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Abstract
We consider problems that involve the propagation of

waves over large regions of space with smooth, but not
necessarily constant, material characteristics, separated
by interfaces of arbitrary shape. The external bound-
aries can also be arbitrarily shaped. We present a numeri-
cal methodology for solving such problems that provides
high order accuracy. It is based on Calderon’s operators
and the method of difference potentials and overcomes
the difficulties inherent in more traditional approaches.

Introduction
We consider the numerical solution of the Helmholtz

equation for the domains where the boundaries and inter-
faces may not necessarily conform to the mesh. Examples
include scattering about complex shapes and bodies with
multiple layers or several media. The general formulation
involves a geometrically large region of space separated
by several arbitrarily shaped interfaces and truncated with
an arbitrarily shaped external boundary. The material
properties are assumed smooth between the interfaces,
whereas at the interfaces they may undergo jumps. Such
problems occur frequently in practice in both two and
three space dimensions. Due to dispersion and pollu-
tion, it is strongly desirable that higher order methods be
used to reduce the errors, especially for high frequencies.
However, the existence of interfaces usually degrades the
accuracy of the scheme. Note that smooth, but not con-
stant, material characteristics lead to variable coefficient
extensions to the Helmholtz equation either in the wave
number or else within the Laplacian type portion. These
correspond to various effects of non-homogeneous media.

We first briefly review the existing methods. Finite dif-
ferences lead to highly efficient algorithms for smooth
solutions on regular grids. It is possible to construct
a fourth order accurate approximation to the general-
ized Helmholtz equation with variable coefficients using a
compact 3×3 stencil in two dimension and only the nearest
27 points in three dimensions. This implies that we have
a stencil with the same domain of influence as the dif-
ferential equation, and no special difficulties occur near

boundaries that match the coordinate system. One can
treat a variety of boundary conditions including those of
the Dirichlet, Neumann and Robin type while maintain-
ing the higher order accuracy. Furthermore, the expres-
sions for the matrix entries are relatively simple, leading
to a very efficient code. The main difficulties occur for
curved shapes and low regularity of solutions.

Another volumetric approach is the finite element
method (FEM) and its various extensions (e.g., DEM,
DG) which may include wave-like solutions within the
basis. This approach is designed to address low regularity
and complex geometries. In this family of schemes high
order accuracy requires extra degrees of freedom which
entails additional computational costs. These extra de-
grees include internal points within the local cell and also
a larger stencil depending on the details of the FEM.

For both finite difference and finite element methods
a serious difficulty is the pollution error which requires
a mesh density that grows faster than linear as the fre-
quency increases so that the points-per-wavelength does
not remain constant. This is partially alleviated by includ-
ing wave-like elements within the technique, and also by
increasing the order of accuracy of the scheme. In doing
so, finite differences have the advantage that the stencil
size does not increase for a compact fourth order accurate
method even in the presence of variable coefficients.

Moreover, in all volumetric approaches for external do-
mains one needs to approximate the Sommerfeld radia-
tion condition in order to maintain a well-posed and ac-
curate solution. Of course, the accuracy of the numeri-
cal approximation to the Sommerfeld condition needs to
match the accuracy of the interior scheme.

The second approach for linear boundary value prob-
lems is to reduce them to integral equations with respect
to equivalent boundary sources. In this case there is no
limitations on the shape of the boundary. Furthermore,
the correct far field behavior is automatically accounted
for by the correct choice of the Green’s function. One dis-
advantage of this approach is its relatively narrow range
of allowable boundary conditions. It also introduces sin-
gular integral kernels, which can be a serious issue in



practice. These two disadvantages are hard to overcome.
In general, the approach is limited to constant coefficients
(i.e., to homogeneous media). For variable coefficients
one needs to numerically construct the Green’s function
appropriate to the specific equation being solved, which
is very expensive. Finally, the integral approach requires
the inversion of a dense matrix over the boundary, which
can be alleviated though by fast multipole methods.

In our new approach we use Calderon’s operators that
combine the strong points of both volumetric and bound-
ary methods yet are free from their shortcomings. The
general philosophy applies to wave propagation, heat
transfer, linear elasticity, electro- and magnetostatics,
Stokes flows, etc. In the current study, we shall concen-
trate on acoustic waves in the frequency domain.

