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A Mathematical Model for SAR Imaging beyond the First Born Approximation∗
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Abstract. The assumption of weak scattering is standard for the mathematical analysis of synthetic aperture
radar (SAR), as it helps linearize the inverse problem via the first Born approximation and thus
makes it amenable to solution. Yet it is not consistent with another common assumption, that the
interrogating waves do not penetrate into the target material and get scattered off its surface only,
which essentially means that the scattering is strong. In the paper, we revisit the foundations of
the SAR ambiguity theory in order to address this and other existing inconsistencies, such as the
absence of the Bragg scale in scattering. We introduce a new model for radar targets that allows us
to compute the scattered field from first principles. This renders the assumption of weak scattering
unnecessary yet keeps the overall inverse scattering problem linear. Finally, we show how one can
incorporate the Leontovich boundary condition into SAR ambiguity theory.
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1. Introduction. In synthetic aperture radar (SAR) ambiguity theory (see [5, 6, 8]) the
image is represented as a convolution of the target (ground) reflectivity ν(z) with the imaging
kernel W (y,z) =W (y − z) that characterizes the radar system:

(1.1) I(y) =

∫
ν(z)W (y,z)dz.

Representation (1.1) is useful as it allows for a rigorous mathematical analysis of the image
properties, particularly its resolution. Indeed, in the ideal case, where W (y,z) = δ(y − z),
the image I(y) exactly coincides with the unknown ground reflectivity ν(z). In real-world
situations, though, the kernelW (y,z) (often referred to as the generalized ambiguity function;
see section 2.1) is never equal to the δ-function, and hence the imperfections of the image can
be unambiguously attributed to the properties of the kernel. However, the assumptions that
are typically made when deriving formula (1.1) may be inconsistent.

First and foremost, linearity with respect to ν of the inverse problem of reconstructing
the unknown reflectivity from the received radar signals (scattered off the target) is its key
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property that enables a solution in the form of (1.1). The linearity is normally attained
by assuming that the scattering is weak and employing the first Born approximation [3,
section 13.1.2]. Equivalently, it means that the variations of the scattering medium on top of
the constant vacuum background are small, so that the scattered field can be considered a first
order perturbation of the incident field that propagates in free space with no obstructions.
These considerations are standard in the mathematical literature on SAR, including our own
work [14, 13, 15, 26, 29]. However, they are inconsistent with the most common SAR imaging
scenario in which the scattering occurs only on the surface of the target so that convolution
(1.1) effectively becomes two-dimensional. In this case, the radar signals do not penetrate
into the target, which implies that the scattering is strong rather than weak.

An additional issue in the conventional SAR ambiguity theory that may be deemed prob-
lematic is the expression of the ground reflectivity ν as a function of the local refraction
index only (see formulae (2.11′) and (2.12′) in section 2.1). It is well known, for example,
that in this case a homogeneous dielectric half-space yields only specular (i.e., mirror-like)
reflection, which makes the monostatic SAR imaging impossible. At the same time, to the
best of our knowledge the Bragg-type resonant scattering mechanism has not yet been incor-
porated into the SAR ambiguity theory. It is this mechanism that enables scattering back
toward the emitting antenna, provided that a certain spatial scale is present in the spectrum
of inhomogeneities of the refraction index; see see section 3.3.

The main objective of the current paper is to generalize the conventional SAR ambiguity
theory and remove the foregoing inconsistencies. Its key new result is the construction of an
alternative mathematical model for distributed radar targets that still allows one to preserve
the standard representation (1.1) for the image yet avoids the assumption of weak scattering
(along with the first Born approximation) and does not employ singular ground reflectivity
functions.

Our new model for radar targets enables computing the scattered field from first principles.
Specifically, the scattering medium itself, which is a horizontally inhomogeneous dielectric half-
space, is introduced in the beginning of section 3 and then further delineated in the beginning
of section 3.2; see (3.4). The computation of the scattered field is based on the separation
of variables, which is rendered by Fourier transforms in time and in space. The resulting
scattered field is given by (3.46) and (3.47).

While not assuming that the scattering is weak, the new model keeps the overall inverse
scattering problem linear with respect to the material characteristics, which yields the solution
in the form of convolution (1.1). In essence, the model still employs linearization, but against
a different background solution, not necessarily the unobstructed incident field in free space.
Yet when the scattering is indeed weak, the new constructs transform into the previous ones.
In other words, in the case of weak scattering the linearization is performed against the
aforementioned free space incident solution. This is fully equivalent to using the first Born
approximation, as done in earlier studies of the SAR ambiguity theory. The discussion in the
current paper is restricted to the scalar framework. Yet the model and the methodology that
we introduce here also allow one to analyze effects related to polarization. This will be done
in the future.

In the literature on inverse problems, there are other approaches that avoid the assumption
of weak scattering and the first Born approximation. Among the most recent advances are
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the linear sampling method [4] and the factorization method [19]. Those two methods allow
for strong as opposed to weak scattering and are used predominantly for solving the shape
reconstruction problem in the frequency domain. To the best of our knowledge, ideas similar
to those of [4, 19] have not been applied to SAR imaging.

Hereafter, we analyze the most general setting for the scattering of radar signals off the
target; i.e., we consider two arbitrary directions for the incident and scattered waves. As for
the SAR imaging scenario, for simplicity we restrict ourselves to a monostatic1 narrow-band
stripmap imaging, as in [5, 8], with a small aperture angle. Unlike in [13, 14, 15, 26, 29], the
signal propagation is considered nondispersive. Other assumptions are introduced as needed.

The paper is organized as follows. In section 2, we present an account of conventional
SAR ambiguity theory and discuss its deficiencies; this section also refers to Appendix A for
technical derivations. In section 3, we present a new, more general, model for SAR targets
that exploits a horizontally inhomogeneous material half-space and allows us to overcome the
difficulties that characterize the conventional theory. An alternative (less rigorous) model
based on the Leontovich boundary condition is briefly discussed in Appendix B. In section
4, we generalize the conventional SAR ambiguity theory using the new scattering model of
section 3. Finally, in section 5, we outline our conclusions and discuss future work.

2. Revisiting the SAR ambiguity theory.

2.1. Conventional approach. In the framework of the conventional SAR ambiguity theory
(see [5, 6, 8]), the radar signals are interpreted as scalar quantities. Their propagation in free
space is governed by the d’Alembert equation:

(2.1)

(
1

c2
∂2

∂t2
−Δ

)
u = f,

where Δ is the Laplacian, c is the speed of light, and f = f(t,z) is the source, z ∈ R
3.

For an unsteady point source (emitting radar antenna) located at a fixed x ∈ R
3,

f(t,z) = P (t)δ(z − x),

the solution of (2.1) is given by the standard retarded potential,

(2.2) u(0)(t,z) =
1

4π

P (t− |z − x|/c)
|z − x| .

Hereafter, solution (2.2) will be used in the capacity of the incident field.
In [5, 8], the terrain to be imaged is characterized by the refraction index n = n(z). Then,

the total field u = u(0) + u(1) is governed by the variable coefficient wave equation:

(2.3)

(
1

v2(z)

∂2

∂t2
−Δ

)(
u(0) + u(1)

)
= f,

where u(1) = u(1)(t,z) is the scattered field and v(z) = c
n(z) is the speed of light in the

material. In the vacuum region, it is assumed that n(z) = 1, so that v(z) = c and (2.3)

1The emitting and receiving antennas are at the same location; it may be one and the same antenna.
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transforms back to (2.1). Subtracting the constant coefficient equation (2.1) written for the
incident field u(0) on the entire space R

3 from the variable coefficient equation (2.3), we have

(2.4)

(
1

c2
∂2

∂t2
−Δ

)
u(1) =

1− n2(z)

c2
∂2

∂t2
(
u(0) + u(1)

)
.

Equation (2.4) involves no simplifying assumptions, and its solution u(1) is the same as one
would have obtained by solving (2.3) with u(0) found from (2.1). Hence, this linear variable
coefficient partial differential equation can be used for direct computation of the scattered
field u(1) if the incident field u(0) and the refraction index n(z) are given.

However, the central problem of SAR imaging is the inverse problem of reconstructing the
unknown material parameter n(z), given the incident field u(0) and taking the scattered field
u(1) as the observable data. It is very important to realize, though, that whereas the incident
field u(0) is known on the entire R

3, the scattered field u(1) can be considered known only at
certain locations away from the target region.2 Thus, the inverse problem of SAR imaging
becomes effectively nonlinear, because on the right-hand side of (2.4) the unknown quantity
of interest, n(z), is multiplied by another unknown quantity, u(1)(t,z).

The most common assumption made in the SAR literature in order to simplify the for-
mulation of the inverse problem is that of weak scattering:

(2.5) |n(z)− 1| � 1, |u(1)| � |u(0)|.
Relations (2.5) allow one to employ the first Born approximation [3, section 13.1.2] and lin-
earize (2.4) by disregarding u(1) on its right-hand side. This linearization yields an inhomo-
geneous d’Alembert equation for the scattered field:

(2.6)

(
1

c2
∂2

∂t2
−Δ

)
u(1) =

1− n2(z)

c2
∂2u(0)

∂t2
.

The source term on the right-hand side of (2.6) is due to the incident field u(0)(t,z) of (2.2)
and variable refraction index n(z). Solution to (2.6) is given by the Kirchhoff integral:

(2.7) u(1)(t,x′) =
1

4π

∫
1− n2(z)

|x′ − z|c2
∂2u(0)

∂t2

(
t− |x′ − z|

c
,z

)
dz,

where x′ can be an arbitrary point in R
3. One can think of x′ as the location of the receiving

antenna. For monostatic SAR, it coincides with that of the emitting antenna, x′ = x.
Hereafter, we will consider the emitted signal in the form of a linear chirp (frequency-

modulated pulse) with the central carrier frequency ω0:

(2.8) P (t) = A(t)e−iω0t, where A(t) = χτ (t)e
−iαt2

and

(2.9) χτ (t) =

{
1, t ∈ [−τ/2, τ/2],
0, otherwise.

2In practice, u(1) is known as the receiving radar antenna, which is mounted on an airborne or spaceborne
platform located above the imaged terrain (Earth’s surface); see Figure 1.
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Figure 1. Schematic for the monostatic broadside stripmap SAR imaging. H is the orbit altitude, L is the
distance (range) from the ground track to the target, and R is the slant range.

In (2.8), α = B
2τ is the chirp rate, B

2π is the bandwidth of the chirp (B � ω0), and τ is
its duration. The amplitude A(t) in (2.8) is supposed to vary slowly compared to the fast
oscillation e−iω0t. Hence, it can be left out when differentiating the incident field (2.2) for
substitution into (2.6), which yields

(2.10)
∂2u(0)

∂t2
(t,z) ≈ −ω2

0u
(0)(t,z) = −ω

2
0

4π

P (t− |z − x|/c)
|z − x| .

Consequently, from (2.7) we have

(2.11) u(1)(t,x′) ≈
∫
ν(z,x,x′)P

(
t− |x− z|/c− |x′ − z|/c) dz,

where

(2.12) ν(z,x,x′) = − ω2
0

16π2|z − x||z − x′|
1− n2(z)

c2
.

For typical SAR geometries, the distance between either of the antennas, x or x′, and
the target is much larger than the resolution scale at the target, which can be considered a
typical variation of z (a schematic for the monostatic (x = x′) broadside imaging is shown
in Figure 1). Moreover, this distance is also much larger than the length of the synthetic
aperture, which can be considered a typical variation of either x or x′. Given that the
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quantity 1 − n2(z) on the right-hand side of (2.12) is already small due to the first relation
of (2.5), one can disregard the dependence of the denominator in formula (2.12) on any of
the variables z, x, or x′, i.e., interpret it as a constant. Indeed, taking the variation of the
denominator into account would bring along a correction proportional to the product of two
small terms, which does not need to be considered in the context of the Born linearization
(see also [5, section 3]).

Consequently, we can replace (2.11) and (2.12) with

(2.11′) u(1)(t,x′) ≈
∫
ν(z)P

(
t− |x− z|/c− |x′ − z|/c) dz

and

(2.12′) ν(z) = − ω2
0

16π2R2

1− n2(z)

c2
,

respectively, where R is the distance (slant range) between the SAR platform trajectory (e.g.,
satellite orbit) and the target; see Figure 1. The reflectivity coefficient ν(z) in (2.11′), (2.12′)
therefore becomes a function of the local index of refraction n(z) only.

For the remainder of this section, we will discuss how the foregoing linearized model based
on weak scattering can be used for the analysis of SAR imaging. In doing so, we will consider
only the case of a monostatic SAR, i.e., x′ = x. Then, (2.11′) becomes

(2.11′′) u(1)(t,x) ≈
∫
ν(z)P (t− 2|x− z|/c) dz.

