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The method of difference potentials generalizes the method of Calderon’s operators from
PDEs to arbitrary difference equations and systems. It offers several key advantages, such
as the capability of handling boundaries/interfaces that are not aligned with the discretiza-
tion grid, variable coefficients, and nonstandard boundary conditions. In doing so, the com-
plexity of the algorithm remains comparable to that of an ordinary finite difference scheme
on a regular structured grid.

Previously, we have applied the method of difference potentials to solving several vari-
able coefficient interior Helmholtz problems with fourth and sixth order accuracy. We have
employed compact finite difference schemes as a core discretization methodology. Those
schemes enable high order accuracy on narrow stencils and hence require only as many
boundary conditions as needed for the underlying differential equation itself. Numerical
experiments corroborate the high order accuracy of our method for variable coefficients,
regular grids, and non-conforming boundaries.

In the current paper, we extend the previously developed methodology to exterior prob-
lems. We present a complete theoretical analysis of the algorithm, as well as the results of a
series of numerical simulations. Specifically, we study the scattering of time-harmonic
waves about smooth shapes, subject to various boundary conditions. We also solve the
transmission/scattering problems, in which not only do the waves scatter off a given shape
but also propagate through the interface and travel across the heterogeneous medium
inside. In all the cases, our methodology guarantees high order accuracy for regular grids
and non-conforming boundaries and interfaces.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Formulation of the problem

This paper focuses on the high order numerical simulation of the transmission and scattering of time-harmonic waves
about compactly supported smooth shapes with variable material properties inside and constant material characteristics
d by the

1877.

rkel/ (E.

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jcp.2013.03.014&domain=pdf
http://dx.doi.org/10.1016/j.jcp.2013.03.014
mailto:medvinsk@post.tau.ac.il
mailto:tsynkov@math.ncsu.edu
mailto:turkel@post.tau.ac.il
http://www.tau.ac.il/~medvinsk/
http://www.math.ncsu.edu/~stsynkov
http://www.math.tau.ac.il/~turkel/
http://dx.doi.org/10.1016/j.jcp.2013.03.014
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


306 M. Medvinsky et al. / Journal of Computational Physics 243 (2013) 305–322
outside. Let X be a bounded domain, X � R2, with a smooth boundary C ¼ @X, see Fig. 1. Let u ¼ uðxÞ; x 2 R2, denote the
unknown complex-valued scalar time-harmonic wave field (e.g., acoustic or linearly polarized electromagnetic) governed
by an inhomogeneous variable coefficient Helmholtz equation inside X:
L1u � Duþ k2
1u ¼ f ð1aÞ
and the homogeneous constant coefficient Helmholtz equation outside X, i.e., on ~X ¼def
R2 n �X:
L0u � Duþ k2
0u ¼ 0: ð1bÞ
For the pure exterior problem we have Eq. (1b and a boundary condition on C. In Eq. (1a), the wavenumber k1 ¼ k1ðxÞ and
the right-hand side f ¼ f ðxÞ are given sufficiently smooth functions of x 2 X. The wavenumber k0 in Eq. (1b) is constant on ~X,
and the overall wavenumber k ¼ kðxÞ, which is defined on the entire R2 by the formula
kðxÞ ¼
k1ðxÞ; x 2 X;

k0 ¼ const; x 2 ~X;

(
ð2Þ
can undergo a jump discontinuity at the interface C, see Fig. 1.
In addition to the source term f of Eq. (1a), the excitation in the problem may be provided by the given incident field,

uðincÞ ¼ uðincÞðxÞ; x 2 ~X, which itself is required to satisfy the homogeneous Helmholtz equation (1b). With no loss of gener-
ality, we take uðincÞ as a plane wave:
uðincÞðxÞ ¼ u0eik0ðx1 cos hþx2 sin hÞ; ð3Þ
where R2 � ~X 3 x ¼ ðx1; x2Þ, and h is the angle of incidence, see Fig. 1. The total field u on the exterior domain ~X is partitioned
into the incident and scattered components:
uðxÞ ¼ uðincÞðxÞ þ uðscÞðxÞ; x 2 ~X: ð4Þ
Since both the total field u and the incident field uðincÞ of (4) satisfy the homogeneous equation (1b), so does the scattered
field uðscÞ. In addition, we require that the scattered field satisfy the two-dimensional Sommerfeld radiation condition at
infinity:
lim
r!1

ffiffiffi
r
p @uðscÞ

@r
þ ik0uðscÞ

� �
¼ 0; where r � jxj: ð5Þ
Conversely, the incident field uðincÞ should not satisfy (5) (see, e.g., (3)); otherwise, it would be indistinguishable from the
scattered field uðscÞ and would provide no excitation to the problem.

Finally, the wavenumber kðxÞ of (2) may be discontinuous across C, special interface conditions are required. In the sim-
plest case, they reduce to the continuity of the solution u and its first normal derivative on C:
_
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Fig. 1. Schematic for the transmission/scattering problem.
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uðXÞ
��
C
¼ uð

~XÞ
���
C
;

@uðXÞ

@n

����
C

¼ @uð~XÞ

@n

�����
C

: ð6Þ
In (6), n is the outward normal to C, and the superscripts ‘‘ðXÞ’’ and ‘‘ð~XÞ’’ denote the interior and exterior side of C, respec-
tively. Other interface conditions may also be considered, see (20).

The overall problem (1), (4)–(6) is required to have a unique solution u for a given right-hand side f and a given incident
field uðincÞ, e.g., the plane wave (3). The formulation is also assumed to be well-posed. The proof for k1 ¼ const can be found,
e.g., in [1, Chapter VII]. The problem setting that we have described is typical for many applications ranging from medical
imaging to underwater acoustics to land mine detection.
1.2. Bibliography notes

The problem formulated in Section 1.1 will be solved using Calderon’s operators and the method of difference potentials.
Its key advantages are the capability of treating the non-conforming boundaries and variable coefficients on regular struc-
tured grids with no loss of accuracy and no need of evaluating singular integrals.

In the literature, Calderon’s operators were first introduced by Calderon [2] and then studied by Seeley [3]. The funda-
mentals of the method difference potentials are presented in the review paper [4] and monograph [5] by Ryaben’kii. In
our work [6], we provide a thorough description of the method of difference potentials as it applies to solving interior prob-
lems for the variable coefficient Helmholtz equation approximated by compact schemes with high order accuracy. An earlier
application of the method of difference potentials to problems on composite domains is reported in [7], and an earlier appli-
cation to exterior scattering problems (about bodies of revolution) is presented in [8]. In both cases the computations were
performed with second order accuracy. Other developments of the method can be found, e.g., in [9–15].
1.3. Calderon’s operators

We now describe the method with the extension to the exterior and combined exterior–interior problems. First, consider
a larger domain X1 such that X # X1 # R2. Taking a sufficiently smooth extension of the function k1ðxÞ from X to X1, we de-
fine the operator L1 of (1a) on X1. Let U1 and F1 be two spaces of functions on X1; L1 : U1 # F1. The space U1 must be char-
acterized by a certain degree of regularity sufficient for applying the operator L1 in the classical sense, and the inclusion
u 2 U1 should also imply that uðxÞ satisfies a certain auxiliary boundary condition at @X1. The regularity of the functions from
F1 must be commensurate with that of the functions from U1 in the sense that F1 � ImL1, and we additionally require that if
f 2 F1 then also vXf 2 F1, where vX is the indicator function of X, i.e., vXðxÞ ¼ 1 for x 2 X and vXðxÞ ¼ 0 for x 2 X1 nX.

Next, let X1; U1, and F1 be chosen so that the Helmholtz equation (1a) has a unique solution u 2 U1 on X1 for any f 2 F1.
Hereafter, we will refer to solving Eq. (1a) on X1 in the class of functions U1 as to solving the interior auxiliary problem (AP).
Given f 2 F1, we will denote the corresponding solution by u ¼ G1f , where G1 : F1 # U1 is the Green’s (i.e., inverse) operator
of this AP. We additionally assume that the interior AP we have just described is well-posed.

