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A HIGH-ORDER NUMERICAL METHOD FOR THE HELMHOLTZ
EQUATION WITH NONSTANDARD BOUNDARY CONDITIONS∗

D. S. BRITT† , S. V. TSYNKOV‡ , AND E. TURKEL§

Abstract. We describe a high-order accurate methodology for the numerical simulation of
time-harmonic waves governed by the Helmholtz equation. Our approach combines compact finite
difference schemes that provide an inexpensive venue toward high-order accuracy with the method of
difference potentials developed by Ryaben’kii. The latter can be interpreted as a generalized discrete
version of the method of Calderon’s operators in the theory of partial differential equations. The
method of difference potentials can accommodate nonconforming boundaries on regular structured
grids with no loss of accuracy due to staircasing. It introduces a universal framework for treat-
ing boundary conditions of any type. A significant advantage of this method is that changing the
boundary condition within a fairly broad variety does not require any major changes to the algorithm
and is computationally inexpensive. In this paper, we address various types of boundary conditions
using the method of difference potentials. We demonstrate the resulting numerical capabilities by
solving a range of nonstandard boundary value problems for the Helmholtz equation. These include
problems with variable coefficient Robin boundary conditions (including discontinuous coefficients)
and problems with mixed (Dirichlet/Neumann) boundary conditions. In all our simulations, we use
a Cartesian grid and a circular boundary curve. For those test cases where the overall solution was
smooth, our methodology has consistently demonstrated the design fourth-order rate of grid conver-
gence, whereas when the regularity of the solution was not sufficient, the convergence slowed down,
as expected. We also show that every additional boundary condition requires only an incremental
additional expense.
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1. Introduction. High-order accuracy is desirable in the numerical solution of
wave propagation problems. It is well known that to maintain the same level of error
for higher wavenumbers k while solving the Helmholtz equation

(1.1) Δu+ k2u = f,

one needs to refine the grid faster than the wavelength λ = 2π/k decreases. More
precisely, the quantity kp+1hp must remain constant, where h is the discretization
size and p is the order of accuracy; this is known as the pollution effect [2, 1, 13].
To avoid this difficulty, the number of points per wavelength ∼ 1/hk should grow as
k1/p. The higher the order of accuracy p the slower this growth, which indicates that
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higher-order methods will be considerably more efficient than lower-order methods
for solving (1.1) over domains which are large relative to the wavelength.

Finite difference schemes provide the easiest and least expensive way toward
achieving high-order accuracy. Moreover, compact schemes [19, 51, 52, 4, 5, 58] offer
the extra benefit of requiring no additional boundary conditions beyond those needed
for the differential equation (1.1) itself. These schemes are built on a narrow stencil,
and their high-order accuracy is achieved by means of equation-based differencing.
However, the use of finite difference schemes may become highly nontrivial, and the
approximation accuracy may suffer if the boundary of the domain of interest does not
conform to the grid. In the literature, the adverse effect of a nonconforming boundary
on the accuracy of a difference scheme is attributed to staircasing [9, 22].

An alternative to finite difference schemes is provided by finite volume, finite
element, and boundary element methods (as well as various hybrid techniques). All
of these methods have their own advantages and shortcomings, and we refer the reader
to [35] for a brief comparative assessment.

An efficient approach that helps remove the geometric limitations pertaining to
finite difference schemes is based on the method of difference potentials developed by
Ryaben’kii. The theory of difference potentials is related to the theory of Calderon
operators; see [8, 49]. A comprehensive account of the method of difference potentials
can be found in the monograph [45] (see also [43]), while our recent paper [35] discusses
its application to solving the Helmholtz equation. In particular, the algorithm pre-
sented in [35] maintains the design high-order accuracy of the chosen compact scheme
even when treating nonconforming curvilinear boundaries on regular structured grids.
A brief account of the method of difference potentials can also be found in [44, 46],
whereas some of its other recent developments are presented in [31, 57, 59, 26, 47, 36].

The method of difference potentials provides a broad range of computational
capabilities; see [35, 36]. It can handle differential equations with variable coefficients,
which in the context of the Helmholtz equation may imply a variable propagation
speed. It allows for both homogeneous and inhomogeneous equations, and either in
the case of inhomogeneities or in the case of variable properties of the medium, there
is no requirement of having a gap between the region of inhomogeneity/variation and
the boundary of the domain. The method also works for curvilinear boundaries and
interfaces of an arbitrary shape. In the current paper though we focus only on one
particular feature of the method of difference potentials—its universal approach to
the treatment of the boundary conditions.

The method is designed so that it does not require the approximation of the
boundary conditions on the grid and so is applicable with nonconforming boundaries.
Moreover, boundary conditions of any type are allowed—not only the simplest Neu-
mann or Dirichlet, but also, for example, mixed or Robin, even with variable and
discontinuous coefficients. In doing so, the core of the numerical algorithm always re-
mains the same. Changes in the boundary conditions are accommodated by making
only minor modifications to the computational procedure (unlike methods based on
boundary integral equations).

In section 2 we introduce and discuss difference potentials and projections, which
can be considered as generalized discrete counterparts of Calderon’s potentials and
projections [8, 49]. We show how the finite difference equations on the domain can be
reduced to equivalent discrete equations at the boundary. Our main objective is to
demonstrate the versatility of the proposed algorithm in treating boundary conditions.
Hence, we consider a computational setting which is otherwise very straightforward.
Specifically, we use the fourth-order accurate compact scheme of [19, 51] to discretize
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and solve the constant coefficient interior homogeneous Helmholtz equation (1.1),
f = 0, on a uniform Cartesian grid in two space dimensions. The computational
domain is chosen as a disk—the simplest nonconforming shape.

In section 3, we provide a detailed account of how various types of boundary condi-
tions can be accommodated by the method of difference potentials. We demonstrate
that this approach is completely general, which we illustrate by analyzing specific
examples: Robin boundary conditions with variable coefficients and mixed Dirich-
let/Neumann boundary conditions. We identify those parts of the overall numerical
algorithm that need to be adjusted when changing the boundary conditions. We
show that only minor changes are needed in the algorithm to handle changes in the
boundary condition.

In section 4, we present the results of the numerical experiments. Our simula-
tions corroborate the theoretical design properties of the algorithm. Specifically, when
the solution is sufficiently smooth, the algorithm demonstrates fourth-order grid con-
vergence, whereas when the solution is not sufficiently smooth, the grid convergence
predictably slows down. We also show that changing the boundary condition and
solving a new problem does not imply any substantial additional costs.

In section 5, we present conclusions and discuss future work.

2. Difference potentials and projections. Let Ω be a bounded domain on
the Cartesian plane R

2, and let Γ be its boundary, Γ = ∂Ω. Consider the following
boundary value problem:

Lu
def
= Δu+ k2u = 0, x ∈ Ω,(2.1a)

lΓu = φΓ,(2.1b)

where k = const in (2.1a). Problem (2.1) is required to have a unique solution u on
Ω for a given φΓ and be well-posed. We discretize problem (2.1) on a Cartesian grid
and solve it with high-order accuracy using the method of difference potentials for the
case where Ω is a disk of radius r=1 centered at the origin and Γ is a circle. Note,
that (2.1b) is a generic boundary condition that will be specified later. The method
allows for a broad variety of boundary conditions (2.1b).

2.1. The scheme. The method of difference potentials can be applied in con-
junction with any finite difference scheme. A key advantage of high-order schemes is
their improved efficiency in reducing the phase error; see section 1. Therefore, we have
chosen to implement a fourth-order accurate approximation. A fourth-order compact
scheme for the Helmholtz equation (1.1) was introduced in [19, 51]:

1

h2
(um+1,n + um,n+1 + um−1,n + um,n−1 − 4um,n)(2.2)

+
1

6h2
[um+1,n+1 + um+1,n−1 + um−1,n+1 − um−1,n−1 + 4um,n

− 2(um,n+1 + um,n−1 + um+1,n + um−1,n)]

+
k2

12
(um+1,n + um,n+1 + 8um,n + um−1,n + um,n−1)

= fm,n +
1

12
(fm+1,n + fm,n+1 − 4fm,n + fm−1,n + fm,n−1) .

Scheme (2.2) is built on a square-cell Cartesian grid with size h. Its left-hand
side involves a 9-node (3 × 3) compact stencil operating on u, and its right-hand
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Fig. 2.1. Stencils of the compact scheme (2.2).

side uses a 5-node stencil operating on f ; see Figure 2.1. For the homogeneous
Helmholtz equation (2.1a), the finite difference equation (2.2) simplifies and becomes
homogeneous,

1

h2
(um+1,n + um,n+1 + um−1,n + um,n−1 − 4um,n)(2.3)

+
1

6h2
[um+1,n+1 + um+1,n−1 + um−1,n+1 − um−1,n−1 + 4um,n

− 2(um,n+1 + um,n−1 + um+1,n + um−1,n)]

+
k2

12
(um+1,n + um,n+1 + 8um,n + um−1,n + um,n−1) = 0,

so that only a 9-node stencil on the left-hand side is used, while the 5-node stencil on
the right-hand side is no longer needed.

Note that in [5] a similar fourth-order accurate scheme is derived for a more
general form of the Helmholtz equation that has a variable coefficient Laplace-like
term in place of the usual Laplacian and a variable wavenumber k. In [52], a sixth-
order accurate scheme is constructed for the constant-coefficient Helmholtz equation
using the same 9-node compact stencil on the left-hand side, and in [58] a sixth-order
compact scheme is built for the Helmholtz equation with a variable wavenumber k.
Hereafter, we restrict the discussion to the constant coefficient case, since our focus
is on the treatment of the boundary conditions.

2.2. The auxiliary problem. In order to apply the method of difference po-
tentials, we will embed the domain Ω (i.e., the unit disk) in a larger domain Ω0, which
we choose to be a square of side length 2.2 centered at the origin. The larger domain
Ω0 will be used to formulate what is known as the auxiliary problem (AP). Following
[5], we impose Dirichlet boundary conditions on the upper and lower edges of Ω0, and
local Sommerfeld-type conditions on the left and right edges:

(2.4)

Lu = f, x ∈ Ω0,

u = 0, y = ± 1.1,

∂u

∂x
+ iku = 0, x = 1.1,

∂u

∂x
− iku = 0, x = − 1.1.

When formulating the AP, the only essential requirement is the existence and unique-
ness of its solution on Ω0 for any f and, of course, the well-posedness, i.e., the
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continuous dependence of the solution on the data. Other than that, the AP is
not going to affect the solution that we obtain inside Ω. We may therefore formulate
the AP simply so that it is easy to solve. This is precisely the motivation behind our
choice of a square domain, as well as of the boundary conditions in (2.4). Indeed, on
one hand the AP (2.4) can be solved efficiently by means of the separation of variables.
On the other hand, it is known that the Helmholtz equation is prone to resonances if
only Dirichlet boundary conditions are used,1 whereas Sommerfeld-type conditions of
(2.4) make the spectrum complex and hence guarantee the uniqueness. The disadvan-
tage of using Sommerfeld type conditions is that they introduce complex quantities
into the calculation, which is not always necessary for interior problems (unlike for the
exterior problems). Alternatively, one could use a Dirichlet or real Robin condition
that was carefully chosen to avoid zero (or very small) eigenvalues and would keep
the solution real; this approach was adopted for some of the computations in [35].

Applying the compact scheme of section 2.1 to the differential equation Lu = f
of (2.4), we have

1

h2
(um+1,n + um,n+1 + um−1,n + um,n−1 − 4um,n)(2.5a)

+
1

6h2
[um+1,n+1 + um+1,n−1 + um−1,n+1 − um−1,n−1 + 4um,n

− 2(um,n+1 + um,n−1 + um+1,n + um−1,n)]

+
k2

12
(um+1,n + um,n+1 + 8um,n + um−1,n + um,n−1) = gm,n,

where we can formally think that [cf. formula (2.2)]

gm,n = fm,n +
1

12
(fm+1,n + fm,n+1 − 4fm,n + fm−1,n + fm,n−1) .

We emphasize, however, that the actual governing equation (2.1a) is homogeneous,
whereas the right-hand side f in (2.4) plays only an auxiliary role and does not
represent any physical source term. As such, in our subsequent analysis the explicit
form of fm,n will never be needed. What will rather be important for constructing
the difference potentials and projections is the final discrete right-hand side gm,n of
(2.5a). This right-hand-side g will be obtained directly, i.e., without having to relate
it to any f by means of the 5-node stencil. The expression for g is given in (2.6)
of section 2.3, and it is precisely this right-hand side that allows us to compute the
discrete counterparts to Calderon’s operators and equivalently reduce the governing
equation from the domain to the boundary; see formula (2.8). We also note that
even though we keep the right-hand side g as a key innate element of the method
of difference potentials, the actual physical solutions that we obtain inside Ω in the
form of difference potentials are those to the homogeneous finite difference equation
(2.3). Their accuracy matches the design fourth-order accuracy of the scheme, as
corroborated by the numerical simulations of section 4.

In order to maintain the overall accuracy of the solution, it is also important to
have the boundary conditions of (2.4) approximated with fourth-order accuracy. This
is trivial for the Dirichlet conditions:

(2.5b) um,0 = um,N = 0, m = 0, . . . ,M,

1The Helmholtz equation is said to be at a resonance on Ω0 if −k2 is an eigenvalue of the
Laplacian subject to zero Dirichlet boundary conditions at ∂Ω0. In this case, the solution to the
Helmholtz equation is not unique.
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where the grid nodes range between 0 and M in the x direction and between 0 and
N in the y direction. (For square cells and square domain Ω0, obviously M = N .)

Obtaining a fourth-order accurate compact approximation of the Sommerfeld-
type conditions requires some additional effort. In [5], we have derived such an
approximation at the boundary (more precisely, at the midpoint of the outermost
cell) for the Helmholtz equation with variable coefficients. Simplifying the result for
constant coefficients, we arrive at the following discrete Sommerfeld-type conditions
for the right and left edges of Ω0:(

uM,n − uM−1,n

h
− 1

6h
(uM,n+1 − uM−1,n+1 + uM,n−1(2.5c)

− uM−1,n−1 − 2(uM,n − uM−1,n))− k2h

24
(uM,n − uM−1,n)

)
+ ik

(
uM,n + uM−1,n

2
+
h2k2

8
uM− 1

2 ,n

+
uM− 1

2 ,n+1 − 2uM− 1
2 ,n−1 + uM− 1

2 ,n−1

2

)
=0,(

u1,n − u0,n
h

− 1

6h
(u1,n+1 − u0,n+1 + u1,n−1 − u0,n−1 − 2(u1,n − u0,n))(2.5d)

−k
2h

24
(u1,n − u0,n)

)
− ik
(
u1,n + u0,n

2
+
h2k2

8
u 1

2 ,n
+
u 1

2 ,n+1 − 2u 1
2 ,n−1 + u 1

2 ,n−1

2

)
=0.