Solving the inverse scattering problem for SAR would mean obtaining ν(z) from the known
u(1)(t,x). In other words, one needs to invert the integral operator that acts on ν(z) on the
right-hand side of (2.11′′). The approximate inversion is done by first applying the matched
filter P (t− 2|y − x|/c) to the received antenna signal u(1)(t,x) of (2.11′′):

(2.13)

Ix(y) =

∫
χ
P (t− 2Ry/c)u

(1)(t,x) dt

=

∫
dz ν(z)

∫
χ
dt P (t− 2Ry/c)P (t− 2Rz/c)︸ ︷︷ ︸

Wx(y,z)

,

where we have introduced

(2.14) Ry = |y − x| and Rz = |z − x|.
In (2.13), the overbar denotes the complex conjugate, the interior integralWx(y,z) is the point
spread function (PSF), and the notation

∫
χ means that the integration limits are determined

by the indicator function(s) χτ under the integral; see (2.8) and (2.9). The image Ix for a
single pulse emitted from the point x is thus given by

(2.15) Ix(y) =

∫
Wx(y,z)ν(z) dz.



192 MIKHAIL GILMAN AND SEMYON TSYNKOV

The next stage of inversion is to consider a sequence of radar pulses emitted at times tn
from the equally spaced positions xn, −N/2 � n � N/2, as the antenna moves along the
linear flight path (orbit). We will assume that the nth pulse is emitted, and the scattered
response received, when the antenna is at a standstill at the position xn, after which it moves
to the next emitting/receiving position. This simplified treatment is known as the start-stop
approximation; it is commonly used in the SAR literature; see, e.g., [5, 6]. The applicability
of this approximation to rapidly moving platforms (satellites) is analyzed in [30].

Note that a real-life radar antenna is not a point source and does not emit spherically
symmetric waves. It rather emits a beam, which has the same functional dependence (2.2),3

but is confined to a narrow angular width (see [14, Table 1]). Hereafter, we assume that
the pulses (beams) are emitted toward the ground in the direction normal to the platform
trajectory. This corresponds to the broadside stripmap SAR imaging; see Figure 1. In [30],
we also show that a nonzero squint angle (the angle between the direction of the beam and
the normal to the trajectory) can be introduced without much additional effort.

The range of xn for n = −N/2, . . . , N/2 defines the synthetic aperture of length LSA.
Given a location on the ground, this range consists of those xn for which this location remains
within the footprint of the antenna beam; see Figure 1. The full image I(y) is a coherent sum
of Ixn(y) given by (2.15) for x = xn:

(2.16) I(y) =

N/2∑
n=−N/2

∫
Wxn(y,z)ν(z)dz =

∫
W (y,z)ν(z) dz =W ∗ ν,

where xn is the location of the antenna at the physical moment of time tn and n = −N/2, . . . ,
N/2 is often referred to as the “slow time” in the SAR literature; see, e.g., [6, Chapter 9].
Accordingly, the functionW (y,z) in (2.16) is obtained by summing up all the PSFsWxn(y,z):

(2.17)

W (y,z) =

N/2∑
n=−N/2

∫
χ
dt P (t− tn − 2Rny/c)P (t− tn − 2Rnz/c)

=

N/2∑
n=−N/2

∫
χ
dtA(t− tn − 2Rny/c)A(t− tn − 2Rnz/c)e

2iω0(Rn
z/c−Rn

y/c),

where

(2.18) Rny = |y − xn| and Rnz = |z − xn|.
W (y,z) of (2.17) is called the generalized ambiguity function (GAF). Due to the integral
representation (2.16), W (y,z0) for a given z0 can formally be thought of as the image I(y)
of a point source ν(z) = δ(z − z0). It will subsequently be shown4 that W can be expressed

3The standard retarded potential (2.2) represents radiation of waves by a stationary source; it can be used
for describing the SAR pulses because of the start-stop approximation. Radiation of waves by moving sources
is described by Liénard–Wiechert potentials [20, Chapter 8]. In the case of a straightforward uniform motion,
the solution can also be obtained using Lorentz transform, which was done in [30] for analyzing SAR.

4See the discussion at the end of this section, right after (2.26).
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as W (y,z) =W (y−z), which justifies the convolution notation W ∗ ν for the integral (2.16).
Note that (1.1) for the image, which is discussed in section 1, coincides with (2.16).

As the matched filter is given by the complex conjugate of P ( · ) (see (2.13)), the foregoing
approximate inversion of the integral operator on the right-hand side of (2.11′′) corresponds
to applying the formal adjoint operator. The reason is that if the direct operator in (2.11′′)
were a genuine Fourier transform of ν(z), then its adjoint would have been the same as its
inverse. However, neither of the operators is equivalent to a true Fourier transform (see the
definition of P ( · ) in (2.8), (2.9)), and hence the inversion is only approximate rather than
exact. In other words, the kernel W is not a δ-function, W (y− z) �= δ(y − z), and the image
I(y) does not, generally speaking, coincide with ν(z); see Appendix A for additional detail.

To quantify the discrepancies between the image I(y) and the reflectivity ν(z), one needs
to analyze the properties of the imaging kernelW (y,z). We first notice that in each individual
term of the sum (2.17), t−tn can be replaced with t by merely changing the integration variable.
The remaining dependence of A(t− 2Rny/c) and A(t−2Rnz/c) on n is through xn (see (2.18));

it is weak because A in (2.8) is a slowly varying envelope itself. Hence, we can take A(·) and
A(·) out of the summation over n, so that the GAF W (y,z) of (2.17) can approximately be
represented as a product of two factors (see, e.g., [5, 8, 26]):

(2.19) W (y,z) ≈WΣ(y,z) ·WR(y,z),

where

(2.20) WΣ(y,z) =

N/2∑
n=−N/2

e2ik0(R
n
z−Rn

y)

and

(2.21) WR(y,z) =

∫
χ
A(t− 2R0

y/c)A(t− 2R0
z/c) dt.

In (2.20), k0 = ω0/c is the carrier wavenumber. In (2.21), we have (in accordance with (2.18))

R0
y = |y − x0| and R0

z = |z − x0|.

In [15, Appendix A], we have shown that the factorization error in (2.19) is small, on the
order of the relative bandwidth, i.e., about B/ω0.

Hereafter, we will be using the Cartesian coordinates labeled by subscripts as follows: “1”
will correspond to the azimuthal, or along-the-track, coordinate; “2” will correspond to the
range coordinate, i.e., the horizontal coordinate normal to the track; and “3” will correspond
to the vertical coordinate. With no loss of generality, we place the origin of the coordinate
system within the beam footprint on the ground. In addition, we denote by θ the angle of
incidence, which is also referred to as the look angle. Then, the orbit altitude H = R cos θ
and the distance from the origin to the ground track L = R sin θ; see Figure 1.

An inspection of (2.19)–(2.21) shows that the GAF (2.17) is a function of only two inde-
pendent spatial coordinates—the azimuthal direction, which corresponds to the variation of
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n, and the slant range direction, which is normal to the flight track and corresponds to the
variation of Ry and Rz. Hence, the SAR data collection algorithm that we have described
(a monostatic noninterferometric sensor traveling along a linear trajectory) can generate only
two-dimensional datasets (see also [6]). This results in a certain vagueness, because ν(z) is a
function of three variables and the integration in (2.16) is performed over a three-dimensional
region (z ∈ R

3). A standard way of removing this vagueness in the SAR ambiguity theory
[5, 6, 8] consists of artificially restricting the dimension of the set on which ν(z) is given. This
is done by eliminating the vertical coordinate and defining the plane z3 = 0, i.e., the surface of
the Earth, as the locus of all the targets. Accordingly, the reflectivity function (2.12′) becomes

(2.22) ν(z) ≡ ν(z1, z2, z3) = ν(z1, z2)δ(z3),

which is a single layer, or layer of monopoles, on the surface. From the standpoint of physics,
considering the reflectivity in the form of (2.22) merely suggests that all the scattering occurs
only at the surface of the target, which is what one intuitively expects when imaging the
Earth from an aircraft or a satellite. The integration in (2.16) is then performed over a
two-dimensional region (plane), and the resulting image reconstructs ν(z1, z2), i.e., yields the
reflectivity on the surface of the Earth as a function of the two horizontal coordinates.

The individual factors WΣ(y,z) of (2.20) and WR(y,z) of (2.21) are computed in Ap-
pendix A; see also [15]. Specifically, the linearization of the travel distances yields (see (A.3))

(2.23) Rnz −Rny ≈ −Ll
R

+
(y1 − z1)x

n
1

R
,

where

xn1 =
nLSA

N
and l = y2 − z2.

For the length of the synthetic aperture, we assume LSA � R. We also introduce

Φ0 = −2k0
Ll

R
.

Then, we perform the summation in (2.20) and get (see (A.5))

(2.24a) WΣ(y,z) ≈ eiΦ0WA(y,z),

where

(2.24b) WA(y,z) = Nsinc

(
π
y1 − z1
ΔA

)
and ΔA =

πRc

ω0LSA
.

The quantity ΔA in formula (2.24b) is the azimuthal resolution. Altogether, the function
WA(y,z) describes the performance of the SAR sensor in the azimuthal direction.

To calculate WR, we perform the integration w.r.t. t in (2.21) and obtain (see (A.2))

(2.25) WR(y,z) ≈ τsinc

(
π
R0

y −R0
z

ΔR

)
, where ΔR =

πc

B
.
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The quantity ΔR in (2.25) is the range resolution. The function WR(y,z) describes the
performance of the SAR sensor in the range direction.

The overall expression for the GAF W (y,z) of (2.17) becomes

(2.26) W (y,z) =WΣ(y,z)WR(y,z) = eiΦ0WA(y,z)WR(y,z).

We notice that, according to (2.23), (2.24), and (2.25), the GAF depends only on the difference
of its arguments: W (y,z) = W (y − z), which indeed allows us to interpret (2.16) as a
convolution integral. Each of the two factors, WA and WR, describes the spreading of the
GAF in the corresponding direction, i.e., a measure of how different it is from the ideal δ-
function. We therefore see that the shape of the GAF W (y,z) directly affects the quality of
the reconstruction of ν(z) in the form of I(y); see (2.16).

2.2. Deficiencies of the conventional approach. Earlier publications in the literature
discussing the SAR ambiguity theory, including some of our own papers [29, 26, 14], did not
distinguish between WΣ(y,z) and WA(y,z), whereas these two factors are related by the fast
phase multiplier eiΦ0 ; see (2.24a). As the absolute value of this multiplier is one, ignoring it
has no effect on the expressions for resolution in either direction. That is why in the case of a
point scatterer one can obtain the correct expressions for both range and azimuthal resolution
even with the fast phase ignored [5, 8, 14, 26, 29]. For the case of extended scatterers, however,
the fast phase in (2.16) should be retained.

The fast phase term eiΦ0 in (2.26) allows one to separate the scales of variation in both
the imaged quantity ν and the image I into fast (on the order of wavelength) and slow (much
longer than the wavelength, on the order of resolution); see section 4. This, in turn, enables
backscattering via the resonant Bragg mechanism and yields a physical interpretation of the
observable quantity in SAR imaging as a slowly varying amplitude of the Bragg harmonic
in the spectrum of ground reflectivity. Otherwise, consider, for example, n(z) = const on a
semispace. The reflection from such a target is specular and involves no backscattering. Yet
if the reflectivity ν(z) given by (2.12′) for n(z) = const is substituted into (2.16), and the fast
phase term eiΦ0 is not included in W (y,z), then there will be a nonzero image intensity. This
leads to an inconsistency, because (2.16) describes monostatic SAR imaging and therefore can
generate an image only if a certain part of the incident field is scattered back to the antenna.

Moreover, the intensity of the image (2.16) for a homogeneous half-space will not depend
on polarization, because the entire previous development is done in the scalar framework. In
reality, however, the polarization needs to be taken into account. For a homogeneous target
this was done in our recent work [13]. A more comprehensive inhomogeneous model introduced
in section 3 will be generalized to the vector case in a forthcoming publication.

Another inconsistency in the traditional exposition of SAR ambiguity theory is related
to the representation of the ground reflectivity function in the form of a single layer on the
surface of the target; see (2.22). Such a representation is usually justified by the rapid decay of
the radar signal as it penetrates below the Earth’s surface (see, e.g., [5]). From the standpoint
of physics, this is an adequate consideration because the typical SAR carrier frequencies are
in the microwave range and their penetration depth is small.5 It suggests, however, that the

5The penetration depth can often be estimated as one half of the wavelength.
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scattering is strong, as it prevents the incident field from penetrating deep into the target.
Hence, the condition for applicability of the first Born approximation, which assumes weak
scattering, is violated. Moreover, a singular expression for ν in (2.22) is an obvious violation
of (2.5). The issue of equivalently representing a weakly scattering half-space by means of a
single layer at the interface has been addressed in [13], but only for specular reflection.

In what follows, we address these concerns by introducing a new approach to the treatment
of radar targets that will allow us to compute the scattered signal in any given direction. The
new approach is more comprehensive than the previous one, as it carries no constraint that the
scattering has to be weak and does not rely on the first Born approximation. Yet it keeps the
inverse scattering problem for SAR linear and eventually allows one to obtain its solution in
the form of convolution (2.16), where the integral is taken only along the surface of the target.
When the scattering is weak, the results obtained in the new framework become equivalent
to those obtained by means of the conventional approach.

3. A half-space model for radar targets. In this section, we modify the scattering model
of section 2.1 in order to alleviate the difficulties outlined in section 2.2. Instead of a single
layer on the surface, we consider a continuous scatterer in the form of a horizontally inho-
mogeneous dielectric half-space.6 Allowing for inhomogeneity of the dielectric medium in the
two horizontal directions and not in the vertical direction eventually lets us write the scat-
tered field as a two-dimensional surface integral. This can be interpreted as scattering off
the surface of the target only, in accordance with the aforementioned physical observation.
Moreover, the half-space model enables linearization of either weak or strong scattering that
is free of inconsistencies caused by choosing singular ground reflectivity functions.