For a given v ¼ vðxÞ; x 2 X, introduce its vector boundary trace at the interior side of C:
Tr1v ¼def v ðXÞ; @v
ðXÞ

@n

�� ����
C

: ð7Þ
Let nC ¼ ðn0; n1Þ be a vector function with two components defined on C. Choose an auxiliary function w 2 U1 on X1 such that
Tr1w ¼ nC in the sense of (7). The generalized Calderon potential with density nC is defined as follows:
PXnCðxÞ ¼
def wðxÞ � G1½vXL1w�ðxÞ; x 2 X: ð8Þ
Clearly, L1PXnCðxÞ ¼ 0 on X. The generalized Calderon projection is the trace of the potential (8):
PC;1nC ¼
def Tr1PXnC: ð9Þ
A given u ¼ uðxÞ; x 2 X, provides a solution to the Helmholtz equation (1a) in X if and only if its trace (7), n
ðXÞ
C ¼ Tr1u, sat-

isfies the Calderon boundary equation with projection (BEP):
PC;1n
ðXÞ
C þ Tr1G1f ¼ n

ðXÞ
C : ð10Þ
In formula (10), it is assumed the right-hand side f of Eq. (1a) is defined only on X : supp f # X. If the BEP (10) holds, then the
corresponding solution of Eq. (1a) is given by
uðxÞ ¼ PXn
ðXÞ
C ðxÞ þ G1f ðxÞ; x 2 X: ð11Þ
Similarly, consider another auxiliary domain, ~X0, such that ~X # ~X0 # R2, and two spaces of functions, U0 and F0, defined on
~X0; L0 : U0 # F0, where L0 is the constant coefficient Helmholtz operator of (1b). The same considerations of regularity that
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apply to U1 and F1 pertain to U0 and F0 as well, and in addition, we require that the functions u 2 U0 satisfy the Sommerfeld
condition (5) along with some auxiliary boundary condition at @ ~X0 needed when @ ~X0 – ;. The problem of solving Eq. (1b) on
~X0 in the space U0 will be referred to as the exterior AP. We assume that it has a unique solution u 2 U0 for any f 2 F0, and
that it is well-posed. The solution will be denoted by u ¼ G0f , where G0 : F0 # U0 is the Green’s operator of the exterior AP.

For a given v ¼ vðxÞ on ~X, we introduce its boundary trace on the exterior side of C (cf. (7)):
1 Mo
inside C
Tr0v ¼def v ð~XÞ; @v
ð~XÞ

@n

! �����
C

: ð12Þ
Note, that for defining the interior trace (7) and the exterior trace (12) we need the differentiability of vðxÞ all the way up to
the interface C from the interior and exterior side, respectively,1 but we do not necessarily need the regularity of vðxÞ across
the interface. In fact, in each of the two individual cases, (7) or (12), the corresponding vðxÞ does not even have to be known
beyond C.

The generalized Calderon potential and projection for the exterior domain ~X are defined similarly to those for the interior
domain X. Let nC ¼ ðn0; n1Þ be a two-component vector function on C. Take an auxiliary function w 2 U0 on ~X0 such that
Tr0w ¼ nC in the sense of (12). The exterior generalized Calderon potential with density nC is defined as follows (cf. formula
(8)):
P ~XnCðxÞ ¼
def wðxÞ � G0½v~XL0w�ðxÞ; x 2 ~X: ð13Þ
In formula (13), v~X ¼ v~XðxÞ is the characteristic function of the domain ~X, i.e., v~XðxÞ ¼ 1 if x 2 ~X and v~XðxÞ ¼ 0 if x 2 ~X0 n ~X. It
is easy to see that L0P ~XnCðxÞ ¼ 0 on ~X. The exterior generalized Calderon projection is the trace of the exterior potential (13)
(cf. formula (9)):
PC;0nC ¼
def Tr0P ~XnC: ð14Þ
A solution to the Helmholtz equation (1b) on ~X subject to the radiation condition (5) is referred to as the scattering solution,
see Fig. 1. A given uðscÞ ¼ uðscÞðxÞ; x 2 ~X, satisfies (1b) and (5) on ~X if and only if its trace (12), nð

~X;scÞ
C ¼ Tr0uðscÞ, solves the exte-

rior BEP:
PC;0n
ð~X;scÞ
C ¼ n

ð~X;scÞ
C : ð15Þ
Unlike the interior BEP (10), the BEP (15) is homogeneous, because Eq. (1b) is homogeneous. If the BEP (15) holds, then the
corresponding scattering solution of Eq. (1b) is given by the potential (13):
uðscÞðxÞ ¼ P ~Xn
ð~X;scÞ
C ðxÞ; x 2 ~X: ð16Þ
The overall exterior solution on ~X is a superposition of the incident and scattered fields, see formula (4). Let us then add
n
ðincÞ
C � Tr0uðincÞ to both sides of equality (15), which yields: PC;0n

ð~X;scÞ
C þ n

ðincÞ
C ¼ n

ð~XÞ
C . If we also replace the trace of the scattered

field n
ð~X;scÞ
C by the overall trace n

ð~XÞ
C ¼ Tr0u under the projection PC;0, then we arrive at the following result.

For a given uðincÞ ¼ uðincÞðxÞ; L0uðincÞ ¼ 0 for x 2 ~X, the function uðxÞ ¼ uðincÞðxÞ þ uðscÞðxÞ satisfies Eq. (1b) on ~X while at the
same time uðscÞ satisfies (5) if and only if the trace n

ð~XÞ
C ¼ Tr0u satisfies the inhomogeneous exterior BEP (cf. formula (10)):
PC;0n
ð~XÞ
C þ ðI � PC;0ÞnðincÞ

C ¼ n
ð~XÞ
C ; ð17Þ
where I is the identity operator in the space of functions nC ¼ ðn0; n1Þ. Note that if uðincÞ 2 U0, which could be the case if the
incident field were generated by the sources f ðincÞ 2 F0 located on ~X, then PC;0n

ðincÞ
C ¼ 0. Hence, BEP (17) reduces to

PC;0n
ð~XÞ
C þ n

ðincÞ
C ¼ n

ð~XÞ
C , which is equivalent to (10). For the plane wave (3) though, we generally have PC;0n

ðincÞ
C – 0 because

uðincÞ of (3) does not satisfy the Sommerfeld radiation condition (5). Therefore, Eq. (17) stays the way it is.
If the BEP (17) holds, then the overall exterior solution is given by (cf. formula (11))
uðxÞ ¼ P ~X½n
ð~XÞ
C � n

ðincÞ
C �ðxÞ þ uðincÞðxÞ; x 2 ~X: ð18Þ
We emphasize that the Calderon boundary representations (10) and (17) are equivalent to the interior and exterior sub-
problems, respectively, of the overall transmission/scattering problem described in Section 1.1. It is very important that this
equivalence is not contingent on any particular type of the boundary or interface conditions at C. This is in contradistinction
to the classical method of boundary integral equations (BIE).

Once we have obtained the BEPs (10) and (17), reducing the overall transmission/scattering problem of Section 1.1 from
R2 to the interface C becomes straightforward. All we have to do is realize that the interface conditions (6) can be recast as
follows:
n
ðXÞ
C ¼ n

ð~XÞ
C : ð19Þ
re precisely, what is required is the existence of the so-called proper normal derivative [16] of vðxÞ, i.e., a uniform limit of the normal derivative, from
or from outside C.
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Then, Eqs. (10), (17), and (19) will be solved as a system, after which the solution on X and ~X can be reconstructed using
formulae (11) and (18), respectively. Moreover, one can consider alternative interface conditions as well. Instead of (19),
we have a more general relation
2 The
An
ðXÞ
C þ Bn

ð~XÞ
C þu ¼ 0; ð20Þ
where A and B are operators and u represents the boundary data. Eq. (20) will be considered as a part of the overall system
along with the BEPs (10) and (17), to be solved with respect to n

ðXÞ
C and n

ð~XÞ
C . Note that formula (20) reduces to (19) when

A ¼ I; B ¼ �I, and u ¼ 0.

1.4. Overview of the features

Calderon’s operators offer a very general approach to the treatment of the boundary and/or interface conditions. The BEP
characterizes the entire class of solutions for a given differential equation (or system) on a given region, without any bound-
ary conditions being involved. The boundary and/or interface conditions complement the BEP(s), and in doing so basically
any type of those conditions is allowed (mixed, nonlocal, etc.).

The resulting boundary problem, which consists of the BEP(s) and the boundary/interface conditions, is always well-
posed as long at the original boundary value problem is well-posed [5]. This automatic well-posedness, along with the gen-
erality and ease in handling the boundary conditions, contrasts with the difficulties arising for BIE. In BIE, a given boundary
value problem, rather than only the governing equation(s), is reduced from the domain to the boundary. In doing so, the
boundary condition essentially determines the way it is done. For example, to maintain well-posedness of the boundary rep-
resentation, i.e., to obtain a Fredholm integral equation of the second kind, as opposed to the first kind, a double layer po-
tential should be used for the Dirichlet boundary condition, and a single layer potential should be used for the Neumann
boundary condition.

Another important improvement compared with BIE is the ability of Calderon’s operators to handle variable coefficients
or equivalently, heterogeneous media. The definition and key properties of Calderon’s potentials and projections for variable
coefficients are the same as those for constant coefficients. The only component that may change is the Green’s (inverse)
operator of the AP.