As in the case of the continuous AP (2.4), the overall discrete AP (2.5) is supposed
to have a unique solution um,n, m = 0, . . . ,M , n = 0, . . . , N , for any right-hand-side
gm,n (defined on the interior subgrid m = 1, . . . ,M − 1, n = 1, . . . , N − 1), and be
well-posed. The discrete AP (2.5) can be solved by a sine FFT in the y direction
combined with the tridiagonal elimination in the x direction. The complexity of this
solution is log-linear with respect to the grid dimension N and linear with respect
to M .

2.3. Grid sets and operators. Let N0 be a uniform Cartesian grid on the
square Ω0 with size h in both the x and y directions, and let M0 ⊂ N0 be the set of
its interior nodes, i.e., all nodes of N0 except those on the edges of Ω0; see Figure 2.2.
The solution u to the discrete AP (2.5) will be defined on the grid N0, while its
right-hand-side g will be defined on the grid M0.

Let M+ ⊂ M0 be the set of nodes of M0 that are inside the physical domain Ω,
i.e., M+ = M0 ∩ Ω; see Figure 2.3(a). Since Γ = ∂Ω is not aligned with the grid, we
define its discrete analogue, γ, which we refer to as the grid boundary. Let M

− be
the set of all nodes of M0 that lie outside Ω, i.e., M− = M0\M+; see Figure 2.3(b).
Let N

+ and N
− be defined as the sets of nodes of N0 that are used when applying

the 3× 3 compact stencil (see Figure 2.1) to the nodes of M+ and M
−, respectively.

There will be an overlap in the sets N+ and N
− when applying the stencil to nodes of

M
+ and M

− which are adjacent to Γ. We refer to this overlap, i.e., the intersection
of these sets, as the grid boundary, γ = N

+ ∩ N
−; see Figure 2.3(c).

The solution of the discrete AP (2.5) plays a key role in the construction of the
difference potentials and projections, which can be considered as discrete counterparts
of Calderon’s potentials and boundary projections (pseudodifferential operators); see
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(a) N0 (b) M0

Fig. 2.2. Cartesian grids for the finite difference equation (2.5a).

(a) • — M
+, © — N

+ (b) • — M
−, © — N

− (c) © — γ

Fig. 2.3. Interior and exterior grid subsets and the grid boundary.

[8, 49, 45]. The difference potential will approximate the solution u of boundary
value problem (2.1) on the grid N

+. The density of the difference potential is a grid
function defined on the grid boundary γ. It satisfies a special system of linear algebraic
equations called the boundary equation with projection (BEP).

We denote the discrete operator on the left-hand side of (2.5a) by L(h). Then
the discrete AP (2.5) consists of solving the finite difference equation L(h)u = g on
the grid N0, subject to boundary conditions (2.5b), (2.5c), and (2.5d). Define the
corresponding inverse operator G(h) as the solution of the discrete AP (2.5), so that
u = G(h)g. Also consider a grid function ξγ specified on the discrete boundary γ,
Figure 2.3(c). The difference potential with density ξγ is given by

(2.6) PN+ξγ
def
= w −G(h)

(
L(h)w

∣∣
M+

)
, where w =

{
ξγ on γ,

0 on N0\γ.

The operation L(h)w
∣∣
M+ := g in formula (2.6) denotes first the application of the

operator L(h) to the auxiliary function w and then truncation of the grid function
L(h)w to the grid M

+; see Figure 2.3(a). The difference potential PN+ξγ is defined
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on the grid N
+ (that’s why we are using the subscript N+),2 and at the nodes M+ it

satisfies the homogeneous finite difference equation [cf. formula (2.3)]

L(h)(PN+ξγ) = 0.

Along with the grid function ξγ , consider a two-component vector function ξξξΓ =
(ξ0, ξ1) defined on the continuous boundary Γ. This new function ξξξΓ can be used as
the density of the genuine Calderon potential of the differential operator L on the
domain Ω [8, 49], in which ξ0 is interpreted as the Dirichlet data and ξ1 is interpreted
as the Neumann data at the boundary Γ. Provided that the grid function ξγ is related
to the continuous function ξξξΓ in some special sense (ξγ must be obtained from ξξξΓ as
an equation-based extension based on the Taylor formula of order four; see section 3),
the difference potential (2.6) approximates the continuous Calderon potential with
density ξξξΓ with fourth-order accuracy on the grid N

+ (the design accuracy of our
compact scheme); see [35, 45, 39].

Truncating the difference potential (2.6) to γ, we obtain the difference projection,

(2.7) Pγξγ
def
= (PN+ξγ)

∣∣
γ
,

and then express the discrete BEP as

(2.8) Pγξγ = ξγ .

Its pivotal property (see [45]) is that those and only those grid functions ξγ satisfy
the BEP (2.8) that can be obtained as the truncation to γ of a solution u (defined on
N

+, Figure 2.3(a)) of the homogeneous difference equation (2.3): L(h)u = 0. Thus,
the BEP (2.8) provides an equivalent reduction of the discrete equation L(h)u = 0
from the grid domain N

+ to the grid boundary γ. If the grid function u satisfies
L(h)u = 0, then its truncation ξγ = u|γ must satisfy the BEP (2.8). Conversely, if the
grid function ξγ satisfies the BEP (2.8), then there exists a function u defined on N

+

such that L(h)u = 0 and u|γ = ξγ . In fact, this u is given by the difference potential
(2.6): u = PN+ξγ .

Note that the difference potential (2.6) and, consequently, the projection (2.7)
depend on the choice of the AP since changing the AP will change the inverse operator
G(h). However, the change of the AP does not affect the range of the projection Pγ ,
i.e., it does not change the set of solutions to the BEP (2.8), as long as the AP
remains uniquely solvable. In other words, when changing the AP one only changes
the projection angle onto the same subspace; see [45].

3. Treatment of the boundary conditions. In this section, we show how
to account for the given boundary condition (2.1b) in order to approximately recon-
struct the data

(
u, ∂u∂n

) ∣∣
Γ
of the solution u to problem (2.1) at the boundary Γ and

subsequently obtain the discrete solution of (2.1) on the grid N
+ in the form of the

difference potential (2.6). First, we need to build the equation-based extension of an
arbitrary pair of functions, ξξξΓ = (ξ0, ξ1)

∣∣
Γ
, from the continuous boundary Γ to the

grid boundary γ.

3.1. Equation-based extension to the grid boundary. The extension of a
given ξξξΓ = (ξ0, ξ1)

∣∣
Γ
from the smooth boundary Γ to the grid nodes γ (specifically

the nodes adjacent to Γ; see Figure 2.3(c)) is constructed using a truncated Taylor

2Even though both the auxiliary function w and the solution G(h)g to the discrete AP (2.5) are
defined on the entire grid N0, the difference potential P

N+ ξγ as introduced by formula (2.6) is of
interest to us only on the grid N+.
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expansion with differentiation in the direction normal to Γ. Consider ξξξΓ as the data
of some function v = v(x, y),

(ξ0, ξ1)
∣∣
Γ
=

(
v,
∂v

∂n

) ∣∣∣∣
Γ

,

that we define near the curve Γ by means of the Taylor expansion:

(3.1) v
def
= vΓ + ρ

∂v

∂n

∣∣∣∣
Γ

+
ρ2

2

∂2v

∂n2

∣∣∣∣
Γ

+
ρ3

6

∂3v

∂n3

∣∣∣∣
Γ

+
ρ4

24

∂4v

∂n4

∣∣∣∣
Γ

.

In formula (3.1), ρ denotes the distance (with sign) from a given point near Γ to the
curve Γ. We emphasize that while formula (3.1) takes the usual form of a Taylor
approximation to the function v, it should not be interpreted this way. Instead, it
should be thought of as the definition of v. The new function v can be evaluated
at any point (x, y) which is sufficiently close to Γ. In particular, we call this new
function ξγ when its domain is restricted to the nodes of the grid boundary γ (see
Figure 2.3(c)):

(3.2) ξγ
def
= v
∣∣
γ
.

However, the foregoing definition is not complete until we specify how to compute
the normal derivatives of order 2 and higher required for formula (3.1). These will be
obtained using equation-based differentiation applied to the homogeneous Helmholtz
equation with constant coefficients (2.1a). (The extension to nonhomogeneous equa-
tions and variable coefficients is straightforward [35].) In doing so, we assume that
the “input” functions v and ∂v

∂n are known analytically on the circle Γ so that we
can readily compute their tangential derivatives. Since we consider the simple case
of a circular boundary Γ centered at the origin, the outward normal to Γ and the
direction of the polar radius coincide. Hence, it is convenient to recast (2.1a) using
polar coordinates (r, θ):

(3.3)
1

r

∂v

∂r
+
∂2v

∂r2
+

1

r2
∂2v

∂θ2
+ k2v = 0.

Equation (3.3) allows us to obtain the second derivative of v with respect to r:

(3.4)
∂2v

∂r2
= −
(
1

r

∂v

∂r
+

1

r2
∂2v

∂θ2
+ k2v

)
.

Recall that v and ∂v
∂n = ∂v

∂r are given on Γ and that ∂2v
∂θ2 can be computed analytically

as the second tangential derivative of the given function v. Hence, (3.4) allows us to

compute the term ∂2v
∂n2 = ∂2v

∂r2 in the Taylor expansion (3.1).

We proceed to find the remaining normal derivatives, ∂3v
∂n3 = ∂3v

∂r3 and ∂4v
∂n4 = ∂4v

∂r4 ,
via equation-based differentiation. In particular, we take the derivative of (3.4) with
respect to r to obtain

(3.5)
∂3v

∂r3
=

1

r2
∂v

∂r
− 1

r

∂2v

∂r2
+

2

r3
∂2v

∂θ2
− 1

r2
∂3v

∂r∂θ2
− k2 ∂v

∂r
.

We are able to evaluate ∂3v
∂r3 using the given function ∂v

∂r , the analytically computed

second tangential derivative of ∂v
∂r for ∂3v

∂r∂θ2 , and the representation (3.4) for ∂2v
∂r2 . This

way, we can compute the third normal derivative term of the Taylor expansion (3.1).
To compute the next term, we differentiate equality (3.5) with respect to r:
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(3.6)
∂4v

∂r4
= − 2

r3
∂v

∂r
+

2

r2
∂2v

∂r2
− 1

r

∂3v

∂r3
− 6

r4
∂2v

∂θ2
+

4

r3
∂3v

∂r∂θ2
− 1

r2
∂4v

∂r2∂θ2
− k2 ∂

2v

∂r2
.

Again, the term ∂v
∂r is given, the terms ∂2v

∂r2 and ∂3v
∂r3 are evaluated via (3.4) and (3.5),

respectively, and the terms ∂2v
∂θ2 and ∂3v

∂r∂θ2 are computed analytically as the tangential

derivatives of the given pair of functions
(
v, ∂v∂r
)
. The only remaining term of (3.6) that

has not been accounted for yet is ∂4v
∂r2∂θ2 . We evaluate it by differentiating equation

(3.4) twice with respect to θ:

(3.7)
∂4v

∂r2∂θ2
= −
(
1

r

∂3v

∂r∂θ2
+

1

r2
∂4v

∂θ4
+ k2

∂2v

∂θ2

)
.

Note that all the terms required to compute ∂4v
∂r2∂θ2 by (3.7) are tangential (i.e.,

angular) derivatives of v and ∂v
∂r . Therefore, substituting (3.7) for ∂4v

∂r2∂θ2 into (3.6)

completes our ability to calculate the fourth normal derivative ∂4v
∂r4 = ∂4v

∂n4 in the Taylor
expansion (3.1).

Thus, given an arbitrary pair of functions
(
v, ∂v∂r
)
defined along the circle Γ,

a fifth-order extension from the continuous circle to a nearby grid node along the
normal direction is accomplished by substituting equations (3.4)–(3.7) into the Taylor
expansion (3.1). In [35, Appendix A], we show how a similar extension can be built
in the case of an arbitrary smooth curve Γ.

Hereafter, we use the notation Ex for the equation-based extension operator
defined by formulae (3.1), (3.2). It will act on an arbitrary pair of continuous functions
defined on Γ: ξξξΓ = (ξ0, ξ1)|Γ. This operator uses the truncated Taylor expansion (3.1)
to construct a new function v(x, y) near Γ, which is then sampled at the grid boundary
γ according to (3.2). This yields the grid function that we refer to as ξγ :

ξγ = ExξξξΓ = Ex (ξ0, ξ1)
∣∣
Γ
.

We emphasize that while the normal derivatives of order 2 and higher in formula (3.1)
are obtained by differentiation based on the Helmholtz (2.1a), the construction of the
operator Ex permits it to be applied to an arbitrary pair of functions. Thus, ξξξΓ does
not need to represent the data of a solution to equation (2.1a) in order to apply the
operator. However, if ξξξΓ happens to be the data of a solution u to (2.1a) on Ω, then
formula (3.1) approximates this solution near Γ = ∂Ω with fifth-order accuracy with
respect to n, and, in particular, it shall do so at the nodes of the discrete boundary γ.

Note that to ensure the design convergence rate of the overall method, the number
of terms in the Taylor formula (3.1) that defines the operator Ex must match in
a particular way the accuracy of the finite difference scheme employed inside the
computational domain. The corresponding relations follow from the approximation
theorems of the continuous potentials of elliptic operators by difference potentials
proved by Reznik [39, 40]. While the actual proofs are delicate, the end results can
be used in their own right, and we reproduce some of those results in [35, section 4.4].
Moreover, in practice it turns out that taking fewer terms in (3.1) than prescribed
by [39] may be sufficient. For the fourth-order accurate scheme (2.3) that we have
implemented for the current study, the original Reznik theorem would suggest taking
six terms, which is the sum of the accuracy of the scheme (fourth-order) and the order
of the differential equation (second). However, it appears sufficient to truncate the
Taylor expansion after the fourth derivative term to preserve the overall fourth-order
accuracy. For other finite difference schemes, the number of terms in the expansion
will need to be chosen accordingly; see [39], [40], and [35] for more detail.
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3.2. Series representation of boundary functions. The next step is to select
a basis for the space of smooth pairs of functions, ξξξΓ, on Γ:

(3.8) ψψψ(0)
n = (ψ(0)

n , 0) and ψψψ(1)
n = (0, ψ(1)

n ), n = −∞, . . . ,∞.
This basis will help us represent the data

(
u, ∂u∂n

)∣∣
Γ
of the solution u to problem (2.1);

see section 3.3. Provided that the expansion of a given ξξξΓ with respect to system (3.8)
converges sufficiently fast, we may truncate it and replace the infinite series with a
finite sum:

(3.9) ξξξΓ =
N∑

n=−N

c(0)n ψψψ(0)
n︸ ︷︷ ︸

(ξ0,0)

+
N∑

n=−N

c(1)n ψψψ(1)
n︸ ︷︷ ︸

(0,ξ1)

,

where the numberN that would guarantee the desired accuracy can be taken relatively
small. This is the case, e.g., for the Fourier series when ξξξΓ are smooth periodic
functions; see section 3.4 and also [35]. However, a different basis (3.8) may also be
chosen, and the particular cases of both Fourier and Chebyshev bases are invoked
and discussed in subsequent examples to suit the goal of solving specific nonstandard
boundary value problems (2.1). In addition, we emphasize that the basis (3.8) may
be selected independently of the discretization grid N0, and this is accomplished by
choosing the accuracy of representation (3.9) ahead of time so that it will match or
exceed the accuracy that can be achieved on the grid (see [35] for details).