To actually obtain the scattered field, we solve the governing wave equation by means of
the separation of variables. In doing so, we first use the method of perturbations. Namely,
we consider the dielectric permittivity as

ε(z) = ε(0)(z) + ε(1)(z),

where ε(0)(z) is a step function in the vertical direction equal to 1 in the upper half-space
(z3 > 0) and a constant ε(0) in the lower half-space (z3 < 0), and ε(1)(z) is a perturbation,
such that ε(1)(z) = 0 for z3 > 0 and |ε(1)(z)| � ε(0). Then, we seek the field in the form

u(t,z) = u(0)(t,z) + u(1)(t,z),

where |u(1)| � |u(0)|, and linearize the scattering problem by dropping the higher order terms
∼ ε(1)u(1). Unlike in section 2.1, we do not require ε(0) = 1, so that the scattering is not
necessarily weak. When solving the linearized scattering problem by separation of variables,
we employ two different approximations. We represent the incident field near the target as
a plane wave, and we use the method of stationary phase to evaluate the inverse Fourier
transform that yields the solution for the scattered field.

3.1. Incident field near the target. At every given moment of time, the radar antenna
illuminates a region of size ∼ LSA on the ground; see Figure 2. As LSA � R, within this small

6It is a generalization of the setup of [13], where the scatterer was a homogeneous (yet anisotropic) half-
space.
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Figure 2. Schematic for the scattering geometry; φ is the reflection angle, and ψ is the angle of deflection
off the incidence plane (in this plot, ψ < 0).

region (beam footprint) we can approximate the incident field by a plane wave, even though
in reality it is a spherical wave confined to a narrow beam. For a single pulse emitted from x0

toward the ground in the direction normal to the orbit, the plane wave approximation of the
incident field (2.2) near the origin z = (0, 0, 0) yields

(3.1) u
(0)
i (t,z) ≈ 1

4πR
P

(
t− R

c
− z2

c
sin θ +

z3
c
cos θ

)
,

where in the argument of P (·) we have neglected the terms that are at least ∼ z2/R or ∼ z3/R
times smaller than the retained terms, and in the denominator we have replaced the travel
distance by the constant R, which is equivalent to disregarding the small amplitude variations
of the incident field.

For the pulse P (t) given by (2.8), (2.9), we introduce its Fourier transform in time,

(3.2) P̃ (ω) =

∫ ∞

−∞
P (t)eiωt dt =

∫ τ/2

−τ/2
P (t)eiωt dt,

and rewrite (3.1) as

(3.3)

u
(0)
i (t,z) =

1

2π

∫ ∞

−∞
ũ
(0)
i (ω,z)e−iωtdω

≈ 1

2π

1

4πR

∫ ∞

−∞
P̃ (ω)ei

ω
c
(R+z2 sin θ−z3 cos θ)e−iωtdω,
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where ũ
(0)
i is the Fourier transform of u

(0)
i . Hereafter, the tilde above a character will denote

the Fourier transform in time.

3.2. The method of perturbations and the separation of variables. Let the upper half-
space of R3 be occupied with a vacuum, and the lower half-space with a horizontally inhomo-
geneous dielectric material, such that the overall refractive index is

(3.4) n2(z) = ε(z) =

{
1, z3 > 0,

ε(0) + ε(1)(z1, z2), z3 < 0.

In (3.4), we are additionally assuming that ε(1) is a perturbation: |ε(1)| � ε(0) = const. We
also emphasize that in (3.4) there is no variation of the refractive index with respect to the
vertical coordinate z3, except for the jump it undergoes at the horizontal plane z3 = 0.

In the method of perturbations, we denote by u(0) the zero order field, i.e., the field due
to the constant part ε(0) of n2(z). It is obtained by formally setting ε(1) = 0 in formula (3.4).
As, however, the scattering is not necessarily weak (ε(0) may be considerably greater than 1),

the field u(0) may not coincide with u
(0)
i . Then, we use the following representation:

(3.5) u(0) =

{
u
(0)
i + u

(0)
r , z3 > 0,

u
(0)
t , z3 < 0,

where u
(0)
r and u

(0)
t are the zero order reflected and transmitted fields, respectively.

To separate the variables in (2.3), we first Fourier transform it in time and for each ω
obtain a Helmholtz-type equation. Then, we extract the zero order terms and get7

(3.6)
(Δ + k2)(ũ

(0)
i + ũ(0)r ) = 0, z3 > 0,

(Δ + ε(0)k2)ũ
(0)
t = 0, z3 < 0,

where k = ω/c. For the first order, the method of perturbations yields

(3.7)
(Δ + k2)ũ(1) = 0, z3 > 0,

(Δ + ε(0)k2)ũ(1) = −k2ε(1)ũ(0)t , z3 < 0,

where on the right-hand side of the second equation (3.7) we keep only first order terms and
neglect the terms of order two or higher. This is actually a linearization, which is equivalent
to the first Born approximation in the case ε(0) = 1.

Equations (3.6), (3.7) need to be supplemented by the interface conditions at z3 = 0. We
take those as the continuity of the total field and its normal derivative:8

(3.8)

(ũ(0) + ũ(1))
∣∣
z3=+0

= (ũ(0) + ũ(1))
∣∣
z3=−0

,(
∂ũ(0)

∂z3
+
∂ũ(1)

∂z3

)∣∣∣∣∣
z3=+0

=

(
∂ũ(0)

∂z3
+
∂ũ(1)

∂z3

)∣∣∣∣∣
z3=−0

.

7The source term f is omitted because we are taking the incident field as a plane wave; see (3.1).
8In fact, it corresponds to the horizontal polarization of the incident and reflected electric field, with the

reflected wave vector being in the incidence plane.
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Equations (3.6), (3.7) also require radiation conditions as z3 → ±∞. Those will be specified
for the transformed quantities after the separation of variables in space; see (3.16), (3.17),
(3.18).

We first solve for zero order fields. From (3.3), we observe that

(3.9) ũ
(0)
i (ω,z) = u

(0)
i eik(z2 sin θ−z3 cos θ), where u

(0)
i =

P̃ (ω)eikR

4πR
,

and for each ω consider a transmission-reflection problem for the incident plane wave (3.9).
The normal component of the wavenumber for the transmitted wave should have the same sign
as that of the incident wave, whereas for the reflected wave the sign should be the opposite.
Hence, we have

ũ(0)r = u(0)r eik(z2 sin θ+z3 cos θ),(3.10a)

ũ
(0)
t = u

(0)
t ei(kz2 sin θ−k

′z3 cos θ′),(3.10b)

where u
(0)
r and u

(0)
t are the reflected and transmitted amplitudes, respectively; k′ = k

√
ε(0);

and θ′ is the refraction angle determined from the second equation of (3.6):

cos2 θ′ = (ε(0)k2 − k2 sin2 θ)/k′2 = 1− sin2 θ/ε(0).

In the method of perturbations, the continuity of the total field and its normal derivative
at z3 = 0 (see (3.8)) translates into the separate continuity requirements for the zero order field
and its normal derivative and for the first order field and its normal derivative. Continuity of

ũ(0) and ∂ũ(0)

∂z3
at z3 = 0 yields

(3.11)
u
(0)
i + u(0)r = u

(0)
t ,

−ik cos θ u(0)i + ik cos θ u(0)r = − ik′ cos θ′u(0)t .

Equations (3.11) yield

(3.12)
u
(0)
r

u
(0)
i

= −
√
ε(0) cos θ′ − cos θ√
ε(0) cos θ′ + cos θ

and
u
(0)
t

u
(0)
i

=
2cos θ√

ε(0) cos θ′ + cos θ
.

The right-hand sides of (3.12) are the well-known Fresnel reflection and transmission coeffi-
cients for the case of a horizontal polarization (the electric field is parallel to the surface).

To separate the variables in (3.7), we represent the perturbation of the dielectric coefficient
ε(1) and the first order field ũ(1) as inverse Fourier transforms:

ε(1)(z1, z2) =
1

(2π)2

∫∫
ε̂(1)(ζ1, ζ2)e

i(ζ1z1+ζ2z2)dζ1dζ2,(3.13a)

ũ(1)(ω, z1, z2, z3) =
1

(2π)2

∫∫
û(1)(ω, ζ1, ζ2, z3)e

i(ζ1z1+ζ2z2)dζ1dζ2.(3.13b)

For convenience of notation, we have chosen opposite signs in the exponents for the transforms
in space (3.13) and in time (3.3).9

9We would like the traveling plane waves to be represented as ∼ ei(kz−ωt), where k = (k1, k2, k3).
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Substituting expressions (3.13), (3.10b) into (3.7) and taking the direct Fourier transform
in space, we obtain the following uncoupled ordinary differential equations for each (ζ1, ζ2):

(3.14)

(
d2

dz23
+ q2

)
û(1) =0, z3 > 0,(

d2

dz23
+ q′2

)
û(1) =− k2u

(0)
t ε̂θe

−iq′rz3 , z3 < 0,

where

(3.15)
q2 = k2 − ζ21 − ζ22 , q′2 = k′2 − ζ21 − ζ22 ,

ε̂θ = ε̂(1)(ζ1, ζ2 − k sin θ), and q′r = k′ cos θ′ = (k′2 − k2 sin2 θ)1/2.

It is to be noted that the plane wave representation (3.10b) of the zero order transmitted field
is valid as long as the plane wave representation (3.9) for the incident field is valid. The latter,
in turn, is good within the antenna footprint on the ground, which is small compared to the
distance from the antenna to the target (section 3.1). We therefore see that the right-hand
side of the second equation (3.7) is compactly supported with respect to the variables (z1, z2)

because of the factor ũ
(0)
t , which is a plane wave inside a narrow beam and zero elsewhere.

However, when Fourier transforming this right-hand side in (z1, z2), we obtain the frequency
shift −k sin θ in the second argument of ε̂(1) (see (3.15)), as if the plane wave representation

for ũ
(0)
t could be used everywhere. This apparent inconsistency is easy to resolve. Instead

of attributing the compact support on the right-hand side of (3.7) to ũ
(0)
t , we can formally

attribute it to the other factor, ε(1) = ε(1)(z1, z2). Indeed, at every given moment of time the
antenna illuminates only a small region of size ∼ LSA � R on the ground (the same beam
footprint; see Figure 2), and no scattering occurs off of any other part of the plane z3 = 0.
Hence, instead of the true ε(1)(z1, z2) we can consider its compactly supported restriction onto
the beam footprint. On the one hand, this is not a limitation, because the size of this footprint
is still much larger than the typical resolution [14]. On the other hand, having ε(1)(z1, z2)
compactly supported makes its Fourier transform ε̂(1) (see (3.13a)) infinitely smooth, which
proves useful for the application of the method of stationary phase; see section 3.3.

A solution to system (3.14) will be sought as the sum of a general solution to the homo-
geneous system and a particular solution to the inhomogeneous system. The general solution
is taken in the form

(3.16) û(1)g =

{
u
(0)
i beiqz3 , z3 > 0,

u
(0)
i ce−iq′z3 , z3 < 0.

If the quantities q2 and q′2 introduced in (3.15) are positive, q2 > 0 and q′2 > 0, then in
the exponents in (3.16) we use the arithmetic roots, q =

√
q2 > 0 and q′ =

√
q′2 > 0. In

that case, the general solution (3.16) is composed of two outgoing traveling waves: a wave
traveling upward in the upper half-space (z3 > 0) and a wave traveling downward in the lower
half-space (z3 < 0). Otherwise, if q2 < 0 or q′2 < 0, then we define q = i

√|q2| or q′ = i
√|q′2|,

respectively, and the corresponding waves become evanescent. They decay exponentially away
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from the interface z3 = 0. This form of the general solution (given by (3.16) along with the
foregoing choice of signs for q and q′) is equivalent to enforcing the radiation of waves from the
scattering surface z3 = 0 toward infinity. Indeed, in the first order field we have no incoming
traveling waves and no evanescent waves that grow as |z3| → ∞ either. Alternatively, we can

say that the general solution û
(1)
g of (3.16) satisfies the radiation conditions:

(3.17)

dû
(1)
g

dz3
− iqû(1)g = 0 as z3 → +∞,

dû
(1)
g

dz3
+ iq′û(1)g = 0 as z3 → −∞.

A particular solution needs to be built only inside the scattering material (z3 < 0), i.e.,
for the second equation of (3.14), which is inhomogeneous. Its form will depend on whether
we are dealing with the resonant case q′2 = q′2r or nonresonant case q′2 �= q′2r :

(3.18) û(1)p =

{
u
(0)
i a1e

−iq′rz3 if q′2 �= q′2r ,
u
(0)
i a2z3e

−iq′rz3 if q′2 = q′2r .

Note that the sign in the exponents in (3.18) also corresponds to the radiation of waves as
z3 → −∞. Substituting the first formula (3.18) into the second equation of (3.14), we get

(3.19) a1 =
k2ε̂θ

q′2r − q′2
u
(0)
t

u
(0)
i

=
k2ε̂θ

q′2r − q′2
2k cos θ

q′r + k cos θ
=

k2ε̂θ
q′2r − q′2

2qi
q′r + qi

,

where we have introduced another shorthand notation:

qi = k cos θ.