The discrete counterparts of Calderon’s potentials and projections are obtained in the framework of the method of differ-
ence potentials, see Section 2. This method applies to any finite difference scheme. In particular, the scheme can be built on a
regular grid for convenience, while the boundaries/interfaces need not necessarily conform to the grid. For example, compact
high order schemes of type [17–19] offer a very economical venue for obtaining high order accuracy (compared to some high
order finite elements). In doing so, non-conforming boundaries result in no deterioration of accuracy if handled by the meth-
od of difference potentials.

Numerical computation of the discrete Calderon potentials and projections involves solving the AP(s) by finite differences,
and the corresponding inverse (Green’s) operators are obtained without having to evaluate singular integrals. This is another
important improvement compared with BIE.

1.5. Outline of the paper

The rest of the paper is organized as follows. In Section 2, we describe the constructs of the method of difference poten-
tials as it applies to solving the transmission/scattering problem formulated in Section 1.1. Specifically, in Section 2.1 we
build the discrete Calderon potentials and projections for the interior subproblem and in Section 2.2 we construct the dis-
crete Calderon potentials and projections for the exterior subproblem. In Section 2.3, we apply the interface conditions and
match the solutions of the two subproblems at C. In Section 3, we present the results of our numerical simulations that cor-
roborate the theoretical design properties of the proposed algorithm. In Section 4, we draw some conclusions, and also dis-
cuss future work.

2. Discrete Calderon’s operators

For ease of implementation, we approximate the interior subproblem on a Cartesian grid, and the exterior subproblem on
a polar grid. Their solutions will be matched at the interface C.

2.1. Interior subproblem

Let the auxiliary domain X1 introduced in Section 1.3 be a rectangle that contains X, see Fig. 2, and let N1 be uniform in
each direction of a Cartesian grid in this rectangle. We approximate Eq. (1a) (with its variable wavenumber k1 ¼ k1ðxÞ ex-
tended smoothly from X to X1 � X) on the grid N1 by the compact fourth order accurate2 finite difference scheme [18] that
we express schematically as
sixth order accurate scheme of [19] can also be used.
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Fig. 2. Computational domain, grid, and the grid boundary c1 for the interior subproblem.
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LðhÞ1 u ¼ BðhÞ1 f: ð21Þ
In formula (21), u 2 U1 denotes the discrete solution on N1, and f is the discrete right-hand side, i.e., a representation of the
right-hand side f ðxÞ on the grid. The discrete operators LðhÞ1 and BðhÞ1 in (21) are built on a 9-point 3� 3 stencil and a 5-point
central difference stencil, respectively. Accordingly, both the left-hand side and the right-hand side of Eq. (21) are defined
only on the interior sub-grid M1 of the grid N1, such that N1 nM1 � @X1. So, M1 excludes all the nodes of N1 that happen
to lie exactly on the boundary of the rectangle X1. We require that all functions from the space of solutions U1 satisfy a cer-
tain auxiliary boundary condition on @X1 (i.e., at N1 nM1) so that for any g ¼ BðhÞ1 f there exists a unique solution u 2 U1 of the
finite difference equation (21). We denote this solution by u ¼ GðhÞ1 g, where GðhÞ1 is the discrete Green’s operator, i.e., an in-
verse to LðhÞ1 subject to u 2 U1. The problem of finding the solution u 2 U1 to the equation LðhÞ1 u ¼ g for a given g will be re-
ferred to as the discrete interior AP.

The operator LðhÞ1 of the compact scheme (21) plays a central role in constructing the discrete counterparts of Calderon’s
operators. Denote by Nm the 9-point stencil of the operator LðhÞ1 centered around the node m � ði; jÞ 2M1:
Nm � Nði;jÞ ¼ ði; jÞ; ði� 1; jÞ; ði; j� 1Þ; ðiþ 1; jþ 1Þ; ðiþ 1; j� 1Þ; ði� 1; jþ 1Þ; ði� 1; j� 1Þf g: ð22Þ
Next, partition the nodes of the grid M1 into two subsets:
Mþ
1 ¼M1 \ �X and M�

1 ¼M1 \ fX1 n �Xg ð23aÞ
so that Mþ
1 [M�

1 ¼M1 and Mþ
1 \M�

1 ¼ ;. Then, we define the subsets Nþ1 and N�1 of the grid N1 by applying the stencil Nm of
(22) to each node of Mþ

1 and M�
1 , respectively:
Nþ1 ¼ [
m2Mþ

1

Nm; N�1 ¼ [
m2M�1

Nm: ð23bÞ
While the sets Mþ
1 and M�

1 do not overlap, the sets Nþ1 and N�1 obviously do, and their intersection is called the interior grid
boundary:
c1 ¼
def

Nþ1 \N�1 : ð23cÞ
It is a multi-layer fringe of grid nodes that straddles the continuous boundary C, as is shown schematically in Fig. 2. The
density of the difference potential, which is a discrete counterpart of the Calderon potential (8), will be defined on the grid
boundary c1.

Let nc1
be a grid function defined on c1. Take an arbitrary w 2 U1 such that
TrðhÞ1 w ¼def
wjc1

¼ nc1
and introduce the interior difference potential with the density nc1
(cf. formula (8)):
PNþ
1
nc1
¼def

w� GðhÞ1 vMþ1
LðhÞ1 w

� �
on the grid Nþ1 : ð24Þ
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In formula (24), vMþ1
¼ 1 on the grid Mþ

1 and vMþ1
¼ 0 elsewhere on M1. It can be shown [5] that the potential PNþ1

nc1
of (24) is

insensitive to the choice of w 2 U1 as long as TrðhÞ1 w ¼ nc1
, and
LðhÞ1 PNþ1
nc1

h i
¼ 0 on the grid Mþ

1 : ð25Þ
In doing so, we note that the source function g ¼ vMþ1
LðhÞ1 w, to which the Green’s operator GðhÞ1 of the discrete interior AP is

applied in formula (24), is a special source function which does not necessarily have to be represented in the form BðhÞ1 f.
The discrete interior boundary projection is the trace of the potential (24) on c1 (cf. (9)):
Pc1
nc1
¼def TrðhÞ1 PNþ1

nc1
: ð26Þ
A given nc1
satisfies the discrete interior BEP (cf. formula (10))
Pc1
nc1
þ TrðhÞ1 GðhÞ1 BðhÞ1 f ¼ nc1

ð27Þ
if and only if there exists a function u on the grid Nþ1 that solves the difference equation (21) on the grid Mþ
1 and such that

TrðhÞ1 u ¼ nc1
. If the BEP (27) holds, then the corresponding solution u on Nþ1 is given by the discrete generalized Green’s for-

mula (cf. formula (11)):
u ¼ PNþ1
nc1
þ GðhÞ1 BðhÞ1 f: ð28Þ
Hence, the discrete interior BEP (27) equivalently reduces the finite difference equation (21) that approximates the differ-
ential equation (1a) on X, from its grid domain Nþ1 to the grid boundary c1. The BEP (27) itself has multiple solutions as
so does Eq. (21) as well as Eq. (1a). The solution becomes unique when the interior subproblem is coupled with the exterior
subproblem. At the continuous level, the coupling is rendered by the interface conditions (6) or, more generally, (20). At the
discrete level, the coupling is discussed in Section 2.3.

We emphasize that the right-hand side operator BðhÞ1 of the compact scheme (21) plays no role in constructing the differ-
ence potential (24). Indeed, the continuous potential (8) satisfies the homogeneous equation L1PXnCðxÞ ¼ 0 on X. Likewise,
the difference potential (24) satisfies the discrete homogeneous equation. (25) on Mþ

1 . The scheme (21) applied to a homo-
geneous equation L1u ¼ 0 transforms into LðhÞ1 u ¼ 0. Hence, the operator BðhÞ1 is not needed for approximating the solutions to
the homogeneous equations and accordingly, it does not appear in formula (24). Yet in the full inhomogeneous formulation,
the contribution of the right-hand side f ðxÞ of Eq. (1a) enters into the discrete BEP (27), as well as into the discrete Green’s
formula (28), via BðhÞ1 f.

2.2. Exterior subproblem

Let the auxiliary domain ~X0 introduced in Section 1.3 be the exterior of a circle of radius r ¼ R0 completely contained in-
side C, see Fig. 3. Let N0 be a uniform, in each direction, polar grid on the domain ~X0. We approximate Eq. (1b) on the grid N0

by the compact fourth order accurate finite difference scheme of [17] that we write schematically as
LðhÞ0 u ¼ 0: ð29Þ
Similar to the operator LðhÞ1 of (21), the discrete operator LðhÞ0 in formula (29) is also built on a 9-point 3� 3 stencil. Moreover,
as the domain ~X0 is unbounded, it is truncated by a larger circle of radius r ¼ R1, see Fig. 3, for the purpose of obtaining a
finite-dimensional discrete approximation. In doing so, an artificial boundary condition (ABC) is required at the outer bound-
ary r ¼ R1.

