require a greater number of basis functions to achieve the desired accuracy. For each of our numerical experiments, we list 
the dimensions of the basis sets along with the convergence rates (see Tables 1 and 2).

The expected solution to test problem (73) cannot be computed with arbitrary accuracy since it requires the summation 
of an infinite Fourier–Bessel series. Thus, we cannot use the expected solution to measure the rate of convergence. Instead, 
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Table 2
Convergence results and the sizes of the basis sets for boundary value problem (76) with k =
10.75 and α = π/2.

Grid Convergence rate Basis dimensions

Boundary C Boundary D N1, N2 N3

16 × 16 5 25
32 × 32 20 30
64 × 64 9.7393 8.7996 30 40
128 × 128 1.1455 0.1715 40 55
256 × 256 4.0674 0.8651 60 70
512 × 512 5.8289 6.7732 60 90
1024 × 1024 4.5438 6.4244 60 110
2048 × 2048 4.0053 4.0219 60 110

we track the convergence by comparing the numerical solution on successive grids. If u(N) denotes the numerical solution 
on the N × N grid, then the convergence rate on the N × N grid is defined as

log2
‖u(N/2) − u(N/4)‖∞
‖u(N) − u(N/2)‖∞

.

Table 1 shows the convergence results for test problem (73) on Boundaries A and B. The functions ϕ1 and ϕ2 are only 
defined for r ∈ [0, R] and must be smoothly extended to the larger interval [0, Rarc]. In all cases we take ϕ1(r) = 0 for all 
r ∈ [0, Rarc], but we consider two different extensions for ϕ2 to corroborate our claim that any sufficiently smooth extension 
will work. In the first and third columns of Table 1, we define ϕ2(r) = Jν/2(kr) for r ∈ [0, Rarc], while in the second column 
we have defined

ϕ2(r) = Jν/2(kr) +
{

0, if r ≤ R,

(r − R)5, if r > R,
r ∈ [0, Rarc]. (75)

Table 1 shows fourth order convergence regardless of the choice of extension.
Next, we consider a boundary value problem that has nonzero data on both sides of the wedge,

�u + k2u = 0 on �, (76a)

u
∣∣
�1

= ϕ1(r) = J3ν/2(kr), u
∣∣
�2

= ϕ2(r) = Jν/2(kr), (76b)

u
∣∣
�3

= ϕ3(θ) = J3ν/2(kr3(θ)) + [
Jν/2(kr3(θ)) − J3ν/2(kr3(θ))

] · (θ − α)(θ − (2π − α))

α(2π − α)
. (76c)

This problem has been designed so that v(r, θ) = Jν/2(kr) sin
(
ν
2 (θ − α)

)+ J3ν/2(kr) sin
(

3ν
2 (θ − α)

)
. The asymptotic series 

(9) for v is again built using the power series expansion (74) of the Bessel function,

v(2l+1)(r, θ) = (−1)l (kr/2)2l+ν/2

l!�(l + ν/2 + 1)
sin

(ν

2
(θ − α)

)
+ (−1)l (kr/2)2l+3ν/2

l!�(l + 3ν/2 + 1)
sin

(
3ν

2
(θ − α)

)
,

v(2l+2) = 0, l = 0,1,2, . . . .

The convergence results for test problem (76) are presented in Table 2 for the case α = π/2, in which the corner is a right 
angle. Again, there is fourth order convergence as the grid is refined.

5. Conclusions

The solution to the two-dimensional Helmholtz equation typically becomes singular in the neighborhood of a reentrant 
corner in the domain. We designed an algorithm that determines the form of the singularity and subtracts it to produce 
a regularized problem. The outer boundary of the computational domain is allowed to take on a general smooth shape, 
so we employ the method of difference potentials to solve the regularized problem with high-order accuracy. The method 
of difference potentials uses finite difference schemes to obtain an efficient and accurate approximation, even on general 
geometries that do not conform to the grid. The formulation of the method of difference potentials presented here is 
equivalent to formulations of the method for smooth boundaries, except that we take independent basis sets on each 
segment of the boundary and have modified the standard equation-based extension near the corners.

Computing the regularization is challenging because the singularity may have both a local, inhomogeneous contribution 
due to the boundary data on the sides of the wedge, and a nonlocal, homogeneous contribution from singular solutions that 
are zero on the sides of the wedge. Our algorithm removes the inhomogeneous contribution by utilizing the method of Fox 
and Sankar [18] to build an asymptotic series solution in the neighborhood of the corner. The homogeneous contribution 
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to the singularity is nonlocal because the intensity factors which characterize it are determined by the boundary condition 
on the outer boundary, far from the corner. To obtain the unknown intensity factors, we use separation of variables and an 
intermediate finite difference problem to reduce the original boundary value problem to one with homogeneous boundary 
conditions on the wedge. Then we obtain the intensity factors by formulating an overdetermined linear system at the outer 
boundary.

This work is significant because to the best of our knowledge it is the first time that the Helmholtz equation has been 
solved near a reentrant corner when both the homogeneous and inhomogeneous contributions to the singularity are present. 
Another advantage of our method over other work published in the literature is that the regularization is computed with 
sufficient accuracy to guarantee an overall high-order of accuracy, as confirmed by our numerical experiments. Together 
with our previous work [31,32,10,33], this paper shows that difference potentials is a flexible and robust numerical method 
for the Helmholtz equation, capable of handling nonstandard boundary conditions, multiple scattering, and singularities due 
to both geometric irregularities and discontinuous data. Moreover, the approach to regularization presented in Section 2 can 
be used with other numerical methods, not only the method of difference potentials.

Future work could extend the methodology presented in this paper to more difficult cases, such as reentrant corners 
with other types of boundary conditions (beyond Dirichlet), reentrant corners that lie on the interface between two materi-
als, or time-dependent waves. In particular, it should be relatively straightforward to handle Neumann boundary conditions 
at the wedge, or the mixed case in which there is a Dirichlet boundary conditions on one side of the wedge and a Neu-
mann boundary condition on its other side. Indeed, the corresponding expansions for the inhomogeneous contribution to 
singularity are already given by Fox and Sankar [18], and the Fourier–Bessel expansions for the homogeneous part can also 
be constructed. Other types of boundary conditions on the sides of the wedge, including Robin and those that characterize 
material interfaces, can also be accommodated, but it is likely to require additional work. As far as the remote boundary �3, 
boundary conditions other than the Dirichlet boundary condition can be set there similarly to how it is done in the general 
implementations of the method of difference potentials, see, e.g. [10].

The main challenge in having the current work extended to the case of three space dimensions is that unlike in 2D where 
the only kind of boundary irregularity is a corner, the 3D geometry offers a much broader variety of the possible boundary 
irregularities. For example, a polyhedron may have both reentrant edges, i.e., dihedral angles, and vertices, i.e., polyhedral 
angles. For the latter, the number of facets may vary from one vertex to another. We expect that our 2D regularization 
methodology described in Section 2 may extend to dihedral angles in 3D with relatively little additional effort, at least 
for those locations on the edge that are away from its endpoints. Developing the regularizing expansions for polyhedral 
reentrant angles may, on the other hand, prove a major undertaking. Moreover, the 3D shapes are obviously not limited to 
polyhedra, and there may be more general reentrant solid angles, e.g., conical. For some of those solid angles there may be 
separation of variables and hence a way of building a regularizing expansion.
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