In the interest of solving problem (2.1), we will first apply the operator Ex of
section 3.1 and extend an arbitrary ξξξΓ represented by the truncated series (3.9) from
the continuous boundary Γ to the grid boundary γ. Then we will substitute the
resulting ξγ into the discrete BEP (2.8). This will yield a linear system in which the

unknowns will be the coefficients c
(0)
n and c

(1)
n , n = −N, . . . , N .

3.3. Applying the extension to form a linear system. Applying the ex-
tension operator Ex to the series representation (3.9) of a pair of functions defined
on the boundary, ξξξΓ, and noting that the operator is linear, we obtain
(3.10)

ExξξξΓ = Ex

(
N∑

n=−N

c(0)n ψψψ(0)
n +

N∑
n=−N

c(1)n ψψψ(1)
n

)
=

N∑
n=−N

c(0)n Ex ψψψ(0)
n +

N∑
n=−N

c(1)n Ex ψψψ(1)
n ,

where Ex ψψψ
(0)
n = Ex

(
ψ
(0)
n , 0
)
and Ex ψψψ

(1)
n = Ex

(
0, ψ

(1)
n

)
according to (3.8). Substi-

tuting expression (3.10) into the discrete BEP (2.8) yields a system of linear algebraic
equations,

N∑
n=−N

c(0)n PγEx ψψψ(0)
n +

N∑
n=−N

c(1)n PγEx ψψψ(1)
n =

N∑
n=−N

c(0)n Ex ψψψ(0)
n +

N∑
n=−N

c(1)n Ex ψψψ(1)
n ,

which we formalize by gathering the corresponding basis terms on the left-hand side:

(3.11)

N∑
n=−N

c(0)n (Pγ − Iγ)Ex ψψψ(0)
n +

N∑
n=−N

c(1)n (Pγ − Iγ)Ex ψψψ(1)
n = 0.

In formula (3.11), Iγ is the identity operator in the space of grid functions ξγ defined
on γ. In matrix form, the linear system (3.11) can be recast as

(3.12) Qc = 0 ,
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where the matrix Q is given by

Q =
[
(Pγ − Iγ)Ex ψψψ

(0)
−N , . . . , (Pγ − Iγ)Ex ψψψ

(0)
N︸ ︷︷ ︸

Q0

,(3.13)

(Pγ − Iγ)Ex ψψψ
(1)
−N , . . . , (Pγ − Iγ)Ex ψψψ

(1)
N︸ ︷︷ ︸

Q1

]
,

and c is a vector of unknown coefficients, c =
[
c
(0)
−N , . . . , c

(0)
N , c

(1)
−N , . . . , c

(1)
N

]T
. The

dimension of the matrix Q in (3.13) is |γ| × 2(2N + 1), where |γ| is the total number
of nodes in the grid boundary γ, and the dimension of the vector c is 2(2N + 1).
The first 2N + 1 columns of the matrix Q form the submatrix Q0 and correspond to

the coefficients c
(0)
n , n = −N, . . . , N , while the last 2N + 1 columns of Q form the

submatrix Q1 and correspond to the coefficients c
(1)
n , n = −N, . . . , N .

Any solution c =
[
c(0), c(1)

]
to the linear system (3.12) furnishes ξξξΓ via formula

(3.9), and the latter, in turn, yields ξγ = ExξξξΓ. As shown in [39], the corresponding
difference potential (2.6) with the density ξγ provides a fourth-order accurate approx-
imation to the continuous Calderon potential of the Helmholtz operator L with the
density ξξξΓ; see also [45, Part III, Chapter 1] and [35, section 4.4]. Moreover, the
continuous Calderon potential u solves the homogeneous Helmholtz equation (2.1a)
on Ω, and the density ξξξΓ of (3.9) approximates its data

(
u, ∂u∂n

)∣∣
Γ
on Γ.

However, the linear system (3.12) may have multiple solutions. Indeed, it does
not take into account the boundary condition (2.1b) because it is derived from the
discrete BEP (2.8) only. To take the boundary condition into account and make sure
the overall solution is unique, system (3.12) needs to be modified and/or supplemented
by additional equations. The simplest cases to analyze are those of the Dirichlet and
Neumann boundary conditions; see [35].

When the boundary condition is Dirichlet, equality (2.1b) reduces to u
∣∣
Γ
= φΓ,

and we can expand the given Dirichlet data function φΓ (i.e., the first component of

the data) with respect to the chosen basis (3.8), yielding the coefficients c
(0)
n , n =

−N, . . . , N . Recalling that c =
[
c(0), c(1)

]
=
[
c
(0)
−N , . . . , c

(0)
N , c

(1)
−N , . . . , c

(1)
N

]T
in (3.12),

the vector c(0) in the Dirichlet case can be considered given while the vector c(1)

is unknown. Accordingly, system (3.12) is recast as Q1c
(1) = −Q0c

(0), where the
right-hand side can now be thought of as a given vector of dimension |γ|. Then, the
system is solved for c(1) in the sense of the least squares.

In doing so, we choose the number of basis functions N independent of the size
of the discretization grid N0. This number is rather fixed ahead of time so that
the accuracy of the truncated expansion (3.9) at the boundary would exceed any
accuracy that one might expect to obtain on the grid. This is easy to achieve at
a moderate cost, because when the boundary data are smooth and periodic, their
Fourier expansion converges rapidly (see footnote 3) and the resulting N appears not
very large. Once the dimensionN of the boundary representation (3.9) has been fixed,
the final accuracy of the solution on the domain is controlled only by the size of the
grid N0. For sufficiently fine grids, one should typically expect |γ| � 2N + 1. Hence,
the system Q1c

(1) = −Q0c
(0) is overdetermined and admits a robust solution by

least squares. Moreover, as the original boundary value problem (2.1) has a unique
solution, the discrete least squares solution is “almost classical” in the sense that
as the grid is refined, the residual at the minimum decreases to zero with the rate
determined by the accuracy of the finite difference approximation.
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In the Neumann case, conversely, the vector c(1) is given by expanding the bound-
ary condition ∂u

∂n = φ|Γ with respect to the basis (3.8), the vector c(0) is unknown, and

the systemQ0c
(0) = −Q1c

(1) is solved in the sense of the least squares for c(0). In any
case, once both c(0) and c(1) are known, the vector c = [c(0), c(1)] is substituted into
(3.9), and the resulting ξξξΓ is extended to γ via the extension operator: ξγ = ExξξξΓ.
The difference potential (2.6) with density ξγ is then computed to approximate the
solution u to the boundary value problem (2.1) with fourth-order accuracy on the
grid N

+. A more detailed analysis of both the Dirichlet and Neumann boundary
conditions, along with the corresponding numerical results that corroborate the grid
convergence with the design rate of the scheme, can be found in [35], wherein both a
circular and an elliptical boundary are considered with a Cartesian grid.

Our work [35] also provides an analysis of the Robin boundary condition, but only
when the coefficients of the boundary condition are constant, and with no numerical
computations. In sections 3.4 and 3.5, we present a more comprehensive analysis of the
Robin boundary condition, which includes variable and/or discontinuous coefficients.
In particular, this allows us to consider mixed boundary conditions, e.g., Dirichlet on
one part of the boundary and Neumann on the other part of the boundary.

Finally, we emphasize that the reduction of problem (2.1) from its domain to the
boundary based on Calderon’s boundary equations with projections, regardless of the
type of the boundary condition (2.1b), is always well-posed as long as the original
problem (2.1) itself is well-posed; see [45, 35]. This is in contrast to methods based on
boundary integral equations, for which care must be exercised, on a case-by-case basis,
in choosing the equivalent boundary sources such that the resulting Fredholm integral
equation is of the second kind (well-posed) rather than the first kind (ill-posed).

3.4. The Robin boundary condition with smooth variable coefficients.
Consider the case that formula (2.1b) represents a general Robin boundary condition
with variable coefficients:

(3.14) α(θ)u(θ) + β(θ)
∂u

∂n
(θ) = φ(θ),

where α, β, and φ are smooth periodic functions of the polar angle θ ∈ [0, 2π]. We
will expand each term of (3.14) with respect to the chosen basis (3.8) and obtain a set
of linear algebraic equations that will supplement system (3.12). In doing so, it will
be convenient, though not necessary, to consider the same basis functions for both u

and ∂u
∂n , so that ψ

(0)
n = ψ

(1)
n , n = −N, . . . , N , in formula (3.8).

Since formula (3.14) is composed of smooth 2π-periodic functions, it is natural

to choose an exponential Fourier basis, ψ
(0)
n (θ) = ψ

(1)
n (θ) = einθ. To express the left-

hand side of (3.14) in this basis, we will use a well-known convolution formula for the
Fourier coefficients of a product of two functions. Let f(θ) and g(θ) be 2π-periodic,

and denote by f̂n and ĝn their Fourier coefficients for the expansion with respect to
the complex exponentials einθ, n = 0,±1,±2, . . .. Then, it is easy to show that

(3.15) (̂fg)n =
1

2π

∞∑
m=−∞

ĝmf̂m−n.

We now expand the boundary condition (3.14) using this result. Let c
(0)
n and c

(1)
n

represent the Fourier coefficients of u(θ) and ∂u
∂n (θ), respectively, and let α̂n, β̂n, and

φ̂n be the coefficients of α(θ), β(θ), and φ(θ), respectively. Then, according to (3.15),
formula (3.14) becomes
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1

2π

∞∑
n=−∞

( ∞∑
m=−∞

α̂mc
(0)
m−n +

∞∑
m=−∞

β̂mc
(1)
m−n

)
einθ =

1

2π

∞∑
n=−∞

φ̂ne
inθ.

By orthogonality of the basis functions, we obtain the following linear equation for
each n:

(3.16)

∞∑
m=−∞

(
α̂mc

(0)
m−n + β̂mc

(1)
m−n

)
= φ̂n.

Moreover, since for sufficiently smooth functions their Fourier coefficients decay
rapidly,3 it is sufficient to take only finitely many equations from (3.16) to supplement
system (3.12). The summation range on the left-hand side of each of those equations
can also be chosen finite. The specific number of equations needed will be determined
based on the desired accuracy of the Fourier expansions.

Assume we are given a tolerance ε > 0. Then, using the generic notation f(θ)
and g(θ), we can find a positive integer number N [cf. formula (3.9)] such that

(3.17) |f̂n| < ε and |ĝn| < ε for |n| � N.

Since the coefficients f̂n and ĝn decay rapidly, the number N in formula (3.17) is
typically not large even if ε is taken on the order of the machine precision. (Specific
choices that we have made for particular examples are discussed in section 4.) In
general, assuming that ε in (3.17) is small, we can replace all the coefficients with
indices |n| � N in the Fourier expansions of f and g by zeros.

We therefore consider a pair of sufficiently smooth 2π-periodic functions f(θ) and

g(θ) for which we set f̂n = 0 and ĝn = 0 for |n| � N . To find the coefficients (̂fg)n
of the truncated Fourier expansion for their product fg, we will identify and exclude
from the last sum on the right-hand side of formula (3.15) all terms for which either

f̂m−n = 0 or ĝm = 0 (i.e., those terms for which either |m − n| > N or |m| > N ,
respectively).

If n � 0, then m � m − n; thus, the upper bound for the summation will be
m = N , and the lower bound will be achieved when m − n = −N , which, solved for
m, yields m = n − N . Similarly, when n < 0, we have m < m − n, which results
in the lower bound being reached by m = −N , and the upper bound is reached by
m− n = N , which implies m = n+N . Hence, we have

(3.18a) (̂fg)n =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

N∑
m=n−N

ĝmf̂m−n, 0 � n � 2N,

n+N∑
m=−N

ĝmf̂m−n, −2N � n < 0.

If n > 2N , then the summation range in the first sum on the right-hand side of (3.18a)
becomes empty; if n < −2N , then the summation range becomes empty in the second
sum. Empty summation ranges yield zero Fourier coefficients so that

(3.18b) (̂fg)n = 0, |n| > 2N.

3For an r-differentiable function with the derivative of order r in L2, the rate of decay of its Fourier

coefficients is o(n−r), and accordingly, the rate of convergence of its Fourier series is o(n−(r− 1
2
));

see, e.g., [48, section 3.1.3].
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Applying formulae (3.18) to (3.16), we arrive at the following finite system:

(3.19)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

N∑
m=n−N

(
α̂mc

(0)
m−n + β̂mc

(1)
m−n

)
= φ̂n, 0 � n � 2N,

n+N∑
m=−N

(
α̂mc

(0)
m−n + β̂mc

(1)
m−n

)
= φ̂n, −2N � n < 0,

where φ̂n on the right-hand side become zero whenever |n| � N .
System (3.19) provides 4N + 1 additional equations to supplement the |γ| equa-

tions of system (3.12). The purpose of (3.19) is to take into account the boundary
condition (3.14), which is a particular form of (2.1b), whereas system (3.12) is re-
sponsible for the differential equation (2.1a). Combining them yields a nontrivial
solution which will satisfy both the differential equation and the boundary condition.
The only inhomogeneity of the overall system comes from the coefficients φ̂n that are
nonzero, i.e., from (3.19) with n = −N, . . . , N . The dimension of system (3.12), (3.19)

is [|γ|+ (4N + 1)]× 2(2N + 1), and its solution c = [c
(0)
−N , . . . , c

(0)
N , c

(1)
−N , . . . , c

(1)
N ]T is

to be sought in the sense of least squares. This system simplifies in the previously
analyzed cases of the Dirichlet and Neumann boundary conditions. The Dirichlet
boundary condition is equivalent to α = 1 and β = 0 in the general equation (3.14),

yielding u(θ) = φ(θ). Then, α̂0 = 1, α̂n=0 for n = −N, . . . ,−1, 1, . . . , N , and β̂n=0
for n = −N, . . . , N , so that system (3.19) reduces to

c(0)n = φ̂n, n = −2N, . . . , 2N.
Moreover, as φ̂n=0 for |n| > N , we can simply disregard the corresponding coefficients

c
(0)
n and keep only those c

(0)
n , for which n = −N, . . . , N . Substituting these c

(0)
n = φ̂n

into (3.12), we get

Q1

⎡⎢⎢⎣
c
(1)
−N
...

c
(1)
N

⎤⎥⎥⎦ = −Q0

⎡⎢⎣φ̂−N

...