Recall that the overall exterior solution u is a superposition of the incident and scattered fields (cf. formula (4)):
u ¼ uðincÞ þ uðscÞ; ð30Þ
where uðincÞ is given. For the scattered field uðscÞ, we specify an exact nonlocal ABC at the outer boundary r ¼ R1, which is
equivalent to the Sommerfeld condition at infinity (5). The ABC that we use is obtained in Fourier space after the separation
of variables.It is approximated on the polar grid with fourth order accuracy using compact finite differences, see [17]. Alter-
natively, one can use any sufficiently accurate approximation to the Sommerfeld radiation condition (5), see, e.g. [20].

The discrete exterior AP is formulated for the inhomogeneous counterpart of Eq. (29):
LðhÞ0 u ¼ g ð31Þ
subject to the ABC introduced at r ¼ R1. Its solution u 2 U0 is defined on the grid N0, and the right-hand side g is defined on
its sub-grid M0, which excludes those nodes of N0 that lie either on the inner circle r ¼ R0 or on the outer circle r ¼ R1, see
Fig. 3:
N0 nM0 � @ ~X0 � fr ¼ R0 [ r ¼ R1g:
We require that, in addition to the ABC at the outer boundary r ¼ R1, each function u from the space of solutions U0 to the
discrete exterior AP satisfies some auxiliary boundary condition at the inner boundary r ¼ R0. For example, in all the
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Fig. 3. Computational domain, grid, and the grid boundary c0 for the exterior subproblem.
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computations of Section 3 we employ a homogeneous Dirichlet boundary condition at r ¼ R0. With these boundary condi-
tions set at r ¼ R0 and r ¼ R1, the finite difference equation (31) is supposed to have a unique solution u 2 U0 for any g de-
fined on the grid M0. We denote this solution by u ¼ GðhÞ0 g, where GðhÞ0 is the Green’s operator of the discrete exterior AP, i.e.,
an inverse to LðhÞ0 subject to u 2 U0.

The difference potential and boundary projection for the exterior subproblem are defined similarly to how it is done for
the interior subproblem. Namely, the 9-point stencil of the operator LðhÞ0 centered around a given node m � ði; jÞ 2M0 is for-
mally represented by the same expression (22). Then, similarly to (23a) we partition the nodes of M0 into two non-overlap-
ping subsets:
M�
0 ¼M0 \ �~X and Mþ

0 ¼M0 \ f~X0 n �~Xg ð32aÞ
and define the subsets N�0 and Nþ0 of the grid N0 by applying the stencil Nm of (22) to each node of M�
0 and Mþ

0 , respectively
(cf. formula (23b)):
N�0 ¼ [
m2M�0

Nm; Nþ0 ¼ [
m2Mþ0

Nm: ð32bÞ
We emphasize that the notation in formulae (32a) and (32b) is the same as that in formulae (23a) and (23b), respectively, in
the sense that the ‘‘�’’ nodes correspond to the exterior of C whereas the ‘‘þ’’ nodes correspond to the interior of C.

The intersection of the sets Nþ0 and N�0 of (32b) is called the exterior grid boundary:
c0 ¼
def

Nþ0 \N�0 : ð32cÞ
Similarly to the interior grid boundary c1 of (23c), the exterior grid boundary c0 of (32c) also looks like a multi-layer fringe of
nodes near C, as shown schematically in Fig. 3.

Let nc0
be a grid function given on c0 and let w 2 U0 satisfy
TrðhÞ0 w ¼def
wjc0

¼ nc0
and be arbitrary otherwise. The exterior difference potential with the density nc0
is defined on the grid N�0 and given as fol-

lows (cf. formula (13))
PN�0
nc0
¼def

w� GðhÞ0 vM�0
LðhÞ0 w

� �
: ð33Þ
In formula (33), vM�0
¼ 1 on the grid M�

0 and vM�0
¼ 0 elsewhere on M0. Similarly to the interior potential PNþ1

nc1
of (24), the

exterior potential PN�0
nc0

of (33) is insensitive to the choice of w 2 U0 as long as TrðhÞ0 w ¼ nc0
, and satisfies the homogeneous

difference equation (cf. Eq. (25))
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LðhÞ0 PN�0
nc0

h i
¼ 0 on the grid M�

0 :
The discrete exterior boundary projection is defined as the trace of the potential (33) on the grid boundary c0 (cf. formula (9))
Pc0
nc0
¼def TrðhÞ0 PN�0

nc0
: ð34Þ
A given nðscÞ
c0

satisfies the discrete exterior BEP (cf. formula (15))
Pc0
nðscÞ
c0
¼ nðscÞ

c0
ð35Þ
if and only if there exists a function uðscÞ on the grid N�0 , called the scattering solution, that solves the difference equation (29)
on the grid M�

0 subject to the chosen ABC at r ¼ R1, and such that TrðhÞ0 uðscÞ ¼ nðscÞ
c0

. If the BEP (35) holds, then the scattering
solution uðscÞ is reconstructed on N�0 by means of the discrete generalized Green’s formula (cf. formula (16))
uðscÞ ¼ PN�0
nðscÞ
c0
: ð36Þ
The exterior BEP (35) is homogeneous, because there are no source terms that drive the scattering solution on ~X. The overall
exterior solution, however, is a superposition of the incident and scattered fields, see formula (30). A given nc0

is the trace of
such a solution, nc0

¼ TrðhÞ0 u, if and only if instead of (35) it satisfies the discrete exterior inhomogeneous BEP (cf. formula
(17)):
Pc0
nc0
þ ðIc0

� Pc0
ÞnðincÞ

c0
¼ nc0

; ð37Þ
where nðincÞ
c0
¼ TrðhÞ0 uðincÞ, and Ic0

is the identity operator in the space of grid functions defined on c0. As in the continuous case
(Section 1.3), if uðincÞ were generated by the sources on the grid M�, then we would have Pc0

nðincÞ
c0
¼ 0, and Eq. (37) would

simplify to Pc0
nc0
þ nðincÞ

c0
¼ nc0

.
If the BEP (37) holds, then solution (30) on the grid N�0 is given by (cf. formula (18))
u ¼ PN�0
½nc0
� nðincÞ

c0
� þ uðincÞ: ð38Þ
Altogether, the discrete BEP (37) equivalently reduces the finite difference exterior subproblem, which consists of Eqs. (29),
(30), and the ABC set at r ¼ R1 for uðscÞ,3 from its grid domain N�0 to the grid boundary c0. The solution of the BEP (37) on its own
is not unique. However, when the exterior BEP (37) is coupled with the interior BEP (27), the resulting system of equations
yields a unique solution to the overall transmission/scattering problem, see Section 2.3.

2.3. Matching at the interface

Hereafter, we assume that C is a smooth non-self intersecting plane closed curve, see Section 1.1. For a given two-com-
ponent vector function n

ðXÞ
C ¼ ðn0; n1Þ, we introduce its extension from the curve C to the nodes of the interior grid boundary

c1, see formula (23c) and Fig. 2:
nc1
¼ Ex1n

ðXÞ
C : ð39Þ
To construct the extension operator Ex1 of (39), we drop a normal from every node of c1 to the curve C, and use Taylor’s
formula centered at the foot of this normal. In doing so, we interpret n0 as the derivative of order zero, i.e., the function itself,
and n1—as the derivative of order one in the direction normal to the curve C. To obtain higher order normal derivatives for
the Taylor formula in (39), we use the differential equation (1a) and differentiate it several times. The details of this proce-
dure are presented in [6]. Given that we use a fourth order accurate scheme for approximating Eq. (1a) on the grid, the high-
est order derivative that we need in the Taylor formula that defines the equation-based extension Ex1 is the fourth
derivative. Hence, Eq. (1a) needs to be differentiated twice. This is convenient to do by first recasting this equation into
the special orthogonal curvilinear coordinates associated with the curve C, see [6, Appendix A].

We emphasize that the equation-based extension (39) can be applied to any sufficiently smooth function n
ðXÞ
C . Its impor-

tant property though is that if n
ðXÞ
C happens to be the trace of a solution u to Eq. (1a) in the sense of (7), then there is con-

vergence. Namely, let u ¼ uðxÞ be a solution to Eq. (1a) defined on the domain X0 somewhat larger than X;X � X0. This
domain can coincide with the auxiliary domain X1 introduced in Section 2.1, or it can be any other domain such that
c1 � X0. Then,
kEx1Tr1u� ujc1
k ¼ Oðh5Þ;
where the norm on the left-hand side is a discrete norm in the space of grid functions on c1, and h is the size of the Cartesian
discretization grid introduced in Section 2.1.