Substituting the second formula (3.18) into the second equation of (3.14) for q′ = q′r, we have

(3.20) a2 =
k2ε̂θ
2iq′r

u
(0)
t

u
(0)
i

=
k2ε̂θ
2iq′r

2qi
q′r + qi

.

Note that the resonance may occur only for traveling waves, because q′r > 0. The overall first
order field is obtained by adding the general solution (3.16) and a particular solution (3.18):

(3.21) û(1) = û(1)g + û(1)p =

⎧⎪⎨
⎪⎩
u
(0)
i beiqz3 , z3 > 0,

u
(0)
i ce−iq′z3 + u

(0)
i a1e

−iq′rz3 , z3 < 0 and q′2 �= q′2r ,
u
(0)
i ce−iq′z3 + u

(0)
i a2z3e

−iq′rz3 , z3 < 0 and q′2 = q′2r ,

where the coefficient a1 is given by (3.19) and the coefficient a2 is given by (3.20). The
coefficients b and c in (3.21) need to be determined from the interface conditions, which

require the continuity of û(1) and dû(1)

dz3
at z3 = 0. In the nonresonant case we have

b = c+ a1,

iqb = − iq′c− iq′ra1,
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which yields for z3 > 0 (see (3.19))

(3.22)

b = a1
q′ − q′r
q′ + q

=
k2ε̂θ

q′2r − q′2
2qi

q′r + qi

q′ − q′r
q′ + q

= −2ε̂θ
k2qi

(q′ + q)(q′r + q′)(q′r + qi)
.

In the resonant case, the continuity of û(1) and dû(1)

dz3
at z3 = 0 implies

b = c,

iqb = − iq′rc+ a2,

which for z3 > 0 results in (see (3.20))

(3.23)

b =
a2

i(q′r + q)
=

1

i(q′r + q)

k2ε̂θ
2iq′r

2qi
q′r + qi

= −2ε̂θ
k2qi

(q′r + q)2q′r(q′r + qi)
.

A very important observation that one can make right away is that the first order solution
û(1) in a vacuum (z3 > 0) is insensitive to the resonances in the material. Indeed, if we
substitute q′ = q′r into the expression (3.22) for the nonresonant coefficient b, we obtain the
expression (3.23) for the same coefficient b in the resonant regime. This is convenient, as it
allows us to use one and the same expression uniformly for the entire range of q and q′ when
bringing the solution for z3 > 0 back from the transformed space first to the frequency domain
(see section 3.3) and then to the time domain (see section 3.4).

Note also that we have computed only the coefficients b (see (3.22), (3.23)) and did
not compute the coefficients c for (3.21), because hereafter we will mostly be interested in
analyzing the reflected field, i.e., the solution for z3 > 0. We also observe that, regardless of
the value of c, the solution (3.21) in the resonant case q′2 = q′2r is unbounded as z3 → −∞.
This behavior is obviously nonphysical. It has, however, been mentioned in the literature
that if the scattering is weak, then the linearization based on the first Born approximation
is ill-suited for describing the field inside the material; see, e.g., [21, 22].10 Apparently, this
deficiency of the first Born approximation has been inherited by our model, which does not
assume that the scattering is weak yet employs the linearization. On the other hand, despite
its suboptimal performance inside the material, the first Born approximation is known to work
well for the scattered field in the vacuum region; see [21, 22]. Moreover, in our recent work
[13] we have thoroughly analyzed the case of a specular reflection off a homogeneous material
half-space and shown that the reflection coefficients obtained with the help of the first Born
approximation coincide with the linearized true Fresnel coefficients, which correspond to the
well-known exact scattering solution. In the current paper, this motivates the use of a similar

10The transmitted field is better described by the so-called Rytov approximation; see, e.g., [3, Chapter
XIII]. On the other hand, the nonphysical unboundedness of the solution obtained by means of the first Born
approximation in the material in the resonant case can be removed by adding a small dissipation, in the spirit
of the limiting absorption principle.
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yet more general linearization for describing the solution in vacuum for the field scattered off a
more sophisticated target (inhomogeneous dielectric half-space), for which no exact solution is
available. The linearized solution that we obtain in vacuum (z3 > 0) always remains bounded
regardless of its behavior inside the material (z3 < 0).

3.3. Reflected field in the frequency domain. The first order reflected field at x′ ∈ R
3,

x′3 > 0, is the inverse Fourier transform (3.13b) of the solution û(1) given by the first line of
(3.21),

ũ(1)(ω,x′) =
1

(2π)2

∫∫
u
(0)
i beiqx

′
3ei(ζ1x

′
1+ζ2x

′
2)dζ1dζ2

=
k2

(2π)2

∫∫
u
(0)
i bei

√
1−η21−η22 ξ3ei(η1ξ1+η2ξ2)dη1dη2,

where we used the definition of q from (3.15) and made all the quantities in the exponents
dimensionless for future convenience:

x′j =
1

k
ξj, j = 1, 2, 3, and ζj = kηj , j = 1, 2.

The previous integral gets naturally split into two according to whether the square root in the
first exponent is real or imaginary:

(3.24)

ũ(1)(ω,x′) =
u
(0)
i k2

(2π)2

∫∫
η21+η

2
2<1

beiκξ3dη1dη2

+
u
(0)
i k2

(2π)2

∫∫
η21+η

2
2>1

be−
√
η21+η

2
2−1 ξ3ei(η1ξ1+η2ξ2)dη1dη2.

In (3.24), we take b = b(η1, η2) from (3.22) with (cf. (3.15))

(3.25) q2 = k2(1− η21 − η22) and q′2 = k2(k′2/k2 − η21 − η22).

The phase function κ in the first integral of (3.24) is defined as

(3.26) κ = κ(η1, η2, ξ1, ξ2, ξ3) =
√

1− η21 − η22 +
ξ1
ξ3
η1 +

ξ2
ξ3
η2.

Note that the first integral on the right-hand side of (3.24) corresponds to traveling waves,
and the second one to evanescent waves; see the discussion after (3.16). We need to evaluate
(3.24) in the far field, i.e., far away from the small region on the surface of the Earth that
returns the scattered waves (the beam footprint), which means ξ3 � 1. The analysis will be
similar yet not identical for the two cases: ε(0) > 1 and ε(0) = 1 (the latter case corresponds
to weak scattering).

First, we will take ε(0) > 1 and estimate the contribution of evanescent waves to ũ(1)(ω,x′),
i.e., the second integral on the right-hand side of (3.24). In that regard, we notice that as

k′ = k
√
ε(0) > 1, the function b = b(η1, η2) is smooth and bounded everywhere. Indeed, the

fraction on the right-hand side of the last equality of (3.22) is smooth and bounded because
q and q′ may not turn into zero simultaneously (see (3.25)), and as we additionally have both
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qi > 0 and q′r > 0, none of the three factors in the denominator may ever become equal to zero.
Moreover, ε̂θ = ε̂(1)(kη1, kη2−k sin θ) is smooth and bounded since the first order permittivity
ε(1)(z1, z2) is considered compactly supported and hence its Fourier transform is smooth and
bounded; see (3.13a). Consequently, we can write

(3.27)

∣∣∣∣∣
∫∫

η21+η
2
2>1

be−
√
η21+η

2
2−1 ξ3ei(η1ξ1+η2ξ2)dη1dη2

∣∣∣∣∣
� const ·

∫∫
η21+η

2
2>1

e−
√
η21+η

2
2−1 ξ3dη1dη2

= const · 2π ·
∫ ∞

1
e−

√
ρ2−1 ξ3ρdρ = O(ξ−2

3 ),

which means that the contribution of evanescent waves to the first order scattered field decays
no more slowly than the inverse square of the vertical distance from the scattering region.

The contribution of traveling waves to ũ(1)(ω,x′) for ε(0) > 1, i.e., the first integral on
the right-hand side of (3.24), can be evaluated using the method of stationary phase [9]. The
large parameter for the method of stationary phase is ξ3 � 1. To apply this method, we
need to consider a fixed viewing direction defined by the reflection angle φ and the angle ψ of
deflection of the scattered signal from the incidence plane:

(3.28)
x′1
x′3

=
ξ1
ξ3

= tan φ sinψ and
x′2
x′3

=
ξ2
ξ3

= tan φ cosψ.

The angles φ and ψ are equivalent to the standard spherical angles; in particular, for the case
of backscattering (monostatic imaging, x = x′) we would have φ = θ and ψ = π, whereas for
the case of specular reflection we would have φ = θ and ψ = 0; see Figure 2.

A stationary point of the phase function (3.26) with respect to the variables (η1, η2) is a
solution to the following system of two equations:

(3.29)

∂κ

∂η1
= − η1√

1− η21 − η22
+
ξ1
ξ3

= 0,

∂κ

∂η2
= − η2√

1− η21 − η22
+
ξ2
ξ3

= 0.

Squaring each equation of (3.29) and solving, we obtain

η2s,1 =
ξ21

ξ21 + ξ22 + ξ22
= sin2 φ sin2 ψ,

η2s,2 =
ξ22

ξ21 + ξ22 + ξ22
= sin2 φ cos2 ψ.

This system of equations has a total of four roots, but only one of those actually satisfies
(3.29):

(3.30)
ηs,1 = sinφ sinψ,

ηs,2 = sinφ cosψ.
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Solution (3.30) yields a unique isolated stationary point of the phase function (3.26) within
the domain {η21 + η22 < 1} of the first integral (3.24). Moreover, for the determinant of the
Hessian matrix H(κ) = {∂2κ/∂ηi∂ηj} of (3.26) we have

detH(κ) =

∣∣∣∣∣∣
∂2κ
∂η21

∂2κ
∂η1∂η2

∂2κ
∂η1∂η2

∂2κ
∂η22

∣∣∣∣∣∣ =
∣∣∣∣∣∣
− 1−η22

(1−η21−η22)3/2
− η1η2

(1−η21−η22)3/2

− η1η2
(1−η21−η22)3/2

− 1−η21
(1−η21−η22)3/2

∣∣∣∣∣∣ = 1

(1− η21 − η22)
2
,

and consequently, detH(κ(ηs,1, ηs,2)) = cos−4 φ. Hence, the stationary point (3.30) is non-
degenerate, provided that the reflection angle φ is less than π/2. Therefore, we can directly
apply the method of stationary phase [9] for approximating the first integral (3.24), as long
as the propagation direction for the reflected wave is not parallel to the surface:11

(3.31)

∫∫
η21+η

2
2<1

beiκξ3dη1dη2 =
2π

ξ3
eiκ(ηs,1,ηs,2)ξ3eiπ/2

[
b(ηs,1, ηs,2)√|detH(κ(ηs,1, ηs,2))|

+O(ξ−1
3 )

]

=
2πi

ξ3
eiξ3/ cosφb(ηs,1, ηs,2) cos

2 φ+O(ξ−2
3 ).

Comparing formulae (3.27) and (3.31), we conclude that for ε(0) > 1 the contribution of
traveling waves dominates in the overall expression for ũ(1)(ω,x′) in the far field (ξ3 � 1).
Thus, we will neglect all the terms O(ξ−2

3 ) hereafter and use (3.9), (3.15), (3.22), and (3.24)
to write the first order scattered field in the following form:
(3.32)

ũ(1)(ω,x′) ≈ iu
(0)
i b(ηs,1, ηs,2)k cosφ

2π

eikR
′

R′

= − iP̃ (ω)

4π2
k ε̂(1)(k sinφ sinψ, k sinφ cosψ − k sin θ)M(ε(0), θ, φ)

eikR

R

eikR
′

R′ ,

where R′ = ξ3/k cosφ = (x′21 + x′22 + x′23 )
1/2 (see Figure 2) and

(3.33) M(ε(0), θ, φ)

=
cos θ cosφ(

cosφ+
√
ε(0) − sin2 φ

)(√
ε(0) − sin2 φ+

√
ε(0) − sin2 θ

)(
cos θ +

√
ε(0) − sin2 θ

) .
For monostatic imaging (x = x′) we have φ = θ and ψ = π, so in (3.32) the arguments of ε̂(1)

simplify and we get ε̂(1)(0,−2k sin θ).
The case of ε(0) = 1, which corresponds to weak scattering, requires special analysis,

because the reflection coefficient b of (3.22) may become singular. Indeed, in this case k′ =
k
√
ε(0) = k and hence q′ = q; see (3.15). Therefore, the first factor in the denominator on the

right-hand side of (3.22) may become zero.

11For small grazing angles, having a large vertical distance ξ3 implies an excessively large horizontal distance.
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To evaluate the contribution of evanescent waves to ũ(1)(ω,x′), i.e., the second integral on
the right-hand side of (3.24), we first change the variables, η1 = ρ cosϕ, η2 = ρ sinϕ, so that

(3.34)

∫∫
η21+η

2
2>1

be−
√
η21+η

2
2−1 ξ3ei(η1ξ1+η2ξ2)dη1dη2

=

∫ ∞

1

e−
√
ρ2−1 ξ3

2
√
ρ2 − 1

∫ 2π

0
b′ei(ρ cosϕξ1+ρ sinϕξ2)dϕρdρ,

where b′ represents the nonsingular part of b of (3.22) for the case ε(0) = 1:

b′ def=
2qb

k
.

