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Abstract The method of difference potentials was originally proposed by Ryaben’kii and
can be interpreted as a generalized discrete version of the method of Calderon’s operators in
the theory of partial differential equations. It has a number of important advantages; it easily
handles curvilinear boundaries, variable coefficients, and non-standard boundary conditions
while keeping the complexity at the level of a finite-difference scheme on a regular struc-
tured grid. The method of difference potentials assembles the overall solution of the original
boundary value problem by repeatedly solving an auxiliary problem. This auxiliary problem
allows a considerable degree of flexibility in its formulation and can be chosen so that it is
very efficient to solve.

Compact finite difference schemes enable high order accuracy on small stencils at virtu-
ally no extra cost. The scheme attains consistency only on the solutions of the differential
equation rather than on a wider class of sufficiently smooth functions. Unlike standard high
order schemes, compact approximations require no additional boundary conditions beyond
those needed for the differential equation itself. However, they exploit two stencils—one
applies to the left-hand side of the equation and the other applies to the right-hand side of
the equation.
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We shall show how to properly define and compute the difference potentials and bound-
ary projections for compact schemes. The combination of the method of difference poten-
tials and compact schemes yields an inexpensive numerical procedure that offers high order
accuracy for non-conforming smooth curvilinear boundaries on regular grids. We demon-
strate the capabilities of the resulting method by solving the inhomogeneous Helmholtz
equation with a variable wavenumber with high order (4 and 6) accuracy on Cartesian grids
for non-conforming boundaries such as circles and ellipses.

Keywords Difference potentials · Boundary projections · Calderon’s operators · Regular
grids · Curvilinear boundaries · Variable coefficients · Compact differencing · High order
accuracy

1 Introduction

We propose a high order singularity-free methodology for the numerical solution of two-
and three-dimensional boundary value problems of field and wave analysis. It applies to a
wide variety of physical formulations (acoustic and electromagnetic wave transmission and
scattering, heat transfer, linear elasticity, electro- and magnetostatics, Stokes flows, etc.). For
definiteness, in this paper we illustrate the methodology by solving scalar wave propagation
problems in the frequency domain.

1.1 Numerical Approximation of Differential Equations: Standard vs. Compact
Differencing

Finite difference (FD) methods were historically the first methodology for the numerical so-
lution of differential equations [39, 43]. They still remain a very powerful tool, and for
smooth solutions on regular domains/grids lead to inexpensive and efficient algorithms.
Their shortcoming is in dealing with more complicated geometries and solutions with low
regularity. The issue of geometry is somewhat alleviated by the immersed boundary and
related methods [29, 33]. The finite element method (FEM) and its extensions are also well
established and powerful. Their strength is in dealing with complex geometries and low
regularity of the solutions.

In practical problems of wave propagation though, especially in 3D, both FD and FEM
have serious limitations because of their relatively high “points-per-wavelength” require-
ment, as well as numerical dispersion and, more generally, numerical pollution [1, 4, 23,
Sect. 4.6.1]. The numerical phase velocity of the wave in these methods depends on the
wavenumber k, so a propagating packet of waves with different frequencies gets distorted
in the simulation. Furthermore, the numerical error strongly depends on k and this kind of
error is inherent in FEM/FD. The error is proportional to hpkp+1, where p is the order of ac-
curacy of the scheme. So the number of points per wavelength needed for a given accuracy
behaves like k1/p . Hence, for higher order accurate schemes the pollution effect is reduced.
On the other hand, classical higher order FD or FEM methods require an extended stencil
which complicates the boundary treatment.

Higher order accuracy can be achieved without expanding the stencil in schemes known
as Collatz “Mehrstellen” [10], equation-based and related compact schemes [2, 3, 5, 6, 20,
31, 47, 48, 51] and Trefftz-FLAME [54]. Such schemes rely on a targeted approximation
of the class of solutions rather than of a much broader class of generic sufficiently smooth
functions. This does not imply any loss of generality though, because according to the Lax



152 J Sci Comput (2012) 53:150–193

theorem, for convergence one does not need to have consistency on functions which are not
solutions.