Similarly, for a given two-component vector function n
ð~XÞ
C we introduce its equation-based extension from the curve C to

the exterior grid boundary c0, see formula (32c) and Fig. 3:
continuous exterior subproblem consists of Eqs. (1b), (4) on ~X and the radiation condition (5) at infinity.
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nc0
¼ Ex0n

ð~XÞ
C : ð40Þ
Extension (40) employs the Taylor formula with the derivatives up to order four obtained by differentiating the differential
equation (1b). If u ¼ uðxÞ is a solution to Eq. (1b) defined on a region ~X0 � c0, then
kEx0Tr0u� ujc0
k ¼ Oðh5Þ;
where the norm on the left-hand side is a discrete norm in the space of grid functions on c0, and h is the size of the polar
discretization grid introduced in Section 2.2.

Next, we introduce a basis in the space of functions n
ðXÞ
C and in the space of functions n

ð~XÞ
C . It does not have to be the same

basis, but choosing it the same simplifies the analysis with no loss of generality. As both n
ðXÞ
C and n

ð~XÞ
C are vector functions

with two components, the basis functions are taken in the form
w
ð0Þ
j � ðwj;0Þ and w

ð1Þ
j � ð0;wjÞ; j ¼ 0;�1;�2; . . . ; ð41Þ
where wj are conventional scalar functions on the curve C. For example, we can choose
wjðsÞ ¼ eij2p
S s; ð42Þ
where 0 6 s 6 S is the arc length along C. In this case, the expansion of a given ðn0; n1Þwith respect to the basis (41) becomes
a Fourier series for each of the two components:
n0ðsÞ ¼
X1

j¼�1
cð0Þj eij2p

S s; where cð0Þj ¼
1
S

Z S

0
n0ðsÞe�ij2p

S sds;

n1ðsÞ ¼
X1

j¼�1
cð1Þj eij2p

S s; where cð1Þj ¼
1
S

Z S

0
n1ðsÞe�ij2p

S sds:
Since for a smooth function n0ðsÞ or n1ðsÞ its Fourier series converges rapidly, in practice we can truncate the expansions:
n0ðsÞ 	
XM

j¼�M

cð0Þj wjðsÞ and n1ðsÞ 	
XM

j¼�M

cð1Þj wjðsÞ; ð43Þ
where M is to be chosen ahead of time so as to guarantee that the accuracy of representation (43) will exceed any accuracy
that can be attained on the grid. It is the coefficients cð0Þj and cð1Þj ; j ¼ �M; . . . ;M, in formulae (43) that will be the unknowns
to be determined when solving the combined system of the interior and exterior BEP, (27) and (37).

Specifically, we look for the interior trace n
ðXÞ
C in the form of a finite sum
n
ðXÞ
C ¼

XM

j¼�M

cð0;XÞj w
ð0Þ
j þ cð1;XÞj w

ð1Þ
j

h i
ð44Þ
with the undetermined coefficients cð0;XÞj and cð1;XÞj ; j ¼ �M; . . . ;M. Applying the equation-based extension Ex1 of (39) to the
expression (44), we have:
nc1
¼
XM

j¼�M

cð0;XÞj Ex1w
ð0Þ
j þ cð1;XÞj Ex1w

ð1Þ
j

h i
;

and substituting this nc1
into the interior BEP (27), we arrive at the following system of linear algebraic equations for the

unknowns cð0;XÞj and cð1;XÞj ; j ¼ �M; . . . ;M:
XM

j¼�M

cð0;XÞj ðPc1
� Ic1

ÞEx1w
ð0Þ
j þ cð1;XÞj ðPc1

� Ic1
ÞEx1w

ð1Þ
j

h i
¼ �TrðhÞ1 GðhÞ1 BðhÞ1 f; ð45Þ
where Ic1
is the identity operator in the space of grid functions defined on the grid boundary c1. System (45) can be recast in

the matrix form:
Q c1
cðXÞ ¼ �TrðhÞ1 GðhÞ1 BðhÞ1 f; ð46Þ
where cðXÞ ¼ ½cð0;XÞ�M ; . . . ; cð0;XÞM ; cð1;XÞ�M ; . . . ; cð1;XÞM �T is the vector of unknowns, and Q c1
is a matrix of 2ð2M þ 1Þ columns obtained by

applying the composition of operators ðPc1
� Ic1

ÞEx1 to the individual basis functions w
ð0Þ
j and w

ð1Þ
j of (41). The vertical dimen-

sion of the matrix Q c1
of (46) is equal to jc1j, where the grid boundary c1 consists of jc1j grid nodes.

Similarly, we express the exterior trace n
ð~XÞ
C in the form of a finite sum
n
ð~XÞ
C ¼

XM

j¼�M

cð0;
~XÞ

j w
ð0Þ
j þ cð1;

~XÞ
j w

ð1Þ
j

h i
; ð47Þ
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where the coefficients cð0;
~XÞ

j and cð1;
~XÞ

j ; j ¼ �M; . . . ;M, are also to be determined. Applying the equation-based extension Ex0

of (40) to the expression (47), we have:
nc0
¼
XM

j¼�M

cð0;
~XÞ

j Ex0w
ð0Þ
j þ cð1;

~XÞ
j Ex0w

ð1Þ
j

h i

and substituting this nc0

into the interior BEP (37), we arrive at the following system of linear algebraic equations with re-
spect to the unknowns cð0;

~XÞ
j and cð1;

~XÞ
j ; j ¼ �M; . . . ;M:
XM

j¼�M

cð0;
~XÞ

j ðPc0
� Ic0

ÞEx0w
ð0Þ
j þ cð1;

~XÞ
j ðPc0

� Ic0
ÞEx0w

ð1Þ
j

h i
¼ ðPc0

� Ic0
ÞnðincÞ

c0
: ð48Þ
System (48) can be recast in the matrix form:
Q c0
cð~XÞ ¼ ðPc0

� Ic0
ÞnðincÞ

c0
; ð49Þ
where cð~XÞ ¼ ½cð0;~XÞ�M ; . . . ; cð0;
~XÞ

M ; cð1;
~XÞ

�M ; . . . ; cð1;
~XÞ

M �T is the vector of unknowns, and Q c0
is a matrix of 2ð2M þ 1Þ columns obtained by

applying the composition of operators ðPc0
� Ic0

ÞEx0 to the individual basis functions w
ð0Þ
j and w

ð1Þ
j of (41). The vertical dimen-

sion of the matrix Q c0
of (49) is equal to jc0j, where the grid boundary c0 consists of jc0j grid nodes.

The resulting two systems (46) and (49) are solved as one large coupled system with respect to the combined unknowns
cðXÞ and cð~XÞ. In doing so, the interface conditions discussed in Section 1.1 provides additional relations between the coeffi-
cients cðXÞ and cð~XÞ. The simplest interface condition (6) or, equivalently, (19), implies that cðXÞ ¼ cð~XÞ. Then, denoting the com-
mon vector of unknowns by c ¼ ½cð0Þ�M ; . . . ; cð0ÞM ; cð1Þ�M; . . . ; cð1ÞM �

T , we obtain the following coupled system based on (46), (49):
Q c1
c ¼ �TrðhÞ1 GðhÞ1 BðhÞ1 f;

Q c0
c ¼ ðPc0

� Ic0
ÞnðincÞ

c0
:

(
ð50Þ
System (50) which has dimension 2ð2M þ 1Þ � ðjc1j þ jc0jÞ is to be solved in the sense of the least squares, i.e., by a QR
decomposition. Once the vector of coefficients c has been determined, it is substituted into both (44) and (47) to obtain
n
ðXÞ
C and n

ð~XÞ
C , respectively. Then, the discrete traces nc1

and nc0
are obtained by applying the corresponding extension

operators:
nc1
¼ Ex1n

ðXÞ
C and nc0

¼ Ex0n
ð~XÞ
C

and finally, the interior and exterior parts of the overall solution are evaluated on the grids Nþ1 and N�0 by means of the dis-
crete Green’s formulae (28) and (38), respectively.

The rate of the grid convergence of the numerical algorithm that we have described coincides with the design accu-
racy of its constituent schemes (21) and (29). As both schemes we have chosen, [18] and [17], are fourth order accurate,
the combined methodology based on difference potentials also yields fourth order convergence. This is corroborated by a
series of numerical experiments presented in Section 3. For the theoretical convergence analysis of the method of differ-
ence potentials, we refer the reader to the work by Reznik [21], a brief account of which can be found in our recent paper
[6], as well as to the monograph [5], which offers a considerably more detailed discussion. The analysis of the well-
posedness of the resulting boundary formulation that appears in the context of the method of difference potentials
can also be found in [5].

2.4. Pure scattering problems

Assume we wish to solve a pure exterior scattering problem, for which there is no refraction at the interface C and no
transmission of waves from ~X to X, see Fig. 1. Instead, the incident waves get scattered off (i.e., reflected from) a given shape
X, subject to a boundary condition specified at C. In this case, the foregoing numerical algorithm is simplified.