φ̂N

⎤⎥⎦ ,
which is to be solved by least squares with respect to the unknown c

(1)
n , n = −N, . . . , N .

This is precisely the approach that we employed in [35]; see also section 3.3.
Similarly, the Neumann boundary condition corresponds to α = 0 and β = 1 in

formula (3.14). Consequently, α̂n = 0 for n = −N, . . . , N , β̂1 = 1, and β̂n = 0 for
n = −N, . . . ,−1, 1, . . . , N . This reduces (3.19) to

c(1)n = φ̂n, n = −2N, . . . , 2N.
Again, we disregard those c

(1)
n for which n = −2N, . . . ,−N − 1, N + 1, . . . , 2N , be-

cause the corresponding φ̂n = 0 for |n| > N . Substituting the remaining c
(1)
n = φ̂n,

n = −N, . . . , N , into (3.12) yields

Q0

⎡⎢⎢⎣
c
(0)
−N
...

c
(0)
N

⎤⎥⎥⎦ = −Q1

⎡⎢⎣φ̂−N

...

φ̂N

⎤⎥⎦ ,
which is equivalent to the approach implemented in [35].
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In the cases other than those of the Dirichlet or Neumann boundary conditions,
the full system (3.19) has 4N+1 equations, and it is not immediately obvious whether
the 2N homogeneous equations can likewise be disregarded. Indeed, while it is possible
that for −2N � n � −N−1 or for N+1 � n � 2N the products of small terms on the
left-hand side of the corresponding equations (3.19) will be o(ε) (i.e., asymptotically
smaller than O(ε)), it is not automatically guaranteed. Experimentally, the setting
with no homogeneous equations in (3.19) can be tested, and we found out that keeping
or dropping those equations made very little difference for the cases computed in
section 4.2. Theoretically, however, this issue requires more analysis, which we leave
for future study.

3.5. The Robin boundary problem with discontinuous variable coef-
ficients. Consider now the general Robin boundary condition (3.14), but with the
relaxed assumptions that α, β, and φ are bounded and piecewise smooth rather than
smooth. For simplicity, assume that Γ = Γ1 ∪ Γ2, where Γ1 includes all points on the
circle with θ ∈ [0, a) and Γ2 includes all points on the circle with θ ∈ [a, 2π) for some
0 < a < 2π. Assume that α, β, and φ are smooth and bounded on either Γ1 or Γ2

but are not necessarily continuous on the entire circle Γ. For example, they may have
a jump discontinuity at θ = 0 and/or θ = a.

Consider the standard Chebyshev polynomial basis, {Tn(x)}∞n=0, x ∈ [−1, 1],
with the weight ω(x) = 2/π

√
1− x2. For a given function f(x), denote its Chebyshev

coefficients by f̂n, n = 0, 1, 2, . . .. To express the left-hand side of the boundary
condition (3.14) in the Chebyshev basis, we need to find the form of the expansion for
the products α(θ)u(θ) and β(θ) ∂u∂n (θ). In Appendix A, the Chebyshev coefficients of
a product are derived for a pair of arbitrary smooth functions f and g on [−1, 1]; see
formulae (A.2). To implement this expansion in practice, one first needs to truncate it
and replace the series by a finite sum. As Chebyshev coefficients of smooth functions
decay rapidly (the relation between the rate of decay and smoothness is similar to
that for the Fourier coefficients; see footnote 3), for a given ε > 0 we can choose a
relatively small number N such that

|f̂n| < ε, n > N,
|ĝn| < ε, n > N.

We therefore set f̂n = ĝn = 0 for n > N . Then formula (A.2a) for n = 0 immediately
yields

(3.20a) (̂fg)0 = 2ĝ0f̂0 +
N∑

m=1

ĝmf̂m.

Consider now the case 0 < n � N . On the right-hand side of the last equality in
(A.2b), we first replace the upper limit in the last sum by N because the factor ĝm
in the product under the sum will be set to zero beyond m = N . Next, since n > 0,
we notice that the index m + n is the largest, and the corresponding terms become
zero when m > N − n, which yields

(̂fg)n =
1

2

(
n−1∑
m=0

ĝm(f̂n−m + f̂n+m) + ĝn(f̂2n + 2f0)(3.20b)

+

N∑
m=n+1

ĝmf̂m−n +

N−n∑
m=n+1

ĝmf̂m+n

)
.
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We will use (3.20b) when 1 � n < N
2 . Clearly the term f̂2n in (3.20b) is zero whenever

n > N
2 because its index will be 2n > N . Moreover, the last sum will be zero for

n � N
2 since the smallest index of f̂m+n will be m+n = N

2 +1+ N
2 > N . To write the

resulting formula in a convenient manner while eliminating the zero terms for n > N
2 ,

we first rearrange (3.20b) so that the terms with the largest indices appear last:

(̂fg)n =
1

2

(
n−1∑
m=0

ĝmf̂n−m + 2ĝnf̂0 +

N∑
m=n+1

ĝmf̂m−n

+

n−1∑
m=0

ĝmf̂m+n + ĝnf̂2n +

N−n∑
m=n+1

ĝmf̂m+n

)
.

Then, we eliminate them as n becomes larger and they become zero. If n � N
2 (note

that n = N
2 can occur only if N is even), then the summation range in the last sum

becomes empty since

N − n � N − N

2
=
N

2
� n < n+ 1.

Thus, if N is even, we can write for n = N
2

(3.20c)

(̂fg)n =
1

2

(
n−1∑
m=0

ĝmf̂n−m + 2ĝnf̂0 +
N∑

m=n+1

ĝmf̂m−n +
n−1∑
m=0

ĝmf̂m+n + ĝnf̂2n

)
.

Notice that the index m+ n in the last sum of (3.20c) exceeds N if m > N − n. At
the same time, we see that if N

2 < n � N , then N − n < n − 1. Thus, replacing
the upper limit in the last sum of (3.20c) by the tighter bound N − n, we have, for
N
2 < n � N ,

(3.20d) (̂fg)n =
1

2

(
n−1∑
m=0

ĝmf̂n−m + 2ĝnf̂0 +

N∑
m=n+1

ĝmf̂m−n +

N−n∑
m=0

ĝmf̂m+n

)
.

For N < n � 2N , the summation range in the second to last sum in (3.20d) is empty.

In addition, ĝn = 0 and f̂m+n = 0 for any m � 0. Consequently, only the first sum
will remain, with the upper bound replaced by N since now n− 1 � N :

(3.20e) (̂fg)n =
1

2

N∑
m=1

ĝmf̂n−m, n = N + 1, . . . , 2N.

Finally, observe for n > 2N that n − m > 2N − m > N , which leaves no nonzero
terms so that

(3.20f) (̂fg)n = 0, n > 2N.

Altogether, the coefficients of the truncated Chebyshev expansion for the product fg
are given by (3.20a) for n = 0, (3.20b) for 1 � n < N

2 , (3.20c) for n = N
2 (note that

this occurs only if N is even), (3.20d) for N
2 < n � N , (3.20e) for N < n � 2N , and

(3.20f) for n > 2N .
We now derive the supplementary linear system by applying formulae (3.20) to

the general boundary condition (3.14). Recall that we are considering a continuous
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boundary Γ partitioned into two pieces, Γ = Γ1 ∪ Γ2, which are two arcs of the circle
of radius 1 on the intervals θ ∈ [0, a) and θ ∈ [a, 2π), respectively. We now recast the
boundary condition (3.14) as

(3.21)
α(1)(θ)u(θ) + β(1)(θ)

∂u

∂n

(
θ
)
=φ(1)(θ) on Γ1,

α(2)(θ)u(θ) + β(2)(θ)
∂u

∂n

(
θ
)
=φ(2)(θ) on Γ2.

To utilize the Chebyshev basis for (3.21), we perform a linear change of variables on
Γ1 and Γ2 from θ to x so that x ∈ [−1, 1) in each respective case. For Γ1, we have
θ ∈ [0, a) and consequently,

(3.22a) x =
θ

a
+
θ − a
a

,

whereas for Γ2 we have θ ∈ [a, 2π), and the transformation is given by

(3.22b) x =
θ − a
2π − a +

θ − 2π

2π − a .

We consider two independent Chebyshev bases, one on each of the arcs, Γ1 and Γ2, and
denote their respective dimensions by N1 and N2. As such, we have two double sets
of coefficients, [

c(0,1), c(1,1)
]T

=
[
c
(0,1)
0 , . . . , c

(0,1)
N1

, c
(1,1)
1 , . . . , c

(1,1)
N1

]T
,[

c(0,2), c(1,2)
]T

=
[
c
(0,2)
0 , . . . , c

(0,2)
N2

, c
(1,2)
1 , . . . , c

(1,2)
N2

]T
,

so that c =
[
c(0,1), c(1,1), c(0,2), c(1,2)

]T
. Accordingly, instead of formula (3.9) we now

have

ξξξΓ =

N1∑
n=0

c(0,1)n ψψψ(0,1)
n +

N2∑
n=0

c(0,2)n ψψψ(0,2)
n︸ ︷︷ ︸

(ξ0,0)

+

N1∑
n=0

c(1,1)n ψψψ(1,1)
n +

N2∑
n=0

c(1,2)n ψψψ(1,2)
n︸ ︷︷ ︸

(0,ξ1)

,

where

(3.23)

ψψψ(0,1)
n =

{
(Tn, 0) on Γ1,

(0, 0) on Γ2,
ψψψ(0,2)

n =

{
(0, 0) on Γ1,

(Tn, 0) on Γ2,

ψψψ(1,1)
n =

{
(0, Tn) on Γ1,

(0, 0) on Γ2,
ψψψ(1,2)

n =

{
(0, 0) on Γ1,

(0, Tn) on Γ2.

The extension of a given basis function from (3.23) to the discrete boundary γ is
done according to the same formulae derived for the Taylor expansion in section 3.1.
The matrix Q is now partitioned into four blocks rather than two and will have the
dimension |γ| × [2(N1 + 1) + 2(N2 + 1)]:

(3.24) Q =
[
Q

(1)
0 Q

(1)
1 Q

(2)
0 Q

(2)
1

]
.
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As in the previous case (section 3.4), the corresponding homogeneous linear system
(3.12) with the matrix Q of (3.24) accounts for the differential equation (2.1a) but not
for the boundary condition (2.1b). Thus, we supplement it with additional equations
to account for the boundary conditions.

Transforming the boundary condition (3.21) according to (A.1) and taking into
account formulae (3.20) for the coefficients of the truncated Chebyshev expansion of
a product of two functions, we obtain a set of additional linear equations for each Γi,
i = 1, 2. Specifically, we have for n = 0

(3.25a) c
(0,i)
0 α̂

(i)
0 +

1

2

Ni∑
m=1

c(0,i)m α̂(i)
m + c

(1,i)
0 β̂

(i)
0 +

1

2

Ni∑
m=1

c(1,i)m β̂(i)
m = φ̂

(i)
0 ;

for 1 � n < Ni

2

(3.25b)

1

2

(
n−1∑
m=0

c(0,i)m

(
α̂
(i)
n−m + α̂

(i)
n+m

)
+ c(0,i)n

(
α̂
(i)
2n + 2α̂

(i)
0

)
+

Ni∑
m=n+1

c(0,i)m α̂
(i)
m−n +

Ni−n∑
m=n+1

c(0,i)m α̂
(i)
m+n

+

n−1∑
m=0

c(1,i)m

(
β̂
(i)
n−m + β̂

(i)
n+m

)
+ c(1,i)n

(
β̂
(i)
2n + 2β̂

(i)
0

)
+

Ni∑
m=n+1

c(1,i)m β̂
(i)
m−n +

Ni−n∑
m=n+1

c(1,i)m β̂
(i)
m+n

)
= φ̂(i)n ;

for n = Ni

2 (if Ni is even)
(3.25c)

1

2

(
n−1∑
m=0

c(0,i)m

(
α̂
(i)
n−m + α̂

(i)
n+m

)
+ c(0,i)n

(
α̂
(i)
2n + 2α̂

(i)
0

)
+

Ni∑
m=n+1

c(0,i)m α̂
(i)
m−n

+

n−1∑
m=0

c(1,i)m

(
β̂
(i)
n−m + β̂

(i)
n+m

)
+ c(1,i)n

(
β̂
(i)
2n + 2β̂

(i)
0

)
+

Ni∑
m=n+1

c(1,i)m β̂
(i)
m−n

)
= φ̂(i)n ;

for Ni

2 < n � Ni

(3.25d)

1

2

(
n−1∑
m=0

c(0,i)m α̂
(i)
n−m + 2c(0,i)n α̂

(i)
0 +

Ni∑
m=n+1

c(0,1)m α̂
(1)
m−n +

Ni−n∑
c(0,i)m α̂

(i)
n+m

+

n−1∑
m=0

c(1,i)m β̂
(i)
n−m + 2c(1,i)n β̂

(i)
0 +

Ni∑
m=n+1

c(1,i)m β̂
(i)
m−n +

Ni−n∑
c(1,i)m β̂

(i)
n+m

)
= φ̂(i)n ;

and for Ni < n � 2Ni

(3.25e)
1

2

(
Ni∑

m=0

c(0,i)m α
(i)
n−m +

Ni∑
m=0

c(1,i)m β
(i)
n−m

)
= 0.

This gives us a total of 2Ni+1 extra equations for the 2(Ni+1) coefficients [c(0,i), c(1,i)],
where i ∈ {1, 2}, so that the augmented system comprising (3.12) with Q given by
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(3.24) and equations (3.25) will have the dimension (|γ|+2N1+1+2N2+1)× [2(N1+
1) + 2(N2 + 1)]. It shall be solved in the sense of least squares. We also observe that
the only inhomogeneity in the overall system arises from the supplemental equations
(3.25a)–(3.25d), which account for the boundary condition, whereas the remaining
supplemental equations (3.25e) are homogeneous.

Finally, we demonstrate that in the case of simple boundary conditions, such as
Dirichlet or Neumann, the supplemental equations reduce to a diagonal system. For
example, consider a Dirichlet boundary condition on Γ1 and a Neumann boundary
condition on Γ2. Then,

α(1)(θ) = 1, β(1)(θ) = 0,

α(2)(θ) = 0, β(2)(θ) = 1.

Thus the Chebyshev coefficients of α(i) and β(i), i = 1, 2, will be

α̂
(1)
0 = 1, α̂(1)

n = 0 for n = 1, . . . , N,

β̂(1)
n = 0 for n = 0, . . . , N,

α̂(2)
n = 0 for n = 0, . . . , N,

β̂
(2)
0 = 1, β̂(2)

n = 0 for n = 1, . . . , N.