Objectives of the current work
Our main goal is to construct a high order method for

problems with solutions that are predominantly smooth
but contain interfaces of a general, yet also smooth, shape.
The method should match the geometric flexibility of
boundary integral methods, but without singular integrals,
and while not being limited to constant coefficients.
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Figure 1: Schematic.

The new technique will use only simple structured
grids, e.g., Cartesian or polar. In the regions of smooth-
ness, we employ high order compact schemes [1, 2] on
such grids. These schemes are very economical and avoid
the redundancy of high order FEM and discontinuous en-
richment methods (which automatically allow for irregu-
larities anywhere). The boundaries and interfaces that are
not aligned with the grid will be treated by Calderon’s op-
erators and the method of difference potentials [3]. This
involves no loss of accuracy for arbitrarily shaped bound-
aries. Unlike finite elements, the approximating space is
very narrow, yielding highly efficient methods.

The use of Calderon’s operators provides maximum
generality for treating the boundary conditions. The
boundary representations inherit the accuracy of the core
scheme, and high order accuracy is readily achievable for
non-conforming boundaries. Hence, no adverse effects

due to staircasing occur on regular structured grids with
curved boundaries. Variable coefficients present no diffi-
culties. There is no need to consider integral equations of
the first or second kind, and no numerical approximation
of singular integrals is required. Perhaps most important,
the procedure is automatic. The discrete equations are
fully characterized in algorithmic terms. It also possi-
ble to prove that the equivalent boundary problem that
involves the Calderon projection is always well-posed.
The extension from internal domains to problems on un-
bounded domains can be handled in a natural way.

Continuous formulation
We first describe the method for the continuous prob-

lem and then extend it to the discrete formulation.
Consider a homogeneous second order PDE Lu = 0

(e.g., the Helmholtz equation) on the domain Ω ⊂ Rn,
Γ = ∂Ω, with G being the fundamental solution. A
generalized Calderon’s potential on Ω with vector density
ξΓ ≡ (ξ0, ξ1)|Γ is given by [3–5]

PΩξΓ(x )=

∫
Γ

(
ξ0(y)

∂G

∂n
(x−y)−ξ1(y)G(x−y)

)
dsy .

If ξΓ =Tr u ≡
(
u, ∂u∂n

)∣∣
Γ

, this expression reduces to the
classical Green’s formula for x ∈ Ω.

The Calderon projection is defined as the trace of the
potential at the boundary: PΓξΓ = Tr PΩξΓ. Its key
property is that ξΓ satisfies the boundary equation with
projection (BEP): PΓξΓ = ξΓ iff ∃u in Ω, Lu= 0 and
Tru=ξΓ.

Let w(x ) be an auxiliary smooth function such that
Trw = ξΓ, then for x ∈ Ω we have:

w(x ) =

∫
Ω
GLwdy +

∫
Γ

(
w
∂G

∂n
− ∂w

∂n
G

)
dsy .

Consequently, PΩξΓ(x ) = w(x )−
∫

Ω
GLwdy , x ∈ Ω.

Note that this equivalent definition of PΩ no longer con-
tains surface integrals. In addition, the potential appears
insensitive to the choice of w.

For variable coefficients, we extend this by the fol-

lowing argument. Let g =

{
Lw, x ∈ Ω,

0, x 6∈ Ω.
. Then,∫

ΩGLwdy =
∫
Ggdy ≡ Gg is a solution to Lv = g,

where G denotes Green’s operator. Hence,

PΩξΓ = w −Gg ≡ w −G
(
Lw
∣∣
Ω

)
, x ∈ Ω.

When L is a more general operator assume there is a
unique solution in Ω0 ⊃ Ω (subject to some BC at ∂Ω0):



v = Gg. Then Calderon’s potential is given by PΩξΓ =
w −Gg, and the projection is PΓξΓ = TrPΩξΓ. It has
the same key property: PΓξΓ = ξΓ iff ∃u : ξΓ = Tru
and Lu=0 in Ω.