Consider the constant coefficient homogeneous Helmholtz equation (1b) on the exterior domain ~X, see Fig. 1, subject to
either a Dirichlet boundary condition or a Neumann boundary condition at the boundary C. The boundary condition is set for
the total field:
ujC ¼ 0 ð51aÞ
or
@u
@n

����
C

¼ 0: ð51bÞ
Taking into account expression (4), boundary conditions ((51)) can be equivalently recast as
uðscÞ��
C ¼ �uðincÞ��

C � /0ðsÞ ð52aÞ
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or
@uðscÞ

@n

����
C

¼ � @uðincÞ

@n

����
C

� /1ðsÞ; ð52bÞ
where the functions /0ðsÞ and /1ðsÞ are given on the curve C. Hence, the entire exterior problem can be solved with respect
to the scattered field uðscÞ ¼ uðscÞðxÞ only. If the field u is interpreted as acoustic pressure, then the Dirichlet boundary con-
dition (52a) corresponds to sound-soft scattering, and the Neumann boundary condition (52b) corresponds to sound-hard
scattering.

Since, we are solving for the scattered field, we need to employ the homogeneous exterior BEP (35) and, accordingly, a
homogeneous counterpart of system (49):
Q c0
c ¼ 0: ð53Þ
The vector of unknowns c in system (53) consists of two sub-vectors: c ¼ ½cð0Þ; cð1Þ�, where cð0Þ ¼ ½cð0Þ�M ; . . . ; cð0ÞM �
T are the expan-

sion coefficients of the Dirichlet data of the solution at the boundary C with respect to the basis functions (42), and
cð1Þ ¼ ½cð1Þ�M; . . . ; cð1ÞM �

T are the expansion coefficients of the Neumann data of the solution at the boundary C.
For a Dirichlet boundary condition specified at C, see (52a), the Dirichlet data /0ðsÞ are given, and hence the coefficients

cð0Þ ¼ ½cð0Þ�M; . . . ; cð0ÞM �
T are considered known:
cð0Þj ¼
1
S

Z S

0
/0ðsÞe�ij2p

S sds; j ¼ �M; . . . ;M:
Then, the Neumann coefficients cð1Þ ¼ ½cð1Þ�M ; . . . ; cð1ÞM �
T are determined from system (53), which takes the form:
Q ð1Þc0
cð1Þ ¼ �Q ð0Þc0

cð0Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
given data

: ð54aÞ
For a Neumann boundary condition specified at C, see (52b), the Neumann data /1ðsÞ are given, and hence the coefficients
cð1Þ ¼ ½cð1Þ�M; . . . ; cð1ÞM �

T are considered known:
cð1Þj ¼
1
S

Z S

0
/1ðsÞe�ij2p

S sds; j ¼ �M; . . . ;M:
Then, the Dirichlet coefficients cð0Þ ¼ ½cð0Þ�M; . . . ; cð0ÞM �
T are determined by solving the system derived from (53):
Q ð0Þc0
cð0Þ ¼ �Q ð1Þc0

cð1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
given data

: ð54bÞ
The partition of the matrix Q c0
into Q ð0Þc0

and Q ð1Þc0
in formulae ((54)) is done in accordance with the partition of the vector of

unknowns c into cð0Þ and cð1Þ. Each of the systems (54a) or (54b) is solved in the sense of least squares by means of the QR
decomposition. Once the entire vector of coefficients c ¼ ½cð0Þ; cð1Þ� is obtained, it is substituted into formula (47), which yields
n
ð~XÞ
C . The latter, in turn, is extended from the continuous boundary C to the grid boundary c0 with the help of the operator

(40), and finally, the exterior solution on the grid N�0 is determined by means of the discrete Green’s formula (36).

3. Numerical simulations

In this section, we present computational results for two types of formulations—pure exterior scattering problems and
transmission/scattering problems.

3.1. Exterior scattering problems

We consider the scattering of an incoming plane wave with a given frequency (wavelength) and given angle of incidence
about an elliptical shape with a given aspect ratio. In our simulations, we take the major semi-axis of the ellipse to be a ¼ 1:8,
while its minor semi-axis varies between b ¼ 0:9 and b ¼ 0:18, which yields aspect ratios between 2 and 10. The wavenum-
ber in the Helmholtz equation (1b) varies between k0 ¼ 1 and k0 ¼ 25, which yields the variation of the wavelength between
k0 ¼ 2p and k0 ¼ 2p=25, i.e., between roughly twice the size 2a of the ellipse and about 8% of this size. We consider several
values of the angle of incidence between 0� and 50� with respect to the direction of the major axis. We also consider both
Dirichlet and Neumann boundary conditions at the contour C, i.e., at the perimeter of the ellipse. In the context of acoustics,
the former corresponds to sound-soft scattering, whereas the latter corresponds to sound-hard scattering. The exterior AP is
solved on the domain ~X0 shaped as an annulus, ~X0 ¼ fR0 6 r 6 R1g, see Fig. 3, with R0 that may vary between 0.1 (for larger
aspect ratios) and 0.3 (for smaller aspect ratios), and R1 ¼ 2. This AP is discretized on a uniform in each direction polar grid
that may have between 128� 128 and 4096� 4096 cells. The quantity M that represents the dimension of the basis on C,
see formula (43), is grid-independent and chosen so as to guarantee that the given boundary data (Dirichlet or Neumann) are
approximated by the corresponding finite Fourier series up to the machine precision. This yields a very conservative estimate



Fig. 4. Schematic of the polar grid for the exterior AP, the elliptic scatterer, and the grid boundary c.
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for M. For better efficiency, one would choose M large enough so that truncating the series gives an error much smaller than
the discretization error, which implies that M would be grid-dependent. The problem is solved using the simplified meth-
odology of Section 2.4. In doing so, the discrete exterior AP is integrated by means of the separation of variables combined
with FFT. The exact nonlocal ABC at the outer circle r ¼ R1, Fig. 3, is then formulated in Fourier space, see [17].

As the overall set of results for all wavenumbers, incidence angles, aspect ratios, etc., is rather large, we have chosen to
show only a representative sample. In Fig. 4, we show the schematic geometry for two ellipses—of aspect ratio 2 and of as-
pect ratio 10 (cf. Fig. 3).

To assess the grid convergence, we do not evaluate the exact solution using its expansion with respect to Mathieu func-
tions [22], because this may entail numerical difficulties in evaluating high order Mathieu functions. Instead, we evaluate the
maximum norm (over the entire solution domain) of the difference between the numerical solutions obtained on two con-
secutive grids, uðhÞ and uð2hÞ.

Tables 1–3 demonstrate the design fourth order rate of grid convergence for the case of a Dirichlet boundary condition on
C. We note that the convergence on coarser grids looks somewhat more ‘‘erratic’’ for slenderer ellipses. This is likely ac-
counted for by insufficient grid resolution in the areas of high curvature, i.e., near the tips of the major axis. Nonetheless,
on finer grids the convergence rate approaches its correct asymptotic value of 4. Similar results are obtained for the Neu-
mann boundary condition on C, see Tables 4 and 5, as well as for a variety of other Dirichlet and Neumann cases that are
not presented in these tables.

We emphasize that the scheme converges with the same design rate for all angles of incidence, all wavenumbers, and all
aspect ratios. The actual values of the error may depend on the specific parameters involved. For example, from Tables 1–5
one can see that as the wavenumber k0 increases while all other parameters remain the same (the aspect ratio, the grid, etc.),
the maximum norm error (evaluated across the domain) also increases. On the other hand, the angle of incidence does not
affect the convergence rate and does not noticeably affect the error. In Fig. 5, we show the dependence of the error on the
angle of incidence for both sound-soft (Dirichlet boundary condition) and sound-hard (Neumann boundary condition) scat-
tering about an ellipse of aspect ratio 3. We see that for both k0 ¼ 3 and k0 ¼ 30 the error changes by a factor of less than 2
over the entire 90� span.
Table 1
Sound-soft scattering of a plane wave with incidence angle 35� about an ellipse with aspect ratio 2.

Grid

k0 ¼ 1; M ¼ 12 k0 ¼ 10; M ¼ 37 k0 ¼ 25; M ¼ 69

jjuðhÞ � uð2hÞjj1 Conv. rate jjuðhÞ � uð2hÞjj1 Conv. rate jjuðhÞ � uð2hÞjj1 Conv. rate

128� 128 3:686772� 10�4 – 9:024242� 10�2 – 2:571935� 101 –

256� 256 2:092322� 10�5 4.1392 5:042251� 10�3 4.1617 4:528627� 10�1 5.8276

512� 512 1:140182� 10�6 4.1978 3:077507� 10�4 4.0342 2:614107� 10�2 4.1147

1024� 1024 7:045679� 10�8 4.0164 1:912254� 10�5 4.0084 1:576210� 10�3 4.0518

2048� 2048 4:352290� 10�9 4.0169 1:193405� 10�6 4.0021 9:766250� 10�5 4.0125

4096� 4096 2:708936� 10�10 4.0060 7:456103� 10�8 4.0005 6:090803� 10�6 4.0031



Table 2
Sound-soft scattering of a plane wave with incidence angle 15� about an ellipse with aspect ratio 5.