Equation-based compact schemes use the equation itself to eliminate the distant stencil
points. The classical Lax-Wendroff scheme [27] can be considered as early example of com-
pact differencing, see Sect. 2.1. These high order schemes reduce pollution while keeping
the treatment of the boundary conditions simple, because usually the order of the resulting
difference equation is equal to the order of the differential equation. Hence, no additional
numerical boundary conditions are required. However, the geometry of boundaries still re-
mains a hurdle.

In FEM, on the other hand, a high order approximation can be built for arbitrary
boundaries, but only in fairly sophisticated and costlier algorithms with isoparametric el-
ements [50]. Besides, high order accuracy typically requires additional degrees of freedom,
which entails an additional computational cost.

1.2 Reduction to Integral Equations

In traditional boundary element methods (BEM), linear boundary value problems are trans-
formed into integral equations with respect to equivalent boundary sources, and the latter
are subsequently discretized. Practical applications of such methods date back to the 1960s.
They impose no limitations on the shape of the boundary and automatically account for the
correct far field behavior of the solution

The matrices that appear in the context of BEM are usually full, as opposed to the
sparse FD and FEM matrices. Significant progress in fast multipole methods (FMM) [18]
has helped alleviate this issue. The treatment of the boundary conditions in BEM requires
care, on a case-by-case basis, in the choice of the equivalent boundary sources, so that the
resulting Fredholm equation is of the second kind (well-posed) rather than first. The eval-
uation of singular integrals may present problems in practice, especially in the vicinity of
the boundary. The most serious shortcoming of BEM though is that these methods require
explicit knowledge of the fundamental solution of the corresponding differential operator
and hence, in practice, are limited to constant coefficients, i.e., to homogeneous media.

1.3 The Method of Difference Potentials

The objective of this paper is to construct a high order method that offers the geometric
flexibility of BEM, yet is not limited to constant coefficients and does not involve singu-
lar integrals. At the same time, we avoid introducing additional unknowns, e.g., Lagrange
multipliers that enforce weak continuity. Hence, we approximate the solution on the domain
using high order finite differences on regular grids. The narrower the approximating space
the better, so the preference is for compact equation-based schemes [20, 47].

Nevertheless, the shape of the domain may be arbitrary (yet smooth). To handle gen-
eral boundaries not aligned with the grid, we employ Ryaben’kii’s method of difference
potentials [41, 42] further developed by Reznik [38], Sofronov [49], Kamenetskii [24–26],
Tsynkov [57], and others. This approach applies to a given discretization on a regular struc-
tured grid and allows non-conforming curvilinear boundaries with no loss of accuracy. The
method of difference potentials can be viewed as a discrete analogue of the method of
Calderon’s potentials and Calderon’s boundary equations with projections in the qualitative
theory of partial differential equations [7, 42, 46].

Prior developments of the method of difference potentials were done for standard non-
compact schemes. Hence, the analysis in the current paper focuses on extending the method
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to equation-based approximations that use an additional stencil operating on the data. The
extension requires the proper definitions of difference potentials and projections, and in-
volves extra steps needed to account for the source term of the equation.

The method of difference potentials has the following key advantages:

• Maximum generality of boundary conditions. The entire class of functions satisfying the
underlying differential equation (with the boundary conditions yet unspecified) is charac-
terized by an equivalent boundary equation (Calderon’s boundary equation with projec-
tion). Only later are specific boundary conditions imposed. Any type of boundary condi-
tions can be handled with equal ease, including mixed, nonlocal, interfaces, etc.

• The problem can be discretized on a regular structured grid, yet the boundary can have
an arbitrary shape and need not conform to the grid. This causes no loss of accuracy due
to staircasing [8, 22].

• Boundary representations inherit the accuracy of the core discretization on the regular
grid. Hence, high order approximations for problems with curved boundaries can be eas-
ily obtained.