Solving equation Lv = g on Ω0 is referred to as the
auxiliary problem (AP). There is flexibility in choosing
the AP, which implies flexibility in computing PΓ (e.g.,
there may be no convolutions at all). Note that regard-
less of the specific AP, the range ImPΓ stays the same.
In other words, changing the AP means changing the pro-
jection “angle” onto the same manifold.

For the inhomogeneous equation Lu=f in Ω, the BEP
also becomes inhomogeneous: PΓξΓ + TrGf = ξΓ.
If a given ξΓ satisfies the BEP, then the corresponding
solution is given by the generalized Green’s formula:
u=PΩξΓ +Gf . We emphasize that all these constructs,
and foremost, the equivalence of a PDE in Ω and the BEP
on Γ, holds without specifying the boundary conditions.

Given a boundary condition on Γ: lΓu = φ, it is re-
cast as lΓ (PΩξΓ+Gf) = φ, and this equation is solved
along with the corresponding BEP only on Γ. This
provides a universal approach to accounting for gen-
eral boundary conditions (rather than only the simplest
Dirichlet/Neumann/Robin boundary conditions). So we
can be handle equally well other types e.g. slant deriva-
tive, mixed, radiation, non-local, etc.

Moreover, interface (e.g., transmission) problems are
addressed similarly. Let L1u = φ1 hold on Rn\Ω, and let
the corresponding BEP be

QΓξ
(1)
Γ + TrG1f1 + Tru(imp) = ξ

(1)
Γ ,

where u(imp) is the impinging field (additional excita-
tion). The two BEPs, interior and exterior, are solved
along with the given interface condition:

AξΓ −Bξ
(1)
Γ = ϕ

that can be most general — any A, B , or ϕ.
A very important consideration is that for either con-

stant or variable coefficients, if the original problem on Ω
is well-posed, then the reduced boundary problem on Γ is
also well-posed. There is no need to consider Fredholm
equations of the first or second kind.

Assume the problem: Lu=0, lΓu=φ, is well-posed on
Ω: ‖u‖ 6 c‖φ‖, where c = const. The equivalent bound-
ary problem is PΓξΓ − ξΓ = 0 , lΓ(PΩξΓ) = φ. Then,
‖ξΓ‖ 6 c1‖φ‖ because ξΓ = Tru. Let ψΓ be a pertur-
bation so that we solve PΓξΓ − ξΓ =ψΓ, lΓ(PΩξΓ)=φ.
Then, the following estimate holds for the perturbed prob-
lem: ‖ξΓ‖ 6 C(‖φ‖+‖ψΓ‖),whereC depends on ‖PΩ‖

and ‖PΓ‖, but not on φ orψΓ. The proof exploits the split
of the entire space of traces ξΓ into incoming and outgo-
ing waves: ImPΓ ⊕KerPΓ [3, 6].

Discrete formulation
We next consider the extension to the discrete case for

Calderon’s potentials and projections. Let N0 and M0 be
two regular grids on the domain Ω0, on which we approx-
imate u and f , respectively, of the equation Lu= f . Let
L(h) be the discrete operator on the stencil Nm centered
at m∈M0. We emphasize that the boundary Γ does not
have to conform to N0. Introduce the grid subsets:

M+ = M0 ∩ Ω, M− = M0\M+ = M ∩ (Ω0 \ Ω),

N+ = ∪
m∈M+

Nm, N− = ∪
m∈M−

Nm, γ = N+ ∩ N−.

The grid boundary γ is a set of nodes that straddles Γ.
Let ξγ denote the discrete density on γ; and let w be an

auxiliary function on N0, w|γ = ξγ⇔Tr
(h)
γ w = ξγ . The

difference potential is defined as

PN+ξγ = w −G(h)
(
L(h)w

∣∣
M+

)
, n ∈ N+,

where G(h) is the inverse of L(h) obtained by solving the
discrete AP on N0. The difference boundary projection is
the trace of the potential: Pγξγ = Tr

(h)
γ PN+ξγ , and the

corresponding discrete BEP

Pγξγ + Tr (h)
γ G(h)f̃ = ξγ

holds iff ∃u on N+ such that L(h)u = f̃ on M+ and
Tr (h)u = ξγ , where f̃ may be different from f for a
compact scheme [1, 2].