Consequently, (3.25) for i = 1 reduce to

(3.26)

c
(0,1)
0 = φ̂

(1)
0 for n = 0 from (3.25a),

c(0,1)n = φ̂(1)n for n = 1, . . . , N1 from (3.25b)–(3.25d),

0 = 0 for n = N1 + 1, . . . , 2N1 from (3.25e),

while for i = 2 they reduce to

(3.27)

c
(1,2)
0 = φ̂

(2)
0 for n = 0 from (3.25a),

c(1,2)n = φ̂(2)n for n = 1, . . . , N1 from (3.25b)–(3.25d),

0 = 0 for n = N1 + 1, . . . , 2N1 from (3.25e).

Subsequently, we substitute (3.26) and (3.27) into system (3.12) as we did in the
Fourier case (section 3.4) to obtain a reduced system for the coefficients that remain
unknown, c(1,1) and c(0,2), that is also solved in the sense of least squares. Clearly,
any combination of the Dirichlet and Neumann boundary conditions on Γ1 and Γ2

will yield a similar reduced system.
To conclude this section we mention that the same considerations as outlined in

section 3.4 for the Fourier case apply to the Chebyshev case as well. Namely, the
dimensions N1 and N2 should be chosen so as to have the accuracy of the truncated
Chebyshev expansion on either Γ1 or Γ2 exceed the accuracy attainable on the grid,
and the specific choices that we have made are discussed in section 4. Moreover, other
than for the simple Dirichlet and Neumann cases it is not clear whether the homoge-
neous supplemental equations (3.25e) can be dropped from the overall system—this
question requires further theoretical inquiry.

Another avenue for further consideration is the potential for the undesirable
growth in the total number of basis functions needed when splitting the boundary



HIGH-ORDER METHOD FOR THE HELMHOLTZ EQUATION A2275

Γ into segments and using an independent basis for each piece. At first glance, it ap-
pears that we would accumulate basis functions linearly with respect to the number
of partitions, eventually sacrificing the efficiency of the method. In fact, this should
not be the case. A priori, any function on the continuous boundary Γ will experience
less variation on a subinterval Γi ⊂ Γ than on the whole of Γ, even if the boundary
data are oscillatory. Thus, achieving the same level of accuracy by the expansion will
require fewer coefficients on Γi than it would on Γ, and this property would reduce
the accumulation of basis functions due to the splitting of Γ into smaller subintervals.
Specific quantitative estimates along these lines will be a subject for future study.

3.6. Derivatives of the Chebyshev polynomials near the endpoints. The
extension from the continuous boundary Γ to the discrete boundary γ via the Taylor
formula (3.1) is done independently for each basis function (see section 3.2), and
this process requires us to provide the basis functions themselves as well as their
tangential derivatives up to the fourth order; see formulae (3.6) and (3.7).4 For the
Chebyshev basis it is well known that the derivatives of the polynomials Tn(x) near
the endpoints x = ±1 are not singular, but their values become large. For example,
the first derivative of the nth polynomial is

T ′
n(x) = (cos(n arccosx))

′
=
n sin(n arccosx)√

1− x2 ,

and taking successive derivatives will clearly retain the term 1−x2 in the denominator
with increasingly higher exponents. Inevitably, whether by chance or by sufficient
refinement of the grid, we will need to compute the values of these derivatives “close”
to the endpoints x = 1 and/or x = −1. Specifically, this happens when the foot of
the normal dropped from a given node of γ to Γ (see section 3.1) appears to be close
to one of the points that partition Γ into segments (θ = 0 or θ = a in section 3.5). In
this case, the overall accuracy may deteriorate via the loss of significant digits. We
have, in fact, computationally observed such a loss of accuracy.

To avoid this undesirable phenomenon, we employ an approach that allows us
to completely eliminate the need to compute the derivatives of the Chebyshev basis
functions near the endpoints. The key idea of the approach is to use an extended
interval for the Chebyshev basis. That is, instead of linearly transforming the intervals
θ ∈ [0, a) and θ ∈ [a, 2π), i.e., the arcs of the circle Γ1 and Γ2, to the interval
x ∈ [−1, 1) to form the Chebyshev expansion (see formulae (3.22)), we will instead
linearly transform them to a smaller interval x ∈ [−1 + ε, 1− ε), where ε > 0:

(3.28a) x =

(
θ

a
+
θ − a
a

)
(1 − ε)

and

(3.28b) x =

(
θ − a
2π − a +

θ − 2π

2π − a
)
(1− ε).

In doing so, formulae (3.28a) and (3.28b) obviously provide a transformation between
the full interval x ∈ [−1, 1) and the two extended intervals of the variable θ:

(3.29a) x ∈ [−1, 1) ←→ θ ∈ [−aσ, a+ aσ)

4Additionally, for a higher-order scheme one needs to use a higher-order Taylor formula [35],
requiring even higher-degree tangential derivatives to be supplied.
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and

(3.29b) x ∈ [−1, 1) ←→ θ ∈ [a− (2π − a)σ, 2π + (2π − a)σ),
respectively, where σ = 1

2
ε

1−ε > 0.

We then extend all the functions that define the problem, α(1)(θ), β(1)(θ), φ(1)(θ)
and α(2)(θ), β(2)(θ), φ(2)(θ) (see formula (3.21)) smoothly but otherwise arbitrar-
ily from their respective intervals [0, a) and [a, 2π) to the extended intervals (3.29a)
and (3.29b), so that they can subsequently be represented as functions of x using a
standard Chebyshev series on [−1, 1). We also formally assume that the unknown
functions u and ∂u

∂n are defined on the same extended intervals (3.29) so that we can
identically reproduce all the arguments of section 3.5 and obtain the same supple-
mental equations (3.25). At the same time, to build the extension (3.1), (3.2) of a
given basis function from Γ to γ we will need to know this function only on the cor-
responding arc Γ1 ⇔ θ ∈ [0, a) or Γ2 ⇔ θ ∈ [a, 2π) or, equivalently, on the reduced
interval [−1 + ε, 1 − ε), because it is those actual arcs where the normals from γ
can meet Γ, whereas the “tails” x ∈ [−1,−1 + ε) and x ∈ [1 − ε, 1) are artificial.
Hence, the extension operator Ex will never require any information from these tails
and there will be no need to compute the derivatives of the basis functions near the
endpoints (i.e., closer than ε to endpoints). It is only the reduced interval [−1 +
ε, 1− ε) that will eventually contribute to system (3.12) which represents the discrete
BEP (2.8).

Let f(x) be a smooth function defined on [−1+ ε, 1− ε], where 0 < ε < 1, and let
f̃(x) be any smooth extension of f(x) to the full interval [−1, 1] (i.e., f̃(x) ≡ f(x) for
|x| � 1−ε, and f̃(x) is smooth on all of [−1, 1]). Then, we expand f̃ in the Chebyshev
basis (see (A.1)):

(3.30) f̃(x) =
∞∑

n=0

ˆ̃fnTn(x), x ∈ [−1, 1].

Since series (3.30) converges uniformly, then, clearly, the same convergence takes place
on any subinterval, which implies, in particular, that

(3.31) f(x) =

∞∑
n=0

ˆ̃
fnTn(x), x ∈ [−1 + ε, 1− ε].

We emphasize that even though the coefficients ˆ̃fn of the series (3.30) depend on what
particular extension of f(x) from [−1+ ε, 1− ε] to [−1, 1] we choose, this dependence
manifests itself only through the fact that the sum of the series (3.30) will vary on
the tails 1− ε < |x| � 1. At the same time, on the central subinterval |x| � 1− ε the
sum of the series (3.31) remains the same, i.e., equal to the original f(x), regardless
of the specific behavior of f̃(x) for 1− ε < |x| � 1.

Accordingly, the Chebyshev coefficients ˆ̃α
(i)
n ,

ˆ̃
β
(i)
n , and

ˆ̃
φ
(i)
n , where i = 1, 2, will

depend on the respective extensions of the functions α(i), β(i), and φ(i) from [−1 +
ε, 1−ε] to [−1, 1]. As these coefficients provide the data for the supplemental equations

(3.25), the solution c =
[
c(0,1), c(1,1), c(0,2), c(1,2)

]T
of the overall system (3.12),

(3.25), where the matrix Q is given by (3.24), will also be affected by what extension
of α(i), β(i), and φ(i), i = 1, 2, has been chosen. However, the resulting variation
of c will, again, correspond only to the variation of u and ∂u

∂n on the extension tails
1− ε < |x| � 1 of both arcs, Γ1 and Γ2, and will not affect the solution on the interior
subinterval |x| � 1− ε, i.e., on the actual arcs themselves.
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In other words, what we essentially do is enforce the boundary conditions (3.21)
on the extended intervals (3.29), while the differential equation (2.1a) is still enforced
on the original boundary Γ = Γ1 ∪ Γ2 through the discrete BEP (2.8). In doing
so, extension (3.29) keeps the original boundary data, and hence the definition of
the problem, unaffected. At the same time, the redundancy that we build into the
treatment of the boundary conditions by using the extensions allows us to circumvent
the difficulties in computing the derivatives of the Chebyshev basis functions near the
endpoints. The practical choice of the tolerance ε is discussed in section 4.1.

The only remaining question is how to actually obtain the extended function f̃ for
a given f . Recall that the behavior of the tails of f̃ (i.e., the part for which |x| > 1−ε)
will not affect the convergence of the series (3.31) to f(x) for x ∈ [−1+ε, 1−ε]. Thus
we are free to choose any smooth, bounded extension of f . In the case that we are given
an analytic formula for f(x), x ∈ [−1+ ε, 1− ε], which also defines a smooth function
on [−1, 1], we can simply use the same formula on the larger interval. Otherwise, we
can employ a polynomial extension of order J :

(3.32) f̃(x) =

⎧⎪⎪⎨⎪⎪⎩
f(x), x ∈ [−1 + ε, 1− ε],∑J

j=0
1
j!

djf(−1+ε)
dxj (x+ 1− ε)j , x < −1 + ε,∑J

j=0
1
j!

djf(1−ε)
dxj (x− 1 + ε)j , x > 1− ε.

Formula (3.32) guarantees that the extended function f̃ is smooth and hence bounded
on [−1, 1].

In sections 4.4 and 4.6, we compare the performance of the algorithm with and
without use of the extended Chebyshev intervals. Our computations convincingly
corroborate that the proposed approach completely eliminates the adverse numerical
effect of having large derivatives near the endpoints. Therefore, we did not feel it nec-
essary to look for any alternatives. Yet one may, of course, use other strategies as well.
For example, another well-known orthogonal system that guarantees rapid conver-
gence of the expansion for smooth nonperiodic functions is the Legendre polynomials
[20, Appendix B.1]. The behavior of the derivatives of the original Legendre polynomi-
als near the endpoints is similar to that of the Chebyshev polynomials. However, the
associated Legendre functions vanish near the endpoints along with a certain number
of derivatives [3, section 18.11]. Hence, they can potentially be used, although this
approach will require a further inquiry. An alternative approach is to use a mapping
which alleviates the denseness of the Chebyshev nodes near the endpoints; see [55].

3.7. Structure of the algorithm. From the discussion in sections 3.1 through
3.5 we see that the entire computational procedure can fundamentally be split into
two parts. The first part involves selecting the basis on the boundary Γ (see (3.8)
or (3.23)); extending the individual basis functions from Γ to γ with the help of the
operator Ex (see (3.1), (3.2)); applying the discrete projection (2.7) by solving the
AP (2.5); and eventually obtaining the linear system (3.12) based on the discrete BEP
(2.8). (The matrix Q is given by (3.13) or (3.24).) This part does not involve the
boundary condition (2.1b) in any way and hence does not change when this boundary
condition changes. In particular, one and the same system (3.12), (3.13) will work for
any boundary condition of type (3.14), whether it be a pure Dirichlet, pure Neumann,
or general Robin boundary condition with smooth α, β, and φ.

The second part of the algorithm accounts for the boundary conditions via the
supplemental equations (3.19) or (3.25). It is this part only that changes when the
boundary condition changes, while otherwise the algorithm stays intact. Of course, if
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the boundary condition involves a discontinuity (see section 3.5), and the boundary
is accordingly partitioned into segments, then the matrix Q of (3.24) also needs to be
recomputed when the partition Γ = Γ1 ∪ Γ2 changes, i.e., when the locations of the
discontinuities move. However, for a given fixed partition the corresponding system
(3.12), (3.24) will be appropriate for any boundary condition of type (3.21), i.e., any
combination of the Dirichlet, Neumann, and Robin boundary conditions.

A natural example where the foregoing split of the algorithm into two relatively
independent parts may be useful is electromagnetic scattering off conducting materi-
als coated with dielectrics. It is known that the dielectric coating on the surface of a
conductor can have a considerable effect on electromagnetic scattering, and even when
the shape of the scatterer stays the same and only the coating changes the radar cross
section can still vary substantially; see, e.g., [53]. In turn, various types of coating
(pure dielectric, lossy dielectric, dielectric with magnetic losses, etc.) can be modeled
by the Leontovich [27] or, equivalently, impedance [54, 50] boundary conditions. In
the framework of the second-order governing equations (Helmholtz type) those be-
come Robin boundary conditions. The proposed approach will therefore enable an
efficient numerical simulation of electromagnetic scattering and radar cross section for
a fixed conducting shape that may be fully or partially coated by different types of
dielectrics.

4. Numerical results.

4.1. Parameters of the computational setting. For all the test cases, the
boundary Γ is a circle of radius 1 centered at the origin, and the auxiliary domain is
a square of side length 2.2 also centered at the origin. The simulations are conducted
using the fourth-order accurate compact finite difference scheme (2.3) on a series of
Cartesian grids containing 64, 128, 256, 512, 1024, and 2048 cells uniformly spaced
in each direction. Scheme (2.3) is supplemented by the Sommerfeld-type boundary
conditions (2.5c)–(2.5d) at the left and right edges of the auxiliary square and a
Dirichlet condition (2.5b) at its top and bottom edges.

Following the approach developed in [35] (see also section 3.3), the number of
basis functions N used to expand ξξξΓ by formula (3.9) is chosen grid-independent.5

Specifically, it is taken as a number sufficiently large to represent the given boundary
functions α, β, and φ (see formulae (3.14) and (3.21)) to a prescribed tolerance, 10−10.
This boundary tolerance is selected a priori so that it would exceed any accuracy that
we expect to obtain on all grids. Given that the boundary coefficients and data
are (piecewise) smooth, the corresponding Fourier or Chebyshev expansions converge
fast (on each interval of smoothness), and the resulting number N appears relatively
small. Altogether, this is a robust and universal strategy that allows us to choose
the boundary representation once and for all and then control the final accuracy
exclusively by adjusting the grid size. Furthermore, keeping the same number of basis
functions for all grids is convenient for the analysis of the computational complexity,
as it allows for an unbiased measure of the scaling of the problem relative to the grid
size; see sections 4.2–4.4.