Grid

k0 ¼ 1; M ¼ 13 k0 ¼ 10; M ¼ 39 k0 ¼ 25;M ¼ 73

jjuðhÞ � uð2hÞjj1 Conv. rate jjuðhÞ � uð2hÞjj1 Conv. rate jjuðhÞ � uð2hÞjj1 Conv. rate

128� 128 1:117795� 101 – 1:080259� 101 – 2:905446� 103 –

256� 256 8:069814� 10�3 10.4358 5:008329� 10�2 7.7528 6:346536� 10�1 12.1605

512� 512 1:523137� 10�3 2.4055 5:161442� 10�3 3.2785 2:456628� 10�2 4.6912

1024� 1024 7:604331� 10�5 4.3241 4:003719� 10�4 3.6884 1:471074� 10�3 4.0617

2048� 2048 3:763327� 10�6 4.3367 1:942630� 10�5 4.3653 9:124847� 10�5 4.0109

4096� 4096 2:072289� 10�7 4.1827 1:066348� 10�6 4.1873 5:691707� 10�6 4.0029

Table 3
Sound-soft scattering of a plane wave with incidence angle 50� about an ellipse with aspect ratio 10.

Grid

k0 ¼ 1; M ¼ 11 k0 ¼ 10; M ¼ 32 k0 ¼ 25; M ¼ 56

jjuðhÞ � uð2hÞjj1 Conv. rate jjuðhÞ � uð2hÞjj1 Conv. rate jjuðhÞ � uð2hÞjj1 Conv. rate

128� 128 5:212738� 102 – 4:701542� 102 – 1:547453� 105 –

256� 256 8:031341� 102 �0.6236 4:419326� 102 0.0893 8:284062� 103 7.5453

512� 512 1:195681� 10�2 16.0355 4:052018� 10�1 10.0910 9:340049� 10�1 9.7927

1024� 1024 4:655482� 10�3 1.3608 2:785232� 10�2 3.8628 8:518332� 10�2 3.4548

2048� 2048 5:918121� 10�4 2.9757 1:895585� 10�3 3.8771 2:569198� 10�3 5.0512

4096� 4096 2:142775� 10�5 4.7876 8:621134� 10�5 4.4586 1:937799� 10�4 3.7288

Table 4
Sound-hard scattering of a plane wave with incidence angle 0� about an ellipse with aspect ratio 3.

Grid

k0 ¼ 1;M ¼ 14 k0 ¼ 10; M ¼ 43 k0 ¼ 25; M ¼ 79

jjuðhÞ � uð2hÞjj1 Conv. rate jjuðhÞ � uð2hÞjj1 Conv. rate jjuðhÞ � uð2hÞjj1 Conv. rate

128� 128 9:846534� 10�3 – 1:448027� 10�1 – 4:461393� 101 –

256� 256 1:884702� 10�4 5.7072 8:659281� 10�3 4.0637 5:844125� 10�1 6.2544

512� 512 9:615561� 10�6 4.2928 2:363689� 10�4 5.1951 2:368270� 10�2 4.6251

1024� 1024 4:412894� 10�7 4.4456 1:470104� 10�5 4.0071 1:454638� 10�3 4.0251

2048� 2048 2:845780� 10�8 3.9548 9:188393� 10�7 4.0000 9:027833� 10�5 4.0101

4096� 4096 1:589844� 10�9 4.1619 5:934903� 10�8 3.9525 5:631228� 10�6 4.0029

Table 5
Sound-hard scattering of a plane wave with incidence angle 50� about an ellipse with aspect ratio 5.

Grid

k0 ¼ 1; M ¼ 13 k0 ¼ 10; M ¼ 35 k0 ¼ 25; M ¼ 61

jjuðhÞ � uð2hÞjj1 Conv. rate jjuðhÞ � uð2hÞjj1 Conv. rate jjuðhÞ � uð2hÞjj1 Conv. rate

128� 128 1:076195 – 1:602327 – 6:882858� 101 –

256� 256 1:593996� 10�1 2.7552 5:157602� 10�1 1.6354 2:620046 4.7153

512� 512 1:921666� 10�3 6.3741 9:974005� 10�3 5.6924 3:826752� 10�2 6.0973

1024� 1024 3:456720� 10�5 5.7968 2:426475� 10�4 5.3612 1:628882� 10�3 4.5542

2048� 2048 3:522082� 10�6 3.2949 1:769029� 10�5 3.7778 1:062220� 10�4 3.9387

4096� 4096 1:822888� 10�7 4.2721 9:543673� 10�7 4.2123 6:264534� 10�6 4.0837
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A clear advantage of our method is that scattering off a given shape but for multiple angles of incidence, and even for
different boundary conditions, can be computed very efficiently. This is particularly important if the direct scattering prob-
lem needs to be solved many times while using an iterative method to solve an inverse scattering problem.

For a given basis on C, see formulae (41), (42), and a given discretization grid, the matrix Q c0
that is introduced by for-

mulae (48), (49) and then used in equation (53) needs to be computed only once. Each new angle of incidence only requires
choosing a new vector of known coefficients cð0Þ in formula (54a) in the case of sound-soft scattering or a new vector of
known coefficients cð1Þ in formula (54b) in the case of sound-hard scattering. The corresponding costs are obviously negli-
gible. Other, more elaborate, types of scattering (i.e., boundary conditions) can also be accommodated using the same matrix



Fig. 5. Error vs. the angle of incidence for sound-soft (Dirichlet BC) and sound-hard (Neumann BC) scattering about an ellipse with aspect ratio 3 computed
on the polar grid of dimension 1024� 1024.
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Q c0
, see [23]. Both systems ((54)) are solved by a QR decomposition. Each of the matrices Q ð1Þc0

and Q ð0Þc0
needs to be decom-

posed only once, and then solutions for multiple angles of incidence and a given type of scattering can be computed by back-
ward substitution. In practice though, the cost of a QR decomposition was also found to be negligible. Finally, once the full
vector of coefficients c ¼ ½cð0Þ; cð1Þ� has been determined, n

ð~XÞ
C is obtained by formula (47), then extended from C to c0 using

(40), and the exterior solution on N�0 is computed with the help of formula (36). The latter is the only non-negligible com-
putational expense per angle of incidence.

For our MATLAB implementation, the one-time computation of the matrix Q c0
for all the cases presented in Fig. 5(a) (a

1024� 1024 grid) took approximately 36 s, whereas the subsequent computation of the 20 Dirichlet and Neumann scatter-
ing solutions (10� increments in the angle of incidence between 0� and 90� for either boundary condition) took only 0.8 s
each. Similarly, the one-time computation of the matrix Q c0

for all the cases presented in Fig. 5(b) required about 91 s. Sub-
sequently, it took only about 0.7 s per angle of incidence for either the sound-soft or sound-hard scattering.

3.2. Transmission/scattering problems with piecewise constant coefficients

The numerical simulation of the transmission and scattering of waves about a given shape (an ellipse) is done using the
computational framework similar to that of Section 3.1, except that instead of setting a boundary condition on C we assume
Table 6
Transmission and scattering of a plane wave with incidence angle 40� about an ellipse with aspect ratio 3.

M ¼ 18 M ¼ 43 M ¼ 70
Exterior, k0 ¼ 1 Exterior, k0 ¼ 5 Exterior, k0 ¼ 10

jjuðhÞ � uð2hÞjj1 Conv. rate jjuðhÞ � uð2hÞjj1 Conv. rate jjuðhÞ � uð2hÞjj1 Conv. rate

Ext. grid
128� 128 5:257675� 10�4 – 1:222531 – 2:540071 –

256� 256 2:968034� 10�5 4.1468 1:256795� 10�2 6.6040 2:505713 0.0196

512� 512 1:621693� 10�6 4.1939 7:215245� 10�4 4.1226 5:294069� 10�2 5.5647

1024� 1024 8:319173� 10�8 4.2849 4:686281� 10�5 3.9445 3:040675� 10�3 4.1219

2048� 2048 5:185747� 10�9 4.0038 2:980399� 10�6 3.9749 1:824703� 10�4 4.0587

Interior, k1 ¼ 3 Interior, k1 ¼ 15 Interior, k1 ¼ 30

jjuðhÞ � uð2hÞjj1 Conv. rate jjuðhÞ � uð2hÞjj1 Conv. rate jjuðhÞ � uð2hÞjj1 Conv. rate

Int. grid
128� 128 4:727249� 10�4 – 1:476710 – 1:454990� 101 –

256� 256 9:910096� 10�6 5.5760 7:240317� 10�2 4.3502 3:219025 2.1763

512� 512 8:298524� 10�7 3.5780 7:604703� 10�4 6.5730 5:533717� 10�2 5.8622

1024� 1024 3:405935� 10�8 4.6067 5:105078� 10�5 3.8969 3:352915� 10�3 4.0448

2048� 2048 2:025545� 10�9 4.0717 3:330358� 10�6 3.9382 2:093157� 10�4 4.0017



Table 7
Transmission and scattering of a plane wave with incidence angle 40� about an ellipse with aspect ratio 12.