For the exterior domain Ω0\Ω, we similarly have:

Qγ̂ξγ̂ + Tr
(h)
γ̂ G

(h)
1 f̃ + Tr

(h)
γ̂ u(imp) = ξγ̂ ,

where all the constructs can be different: the grid(s), the
scheme, the grid boundary γ̂, etc. We introduce extension
operators from Γ to γ and γ̂ that empoly Taylor’s formula
with equation-based derivatives:

ξγ = SξΓ, ξγ̂ = S1ξ
(1)
Γ .

Then, the two discrete BEPs, interior and exterior, with
the foregoing extensions substituted, are solved along
with the given interface condition with respect to the un-
known boundary functions ξΓ and ξ(1)

Γ .
If the domain Ω0 is unbounded, Ω0 =Rn, then the exte-

rior AP needed for computing the projection Qγ̂ shall be
constructed so that to take into account the desired/correct



behavior at infinity. We can assume that in the far field
the coefficients are constant. Then, the solution at infinity
will satisfy the Sommerfeld condition.

The first approach is to formulate the AP on a regular
auxiliary domain (that would contain Ω) such as a circle
or a sphere, and truncate is with the appropriate artifi-
cial boundary conditions (ABCs). Local ABCs (e.g., by
Bayliss and Turkel) are more intuitive, but less accurate.
Non-local ABCs obtained in Fourier space after the sepa-
ration of variables are very accurate and fit naturally into
the FFT solver since the auxiliary domain is regular.

The second approach is to formulate the AP on an un-
bounded Cartesian grid and solve it by convolution with
the discrete fundamental solution. The discrete funda-
mental solution is a non-singular grid function that co-
incides with the continuous fundamental solution away
from the origin and differs from it near the origin. It au-
tomatically takes into account the correct behavior of the
solution at infinity. The corresponding discrete convolu-
tion on the lattice can be computed with log-linear com-
plexity by the fast multipole method.

To solve the resulting discrete equations with respect to
the unknown densities on Γ, we need to discretize ξΓ and
ξ

(1)
Γ themselves. This can be done by choosing various

bases on Γ: Fourier, Chebyshev, local bases, etc. A very
important consideration is that as long as the solution on
Ω and on Ω0\Ω is smooth, and Γ is smooth, the densities
ξΓ and ξ(1)

Γ can be efficiently approximated using a small
number of terms, and this number will not depend on the
size(s) of the grid(s), on which the APs are solved.

The AP needs to be solved repeatedly, for each of
the basis functions used for approximating ξΓ or ξ(1)

Γ .
This can be done efficiently with both direct and iterative
solvers, as only the right-hand side of the AP changes be-
tween different solves. The choice of the specific solver
depends on the formulation. For a bounded auxiliary do-
main and constant coefficients one can employ FFT or
sparse LU. For an unbounded domain and constant co-
efficients, one can use either FFT/ABCs or convolution
with the discrete fundamental solution. For variable co-
efficients on a bounded domain one can use either a pre-
conditioned Krylov solver or, again, sparse LU. In doing
so, the sparse LU will probably be feasible only in 2D.

Once the projection for each basis function has been
computed, the coefficients that represent ξΓ and ξ(1)

Γ in
the chosen basis are evaluated in the sense of the least
squares (by means of QR). Finally, the solution on the
domain (either Ω or Ω0\Ω) requires one additional solve
of the AP (for yet another right-hand side).

Results of computations
Our preliminary numerical results include the solution

of a Dirichlet problem for the circle of unit radius using a
non-conforming Cartesian grid. The governing equation
is a Helmholtz equation with a variable wavelength k =
k(r, θ) = k0e

−10r6(r−r0)6 cos θ for r 6 r0 and k = k0 for
r > r0, where k0 = 5 and r0 = 1.6. The test solution is
taken in the form u = eikx = eikr cos θ, which makes the
governing equation inhomogeneous: ∆u+ k2u=f .

Figure 2: Numerical results.

In Figure 2(left) we show the real part of the solution,
and in Figure 2(right) we show the grid convergence on a
logarithmic scale. The latter clearly demonstrates fourth
order accuracy and thus confirms the theoretical design
properties of the method. Future research will include an
exterior scattering problem.
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