For a given viewing direction (3.28), we will estimate the integral with respect to ϕ on the
right-hand side of (3.34) by the method of stationary phase. Using (3.28), we can write

(3.35)
ρ cosϕξ1 + ρ sinϕξ2 = ρ

√
ξ21 + ξ22

(
ξ1√
ξ21 + ξ22

cosϕ+
ξ2√
ξ21 + ξ22

sinϕ

)

= ρξ3 tan φ(sinψ cosϕ+ cosψ sinϕ) = ξ3ρ tan φ sin(ϕ+ ψ).

The phase function ρ tan φ sin(ϕ+ ψ) has two isolated nondegenerate stationary points (with
respect to ϕ) given by cos(ϕ+ψ) = 0. At these points, clearly, | sin(ϕ+ψ)| = 1, and therefore,
for ξ3 � 1 the method of stationary phase yields∣∣∣∣

∫ 2π

0
b′ei(ρ cosϕξ1+ρ sinϕξ2)dϕ

∣∣∣∣ ≈ (b′1 + b′2)
√

2π

ξ3ρ tan φ

(
1 +O(ξ−1

3 )
)
,

where b′1 and b′2 on the right-hand side are the values of b′ at the stationary points (that still
depend on ρ). As b′ is smooth and bounded everywhere, for φ > 0 and ρ > 1 (as in (3.34)),
we can write ∣∣∣∣

∫ 2π

0
b′ei(ρ cosϕξ1+ρ sinϕξ2)dϕ

∣∣∣∣ � const√
ξ3

(1 +O (
ξ−1
3 )

)
.

Therefore, for the overall integral (3.34) we have

(3.36)

∣∣∣∣∣
∫ ∞

1

e−
√
ρ2−1 ξ3

2
√
ρ2 − 1

∫ 2π

0
b′ei(ρ cosϕξ1+ρ sinϕξ2)dϕρdρ

∣∣∣∣∣
� const√

ξ3
(1 +O (

ξ−1
3 )

) ∫ ∞

1

e−
√
ρ2−1 ξ3

2
√
ρ2 − 1

ρdρ =
const

ξ
3/2
3

+O
(
ξ
−5/2
3

)
.

Estimate (3.36) shows that the contribution of evanescent waves to the first order scattered
field in the case ε(0) = 1 (weak scattering) decays at least as fast as the reciprocal vertical
distance raised to the power three halves. This decay is slower (by half order) than the one
we have obtained in the case ε(0) > 1; see (3.27).



SAR IMAGING BEYOND THE FIRST BORN APPROXIMATION 207

For the first integral on the right-hand side of (3.24), where the phase function κ is given
by (3.26), we employ the same change of variables as in (3.34) (see also (3.35)):

(3.37)

∫∫
η21+η

2
2<1

beiκξ3dη1dη2

=

∫ 1

0

∫ 2π

0
b′
e
i
(√

1−ρ2 ξ3+ρ cosϕξ1+ρ sinϕξ2
)

2
√

1− ρ2
dϕρdρ

=
1

2

∫ 1

0

∫ 2π

0
b′eiξ3

(
�+tanφ

√
1−�2 sin(ϕ+ψ)

)
dϕd�,

where 1 − ρ2 = �2. As b′ is smooth and bounded everywhere, for ξ3 � 1 the last integral
of (3.37) can be approximated using the method of stationary phase. Consider the phase
function κ as a function of the new variables (cf. (3.26)):

(3.38) κ = κ(ϕ, �, φ, ψ) = �+ tanφ
√

1− �2 sin(ϕ+ ψ).

Its stationary points with respect to the variables (ϕ, �) satisfy the following system:

(3.39)

∂κ

∂ϕ
= tanφ

√
1− �2 cos(ϕ+ ψ) = 0,

∂κ

∂�
= 1− � tanφ√

1− �2
sin(ϕ+ ψ) = 0.

The first equation of (3.39) implies that either �s = 1 or cos(ϕs + ψ) = 0. Yet �s = 1 does
not satisfy the second equation of (3.39), and hence for a stationary point (ϕs, �s) of (3.38) we
must have cos(ϕs+ψ) = 0. Consequently, sin(ϕs+ψ) = 1 or sin(ϕs+ψ) = −1, but the second
choice does not satisfy the second equation of (3.39). Then, for sin(ϕs + ψ) = 1 the second
equation of (3.39) yields �s = cosφ, and we conclude that the phase function κ of (3.38) has
a unique stationary point on the domain {0 < ϕ < 2π, 0 < � < 1} of the last integral (3.37):

(3.40)
cos(ϕs + ψ) = 0,

�s = cosφ.

It is easy to see that the stationary point (3.40) of the phase function (3.38) is the same as
the previously found stationary point (3.30) of the phase function (3.26) in the coordinates
(η1, η2). Indeed, the first equation of (3.40) implies that cosϕs = sinψ and sinϕs = cosψ,
and then ηs,1 =

√
1− �2s cosϕs = sinφ sinψ and ηs,2 =

√
1− �2s sinϕs = sinφ cosψ.

The stationary point (3.40) is also nondegenerate. To see that, we write12[
∂2κ
∂ϕ2

∂2κ
∂ϕ∂�

∂2κ
∂ϕ∂�

∂2κ
∂�2

]
︸ ︷︷ ︸

H(κ(ϕ,�))

=

[
∂η1
∂ϕ

∂η2
∂ϕ

∂η1
∂�

∂η2
∂�

]
︸ ︷︷ ︸

JT

[
∂2κ
∂η21

∂2κ
∂η1∂η2

∂2κ
∂η1∂η2

∂2κ
∂η22

]
︸ ︷︷ ︸

H(κ(η1,η2))

[
∂η1
∂ϕ

∂η1
∂�

∂η2
∂ϕ

∂η2
∂�

]
︸ ︷︷ ︸

J

,

12This relation holds only at stationary points.
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where the Jacobi matrix is given by

J =

⎡
⎣−

√
1− �2 sinϕ − �√

1−�2 cosϕ√
1− �2 cosϕ − �√

1−�2 sinϕ

⎤
⎦ ,

so that det J = detJT = �, and at the stationary point (3.40) we have

detH(κ(ϕs, �s)) = �s detH(κ(ηs,1, ηs,2))�s = cosφ cos−4 φ cosφ = cos−2 φ.

Therefore, the last integral of (3.37) can be approximated as follows (cf. (3.31)):

(3.41)

1

2

∫ 1

0

∫ 2π

0
b′eiξ3

(
�+tan φ

√
1−�2 sin(ϕ+ψ)

)
dϕd�

=
1

2

2π

ξ3
eiκ(ϕs,�s)ξ3eiπ/2

[
b′(ϕs, �s)√|detH(κ(ϕs, �s))|

+O(ξ−1
3 )

]

=
2πi

ξ3
eiξ3/ cosφ

b′(ϕs, �s)

2
cosφ+O(ξ−2

3 ).

Comparing (3.36) and (3.41), we can determine that, similarly to the case ε(0) > 1, the
contribution of traveling waves in the far field (ξ3 � 1) dominates in the overall expression
for ũ(1)(ω,x′) in the case ε(0) = 1 as well. Therefore, from now on we will disregard all the
terms that decay faster than O(ξ−1

3 ), which yields (cf. (3.32))

(3.32′)
ũ(1)(ω,x′) ≈ iu

(0)
i

2π

b′(ϕs, �s)k

2

eikR
′

R′

= − iP̃ (ω)

4π2
k ε̂(1)(k sinφ sinψ, k sinφ cosψ − k sin θ)M′(θ, φ)

eikR

R

eikR
′

R′ ,

where

(3.33′) M′(θ, φ) =
1

4
(
cosφ+ cos θ

) .
We see that the function M′(θ, φ) of (3.33′) can be obtained by formally substituting ε(0) = 1
into the expression (3.33) for M(ε(0), θ, φ). Hence, the first order scattered field ũ(1)(ω,x′)
given by (3.32′) in the case ε(0) = 1 can also be obtained from the more general expression
(3.32) that covers the case ε(0) > 1 by formally substituting ε(0) = 1. We therefore conclude
that there is no need to keep the separate expressions for ε(0) > 1 and ε(0) = 1, and that
formulae (3.32), (3.33) can be used for the entire range ε(0) � 1.

An examination of (3.32) shows that for large propagation distances R′ the first order

scattered field ũ(1)(ω,x′) behaves approximately as an expanding spherical wave ∼ eikR
′

R′ from
a point source. This is consistent with our adopted interpretation of scattering as that from
a small region on the surface of the Earth equal to the beam footprint; see Figure 2. We
emphasize, though, that the complex amplitude of the scattered wave depends on the viewing
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direction (3.28) (for φ > 0) via the arguments of ε̂(1)( · ) in (3.32). Hence, the field that
propagates away from the target at different angles represents different Fourier components of
the first order permittivity ε(1) of (3.4). In particular, in the case of backscattering (x = x′)
we have φ = θ and ψ = π (see Figure 2), so that the Fourier component of ε(1) substituted
into (3.32) is ε̂(1)(0,−2k sin θ). In the literature, the spatial frequency −2k sin θ is referred
to as the Bragg (resonant) frequency—see, e.g., [3, section 13.1] or [17]—and accordingly,
ε̂(1)(0,−2k sin θ) is the amplitude of the Bragg harmonic in the spectrum of ε(1).

We would also like to note that the approximations we have used for the incident and scat-
tered fields (see formulae (3.1) and (3.32), respectively) are in some sense opposite. Whereas
for the incident field we have fixed the propagation direction and replaced the spherical wave
by a plane wave locally near the target, for the reflected field we are rather considering the
propagation in all directions away from a small scattering region on the surface.

3.4. Reflected field in the time domain. To convert (3.32) back to the time domain, we
first introduce a new set of Cartesian coordinates on the plane (ζ1, ζ2):

(3.42)
ζ ′1 = ζ1 sinα+ ζ2 cosα,

ζ ′2 = − ζ1 cosα+ ζ2 sinα,

where

sinα =
sinφ sinψ

D
, cosα =

sinφ cosψ − sin θ

D
,

D2 = sin2 φ sin2 ψ + (sinφ cosψ − sin θ)2 = sin2 φ+ sin2 θ − 2 sin φ cosψ sin θ.

We note that as both 0 < θ < π
2 and 0 < φ < π

2 , we have D2 = 0 for φ = θ and cosψ = 1,
which corresponds to specular reflection (see Figure 2), andD2 > 0 otherwise. Hence, specular
reflection is the only case where transformation (3.42) degenerates. This case will be analyzed
separately. In the meantime, we assume that D2 > 0.

Denote by ε̂
(1)
n the Fourier-transformed first order permittivity as a function of the new

coordinates (3.42), so that ε̂
(1)
n (ζ ′1, ζ

′
2) = ε̂(1)(ζ1, ζ2). Then, following (3.13a), we can write

(3.43)

ε(1)(z1, z2) =
1

(2π)2

∫∫
ε̂(1)n (ζ ′1, ζ

′
2)e

i((ζ′1 sinα−ζ′2 cosα)z1+(ζ′1 cosα+ζ
′
2 sinα)z2)dζ ′1dζ

′
2

=
1

(2π)2

∫∫
ε̂(1)n (ζ ′1, ζ

′
2)e

i((z1 sinα+z2 cosα)ζ′1+(−z1 cosα+z2 sinα)ζ′2)dζ ′1dζ
′
2

=
1

(2π)2

∫∫
ε̂(1)n (ζ ′1, ζ

′
2)e

i(z′1ζ
′
1+z

′
2ζ

′
2)dζ ′1dζ

′
2 = ε(1)n (z′1, z

′
2),

where the transformation between (z′1, z′2) and (z1, z2) is the same as (3.42).
Let us now recall that k = ω/c and use the factor ε̂(1)(k sinφ sinψ, k sinφ cosψ − k sin θ)
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on the right-hand side of (3.32) to define a new function of time:

(3.44)

E(1)(t)
def
=

1

2π

∫ ∞

−∞
ε̂(1)(k sinφ sinψ, k sinφ cosψ − k sin θ)e−iωtdω

=
1

2π

∫ ∞

−∞
ε̂(1)

(ω
c
D sinα,

ω

c
D cosα

)
e−iωtdω

=
1

2π

∫ ∞

−∞
ε̂(1)n

(ω
c
D, 0

)
e−iωtdω =

1

2π

c

D

∫ ∞

−∞
ε̂(1)n (ω′, 0)eiω

′(−ct/D)dω′

=
c

D

∫ ∞

−∞
ε(1)n

(
− ct

D
, z′2

)
dz′2,

where the last equality in (3.44) is established with the help of (3.43). Note that it is precisely

the specific choice of the coordinate transformation (3.42) that essentially makes ε̂
(1)
n ( · ) in

(3.44) a function of only one argument and hence allows us to define E(1) = E(1)(t). By
construction,

Ẽ(1)(ω)
def
=

∫ ∞

−∞
E(1)(t)eiωtdω = ε̂(1)(k sinφ sinψ, k sinφ cosψ − k sin θ).