• Variable coefficients or equivalently, heterogeneous media, can be handled as easily as
constant coefficients. The constructs of Calderon’s operators stay essentially unchanged.

• The methodology does not require numerical approximation of singular integrals. In-
verse operators used for computing the discrete counterparts to Calderon’s potentials and
projections involve no convolutions and no singularities and allow fast numerical compu-
tation.

• Well-posedness of the discrete problem is guaranteed. There is no need to be concerned
with Fredholm equations of the first or second kind.

1.4 Outline of the Paper

In Sect. 2, we provide a brief account of the compact high order equation-based schemes [20,
47] for solving the variable coefficient Helmholtz equation. In Sect. 3, we introduce contin-
uous Calderon operators and their discrete counterparts—difference potentials and projec-
tions, discuss their key properties, and show how the discrete constructs apply to compact
high order schemes. In Sect. 4, we describe the resulting computational algorithm for the
variable coefficient Helmholtz equation that handles general non-conforming boundaries on
regular grids. In particular, Sect. 4.5 contains a detailed step-by-step explanation of the nu-
merical procedure in the form of a list of items to be performed in the given order. In Sect. 5,
we present results of computations confirming the high order accuracy for non-conforming
boundaries. Finally, Sect. 6 contains conclusions and a discussion of future work.

2 Compact High Order Accurate Equation-Based Schemes

2.1 Example: The Lax-Wendroff Scheme

We provide a derivation of the classical Lax-Wendroff scheme that allows one to interpret it
as an equation-based compact approximation.

Consider the simplest one-dimensional inhomogeneous advection equation:

∂u

∂t
+ ∂u

∂x
= f (x, t), (1)
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and introduce uniform grids of variables x and t with the sizes h and τ , respectively:

xi = ih, i = 0,±1,±2, . . . ,

tp = pτ, p = 0,1,2, . . . .

The explicit scheme

u
p+1
i − u

p

i

τ
+ u

p

i+1 − u
p

i−1

2h
= f

p

i , (2)

where f
p

i ≡ f (xi, t
p), is consistent for (1) with order O(τ +h2), because for any sufficiently

smooth function u = u(x, t) we can write using Taylor’s formula:

u(xi, t
p+1) − u(xi, t

p)

τ
= ∂u

∂t

(
xi, t

p
) + τ

2

∂2u

∂t2

(
xi, t

p
) + O

(
τ 2

)
(3a)

and

u(xi+1, t
p) − u(xi−1, t

p)

2h
= ∂u

∂x

(
xi, t

p
) + h2

6

∂3u

∂x3

(
xi, t

p
) + O

(
h3

)
. (3b)

Since we have O(h2) in space, we try to also achieve a higher order in time, O(τ 2), while
not enlarging the stencil. To do so, we recast (3a) as

u(xi, t
p+1) − u(xi, t

p)

τ
− τ

2

∂2u

∂t2

(
xi, t

p
) = ∂u

∂t

(
xi, t

p
) + O

(
τ 2

)
. (4)

Hence, if the derivative ∂2u

∂t2 (xi, t
p) is known, we can increase the order from O(τ ) to O(τ 2)

on the same stencil. The second derivative with respect to time can be obtained by differen-
tiating the original equation (1):

∂2u

∂t2
= ∂f

∂t
− ∂f

∂x
+ ∂2u

∂x2
. (5)

Consequently, (4) becomes:

u(xi, t
p+1) − u(xi, t

p)

τ
− τ

2

∂2u

∂x2

(
xi, t

p
) − τ

2

[
∂f

∂t
− ∂f

∂x

]
= ∂u

∂t

(
xi, t

p
) + O

(
τ 2

)
. (6)

The next consideration is to realize that the second derivative with respect to x in (6) does
not need to be known precisely. One can approximate it with sufficient accuracy. Employing
the conventional central difference in space, we transform (6) into

u(xi, t
p+1) − u(xi, t

p)