We realize that this strategy may still be excessive, because the boundary expan-
sion needs to be only as accurate as the finite difference scheme on a particular grid.

5While we always use one and the same notation N , it represents 2N + 1 functions for the
Fourier basis, e−iNθ , . . . , 1, . . . , eiNθ , and N functions for the Chebyshev basis, T0(x), . . . , TN−1(x).
Moreover, as ξξξΓ is a two-component vector function, we need a separate system of basis functions
for each component; see (3.9). This makes the overall dimension equal to 2(2N + 1) for the Fourier
basis and 2N for the Chebyshev basis.
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In other words, for coarser grids one can take fewer basis functions (3.8). Moreover,
taking too many basis functions on coarse grids may result in a loss of accuracy. In-
deed, if the dimension of the basis on the boundary is higher than the number of nodes
|γ|, then the least squares problems derived from (3.12) are no longer overdetermined.
We have observed this phenomenon in sections 4.2–4.4. Therefore, in section 4.5 we
demonstrate that reducing the number of basis functions on these coarse grids restores
the accuracy of the least squares solution and the expected fourth-order convergence
rate is achieved.

For the examples of sections 4.2–4.6, we take k = 10 in the Helmholtz equation
(2.1a) and consider a known smooth exact solution, u = eikx. Subsequently, the error
is computed in the maximum norm on the set of nodes N+ (see Figure 2.3), and the
convergence rate is determined by taking the binary logarithm of the ratio of the errors
on successively doubled grids. For the experiments of section 4.7 the exact solution is
not known, and the convergence is assessed by evaluating the maximum norm of the
difference between the numerical solutions obtained on pairs of consecutive grids.

For the examples of sections 4.3–4.7 that involve the Chebyshev basis, the circle
is decomposed into two arcs which meet, by design, at the points of discontinuity of
the Robin coefficients or at the point of discontinuity in the Dirichlet or Neumann
data (section 4.7). In doing so, the trace of the solution on each arc of the circle is
represented separately by a set of Chebyshev basis functions.6 To avoid computing the
derivatives of the Chebyshev functions near the endpoints, we implement a Chebyshev
basis on the extended interval, as described in section 3.6. In doing so, the “gap” ε
is estimated as follows. The “worst term” in the extension operator (3.1) applied
to a given a Chebyshev basis function on Γ will be that with the highest normal
derivative, because it translates into the highest tangential derivative according to
(3.6)–(3.7). The highest tangential derivative is of order four and it contains the
problematic term (1 − x2)7/2 in the denominator7 (see section 3.6). Given that the
machine precision is on the order of 10−16, we seek ε such that (1 − x2)7/2 � 10−10

when |x| > 1 − ε to provide a rough estimate. This yields ε > 0.0007, and thus
we have conservatively chosen ε = 0.001 for our computations. This ensures that
no calculations of the derivatives of the Chebyshev basis functions will occur within
the problematic region near the endpoints x = ±1. By comparing the results of
simulations in section 4.4 (Chebyshev basis on an extended interval with ε = 0.001)
with those in section 4.6 (regular Chebyshev system, i.e., ε = 0), we demonstrate
that the approach of section 3.6 indeed provides a very efficient remedy for the “near-
singular” behavior of the Chebyshev derivatives at the endpoints.

The computer implementation of the entire algorithm is done in MATLAB. To as-
sess the computational complexity, we measure the run time for different parts of the
code. The overall time is dominated by applying the projection operator (2.7) to the
extended basis functions to form the matrix Q of (3.13), since this requires the expen-
sive step of solving the discrete AP (2.5), i.e., inverting the finite difference operator
L(h). By representing L(h) as a matrix, this is accomplished using MATLAB’s built-in
sparse direct solver UMFPACK (see [12] and also http://www.suitesparse.com) that

6Those bases could have different dimensions. The larger of the two arcs may require more basis
functions than the smaller, but we have, for simplicity, used the same number of basis functions N
on each arc. In this case, the overall number of basis functions is 4N , i.e., 2N per one arc.

7Since Chebyshev functions are polynomials, neither they nor their derivatives can become sin-
gular. In other words, the apparent zero in the denominator is canceled by the same order of zero
in the numerator. However, this l’Hôpital-type indeterminacy makes the numerical computation of
the derivatives at the endpoints difficult.
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employs the LUPQR factorization. The factorization itself is performed only once
and then applied to multiple right-hand sides consisting of the extended basis func-
tions. Hence, the cost of building the matrix Q is split into two parts: the cost of LU
factorization and the cost of multiple backward substitutions.

Once the matrix Q has been formed, the next step is to take into account the
boundary condition via the supplemental equations (3.19) or (3.25) and solve the
resulting overdetermined linear system in the sense of the least squares. This is
done by means of the QR factorization, and we measure the corresponding CPU
times for various cases that we investigate. Finally, once all the coefficients of the
expansion (3.9) have been determined, one needs to solve the discrete AP (2.5) one
more time to obtain the solution PN+ξγ , where ξγ = ExξξξΓ is the reconstructed
density. This amounts to performing one additional backward substitution, as the
LUPQR factorization of the matrix L(h) stays the same. Altogether, the cost of QR,
as well as that of the final solution, is much smaller than the cost of building the
matrix Q . This implies that if Q is available, changing the boundary condition and
solving a new problem can be done very economically.

4.2. Smooth periodic Robin boundary condition via Fourier basis. Con-
sider the Robin boundary condition (3.14) with the smooth, periodic coefficients
α(θ) = ecos θ and β(θ) = esin θ. We “reverse engineer” the data φ(θ) for the Robin
condition (3.14) by evaluating the known exact solution u=eikx, k=10, and its nor-
mal derivative on the boundary. The results presented in Table 4.1 fully corroborate
the theoretical design rate of grid convergence for the proposed methodology (fourth-
order). We also see that the dominant part of the computational cost is indeed the
formation of the matrix Q of (3.13). In sections 4.3 and 4.4, we show how one can
efficiently solve a range of various boundary value problems using one and the same
matrix Q .

4.3. Mixed Dirichlet/Neumann boundary conditions using Chebyshev
basis. In this section, as well as in section 4.4, we consider the same partition of
the boundary into two arcs: Γ = R1 ∪ R2, where R1 = {0 � θ < 2π/3} and R2 =
{2π/3 � θ < 2π}. Following section 3.5, we assign a separate Chebyshev basis to
R1 and R2. The dimension of the basis is chosen the same for both arcs: N = 67.
The combination of the partition Γ = R1 ∪ R2 and the basis defines the matrix Q
for each grid (via the extension Ex of each basis function and the application of the
projection (2.7)). In Table 4.2, we present the CPU times needed to build this matrix
Q on every grid that we use. In doing so, we distinguish between the time for LUPQR
factorization (done once per grid) and the time for 4N backward substitutions (see
footnote 6).

We emphasize that one and the same matrix Q will be used to solve all boundary
value problems in this section, as well as in section 4.4. We also note that instead of

Table 4.1

Grid convergence and execution times for the smooth periodic Robin boundary condition (3.14).

N = 32 in formula (3.9), and ψ
(0)
n (θ) = ψ

(1)
n (θ) = einθ in formula (3.8).

Grid Error Conv. rate Build Q time QR time P
N+ ξγ time

64×64 9.44 · 10−3 - 0.66 0.095 0.0024
128×128 5.92 · 10−4 4.00 2.47 0.13 0.012
256×256 3.69 · 10−5 4.00 11.13 0.21 0.081
512×512 2.29 · 10−6 4.01 55.07 0.38 0.30

1024×1024 1.44 · 10−7 3.99 228.35 0.76 1.42
2048×2048 8.25 · 10−9 4.12 1193.07 2.52 6.68
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Table 4.2

Time to build the matrix Q of (3.13).

Grid LUPQR time 4N back solves time
64×64 0.06 1.16

128×128 0.27 4.28
256×256 1.59 20.38
512×512 8.17 91.03

1024×1024 46.5 1 471.11
2048×2048 1516.08 2563.69

Gaussian elimination, we could have used a more efficient direct solver for the AP,
based on the separation of variables and FFT. Nonetheless, we chose to stay with LU
decomposition because it permits an easy extension to variable coefficients.

Let us now specify a mix of the Dirichlet and Neumann conditions on separate
parts of the boundary Γ by choosing the Robin coefficients in formula (3.21) to be
either 1 or 0. Specifically, we let α(1)(θ) = 1 and β(1)(θ) = 0 for θ ∈ R1 and α

(2)(θ) = 0
and β(2)(θ) = 1 for θ ∈ R2. As in section 3.5, we reduce the general linear system
(3.25) to its simplified form (3.26)–(3.27). The exact solution is taken as u = eikx

with k = 10 and is used along with its normal derivate to supply the boundary data
φ(1)(θ) and φ(2)(θ). Table 4.3 shows the grid convergence results and CPU times for
QR and for the final solution. As the overall solution remains smooth, the method
yields fourth-order accuracy even though the boundary conditions are mixed.

Next, we change the boundary data φ(1)(θ) and φ(2)(θ) by choosing a different
exact solution: u = eiky with k = 10. The matrix Q remains unaffected, and the
corresponding convergence and timing results are presented in Table 4.4. By com-
paring the CPU times in Tables 4.3 and 4.4 with those in Table 4.2 we see that
once the matrix Q is available, changing the boundary condition and solving a new
boundary value problem becomes a relatively inexpensive task.

Table 4.3

Grid convergence and execution times for the mixed Dirichlet/Neumann boundary conditions

for u = eikx with k = 10. ψ
(0)
n = ψ

(1)
n = Tn in formula (3.8), and the dimension of the Chebyshev

basis on each arc is N = 67.

Grid Error Conv. rate QR time P
N+ξγ time

64×64 5.47 · 102 - 0.011 0.0030
128×128 3.52 · 10−1 10.60 0.017 0.013
256×256 1.61 · 10−5 14.41 0.035 0.065
512×512 8.10 · 10−7 4.32 0.070 0.32

1024×1024 5.26 · 10−8 3.95 0.17 1.44
2048×2048 3.05 · 10−9 4.11 0.46 7.43

Table 4.4

Grid convergence and execution times for the mixed Dirichlet/Neumann boundary conditions

for u = eiky with k = 10. ψ
(0)
n = ψ

(1)
n = Tn in formula (3.8), and the dimension of the Chebyshev

basis on each arc is N = 67.

Grid Error Conv. rate QR time P
N+ξγ time

64×64 2.26 · 103 - 0.011 0.0094
128×128 2.27 · 10−1 13.05 0.072 0.012
256×256 9.71 · 10−6 14.74 0.17 0.071
512×512 3.56 · 10−7 4.77 0.12 0.31

1024×1024 2.26 · 10−8 3.98 0.16 1.43
2048×2048 1.29 · 10−9 4.15 0.43 7.50
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4.4. Piecewise smooth Robin boundary condition via Chebyshev basis.
In this section, we continue to use the same pair of Chebyshev bases and the same
matrix Q as in Table 4.2 but apply these to the Robin boundary condition (3.21) with
piecewise smooth coefficients. First, we take α(1)(θ) = ecos θ, β(1)(θ) = arctan θ + 1
for θ ∈ R1, and α

(2)(θ) = e2 sin θ, β(2)(θ) = 1 for θ ∈ R2. It is easily verified that these
coefficients exhibit both jump discontinuities and discontinuities in the first derivative
at θ = 0 and θ = 2π/3. The boundary data φ(1)(θ) and φ(2)(θ) are again generated by
the smooth exact solution u = eikx with k = 10, and the linear system (3.12) for the
Chebyshev coefficients of u and ∂u

∂n is supplemented by (3.25). The data in Table 4.5
corroborate the fourth-order rate of grid convergence.

Again, as in section 4.3, changing the boundary condition does not require a re-
computation of Q and amounts to only doing another least squares solve and another
final solve; see Table 4.6. Note also that the QR times for the piecewise smooth Robin
cases (Tables 4.5 and 4.6) are longer than those for the mixed Dirichlet/Neumann cases
(Tables 4.3 and 4.4). This is because in the mixed Dirichlet/Neumann case we are
solving a reduced system (3.12), (3.26), (3.27), whereas in the piecewise Robin case
we are solving a full system (3.12) supplemented by (3.25), which implies a larger
dimension.

Altogether, we see that the method provides the design fourth-order accuracy for
all the test cases that we have investigated (Tables 4.3–4.6) and also that, once the
matrix Q has been precomputed (Table 4.2), taking a different boundary condition
from a rather broad class can be done at a low computational cost.

4.5. Reducing the number of basis functions for coarser grids. In this
example, we repeat the first case of section 4.4 with the same parameters except
that we alter the number of basis functions for each grid. This alleviates the loss

Table 4.5

Grid convergence and execution times for the piecewise smooth Robin boundary condition (3.21)
with α(1)(θ) = ecos θ, β(1)(θ) = arctan θ + 1 and α(2)(θ) = e2 sin θ, β(2)(θ) = 1. The exact solution

is u = eikx, k = 10. ψ
(0)
n = ψ

(1)
n = Tn in formula (3.8). The dimension of the Chebyshev basis on

each arc is N = 67.

Grid Error Conv. rate QR time P
N+ξγ time

64×64 2.63 · 103 - 0.49 0.0023
128×128 3.69 · 10−1 12.80 0.56 0.012
256×256 1.42 · 10−5 14.67 0.80 0.076
512×512 8.54 · 10−7 4.05 1.47 0.31

1024×1024 5.35 · 10−8 4.00 2.72 1.44
2048×2048 3.07 · 10−9 4.12 5.39 7.52

Table 4.6

Grid convergence and execution times for the piecewise smooth Robin boundary condition (3.21)
with α(1)(θ) = esin θ, β(1)(θ) = (θ + 3)2 and α(2)(θ) = log(θ + 3), β(2)(θ) =

√
θ + 3. The exact

solution is u = eikx, k = 10. ψ
(0)
n = ψ

(1)
n = Tn in formula (3.8). The dimension of the Chebyshev

basis on each arc is N = 67.