Therefore, we can recast formula (3.32) as follows:

(3.45) ũ(1)(ω,x′) = − iM(ε(0), θ, φ)

4π2RR′ ei
ω
c (R+R

′)ω

c
P̃ (ω)Ẽ(1)(ω).

Next, we note that

−iωeiωc (R+R′)P̃ (ω) =

∫ ∞

−∞
P ′

(
t− R+R′

c

)
eiωt dt,

where P ′ is the first derivative of the function P with respect to its argument. Thus, on the
right-hand side of (3.45) we have a product of two Fourier transforms, which means that the
original function in the time domain, i.e., u(1)(t,x′), can be represented as a convolution:

u(1)(t,x′) =
M(ε(0), θ, φ)

4π2RR′c
P ′

(
t− R+R′

c

)
∗ E(1)(t)

=
M(ε(0), θ, φ)

4π2RR′c

∫
P ′

(
t− R+R′

c
− t′

)
E(1)(t′)dt′

=
M(ε(0), θ, φ)

4π2RR′c

∫
P ′

(
t− R+R′

c
− t′

)
c

D

∫
ε(1)n

(
−ct

′

D
, z′2

)
dz′2dt

′(3.46)

=
M(ε(0), θ, φ)

4π2RR′c

∫∫
P ′

(
t− R+R′

c
+
z′1D
c

)
ε(1)n (z′1, z

′
2)dz

′
1dz

′
2

=
M(ε(0), θ, φ)

4π2RR′c

∫∫
P ′

(
t− Rz +R′

z

c

)
ε(1)(z1, z2)dz1dz2,

where we have substituted E(1) in the form given by the last integral of (3.44) and also changed
the order of integration because the argument of P ′( · ) does not depend on z′2. The quantities
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Rz and R′
z in the last integral of (3.46) are the linearized travel distances between the location

z in the target area and the locations x and x′ of the transmitting and receiving antennas,
respectively (see Figure 2):

(3.47)
|z − x| = Rz ≈Rz

def
= R+ z2 sin θ,

|z − x′| = R′
z ≈R′

z
def
= R′ − (z1 sinφ sinψ + z2 sinφ cosψ).

Similarly to (3.1), in (3.47) we have dropped all the terms that are at least z2/R, z1/R
′, or

z2/R
′ smaller than the retained ones. For backscattering (x = x′), formula (3.46) simplifies:

(3.46′) u(1)(t,x) =
M(ε(0), θ, θ)

4π2R2c

∫∫
P ′

(
t− 2

Rz

c

)
ε(1)(z1, z2)dz1dz2.

In the case of specular reflection, φ = θ and ψ = 0 (see Figure 2), the coordinate trans-
formation (3.42) degenerates, D = 0, and hence we cannot introduce E(1)(t) according to
(3.44). However, the reflected field given by (3.46) remains finite. In order to see that, we
consider a formal limit D → 0 on the third and fourth lines of (3.46). After the change of
variables z′1 = ct′/D, the only occurrence of D remains in the argument of P ′( · ). Taking the
limit D → 0 implies that this argument will no longer depend on the spatial coordinates, and
instead of (3.46) in the case of specular reflection we can write

u(1)(t,x′) =
M(ε(0), θ, θ)

4π2RR′c
P ′

(
t− R+R′

c

)∫∫
ε(1)(z1, z2)dz1dz2.

The fact that the time-delayed pulse P ′( ·) can be taken out of the integral has a clear physical
explanation. Indeed, in the case of specular reflection according to (3.47) we have

|z − x|+ |z − x′| ≈ Rz +R′
z = R+R′ = const;

i.e., the two-way travel distance remains approximately constant for the entire target area.
Formulae (3.46) and (3.46′) are the counterparts of formulae (2.11′) and (2.11′′), respec-

tively, obtained in the framework of the new model for radar targets that exploits a horizontally
inhomogeneous material half-space (3.4). The function ε(1)(z1, z2) in (3.46) and (3.46′), which
is a counterpart of ν(z) in (2.11′) and (2.11′′), is a function of only two variables by design.
Therefore, unlike (2.11′) and (2.11′′), the new expressions (3.46) and (3.46′) involve only sur-
face convolutions (the integration is dz1dz2) and do not require any external considerations,
such as the special singular form (2.22) for ground reflectivity, to reduce triple integrals to
double integrals. In the literature, the convolutions that appear in (3.46) and (3.46′) are re-
ferred to as surface retarded potentials. In addition, we emphasize that while the derivation
of formulae (3.46) and (3.46′) requires that the scattering be linearized, it does not require
that it should be weak, and does not employ the first Born approximation.

Alternative scattering models based on different physical considerations can also be used.
For example, the impedance boundary condition model (see Appendix B), which is, however,
not as rigorously justified as the model presented in this section, yields a reflection coefficient
similar to (3.22); see (B.8). With slight modifications (in particular, with a modified func-
tion M of (3.33)), the rest of the analysis will apply to this model as well. Yet another model
which may be useful is scattering off a rough surface; see, e.g., [31]. For small perturbations
of the surface, it can also produce a reflection coefficient of type (3.22).
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4. SAR ambiguity theory for the new scattering model. The SAR ambiguity theory for
the target model of section 3 can be developed similarly to the conventional construction of
section 2.1. The development in the new framework is even more straightforward, as it does not
involve any artificial steps aimed at interpreting the ground reflectivity as a function of only
two rather than three spatial variables. As in section 2.1, we will restrict our considerations
to the case of monostatic imaging, for which the first order scattered field is given by formula
(3.46′). Moreover, in this section we will separate the scales in both the imaged quantity and
the image and show that the actual SAR observable quantity is a slowly varying amplitude of
the Bragg harmonic of ε(1). Hereafter, we will assume that z = (z1, z2, 0), y = (y1, y2, 0), and
dz = dz1dz2. Then, in particular, we can say that ε(1)(z1, z2) = ε(1)(z) and recast the surface
convolution (3.46′) as follows:

(3.46′′) u(1)(t,x) =
M(ε(0), θ, θ)

4π2R2c

∫∫
P ′

(
t− 2

Rz

c

)
ε(1)(z)dz.

For the satellite at the position x, using (3.46′′) instead of (2.11′′), we then get (cf. (2.13))

Ix(y) =

∫
χ
P (t− 2Ry/c)u

(1)(t,x) dt

=
M(ε(0), θ, θ)

4π2R2c

∫∫
dz ε(1)(z)

∫
χ
dt P (t− 2Ry/c)P

′(t− 2Rz/c),

where Ry is the linearized distance |y − x| defined as in (3.47). Then, taking into account
that P ′ ≈ −iω0P , we arrive at the same formal expression for the image as (2.15),

(2.15′) Ix(y) =

∫∫
Wx(y,z)ν(z) dz,

except that the integral is two-dimensional by construction and does not require assumption
(2.22). In formula (2.15′),

(4.1)
ν(z) = −iω0

M(ε(0), θ, θ)

4π2R2c
ε(1)(z) and

Wx(y,z) = τsinc

(
π
Rz −Ry

ΔR

)
e2ik0(Rz−Ry) =WR(y,z)e

2ik0(Rz−Ry),

where WR(y,z) in the form of a sinc function is obtained as in Appendix A; see (A.1), (A.2).
Consider x = x0, so that

Rz −Ry ≡ R0
z −R0

y = (z2 − y2) sin θ.

Then, from (2.15′) and (4.1) we have

(4.2) Ix0(y) = τ

∫
dz1

∫
dz2 sinc

(
π
(z2 − y2) sin θ

ΔR

)
e2ik0(z2−y2) sin θν(z1, z2).

In general, for x = xn the difference of two linearized travel distances is given by (A.3):

Rz −Ry ≡ Rn
z −Rn

y = (z2 − y2) sin θ +
y1 − z1
R

xn1 .
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As |xn1 | � R, we may neglect the term with xn1 in the argument of the sinc ( · ) in (4.1):

(4.3) sinc

(
π sin θ

z2 − y2
ΔR

+ π
xn1
R

y1 − z1
ΔR

)
≈ sinc

(
π sin θ

z2 − y2
ΔR

)
= sinc

(
π
R0

z −R0
y

ΔR

)

(see [15, Appendix A] for a detailed analysis). This term, however, should be retained in the
exponent, as it is responsible for the chirp-type behavior in azimuth and hence for obtaining
the azimuthal resolution; see Appendix A. Therefore, we get (cf. (2.16))

(4.4)

I(y) =

N/2∑
n=−N/2

Ixn(y) = τ

∫
dz1

N/2∑
n=−N/2

e2ik0x
n
1 (y1−z1)/Rνw(z1, y2)

= τ

∫
dz1WA(y1, z1)νw(z1, y2),

where WA(y1, z1) is given by (2.24b) and νw(z1, y2) is the interior convolution integral on the
right-hand side of formula (4.2):

(4.5) νw(z1, y2)
def
=

∫
WR(y2 − z2)e

−2ik0(y2−z2) sin θ · ν(z1, z2)dz2.

In (4.5), we took into account that sinc is an even function. Note also that unlike in (2.12′),
(2.22), the quantity ν(z) in (4.1), (4.5) depends, in particular, on the angle of incidence θ.

Representations (4.2), (4.4), and (4.5) will allow us to separate the fast (∼ k−1
0 , the

wavelength) and slow (∼ ΔR, the resolution, which is much larger than the wavelength,
ΔR � k−1

0 ) scales of variation in both the imaged quantity and the image. As a result, we
will be able to identify a slowly varying physical observable for the new scattering model.
It will replace ν in relation (2.16) and provide a new characteristic of the target that will
generate the image once processed with the slowly varying generalized ambiguity function.

On the one hand, taking the Fourier transform in y2 of both sides of (4.5), we get

(4.6) ν̂w(z1, k) = τ
ΔR

sin θ
ν̂(z1, k)χβ(k − kθ),

where kθ is the Bragg frequency,

(4.7) kθ = −2k0 sin θ,

and the indicator function χβ is defined as in (2.9), but for β = 2π sin θ
ΔR

= 2B sin θ
c :

(4.8) χβ(k − kθ) =

{
1 if k ∈ [

kθ − B sin θ
c , kθ +

B sin θ
c

]
,

0 otherwise.

To obtain (4.6), we took into account that the right-hand side of (4.5) is a convolution and
that for the Fourier transform of the first factor in this convolution (see (4.1)) we have

τ

∫
sinc

(
π
z sin θ

ΔR

)
e−i2k0 sin θze−ikzdz = ŴR(2k0 sin θ + k)

= τ
ΔR

sin θ
χβ(2k0 sin θ + k) = τ

ΔR

sin θ
χβ(k − kθ).
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Formulae (4.6)–(4.8) show that νw(z1, y2) of (4.5) is a band limited function. Its spectrum
contains only the interval of spatial frequencies of size β = 2B sin θ

c centered at the Bragg
frequency (4.7). Hence, without changing the image (4.4), the function ν(z1, z2) on the right-
hand side of (4.5) can be replaced with an effective function νeff(z1, z2) such that its spectrum

in z2 is restricted to the same band as in (4.8), ν̂eff(z1, k)
def
= ν̂(z1, k)χβ(k − kθ):

(4.9) νeff(z1, z2)
def
=

1

2π

∫ kθ+β/2

kθ−β/2
ν̂(z1, k)e

ikz2dk.

Both νw(z1, y2) of (4.5) and ν
eff(z1, z2) are band limited on the spectral interval [kθ− β

2 , kθ+
β
2 ].

On the other hand, taking into account (4.9), we can recast formula (4.5) as

e2ik0y2 sin θνw(z1, y2) =

∫
WR(y2 − z2)e

2ik0z2 sin θνeff(z1, z2)dz2,

and then introduce the new functions on both the left-hand and right-hand sides of the previous
equality:

νneww (z1, y2)
def
= e2ik0y2 sin θνw(z1, y2),(4.10a)

νnew(z1, z2)
def
= e2ik0z2 sin θνeff(z1, z2),(4.10b)

so that

(4.5′) νneww (z1, y2) =

∫
WR(y2 − z2)ν

new(z1, z2)dz2 ≡WR ∗ νnew.

Fourier transforming both sides of (4.5′) in y2, we obtain (cf. (4.6))

(4.6′) ν̂neww (z1, k) = ν̂w(z1, k + kθ) = τ
ΔR

sin θ
ν̂new(z1, k)χβ(k),

where according to (4.9) and (4.10b),

(4.11) ν̂new(z1, k) = ν̂eff(k + kθ) = ν̂(z1, k + kθ)χβ(k).

From (4.6′) and (4.11) we conclude that, similarly to νw(z1, y2) and νeff(z1, z2), both the
function νneww (z1, y2) of (4.10a) and the function νnew(z1, z2) of (4.10b) are band limited to a
spectral interval of size β. However, while for νw(z1, y2) and ν

eff(z1, z2) we have

ν̂w(z1, k) �= 0 and ν̂eff(z1, k) �= 0 if k ∈
[
kθ − β

2
, kθ +

β

2

]
,

the spectral interval for the new functions νneww (z1, y2) and ν
new(z1, z2) is centered at 0 rather

than at the Bragg frequency kθ of (4.7):

ν̂neww (z1, k) �= 0 and ν̂new(z1, k) �= 0 if k ∈
[
−β
2
,
β

2

]
.
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In other words, the new spectral interval is shifted by −kθ. Therefore, both νneww (z1, y2) of
(4.10a) as a function of y2 and ν

new(z1, z2) of (4.10b) as a function of z2 vary slowly in space, on
the scale ∼ ΔR or larger. Indeed, according to (4.6′) and (4.11), none of the spatial frequencies
in their respective spectra exceeds β/2 = B sin θ/c, which is assumed much smaller than the
absolute Bragg frequency 2k0 sin θ. In other words, B/c� k0 or B � ω0, which is equivalent
to assuming that the original SAR interrogating waveform (2.8) is narrow-band.