τ
− τ

2

u(xi+1, t
p) − 2u(xi, t

p) + u(xi−1, t
p)

h2

− τ

2

[
∂f

∂t

(
xi, t

p
) − ∂f

∂x

(
xi, t

p
)] = ∂u

∂t

(
xi, t

p
) + O

(
τ 2 + τh2

)
. (7)

Finally, taking the approximate expression for ∂u
∂t

from (7) and the approximate expression
for ∂u

∂x
from (3b) and substituting into (1), we arrive at the following scheme instead of (2):

u
p+1
i − u

p

i

τ
+ u

p

i+1 − u
p

i−1

2h
− τ

2

u
p

i+1 − 2u
p

i + u
p

i−1

h2
= f

p

i + τ

2

[
∂f

∂t
− ∂f

∂x

]p

i

. (8)
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Equation (8) is the Lax-Wendroff scheme for the differential equation (1). It is consistent
with order O(τ 2 + h2 + τh2) but only on the solutions of (1) rather than on all sufficiently
smooth functions, since in the course of derivation we have used the equation-based differ-
entiation (5). Accordingly, replacing the second derivative with respect to x in (6) by the
central difference in (7) is referred to as equation-based differencing.

Scheme (8) employs the same four-node stencil operating on the solution u as scheme (2)
does: {(i + 1,p), (i,p), (i − 1,p), (i,p + 1)}. Yet scheme (8) is consistent with order
O(τ 2 + h2 + τh2) whereas scheme (2) is consistent only with a lower order O(τ + h2).
The trade-off is in the structure of the approximating space—it is narrower for scheme (8)
(solutions only) and wider for scheme (2) (all sufficiently smooth functions). The reduction
of the approximating space for scheme (8) does not present any loss of generality. Indeed,
according to the Lax theorem if the scheme is consistent on the solutions of the original
differential equation and stable, then it is convergent. It is well-known that scheme (8) is
stable if and only if τ/h ≤ 1. Consequently, it is convergent and offers the overall accuracy
of O(τ 2 + h2) as long as the stability condition holds (because for τ ∼ h we can write for
the third term in the consistency estimate: τh2 ∼ h3).

It is interesting to note that scheme (2) is unstable [45, p. 354] and thus offers no accuracy
at all, even though it is consistent. We see, however, that this instability presents no barrier
for using scheme (2) as a departure point for deriving scheme (8), which is stable.

A distinctive feature of scheme (8) is that the right-hand side of the difference equation
gets transformed. It no longer contains only the source term f of the original differential
equation projected on the grid, but also contains the first derivatives ∂f

∂t
and ∂f

∂x
that need to

be evaluated at the node (i,p). If the function f (x, t) in (1) is specified by an analytical
expression, then the differentiation needed for (8) can also be done analytically. Otherwise,
∂f

∂t
and ∂f

∂x
on the right-hand side of (8) should be approximated on the grid. In doing so, one

employs a similar consideration to that used when replacing the second derivative ∂2u

∂x2 in (6)
by the central difference in (7). Namely, to achieve the overall desired accuracy of O(τ 2 +
h2), the derivatives ∂f

∂t
and ∂f

∂x
do not need to be known precisely; it is sufficient to have them

approximated with at least first order accuracy. For example, to approximately differentiate
the data, we can use the same four-node stencil {(i + 1,p), (i,p), (i − 1,p), (i,p + 1)} on
the right-hand side of (8) as we use on its right-hand side, which yields:

[
∂f

∂t
− ∂f

∂x

]p

i

= f
p+1
i − f

p

i

τ
− f

p

i+1 − f
p

i−1

2h
+ O

(
τ + h2

)
.

We therefore conclude that in the general case, when we are not assuming that the data are
available analytically, scheme (8) needs to employ two stencils—one for the left-hand side
of the equation and the other for its right-hand side.

An important advantage of the second order scheme (8) over the leap-frog scheme,
which is also second order accurate, but requires a larger stencil in the t direction, is that
scheme (8) needs one initial condition, i.e., exactly as many as the differential equation
(1) does, whereas the leap-frog scheme needs an additional initial condition, see, e.g., [45,
p. 329].