M ¼ 17 M ¼ 42 M ¼ 68
Exterior, k0 ¼ 1 Exterior, k0 ¼ 5 Exterior, k0 ¼ 10

jjuðhÞ � uð2hÞjj1 Conv. rate jjuðhÞ � uð2hÞjj1 Conv. rate jjuðhÞ � uð2hÞjj1 Conv. rate

Ext. grid
128� 128 3:339419 – 1:011317� 102 – 8:966609� 102 –

256� 256 2:525248� 10�3 10.3690 4:429088 4.5131 1:265494� 101 6.1468

512� 512 3:016655� 10�4 3.0654 3:727909� 10�2 6.8925 5:603543� 10�1 4.4972

1024� 1024 7:296313� 10�5 2.0477 4:070004� 10�3 3.1953 6:315946� 10�3 6.4712

2048� 2048 9:046537� 10�6 3.0117 3:237602� 10�4 3.6520 3:668013� 10�4 4.1059

Interior, k1 ¼ 3 Interior, k1 ¼ 15 Interior, k1 ¼ 30

jjuðhÞ � uð2hÞjj1 Conv. rate jjuðhÞ � uð2hÞjj1 Conv. rate jjuðhÞ � uð2hÞjj1 Conv. rate

Int. grid
128� 128 2:895946 – 7:446942� 102 – 4:085428� 104 –

256� 256 2:649119� 10�3 10.0943 4:907694 7.2455 1:662587� 102 7.9409

512� 512 2:590272� 10�4 3.3543 4:386424� 10�2 6.8059 1:008079 7.3657

1024� 1024 5:793892� 10�5 2.1605 3:933254� 10�3 3.4792 8:501939� 10�3 6.8896

2048� 2048 6:983459� 10�6 3.0525 3:009321� 10�4 3.7082 3:740583� 10�4 4.5065
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that the medium inside the ellipse is characterized by a constant wavenumber k1 (typically, k1 > k0), and that at the interface
C the solution and its first normal derivative are continuous, see formulae (6) and (19).

The exterior AP and its discretization remain the same as in Section 3.1, while the interior AP is formulated on the rect-
angle ½�a� 0:2; aþ 0:2� � ½�b� 0:2; bþ 0:2�, where a and b are the major and minor semi-axes of the ellipse, respectively.
We keep a ¼ 1:8 and vary b between 0:9 and 0:15, which yields the aspect ratios between 2 and 12. The boundary conditions
u 2 U1 for the interior AP (see Section 2.1) are homogeneous Dirichlet at the two horizontal sides of the rectangle, and local
Sommerfeld-type conditions (complex) at its two vertical sides. The latter guarantee a unique solvability of the interior AP
(no resonances), see [18, Section 4.2] or [6, Section 5.2]. The interior AP is discretized by the compact scheme [18] with
fourth order accuracy on a uniform in each coordinate direction Cartesian grid. It is then solved by a sparse direct linear sol-
ver built into MATLAB. To simplify the monitoring and analysis of the grid convergence, the grid dimensions for the interior
and exterior AP are always kept the same, i.e., those two grids are refined synchronously. As in Section 3.1, the convergence is
assessed by evaluating the maximum norm of the difference between the numerical solutions obtained on two consecutive
grids. In this section it is done independently for the exterior and interior parts of the overall solution.

Tables 6 and 7 demonstrate the grid convergence for two particular sets of parameters. The convergence for other cases
that we tried with piecewise constant k looks similar. In addition to showing the convergence data in Tables 6 and 7, we also
Fig. 6. Transmission and scattering of a plane wave with incidence angle 40� about an ellipse with k1 ¼ 20 (inside) and k0 ¼ 10 (outside). Absolute value of
the total field is shown on the plots. The grid dimension is 1024� 1024 for both the interior AP (Cartesian) and the exterior AP (polar).



Table 8
Transmission and scattering of a plane wave with incidence angle 40� about an inhomogeneous ellipse with aspect ratio 3 and interior wavenumber given by
formula (55).

M ¼ 44 M ¼ 43 M ¼ 70
Exterior, k0 ¼ 1 Exterior, k0 ¼ 5 Exterior, k0 ¼ 10

jjuðhÞ � uð2hÞjj1 Conv. rate jjuðhÞ � uð2hÞjj1 Conv. rate jjuðhÞ � uð2hÞjj1 Conv. rate

Ext. grid
128� 128 1:342633� 10�3 – 3:189426� 10�1 – 2:273503 –

256� 256 4:704559� 10�5 4.8349 2:112324� 10�3 7.2383 1:428778 0.6701

512� 512 1:972406� 10�6 4.5760 1:037815� 10�4 4.3472 8:515279� 10�3 7.3905

1024� 1024 1:128138� 10�7 4.1279 6:701632� 10�6 3.9529 4:664540� 10�4 4.1902

2048� 2048 6:620319� 10�9 4.0909 5:703865� 10�7 3.5545 2:867676� 10�5 4.0238

Interior, k1 ¼ 3 Interior, k1 ¼ 15 Interior, k1 ¼ 30

jjuðhÞ � uð2hÞjj1 Conv. rate jjuðhÞ � uð2hÞjj1 Conv. rate jjuðhÞ � uð2hÞjj1 Conv. rate

Int. grid
128� 128 3:067343� 10�3 – 1:043931 – 9:253122 –

256� 256 6:693782� 10�5 5.5180 3:225823� 10�2 5.0162 2:960923 1.6439

512� 512 1:396376� 10�6 5.5831 1:002967� 10�4 8.3292 4:859728� 10�2 5.9290

1024� 1024 8:178574� 10�8 4.0937 6:580268� 10�6 3.9300 4:749737� 10�4 6.6769

2048� 2048 5:333208� 10�9 3.9388 4:146442� 10�7 3.9882 2:935093� 10�5 4.0164
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plot two of the solutions that we have computed, see Fig. 6. As the overall number of cases we have analyzed is large, we
have chosen to plot different solutions compared to those presented in Tables 6 and 7.

3.3. Transmission/scattering problems with piecewise smooth coefficients

In this section, we keep the computational setting the same as in Section 3.2, except that we allow for a smooth variation
of the wavenumber inside the ellipse:
k ¼ k1e�10ðr�r0Þ6r6
; if r 6 r0;

k1; if r > r0;

(
ð55Þ
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and r0 ¼ 1:6. The variable coefficient Helmholtz equation is approximated with fourth order accuracy by

the compact scheme of [18]. In Table 8, we show the results obtained for the ellipse with aspect ratio 3: a ¼ 1:8 and b ¼ 0:6.
These results corroborate the design fourth order convergence rate of the algorithm in the case of variable coefficients.
4. Discussion

We have used the method of difference potentials combined with compact high order schemes to simulate a broad range
of constant and variable coefficient 2D wave propagation problems for non-conforming boundaries/interfaces on regular
structured grids. The method of difference potentials does not involve the evaluation of any singular integrals and offers
automatic well-posedness of the equivalent boundary formulation of the problem. Our computations convincingly corrob-
orate the design fourth order accuracy of the proposed methodology. We have also demonstrated a particular efficiency of
our approach for computing scattering off a given fixed shape for multiple angles of incidence and various types of boundary
conditions on the surface.

As of yet, we have computed solutions only for circular and elliptical boundaries. The case of general smooth boundaries
was analyzed theoretically in [6, Appendix A], and the corresponding Taylor-based extension operators (Section 2.3) have
been developed. Following this development, we will compute several transmission/scattering solutions for general smooth
boundaries.

We will also extend this methodology from 2D to 3D. This will require that coordinates associated with a curve be re-
placed by surface-oriented coordinates [24]. Moreover, an efficient way of representing the traces n

ðXÞ
C and n

ð~XÞ
C at the inter-

face will need to be determined. The geometric partition of M0 into Mþ and M�, see formula ((32)), is more complicated in
3D than in 2D. Iterative solvers with preconditioning seem to provide the only feasible approach in 3D for variable coeffi-
cients. Some possibilities include the iterative scheme of [19] which can be easily parallelized and the complex-shifted
Helmholtz preconditioners to be inverted by multigrid, see [25,26].

In the future, we also plan to consider the case of layered media, analyze the solutions with singularities, and explore the
possibility of extending the current methodology to time-dependent problems. As far as the latter, parabolic equations
approximated by implicit schemes with accuracy OðDt þ Dx2Þ were studied in [27].
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