Given that the functions νneww (z1, y2) and ν
new(z1, z2) vary in space on the scale of ΔR or

slower, we redefine Ix0(y) of (4.2), as well as all Ixn(y), by essentially absorbing the factor
e2ik0y2 sin θ into the image, as in (4.5′):

Inewx0 (y)
def
= e2ik0y2 sin θIx0(y) = τ

∫
dz1

∫
dz2 WR(y2 − z2)ν

new(z1, z2) = τ

∫
νneww (z1, y2)dz1.

Then, assuming that νnew(z1, z2) does not depend on x, for the full image (4.4) we obtain

(4.12)

Inew(y) =

N/2∑
n=−N/2

Inewxn (y) = τ

∫
dz1

N/2∑
n=−N/2

e2ik0x
n
1 (y1−z1)/Rνneww (z1, y2)

=

∫
dz1

∫
dz2 WA(y1, z1)WR(y2, z2)ν

new(z1, z2)

=W ′(y,z) ∗ νnew(z).

The function W ′(y,z) =WA(y,z)WR(y,z) in (4.12) is the same GAF as in (2.26), but with-
out the fast phase factor eiΦ0 = e2ik0(z2−y2) sin θ. Expression (4.12) is a counterpart of (2.16).
Thus, we conclude that the new function νnew(z) represents the slowly varying observable
quantity for the SAR imaging scheme that includes the target model of section 3.

According to (4.11), the new function νnew is obtained by shifting and band limiting (i.e.,
truncating by a rectangular window) the spectrum of the original function ν. In fact, νnew

can also be represented as a windowed Fourier transform (WFT; see, e.g., [18, Chapter 2]):

(4.13)

νnew(z1, z2) =
1

2π

∫
ν̂(z1, k + kθ)χβ(k)e

ikz2dk

=
1

2π

∫
ν̂(z1, k + kθ)

(
τ sin θ

ΔR

∫
WR(z)e

−ikzdz
)
eikz2dk

=
τ sin θ

2πΔR

∫
WR(z)

∫
ν̂(z1, k + kθ)e

ik(z2−z)dkdz

=
τ sin θ

2πΔR

∫
WR(z)

∫
ν̂(z1, k

′)ei(k
′−kθ)(z2−z)dk′dz

=
τ sin θ

2πΔR

∫
WR(z2 − z′)

∫
ν̂(z1, k

′)ei(k
′−kθ)z′dk′dz′

=
τ sin θ

ΔR

∫
WR(z2 − z′)e−ikθz

′
(

1

2π

∫
ν̂(z1, k

′)eik
′z′dk′

)
dz′

=
τ sin θ

ΔR

∫
WR(z2 − z′)ν(z1, z′)e−ikθz

′
dz′.
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Formula (4.13) enables a convenient physical interpretation of the observable νnew. This
quantity appears to be a WFT of ν(z1, z

′) with respect to its second argument z′, with a sinc
window of size ΔR

sin θ centered at z2 and precisely the Bragg spatial frequency (4.7). In other
words, νnew(z1, z2) as a function of z2 is a slowly varying amplitude of the Bragg harmonic
eikθz2 in the spectrum of ν computed on a window of the resolution size.

We also need to emphasize that the independence of νnew(z1, z2) on x that enables rep-
resentation (4.12) can only be considered an approximation. Indeed, the left-hand side of
(4.3) depends on the position xn of the SAR platform, and so does Ixn(y). Consequently,
the dependence on n may need to be taken into account on the right-hand side of (4.5′),
which will eventually translate into the dependence of νnew(z1, z2) on n. Alternatively, one
can think that the WFT in (4.13) is performed along slightly different directions for different
positions of the platform. For narrow-angle synthetic apertures the corresponding variation
of the observable quantity is small and can be disregarded. This is equivalent to dropping
the term ∝ xn1 in the argument of the sinc ( · ) in (4.3). For wider apertures, however, taking
the WFT along different directions may lead to a reduction or loss of the spatial (or angular)
coherence. This issue will require thorough attention in the future.

Finally, the analysis in this section indicates that the same interpretation of the observ-
able quantity in SAR imaging, i.e., the interpretation as a slowly varying amplitude of the
Bragg harmonic in the spectrum of ground reflectivity, may potentially be extended to the
conventional SAR ambiguity theory as well (section 2.1 and Appendix A).

5. Conclusions and future work. We have proposed a new model for radar targets that
exploits a horizontally inhomogeneous dielectric half-space; see the beginning of section 3 and
also (3.4). In the framework of this model, one can consider the linearized scattering without
assuming that it is weak. This enables the development of a SAR ambiguity theory that does
not require the first Born approximation. Moreover, an intrinsic property of the new model is
that it represents the scattered field as a surface (rather than volumetric) retarded potential;
see (3.46) and (3.47). This allows one to avoid making additional assumptions, such as taking
the ground reflectivity as a single layer on the surface, that may be inconsistent with other
parts of the formulation. Finally, the new model helps identify the correct physical observable
for SAR imaging. It is a slowly varying amplitude of the Bragg resonant harmonic in the
spectrum of electric permittivity computed on a resolution size window; see (4.13). Note that
the variation of the medium on the resonant Bragg scale makes our model distinctly different
from those that appear in the context of imaging through a randomly layered medium, in
which one often employs homogenization and requires that the typical incident wavelength be
much larger than the characteristic scale of variation of the medium parameters; see, e.g., [10,
Chapter 4] or [11]. Another important difference between our formulation and that of [10, 11]
is that we allow variations of the medium in two spatial directions.

Altogether, our new scattering model allows one to address a broader class of problems
than the conventional SAR theory does, because the linearization can be performed against
a different background solution rather than only the unobstructed incident field in free space,
as in the case of weak scattering. However, when the scattering is indeed weak, the results
obtained with the help of the new model become fully equivalent to those from the classical
theory.
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In the current paper, we have considered only the scalar case. This is a simplified setting,
because in reality the electric and magnetic fields are vector quantities, and scattering of
electromagnetic waves needs to be analyzed using full Maxwell’s equations as opposed to
the d’Alembert equation (2.1). In the case of specular reflection, linearized scattering off
an anisotropic dielectric and weakly conducting half-space was studied in [13]. For planar
scattering (when the reflected wave vector is in the plane of incidence), the formulation we
have described in this paper corresponds to the horizontal polarization of the electric field (the
electric field vector is parallel to the surface). To address vertical polarization, one should start
the analysis with full Maxwell’s equations that can subsequently be reduced to scalar second
order equations for individual field components, but both the equations and the interface
conditions will be somewhat different from those considered in this paper. The analysis of
nonplanar scattering requires a full vector consideration that would involve computing two co-
polarized and two cross-polarized scattering coefficients (a 2×2 scattering matrix altogether).
Both the case of vertical polarization and that of nonplanar scattering will be included in our
forthcoming monograph [16].

The SAR ambiguity theory actually relies on the spatial (or angular) coherence of the
scattering of radar signals off the target. In the conventional framework of section 2.1, coher-
ence manifests itself as independence of the scattering coefficient ν(z) given by (2.12′) from
the antenna position x. It is this property of the scattering coefficient that allows one to rep-
resent the image as a convolution of ν(z) with the GAF W (y,z) (see (2.16)), where W (y,z)
characterizes only the imaging system and not the target (in particular, W (y,z) depends on
the array of the antenna positions {xn} that form the synthetic aperture). For the new model,
an equivalent requirement would be independence of the slowly varying observable quantity
νnew(z1, z2) from x or from n, as discussed in section 4. For narrow synthetic apertures this
assumption may approximately hold, but for wider aperture angles it becomes unrealistic; see,
e.g., [23, 2, 27]. The mechanism of coherence deterioration can be attributed to the leftmost
expression of (4.3), where the azimuthal coordinates get “mixed” into the range factor of the
convolution kernel. Alternatively, one can think of performing the WFT (4.2) along different
directions for different antenna positions.

Given that coherence is critical for SAR imaging, two directions of the future study are
warranted. On the one hand, quantitative estimates will need to be obtained for the maximum
aperture angles that would still allow the use of coherence in SAR analysis, and that would
relate the gradual deterioration of coherence due to wider apertures to the anticipated overall
degradation of the SAR performance. Note that the second term in the argument of the
sinc ( · ) on the left-hand side of (4.3), which is responsible for coherence deterioration, is what
actually needs to be taken into account when estimating the error due to the factorization
(2.19); see [15, Appendix A]. On the other hand, it would be interesting to try and identify
the classes of targets for which the scattering will remain coherent even for wider apertures.
For example, a sufficient condition would be to have a target for which the result of the WFT
(4.2) will not depend on the direction.

In this paper we have generalized the linearized scattering model beyond the first Born ap-
proximation by considering linearization against a different background solution—transmission/
scattering of a plane wave at a planar interface between the vacuum and a homogeneous di-
electric with a potentially large permittivity ε(0). In the future, it may be interesting to
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consider other background solutions for linearization, for example, transmission/scattering at
an interface of a different shape.

Other possible extensions of the current work include relaxing the assumption that the
ground topography be flat, which is intrinsic in formula (3.4), and investigating whether and
how the proposed methodology can be generalized to the case of a nonplanar (yet known)
surface of the target, as well as conducting SAR ambiguity analysis for platform trajectories
that are more general than the linear flight path (orbit) at a constant altitude (as in Figures 1
and 2).

Appendix A. Computation of the GAF (2.19). The range factor (2.21) of the GAF is
given by

WR(y,z) =

∫
χ
A(t− 2R0

y/c)A(t− 2R0
z/c) dt

=

∫
χ
χτ (t− 2R0

y/c)e
iα(t−2R0

y/c)
2
χτ (t− 2R0

z/c)e
−iα(t−2R0

z/c)
2
dt

=

∫ min{2R0
y/c,2R

0
z/c}+τ/2

max{2R0
y/c,2R

0
z/c}−τ/2

eiα(t−2R0
y/c)

2
e−iα(t−2R0

z/c)
2
dt.

In the last integral, we change the integration variable, t̃ = t− (R0
y +R0

z)/c, and also denote
T 0 = (R0

y −R0
z)/c so that

t− 2R0
y

c
= t̃− T 0 and t− 2R0

z

c
= t̃+ T 0.

Then, we have

(A.1) WR(y,z) =

∫ τ/2−|T 0|

−τ/2+|T 0|
eiα(t̃−T

0)2e−iα(t̃+T
0)2dt̃ =

∫ τ̃ /2

−τ̃ /2
e−iα4t̃T

0
dt̃,

where τ̃ = τ − 2|T 0|. Consequently,

(A.2)

WR(y,z) = − 1

4iαT 0

(
e−2iατ̃T 0 − e2iατ̃T

0
)
=

sin(2ατ̃T 0)

2αT 0

= τ̃sinc (2ατ̃T 0) = τ̃sinc

(
B

τ
τ̃
R0

y −R0
z

c

)

≈ τsinc

(
B

c
(R0

y −R0
z)

)
= τsinc

(
π
R0

y −R0
z

ΔR

)
,

where ΔR = πc/B. Note that in the last line of (A.2) we have replaced τ̃ by τ . This was
done because |T 0| � τ , and hence the two quantities, τ̃ and τ , are very close to each other.
Indeed, |T 0| is the signal travel time between y and z (see Figure 1), which is several orders
of magnitude shorter than the typical duration of the pulse τ (see [14, Table 1]).

The sinc function in (A.2) attains its maximum when R0
y = R0

z and has its first zero
when R0

y − R0
z = ΔR. Therefore, ΔR is the semiwidth of the main lobe of the sinc . In the
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literature, the quantity ΔR = πc/B is commonly interpreted as the range resolution, because
it is assumed that if two point targets are at least ΔR apart, then their images given by sinc
functions of semiwidth ΔR can be distinguished from one another.