2.2 Compact High Order Scheme for the Variable Coefficient Helmholtz Equation

For the Helmholtz equation with a variable wavenumber

∂2u

∂x2
+ ∂2u

∂y2
+ k2(x, y)u = f (x, y) (9)
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we introduce a uniform in each direction Cartesian grid with the sizes hx and hy . Then,
using the same idea as outlined in Sect. 2.1, we obtain the equation-based compact scheme:

ui+1,j − 2ui,j + ui−1,j

h2
x

+ ui,j+1 − 2ui,j + ui,j−1

h2
y

+ (
k2u

)
i,j

+
(

h2
x

12
+ h2

y

12

)
1

h2
x

(
ui+1,j+1 − 2ui+1,j + ui+1,j−1

h2
y

− 2
ui,j+1 − 2ui,j + ui,j−1

h2
y

+ ui−1,j+1 − 2ui−1,j + ui−1,j−1

h2
y

)

+ h2
x

12

(k2u)i+1,j − 2(k2u)i,j + (k2u)i−1,j

h2
x

+ h2
y

12

(k2u)i,j+1 − 2(k2u)i,j + (k2u)i,j−1

h2
y

= h2
x

12

fi+1,j − 2fi,j + fi−1,j

h2
x

+ h2
y

12

fi,j+1 − 2fi,j + fi,j−1

h2
y

+ fi,j . (10)

Details of the derivation and accuracy analysis of scheme (10) can be found in [20, 47].
The scheme provides fourth order accuracy on smooth solutions of (9).

Scheme (10) employs two stencils. The nine-node 3 × 3 stencil {(i, j), (i ± 1, j), (i, j ±
1), (i ± 1, j ± 1)} is used for the discrete solution ui,j , and the five-node stencil {(i, j), (i ±
1, j), (i, j ±1)} is used for the source function fi,j , see Fig. 1. Since the left-hand side stencil
is 3 × 3, the resulting difference equation with respect to the unknown grid function ui,j is
second order. Therefore, the compact scheme (10) does not require additional boundary
conditions beyond those needed for the original differential equation (9) itself. Neumann
boundary conditions can also be included without expanding the stencil [47].

In [5], we constructed a similar compact fourth order scheme for the standard Helmholtz
equation, but in polar coordinates, which entails variable coefficients. In [6], we have ex-
tended the analysis to the case of a more general Helmholtz equation, with variable coeffi-
cients under the derivatives in the Laplacian-like part.

Extension of scheme (10) to three space dimensions is straightforward, see [6]. In 3D,
the scheme will employ a 3 × 3 × 3 stencil on the left-hand side and a seven-node central
difference stencil on the right-hand side.

Moreover, even higher accuracy can be achieved using the same compact stencils as
shown in Fig. 1. Singer and Turkel [48] have constructed a sixth order accurate equation-
based scheme for the constant coefficient Helmholtz equation. An extension to variable
wavenumbers k has been constructed as well, and will be reported in a future publication.
Similar sixth order accurate schemes, for constant coefficients, are discussed in [31, 51].

Fig. 1 Stencils of the compact
scheme (10). The nine-node
3 × 3 stencil operating on the
solution is on the left, and the
five-node stencil operating on the
data is on the right
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A number of alternative approaches (not necessarily equation-based in the foregoing sense)
have been proposed for the construction of compact high order accurate schemes, see,
e.g., [28, 53].