Grid Error Conv. rate QR time P
N+ξγ time

64×64 1.95 · 103 - 0.58 0.0024
128×128 4.65 · 10−1 12.03 0.68 0.012
256×256 1.81 · 10−5 14.64 0.89 0.076
512×512 1.05 · 10−6 4.11 1.58 0.31

1024×1024 6.58 · 10−8 4.00 2.85 1.44
2048×2048 3.07 · 10−9 4.15 5.57 7.29
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of accuracy on the coarser grids (see the errors for the 64×64 and 128×128 grids in
Tables 4.3–4.6) and also reduces the overall execution times. Recall that the loss of
accuracy on coarser grids occurs because the vertical dimension |γ| of the matrix Q
of (3.13) may be smaller than its horizontal dimension if too many basis functions
are taken. In fact, it may occur even in the case where the system is still formally
overdetermined, i.e., its vertical dimension exceeds the horizontal dimension, but only
slightly. A possible explanation is that when the grid γ is coarse, the feet of the
normals dropped from γ to Γ that are used for building the extension Ex by formulae
(3.1)–(3.2) do not provide a sufficient resolution for the oscillations of the Chebyshev
basis functions, which become increasingly oscillatory with N . This effectively implies
that two different continuous basis functions may become practically indistinguishable
when extended from Γ to γ, which renders the matrix Q almost rank-deficient. Every
time the grid is refined the vertical dimension |γ| roughly doubles, the resolution on
Γ increases accordingly, and the foregoing adverse phenomenon quickly vanishes. But
in the beginning of our sequence of grids, it manifests itself by a higher-than-expected
convergence rate as the matrix Q becomes “taller” but maintains the same width.

We alleviate this issue by choosing N as follows. From our previous computations
(Table 4.5) we know that the error for the final grid will be approximately 3× 10−9.
Hence, we replace our initial tolerance that N should approximate α, β, and φ within
10−10 by 3 × 10−9, and this determines the value of N for the finest grid. For this
problem this yields N=62 as the number of basis functions needed for the finest grid.
To maintain a fourth-order convergence rate, the ratio of the errors on successive grids
should be 16. Therefore, for each coarsening of the grid we multiply the tolerance
for that grid by 16. Using this rule of thumb, we estimate a smaller but sufficient
number of basis functions. In doing so, the matrix Q obtained in section 4.3 is not
recomputed; we simply drop the columns that correspond to the basis functions that
are not included in the reduced set. If, on the other hand, we were to adopt this
strategy of choosing N from the very beginning, then we would have attained an
additional time saving compared to Table 4.2. The results of the computations with
the reduced set of basis functions are presented in Table 4.7.

The errors for the coarse grids with 64×64 and 128×128 nodes in Table 4.7
are several orders of magnitude smaller than their counterparts in Table 4.5, with
the errors for the remaining finer grids being almost identical. Since there are no
other distinctions between this section and the first example of section 4.4, we have
demonstrated that taking unnecessarily many basis functions on Γ relative to the grid
dimension can cause a loss of accuracy and that grid refinement removes this loss of
accuracy. Note also that the QR times in Table 4.7 are somewhat smaller than those
in Table 4.5. This is because the horizontal dimensions of the corresponding matrices
Q are smaller.

Table 4.7

Grid convergence and execution times for the piecewise smooth Robin boundary condition (3.21)
of Table 4.5 with all the same parameters but fewer basis functions on coarser grids.

Grid N Error Conv. rate QR time P
N+ ξγ time

64×64 39 2.20 · 10−2 - 0.13 0.0032
128×128 44 2.17 · 10−4 6.66 0.21 0.013
256×256 49 1.31 · 10−5 4.06 0.40 0.066
512×512 54 7.59 · 10−7 4.10 0.84 0.30

1024×1024 58 5.19 · 10−8 3.87 2.06 1.41
2048×2048 62 3.10 · 10−9 4.06 4.88 7.12
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We emphasize that the approach for choosing N that we have used in this section
is somewhat artificial because it requires an a priori estimate of the error on the finest
grid. It, however, allows us to demonstrate that smaller dimensions of the basis can,
in principle, be chosen if necessary.

4.6. Loss of accuracy due to nontreatment of Chebyshev endpoints. In
section 3.6, we noted that the position of the grid nodes γ relative to the continuous
boundary Γ may require computing the Taylor extension (3.1) of the Chebyshev basis
functions very close to (or even precisely at) the Chebyshev endpoints, resulting in
a loss of accuracy. To demonstrate this phenomenon, as well as the effectiveness of
our method in eliminating it, we recompute the first example of section 4.4 without
the use of any technique to correct the poorly conditioned computation of Chebyshev
derivatives near the endpoints, allowing us to observe the disruption of convergence.
We again divide the circle into two arcs, R1 = [0, 2π/3) and R2 = [2π/3, 2π), and
set the same Robin boundary condition (3.21) with the coefficients α(1)(θ) = ecos θ,
β(1)(θ) = arctan(θ) + 1 for θ ∈ R1 and α(2)(θ) = e2 sin θ, β(2)(θ) = 1 for θ ∈ R2. The
boundary data φ(1)(θ) and φ(2)(θ) are still supplied from the exact solution u = eikx

with k = 10. The results are presented in Table 4.8.
Comparing the results in Table 4.8 to those in Table 4.5, we observe an immediate

decline in the convergence rate for all the grids from 256 × 256 on, culminating in
a complete loss of convergence for the finest grid. Since the example of section 4.4
has precisely the same parameters as those of the current example, except that in
section 4.4 we had used an extended interval for the Chebyshev basis, we conclude
that the approach of section 3.6 indeed removes the difficulties that would otherwise
arise due to computing the derivatives of the Chebyshev functions near the endpoints.

4.7. Boundary data that lead to solutions with singularities. In each of
the following experiments, we use the same partition of the circle as before: R1 =
[0, 2π/3) and R2 = [2π/3, 2π). However, we no longer consider a given smooth exact
solution. We rather specify the boundary data independently on each of the two arcs,
R1 or R2, allowing for discontinuities at the points θ = 0 and θ = 2π/3. This gives rise
to near-boundary singularities in the solution. We also choose k = 5 in the Helmholtz
equation (2.1a).

On each of the two arcs, R1 or R2, we set either a Dirichlet or a Neumann
boundary condition. The data we specify on R2 always correspond to a plane wave
with k = 5 traveling in the x direction. For this wave, u(x, y) = eikx, the Dirichlet
data are u = eikr cos θ and the Neumann data are ∂u

∂n = ik cos θeikr cos θ, where r=1
because Γ is a circle of radius 1. The data on R1 are intentionally specified with
a mismatch, and we consider mismatches of three different types: in the amplitude

Table 4.8

Computation of the same case as that in Table 4.5 but with no special treatment of the Chebyshev

endpoints. ψ
(0)
n = ψ

(1)
n = Tn in formula (3.8), and the dimension of the Chebyshev basis on each

arc is N = 67.

Grid Error Conv. rate

64×64 2.53 · 103 -
128×128 3.49 · 10−1 12.82
256×256 2.90 · 10−4 10.23
512×512 1.37 · 10−4 1.08

1024×1024 9.73 · 10−6 3.82
2048×2048 2.56 · 10−5 -1.39
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of the wave, in its traveling direction, and in its phase. In the case of a mismatch
in the amplitude, the data specified on R1 correspond to the wave u(x, y) = 2eikx,
which yields u= 2eikr cos θ and ∂u

∂n = 2ik cos θeikr cos θ on Γ in the Dirichlet and the
Neumann case, respectively. In the case of a mismatch in the traveling direction,
we provide two examples: one with the wave that travels in the y direction and the
other with the wave that travels at an angle of 1 radian with respect to the positive x
axis. For the wave traveling in the y direction, u(x, y) = eiky, on the arc R1 we have
u = eikr sin θ and ∂u

∂n = ik sin θeikr sin θ, r = 1, for the Dirichlet and Neumann data,

respectively. For the wave traveling at an angle of 1 radian, we have u = eikr cos(θ+1)

and ∂u
∂n = ik cos(θ+1)eikr cos(θ+1). Finally, for the experiments in which the waves are

out of phase, we have chosen a phase shift of 0.7 radians, yielding u = ei(kr cos(θ)+0.7)

and ∂u
∂n = ik cos(θ)ei(kr cos(θ)+0.7) on R1. The numerical results for each type of the

mismatch subject to different boundary conditions (Dirichlet, Neumann, and mixed)
are summarized in Tables 4.9, 4.10, 4.11, and 4.12. For comparison, we have the
continuous case in Table 4.13, i.e., the case with no mismatch, in which the plane
wave u(x, y) = eikx with k = 5 supplies the data for both R1 and R2.

Table 4.9

Grid convergence for boundary data with amplitude mismatch and either Dirichlet, Neumann,
or mixed boundary conditions.

Dirichlet on Neumann on Dirichlet on R1

R1 and R2 R1 and R2 Neumann on R2

Grid Error Rate Error Rate Error Rate

128×128 2.60 · 10−2 - 2.64 · 10−2 - 1.88 · 10−2 -
256×256 1.35 · 10−2 0.95 1.61 · 10−2 0.71 1.08 · 10−2 0.80
512×512 9.91 · 10−3 0.44 1.00 · 10−2 0.69 5.67 · 10−3 0.93

1024×1024 4.80 · 10−3 1.05 1.73 · 10−3 2.53 2.84 · 10−3 1.00
2048×2048 2.87 · 10−3 0.74 3.62 · 10−3 -1.06 1.68 · 10−3 0.75

Table 4.10

Grid convergence for boundary data with direction mismatch (plane wave traveling in the y
direction) and either Dirichlet, Neumann, or mixed boundary conditions.

Dirichlet on Neumann on Dirichlet on R1

R1 and R2 R1 and R2 Neumann on R2

Grid Error Rate Error Rate Error Rate

128×128 1.42 · 10−2 - 6.23 · 10−2 - 2.32 · 10−2 -
256×256 1.67 · 10−2 -0.24 2.85 · 10−2 1.13 1.44 · 10−2 0.69
512×512 1.04 · 10−2 0.69 1.67 · 10−2 0.77 6.11 · 10−3 1.24

1024×1024 5.33 · 10−3 0.96 4.68 · 10−3 1.84 6.08 · 10−3 0.01
2048×2048 2.86 · 10−3 0.90 6.92 · 10−3 -0.56 2.70 · 10−3 1.17

Table 4.11

Grid convergence for boundary data with direction mismatch (plane wave traveling at 1 ra-
dian with respect to the positive x direction) and either Dirichlet, Neumann, or mixed boundary
conditions.

Dirichlet on Neumann on Dirichlet on R1

R1 and R2 R1 and R2 Neumann on R2

Grid Error Rate Error Rate Error Rate

128×128 4.86 · 10−2 - 8.22 · 10−2 - 2.94 · 10−2 -
256×256 2.49 · 10−2 0.96 2.70 · 10−2 1.61 1.75 · 10−2 0.75
512×512 1.90 · 10−2 0.39 1.49 · 10−2 0.86 8.25 · 10−3 1.08

1024×1024 9.25 · 10−3 1.04 7.05 · 10−3 1.08 6.61 · 10−3 0.32
2048×2048 5.17 · 10−3 0.84 7.81 · 10−3 -0.15 3.08 · 10−3 1.10



A2286 D. S. BRITT, S. V. TSYNKOV, AND E. TURKEL

Table 4.12

Grid convergence for boundary data with phase mismatch (waves out of phase by 0.7 radians)
and either Dirichlet, Neumann, or mixed boundary conditions.

Dirichlet on Neumann on Dirichlet on R1

R1 and R2 R1 and R2 Neumann on R2

Grid Error Rate Error Rate Error Rate

128×128 1.78 · 10−2 - 1.81 · 10−2 - 1.27 · 10−2 -
256×256 9.24 · 10−3 0.95 1.10 · 10−2 0.71 7.41 · 10−3 0.78
512×512 6.80 · 10−3 0.44 6.86 · 10−3 0.69 3.89 · 10−3 0.93

1024×1024 3.29 · 10−3 1.05 1.19 · 10−3 2.53 1.94 · 10−3 1.00
2048×2048 1.97 · 10−3 0.74 2.48 · 10−3 -1.06 1.15 · 10−3 0.75

Table 4.13

Grid convergence for boundary data with no mismatch and either Dirichlet, Neumann, or mixed
boundary conditions.

Dirichlet on Neumann on Dirichlet on R1

R1 and R2 R1 and R2 Neumann on R2

Grid Error Rate Error Rate Error Rate

128 × 128 6.62 · 10−5 - 1.35 · 10−4 - 6.17 · 10−5 -
256 × 256 4.18 · 10−6 3.99 1.66 · 10−5 3.02 4.02 · 10−6 3.94
512 × 512 2.62 · 10−7 3.99 1.14 · 10−7 7.19 2.53 · 10−7 3.99

1024 × 1024 1.65 · 10−8 3.99 7.10 · 10−9 4.00 1.57 · 10−8 4.01
2048 × 2048 1.30 · 10−9 3.66 5.64 · 10−10 3.65 1.24 · 10−9 3.66

As the exact solutions to these problems (except the formulation with no mis-
match) are not available, we cannot evaluate the error by comparing the numerical
solution to the actual solution on the grid. Instead, we introduce a grid-based metric,
which compares the numerical solutions on successive grids that have common nodes.
Specifically, we structure our Cartesian grids so that each refinement retains all the
nodes of the previous grid, and then compute the maximum norm of the difference
between the two successive solutions on the nodes of the coarser grid. Since this
measure involves a pair of grids, Tables 4.9–4.13 display the finer of the pair for each
resulting error (i.e., the coarsest grid on which we compute is 64× 64). Additionally,
we found that the error spikes at the nodes of the discrete boundary γ which are
closest to the discontinuities at θ = 2π/3 and θ = 0 and that the maximum norm
when these points are included does not exhibit significant convergence. Therefore,
as an additional modification, we compute the maximum error strictly on the interior
of the disk or, more precisely, inside the circle of radius 0.8. We also note that chang-
ing the maximum norm to l2 norm makes no substantial difference in the observed
convergence.

From Tables 4.9–4.13 we see that the singularities substantially slow the con-
vergence. In all the cases with mismatches, the rate of grid convergence is at most
first-order. This behavior is expected though, because the scheme essentially loses its
consistency near the singularity.

5. Conclusions. We have investigated theoretically and demonstrated exper-
imentally the capability of the method of difference potentials to handle complex
boundary conditions, such as variable coefficient Robin, mixed, and discontinuous.
The governing Helmholtz equation was approximated on a regular Cartesian grid by
an economical fourth-order accurate compact finite difference scheme. For a number
of test cases that involve a nonconforming circular boundary and various bound-
ary conditions, we have been able to recover the design fourth-order accuracy of the



HIGH-ORDER METHOD FOR THE HELMHOLTZ EQUATION A2287

scheme provided that the overall solution was sufficiently smooth. The accuracy was
not adversely affected by either staircasing [9, 22] or the nonstandard nature of the
boundary conditions. When the overall solution is not smooth and has a singularity
at the location where the coefficients and/or data in the boundary conditions are
discontinuous, then the convergence of the method slows down, as expected, because
the finite difference scheme loses its consistency.