To evaluate the azimuthal factor (2.20), we first linearize the travel distances Rny and Rnz
of (2.18); see Figure 1. With no loss of generality we can assume that z2 = 0 and also denote
y2 − z2 = y2 = l for convenience. Then, we can write

Rnz =
(
H2 + L2 + (xn1 − z1)

2
)1/2

=
(
R2 + (xn1 − z1)

2
)1/2

=R

(
1 +

(xn1 − z1)
2

R2

)1/2

≈ R+
1

2

(xn1 − z1)
2

R

and

Rny =
(
H2 + (L+ l)2 + (xn1 − y1)

2
)1/2

=
(
R2 + 2Ll + l2 + (xn1 − y1)

2
)1/2

=R

(
1 +

2Ll + l2 + (xn1 − y1)
2

R2

)1/2

≈ R+
1

2

2Ll + l2 + (xn1 − y1)
2

R
,

where |xn1 − y1| ∼ LSA, |xn1 − z1| ∼ LSA, and both LSA � R and l � R (see [14, Table 1]; l is
on the order of resolution). Subtracting the previous equalities from one another, we obtain

(A.3) Rnz −Rny ≈ (xn1 − z1)
2 − 2Ll − l2 − (xn1 − y1)

2

2R
≈ −Ll

R
+

(y1 − z1)x
n
1

R
,

where only the leading term was retained among those that do not depend on n (typically,
l � LSA). Consequently, taking into account that xn1 = LSAn/N , for the sum (2.20) we have

(A.4)

WΣ(y,z) =

N/2∑
n=−N/2

e2ik0(R
n
z−Rn

y) = e−2ik0Ll/R

N/2∑
n=−N/2

e2ik0(y1−z1)x
n
1 /R

= e−2ik0Ll/R

N/2∑
n=−N/2

e2ik0(y1−z1)LSAn/RN

= e−2ik0Ll/R e
−ik0(y1−z1)LSA/R − eik0(y1−z1)LSA(N+2)/RN

1− e2ik0(y1−z1)LSA/RN
.

For the common imaging configurations (see [14, Table 1]) we have k0LSA/N � 1, whereas
|y1 − z1|/R could be between 10−5 and 10−6. Therefore, the exponent in the denominator of
the last fraction is small: |2k0(y1 − z1)LSA/RN | � 1. Moreover, N � 1, and we can neglect
2/N in the second exponent in the numerator. Hence, we get

(A.5)

WΣ(y,z) ≈ e−2ik0Ll/R sin(k0(y1 − z1)LSA/R)

k0(y1 − z1)LSA/RN

= e−2ik0Ll/RNsinc (k0(y1 − z1)LSA/R)

= e−2ik0Ll/RNsinc

(
π
y1 − z1
ΔA

)
= e−2ik0Ll/RWA(y,z),
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where ΔA = πR/k0LSA = πRc/ω0LSA. The same argument as in the case of range resolution
allows one to take the quantity ΔA as the azimuthal resolution.

The fact that both WR(y,z) (see (A.2)) and WA(y,z) (see (A.5)) evaluate to a sinc
function is not accidental. For the range factor WR(y,z) the sinc comes as an implication
of the linear variation of the instantaneous frequency along the chirp (see (2.8) and (2.9)):
ω(t) = ω0 + 2αt = ω0 +

B
τ t, where t ∈ [−τ/2, τ/2], so that integral (A.1) can be recast as

(A.6) WR(y,z) =

∫ τ̃ /2

−τ̃ /2
e−2i(ω(t̃)−ω0)T 0

dt̃.

As for the azimuthal factor WA(y,z), the exponents under the sum in (A.4) can be thought of
as representing a linear variation of the local wavenumber along the synthetic array. Indeed,

the quantity k(n)
def
= k0LSAn/RN depends linearly on n, and from (A.4) we have

(A.7) WA(y,z) =

N/2∑
n=−N/2

e2ik(n)(y1−z1),

which is very similar to (A.6), because y1 − z1 can substitute for T 0 ∝ (R0
y −R0

z), and k(n) is
a linear function of n that turns into zero exactly in the middle of the synthetic array, much
like ω(t̃) − ω0 turns into zero in the middle of the chirp. The difference between (A.6) and
(A.7) is that the former is an integral and the latter is a sum, but a sum of type (A.7) can
always be thought of as approximating the corresponding integral by the midpoint rule.

Moreover, the “instantaneous” wavenumber k(n) can be recast as follows:

(A.8) k(n) = k0
xn1
R

= k0 tan
(π
2
− γn

)
≈ k0 sin

(π
2
− γn

)
= k0 cos γ

n,

where γn is the angle between the platform velocity and the direction from xn to the target
z; see Figure 1. For narrow antenna beams and broadside imaging, the angle π

2 − γn is small,
which is why the approximation in (A.8) holds. Using (A.8), we can rewrite (A.7) as

(A.9) WA(y,z) =

N/2∑
n=−N/2

e2ik0 cos γ
n(y1−z1) =

N/2∑
n=−N/2

e2iω0 cos γn(y1−z1)/c,

which shows that the variation of the local wavenumber along the synthetic array can be
attributed to a Doppler-like effect. Indeed, it is well known that the standard linear Doppler
frequency shift is proportional to the ratio of the platform speed over the wave propagation
speed times the cosine of the angle between the platform velocity and the direction to the
target:

ω − ω0 ∝ v

c
cos γ.

In (A.9), the actual physical Doppler effect, which is due to the platform motion, does not
manifest itself, because we are using the start-stop approximation, and the platform is con-
sidered motionless at the times when it emits and receives the SAR signals.13 On the other

13The role of the platform motion and the corresponding Doppler effect in SAR analysis is discussed in detail
in [30].
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hand, it is common to associate the change in the antenna position, i.e., the variation of n,
with the so-called slow time; see, e.g., [6, Chapter 9]. Then, the local wavenumber k(n) can
be thought of as a function of slow time. The dependence of k(n) on slow time is through
cos γn, so that its value is determined by the transmitting/receiving location n only and is not
affected by how rapidly the platform moves between different locations. Thus, the quantity
cos γn in the exponent in formula (A.9) can be interpreted as the second contributing factor to
the Doppler frequency shift in slow time. This frequency (or wavenumber) shift varies linearly
along the synthetic array, which can also be seen as a chirp in the azimuthal direction. It is
to be noted, though, that in the literature the Doppler interpretation of synthetic arrays is
sometimes artificially attributed to the physical fast time t, as opposed to the slow time n;
see, e.g., [7, section 3.5.5] or [12, section 1.4.2.2].

Appendix B. Leontovich boundary condition. An alternative scattering model that is
simpler than that of section 3 yet capable of producing similar results, albeit with less math-
ematical rigor, is the model based on impedance boundary conditions [25], i.e., boundary
conditions of the third kind. A particular form of such boundary conditions that will be of
interest for our analysis corresponds to an interface with a large jump of the refractive index:
ε(0) � 1. In this case, the refracted wave propagates almost normal to the interface regardless
of the angle of incidence. This allows one to establish an approximate relation between the
total field and its normal derivative on the vacuum side of the interface, thus removing the
material domain from consideration. In the literature, this relation is often referred to as the
Leontovich (or Shchukin–Leontovich) boundary condition; see [1, 24, 31].

Consider a solution u = u(z1, z2, z3) to the pair of Helmholtz equations (3.6). It is a wave

field with the spatial frequency k in the upper half-space (z3 > 0) and k′ = k
√
ε(0) in the

lower half-space (z3 < 0). Suppose also that, similarly to (3.5),

u =

{
ui + ur, z3 > 0,

ui, z3 < 0,

where ui, ur, and ut are the incident, reflected, and transmitted fields, respectively. Let

û = û(ζ1, ζ2, z3) =
1

(2π)2

∫∫
u(z1, z2, z3)e

−i(ζ1z1+ζ2z2)dz1dz2.

Then, we can write

(B.1) û =

{
uie

−iqz3 + ure
iqz3 , z3 > 0,

ute
−iq′z3 , z3 < 0,

where ui, ur, and ut are amplitudes that depend on the Fourier variables (ζ1, ζ2), q
2 = k2 −

ζ21 − ζ22 , and q′2 = k′2 − ζ21 − ζ22 . The transmitted/reflected part of solution (B.1) satisfies
radiation boundary conditions as z3 → ∞ and z3 → −∞. Moreover, as in section 3, we are
assuming that the overall solution u and its normal derivative ∂u

∂z3
are continuous at z3 = 0.

This yields (cf. (3.11))
ui + ur = ut,

−iq ui + iq ur = − iq′ut.
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Consequently,

1

û

∂û

∂z3

∣∣∣∣
z3=+0

=
−iq ui + iq ur

ui + ur
=

−iq′ut
ut

= −iq′

or

∂û

∂z3

∣∣∣∣
z3=+0

= − iq′û
∣∣
z3=+0

= −i
√
ε(0)k2 − ζ21 − ζ22 û

∣∣
z3=+0

.(B.2)

Using (B.2), for the normal derivative of the overall solution u(z1, z2, z3) in the physical (as
opposed to Fourier) variables we have

(B.3)

∂u

∂z3

∣∣∣∣
z3=+0

=
1

(2π)2

∫∫
−i

√
ε(0)k2 − ζ21 − ζ22 û(ζ1, ζ2, 0) e

i(ζ1z1+ζ2z2)dζ1dζ2

=
−i

(2π)2

∫∫ √
ε(0)k2 − ζ21 − ζ22 e

i(ζ1z1+ζ2z2)

∫∫
u(z′1, z

′
2, 0)e

−i(ζ1z′1+ζ2z′2)dz′1dz
′
2dζ1dζ2

=
−i

(2π)2

∫∫
u(z′1, z

′
2, 0)

∫∫ √
ε(0)k2 − ζ21 − ζ22 e

i(ζ1(z1−z′1)+ζ2(z2−z′2))dζ1dζ2dz′1dz
′
2,

which is a nonlocal relation between u and its normal derivative at z3 = 0. The nonlocal
nature of this and similar relations is well known; see, e.g., [28]. However, for large ε(0)

relation (B.3) can be approximately localized. Indeed, if ε(0) � 1, instead of (B.2) we can
write

(B.4)
∂û

∂z3

∣∣∣∣
z3=+0

= −i
√
ε(0)k2 − ζ21 − ζ22 û

∣∣∣
z3=+0

≈ −ik
√
ε(0) û

∣∣
z3=+0

,

where the right-hand side no longer depends on (ζ1, ζ2). It is important to realize, though,
that this approximation cannot be directly used in (B.3). Indeed, the integration dζ1dζ2 in
(B.3) is performed over the entire plane, and approximation (B.4) obviously does not hold for
all (ζ1, ζ2). To be able to substitute (B.4) into (B.3), we first need to require that the Fourier
transform û(ζ1, ζ2, 0) decay sufficiently rapidly as ζ21 + ζ22 → ∞, so that the contribution of
those Fourier components, for which (B.4) does not hold, can be neglected. This requirement
is equivalent to a certain degree of smoothness of u(z1, z2, 0), but in this paper we will not
attempt to accurately quantify either the required rate of decay of û(ζ1, ζ2, 0) or the equivalent
level of regularity of u(z1, z2, 0). We will merely assume that (B.4) can be used.

Once (B.4) is substituted into (B.3), the interior double integral on the last line of (B.3)

evaluates to −ik
√
ε(0)δ(z1−z′1, z2−z′2), which yields a local relation between the solution and

its normal derivative in physical variables:

(B.5)
∂u

∂z3

∣∣∣∣
z3=+0

= −ik
√
ε(0)u

∣∣
z3=+0

.

Relation (B.5) is the Leontovich boundary condition.
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Next, we generalize boundary condition (B.5) by allowing the permittivity to vary:

(B.6)
∂u

∂z3

∣∣∣∣
z3=+0

= −ik√εu∣∣
z3=+0

.

We emphasize that (B.6) is only a formal extension of (B.5) to the case of a variable per-
mittivity. It cannot be derived using the same Fourier approach as we used for obtaining
(B.5). The motivation for introducing (B.6) is rather qualitative: as in the case of a constant
permittivity, all the refracted waves propagate close to normal, and the same will roughly be
true for variable permittivity, as long as this permittivity remains large.

Having introduced (B.6), we assume as in section 3 that u = u(0)+u(1) and ε = ε(0)+ε(1),
and we apply the method of perturbations. In doing so, we also assume that the incident field
is a plane wave propagating at an angle θ; see (3.1). Then, for zero order, (B.6) yields

−iqiu(0)i + iqiu
(0)
r = −ik

√
ε(0)(u

(0)
i + u(0)r ),

where qi = k cos θ. Hence, we obtain the following zero order reflection coefficient:

(B.7)
u
(0)
r

u
(0)
i

= −k
√
ε(0) − qi

k
√
ε(0) + qi

= −
√
ε(0) − cos θ√
ε(0) + cos θ

.

This reflection coefficient approximately coincides with that of (3.12) if we assume in (3.12)
that cos θ′ ≈ 1, which is consistent with the near normal propagation of the refracted waves.

For first order perturbations, from boundary condition (B.6) we derive

∂u(1)

∂z3

∣∣∣∣
z3=+0

= −ik
√
ε(0)

(
u(1) +

ε(1)

2ε(0)
u(0)

)∣∣∣∣∣
z3=+0

.

Then, assuming as in (3.16) that û(1) = u
(0)
i beiqz3 for z3 > 0, we get

iqu
(0)
i b = −ik

√
ε(0)

[
u
(0)
i b+

ε̂θ
2ε(0)

(u
(0)
i + u(0)r )

]
,

where ε̂θ = ε̂(1)(ζ1, ζ2−k sin θ) is introduced in (3.15). This expression along with (B.7) yields

(B.8) b = − ε̂θ√
ε(0)

kqi

(k
√
ε(0) + q)(k

√
ε(0) + qi)

.

Similarly to zero order, the first order reflection coefficient b of (B.8) approximately coincides

with that of (3.22) if in (3.22) we assume that q′r = k′ cos θ′ ≈ k′ = k
√
ε(0) and also that

q′ ≈ q′r, because the propagation in the material is almost normal anyway. The new form of
b given by (B.8) will affect M of (3.33), but the rest of the analysis will stay unaltered.
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