The approach that we use to reduce the original problem from its domain to the
boundary is based on Calderon’s operators. It automatically guarantees the well-
posedness of the resulting boundary formulation as long as the original problem is
well-posed, regardless of the type of the boundary condition. Moreover, it is very
important that when changing the boundary condition only a particular component
of the overall numerical algorithm changes, whereas most of it remains unaffected
(see section 3.7). Accordingly, the computational cost associated with solving a new
problem for a new boundary condition is small. In contrast, a change of the boundary
condition in the classical method of boundary integral equations often requires a com-
plete change of the algorithm. We note that there is another group of techniques based
on finite differences/volumes as opposed to integral equations and designed to handle
nonaligned boundaries/interfaces: immersed boundary [38], immersed interface [29],
ghost fluid [16, 30], and embedded boundary [23, 11] methods. To the best of our
knowledge, there are no reported uses in the literature of those methods for anything
but simple Dirichlet, Neumann, or interface conditions (continuity of the solution and
its normal flux), changing the boundary condition requires major changes to the algo-
rithm [11], and extension to higher than second-order accuracy is not straightforward.

If the boundary condition involves products of functions, such as the general
variable coefficient Robin boundary condition (3.14), then the method developed in
this paper relies on expressing the Fourier coefficients of a product as a convolution
of the coefficients of individual factors and on a similar relation for the Chebyshev
coefficients. In fact, the proposed method will work for any system of basis functions
on the boundary Γ for which a relation of this type can be obtained. An alternative to
convolution-type formulae may be provided by collocation techniques; see, e.g., [3, 20].

Partitioning the boundary into segments helps for several difficulties and not
only for handling sophisticated boundary conditions, such as those in sections 4.3 and
4.4. It is also useful when, for example, the resolution at the boundary needs to be
increased locally, for example, in those parts of Γ that have high curvature. It may also
help when the boundary is defined as a composition of segments with an independent
parametrization rather than as one curve with a continuous parametrization. In
particular, in future work we will investigate the method for domains with corners.

An immediate logical extension of the current work is to modify the proposed
methodology so that it would provide a faster convergence rate in the case of solutions
with singularities. As we have noted, the near-boundary singularities of the solution
due to discontinuities in the boundary conditions result in a substantial slowdown
of convergence. The solution may also develop a singularity due to the geometric
irregularities of the boundary itself, e.g., corners. In many cases, though, the type of
the singularity is known, at least to the leading order; see, e.g., [37, 60, 28, 61, 17, 41,
42, 10, 32, 34, 33], as well as the monograph [18]. Then, the singular component can
be subtracted, and the problem can be solved with respect to the remaining part of
the solution. The latter should have higher regularity and thus enable an improved
convergence of the numerical approximation. Combined with the method of difference
potentials, this approach was previously implemented for the Laplace equation in [25]
and the Chaplygin equation in [24].
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A more comprehensive extension will be to three dimensions (3D), which will
not only, and even not necessarily, involve the treatment of nonstandard boundary
conditions in the initial stages. Rather, it will require building and testing all the basic
components of an algorithm based on the method of difference potentials. Previously,
the method of difference potentials was used in 3D to construct the artificial boundary
conditions for fluid flow computations [56]. While all the key ideas of the method
remain the same, its implementation for solving 3D boundary value problems will
imply a number of substantial changes throughout the entire procedure.

Many issues that require special attention in 3D are related to the geometry.
For example, it is a more challenging problem in 3D to determine whether a given
point (i.e., a grid node) lies inside or outside a given closed surface than an analogous
2D problem of determining whether a given point is inside or outside a given closed
curve. An efficient solution to this problem determines the efficiency of partitioning
of the set M0 into M

+ and M
−; see section 2.3 and Figure 2.3. Finding a conve-

nient representation for the surface Γ itself may not be as easy (unless it is a simple
analytical shape, e.g., a sphere) and may require using multiple patches, such as in
[7, 6]. Furthermore, choosing a good basis (3.8) on the two-dimensional surface Γ that
would enable an efficient (i.e., low-dimensional) representation (3.9) may be more dif-
ficult than constructing a basis on the one-dimensional curve Γ. Construction of the
extension operator Ex (see section 3.1) is likely to require special surface-oriented
coordinates [21]. Finally, unlike in 2D, preconditioned iterative solvers provide the
only realistic venue for solving the AP in the case of variable coefficients. An iterative
solver that can be easily parallelized and that has already been applied successfully
to the Helmholtz equation discretized by compact high-order schemes is described in
[58], and a class of efficient complex-shifted Helmholtz preconditioners that can be in-
verted by multigrid is described in [15, 14]. For constant coefficient interior problems,
solution by the separation of variables method will remain the most efficient approach
in 3D. However, for exterior problems one may use convolution with the discrete fun-
damental solution (see [26, Appendix C]), accelerated by the fast multipole method.
The advantage of this approach is that it automatically takes into account the proper
behavior of the solution in the far field.

Achieving a higher than fourth-order accuracy may be another objective to pur-
sue. In [35], we have reported some preliminary computations for the constant co-
efficient Helmholtz equation using a sixth-order accurate compact scheme of [52]. A
more advanced sixth-order scheme that can handle variable coefficients has been in-
troduced and tested in [58]. Increasing the order of accuracy even further naturally
leads to a question of whether a spectral approximation can be used. On one hand,
the AP is always formulated on a simple domain, such as a rectangle. This is done
primarily for making its numerical solution easy and efficient, and of course, such an
AP can be as easily solved by a spectral method as by high-order finite differences.
On the other hand, in the core of the method of difference potentials is the reduction
of the governing equation from the domain to the boundary in the form of the BEP
(2.8). This requires that the equation be approximated on a local stencil, so that the
grid boundary γ is located near Γ. For spectral methods this is not intuitively pos-
sible because formally one can interpret a spectral discretization as having a stencil
that occupies the entire domain. Altogether, we leave the question of further im-
proving the approximation accuracy of the method of difference potentials for future
investigation.

Another issue worth investigating is the relationship between boundary equa-
tions with projections and Schur complements. In the current version of the method
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of difference potentials the unknowns that we are solving for are not associated with

the discretization grid at all. They are rather the coefficients c =
[
c
(0)
−N , . . . , c

(0)
N ,

c
(1)
−N , . . . , c

(1)
N

]T
of the expansion (3.9) of the trace of the solution ξξξΓ at the continuous

boundary Γ. Therefore, the resulting linear system (3.12), along with any supple-
mental equations that account for the boundary conditions, e.g., (3.19), may not be
obtained directly by elimination from the system of difference equations that is for-
mulated on the grid N0. On the other hand, there are other versions of the method of
difference potentials [45], in particular, a purely discrete one, for which the unknowns
are components of the discrete trace ξγ . Then, the question arises of whether the BEP
(2.8) can be obtained with the help of a Schur complement from the finite difference
AP (2.5). The first intuitive answer to this question is that there is no direct equiva-
lence, simply because the AP (2.5) has a unique solution, whereas the homogeneous
BEP (2.8) has multiple solutions. Nonetheless, there may be deeper similarities that
will be interesting to explore.

Appendix A. Chebyshev coefficients for the product of two functions.
The expansion of a smooth bounded function f(x), x ∈ [−1, 1], in the Chebyshev
basis {Tn(x)}∞n=0 is given by

(A.1) f(x) =

∞∑
n=0

f̂nTn(x), where f̂n =

{
1
2

∫ 1
−1 ω(x)f(x)Tn(x)dx, n = 0,∫ 1

−1 ω(x)f(x)Tn(x)dx, n > 0.

Let f(x) and g(x) be smooth on x ∈ [−1, 1]. Then, according to the definition of the
Chebyshev coefficients (see (A.1)), we have

(A.2a)

(̂fg)0 =
1

2

∫ 1

−1

ω(x)f(x)g(x)T0(x)dx =
1

2

∫ 1

−1

ω(x)f(x)

[ ∞∑
m=0

ĝmTm

]
dx

=
1

2

∞∑
m=0

ĝm

∫ 1

−1

ω(x)f(x)Tm(x)dx =
1

2

(
ĝ0(2f̂0) +

∞∑
m=1

ĝmf̂m

)

= ĝ0f̂0 +
1

2

∞∑
m=1

ĝmf̂m.

For n > 0, we take into account that

Tn(x)Tm(x) =

{
1
2 (Tm+n(x) + Tm−n(x)), m ≥ n,
1
2 (Tm+n(x) + Tn−m(x)), m < n,

and using (A.1) we obtain

(̂fg)n =

∫ 1

−1

ω(x)f(x)g(x)Tn(x)dx =

∫ 1

−1

ω(x)f(x)

[ ∞∑
m=0

ĝmTm

]
Tn(x)dx

(A.2b)

=
∞∑

m=0

ĝm

∫ 1

−1

ω(x)f(x)Tm(x)Tn(x)dx

=

n−1∑
m=0

ĝm · 1
2

[(∫ 1

−1

ω(x)f(x)Tm+n(x)dx

)
+

(∫ 1

−1

ω(x)f(x)Tn−m(x)dx

)]
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+

∞∑
m=n

ĝm · 1
2

[(∫ 1

−1

ω(x)f(x)Tm+n(x)dx

)
+

(∫ 1

−1

ω(x)f(x)Tm−n(x)dx

)]

=
1

2

(
n−1∑
m=0

ĝm

(
f̂m+n + f̂n−m

)
+ ĝn

(
f̂2n + 2f̂0

)
+

∞∑
m=n+1

ĝm

(
f̂m+n + f̂m−n

))
.

We expect formula (A.2b) to be symmetric with respect to f and g. While this is
not immediate in the formula itself, it can easily be shown. To see the symmetry of
(A.2b) with respect to f and g, first rearrange the summations by the f̂ subscripts
(i.e., one summation for m + n terms, one for n − m, and one for m − n). Then,
after appropriate substitutions in the summation indices (respectively, j = m + n,
j = n−m, and j = m− n), the form of (A.2b) with interchanged g and f terms can
be obtained by regrouping the summation terms.

Acknowledgment. We would like to thank two anonymous referees for their
most helpful comments.

REFERENCES
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[34] L. Marin, D. Lesnic, and V. Mantič, Treatment of singularities in Helmholtz-type equations
using the boundary element method, J. Sound Vibration, 278 (2004), pp. 39–62.

[35] M. Medvinsky, S. Tsynkov, and E. Turkel, The method of difference potentials for
the Helmholtz equation using compact high order schemes, J. Sci. Comput., 53 (2012),
pp. 150–193.

[36] M. Medvinsky, S. Tsynkov, and E. Turkel, High order numerical simulation of the trans-
mission and scattering of waves using the method of difference potentials, J. Comput.
Phys., 243 (2013), pp. 305–322.

[37] F. Oberhettinger, Diffraction of waves by a wedge, Comm. Pure Appl. Math., 7 (1954),
pp. 551–563.

[38] C. S. Peskin, The immersed boundary method, Acta Numer., 11 (2002), pp. 479–517.
[39] A. A. Reznik, Approximation of surface potentials of elliptic operators by difference potentials,

Dokl. Akad. Nauk SSSR, 263 (1982), pp. 1318–1321.
[40] A. A. Reznik, Approximation of the Surface Potentials of Elliptic Operators by Difference

Potentials and Solution of Boundary-Value Problems (in Russian), Ph.D. thesis, Moscow
Institute for Physics and Technology, Moscow, USSR, 1983.

[41] R. J. Riddell, Jr., Boundary-distribution solution of the Helmholtz equation for a region with
corners, J. Comput. Phys., 31 (1979), pp. 21–41.

[42] R. J. Riddell, Jr., Numerical solution of the Helmholtz equation for two-dimensional polyg-
onal regions, J. Comput. Phys., 31 (1979), pp. 42–59.

[43] V. S. Ryaben’kii, Boundary equations with projections, Russian Math. Surveys, 40 (1985),
pp. 147–183.



A2292 D. S. BRITT, S. V. TSYNKOV, AND E. TURKEL

[44] V. S. Ryaben’kii, Difference potentials method and its applications, Math. Nachr., 177 (1996),
pp. 251–264.

[45] V. S. Ryaben’kii, Method of Difference Potentials and Its Applications, Springer Ser. Comput.
Math. 30, Springer-Verlag, Berlin, 2002.

[46] V. S. Ryaben’kii, On the method of difference potentials, J. Sci. Comput., 28 (2006),
pp. 467–478.

[47] V. S. Ryaben’kii, Difference potentials analogous to Cauchy integrals, Russian Math. Surveys,
67 (2012), pp. 541–567.

[48] V. S. Ryaben’kii and S. V. Tsynkov, A Theoretical Introduction to Numerical Analysis,
Chapman & Hall/CRC, Boca Raton, FL, 2007.

[49] R. T. Seeley, Singular integrals and boundary value problems, Amer. J. Math., 88 (1966),
pp. 781–809.

[50] T. B. A. Senior and John L. Volakis, Approximate Boundary Conditions in Electromagnet-
ics, IEEE Electromagnetic Waves Series 41, IEEE, London, 1995.

[51] I. Singer and E. Turkel, High-order finite difference methods for the Helmholtz equation,
Comput. Methods Appl. Mech. Engrg., 163 (1998), pp. 343–358.

[52] I. Singer and E. Turkel, Sixth-order accurate finite difference schemes for the Helmholtz
equation, J. Comput. Acoust., 14 (2006), pp. 339–351.

[53] H. C. Strifors and G. C. Gaunaurd, Scattering of electromagnetic pulses by simple-shaped
targets with radar cross section modified by a dielectric coating, IEEE Trans. Antennas
and Propagation, 46 (1998), pp. 1252–1262.

[54] H. H. Syed and J. L. Volakis, Electromagnetic Scattering by Coated Convex Surfaces
and Wedges Simulated by Approximate Boundary Conditions, Contractor report 190540,
NASA, 1992.

[55] H. Tal-Ezer, Non-periodic trigonometric approximation, J. Sci. Comput., submitted.
[56] S. V. Tsynkov, External boundary conditions for three-dimensional problems of computational

aerodynamics, SIAM J. Sci. Comput., 21 (1999), pp. 166–206.
[57] S. V. Tsynkov, On the definition of surface potentials for finite-difference operators, J. Sci.

Comput., 18 (2003), pp. 155–189.
[58] E. Turkel, D. Gordon, R. Gordon, and S. Tsynkov, Compact 2D and 3D sixth order

schemes for the Helmholtz equation with variable wave number, J. Comput. Phys., 232
(2013), pp. 272–287.

[59] S. V. Utyuzhnikov, Generalized Calderón-Ryaben’kii’s potentials, IMA J. Appl. Math., 74
(2009), pp. 128–148.

[60] W. Wasow, Asymptotic development of the solution of Dirichlet’s problem at analytic corners,
Duke Math. J., 24 (1957), pp. 47–56.

[61] N. M. Wigley, Asymptotic expansions at a corner of solutions of mixed boundary value prob-
lems, J. Math. Mech., 13 (1964), pp. 549–576.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