3 Difference Potentials and Projections

3.1 Continuous Calderon’s Operators

3.1.1 Constant Coefficients

We now illustrate the key concepts of the method with a simple example. We later extend
this to more complicated cases. Let Lu = 0 be a constant coefficient second order PDE on
the domain Ω ⊂ R

n with boundary Γ = ∂Ω . For example, it can be the Helmholtz equation
(9) with a ≡ b ≡ 1 and k = const on Ω ⊂ R

2. Let G = G(x−y) be the fundamental solution
of L. Then, the solution u(x) on the domain Ω is given by Green’s formula:

u(x) =
∫

Γ

(
u(y)

∂G

∂n
(x − y) − ∂u

∂n
(y)G(x − y)

)
dsy, x ∈ Ω. (11)

A generalized potential of Calderon type [41, 42] with vector density ξξξΓ = (ξ0, ξ1)|Γ is
defined by the same convolution integral as on the right-hand side of (11):

P ΩξξξΓ (x) =
∫

Γ

(
ξ0(y)

∂G

∂n
(x − y) − ξ1(y)G(x − y)

)
dsy, x ∈ Ω. (12)

For any ξξξΓ we have L[P ΩξξξΓ (x)] = 0 on Ω . However, in general the Dirichlet data of
P ΩξξξΓ on Γ will not coincide with ξ0 and the Neumann data will not coincide with ξ1.
However, if the density ξξξΓ happens to be the trace on Γ of an actual solution u in the sense

ξξξΓ = Tru
def=

(
u,

∂u

∂n

)∣∣
∣∣
Γ

, (13)

then P ΩξξξΓ (x) = u(x) for x ∈ Ω , and (12) becomes the classical Green’s formula (11).
The Calderon projection P Γ is the trace on Γ of the potential P Ω of (12):

P Γ ξξξΓ
def= TrP ΩξξξΓ . (14)

The operator P Γ of (14) is indeed a projection. To show that, we take an arbitrary function
ξξξΓ and denote the potential by v(x) = P ΩξξξΓ , x ∈ Ω . Then, Lv = 0 and hence we can apply
Green’s formula (11) to the function v writing it in the form

v(x) = P Ω Trv, x ∈ Ω, (15)

where the operator Tr is defined by formula (13). Replacing v by P ΩξξξΓ on both sides of (15)
we have: P ΩξξξΓ = P Ω TrP ΩξξξΓ . Taking the trace of both sides yields P Γ ξξξΓ = P 2

Γ ξξξΓ .
The key property of the projection operator P Γ in (14) is the following (see [30, 41, 42]).

Theorem 1 A given boundary function ξξξΓ is the trace of a solution u(x) to the homoge-
neous equation Lu = 0 on Ω : ξξξΓ = Tru, if and only if it satisfies the boundary equation
with projection (BEP):

P Γ ξξξΓ = ξξξΓ . (16)
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Proof Let u(x) be a sufficiently smooth solution of equation Lu = 0 on the domain Ω , and
let ξξξ = Tru. Then, applying the operator Tr of (13) to Green’s formula (15) written for u:

u(x) = P Ω Tru, x ∈ Ω,

we obtain the BEP (16). Conversely, let equality (16) hold for some ξξξΓ . Denote

u = P ΩξξξΓ ,

then Lu = 0 on Ω . In addition, equality (16) implies that Tru = ξξξΓ . Thus, we have ob-
tained the required solution u on Ω , for which ξξξΓ is the trace. This proof originally comes
from [41]. �

Next, assume that ξξξΓ = (ξ0, ξ1) is given, and take an arbitrary sufficiently smooth and
compactly supported function w(x), x ∈ R

n, that satisfies Trw = ξξξΓ . (We shall see that
for the discrete case finding an appropriate counterpart of w is trivial.) Since, in general
Lw �= 0, x ∈ Ω , Green’s formula for w becomes [cf. formula (11)]:

w(x) =
∫

Ω

GLwdy +
∫

Γ

(
w

∂G

∂n
− ∂w

∂n
G

)
dsy, x ∈ Ω.

We recast this as:

w(x) −
∫

Ω

GLwdy =
∫

Γ

(
w

∂G

∂n
− ∂w

∂n
G

)
dsy, x ∈ Ω.

Note that the right-hand side of this equation coincides with the right-hand side of (12)
because Trw = ξξξΓ . Therefore, the Calderon potential (12) can be equivalently re-defined
as:

P ΩξξξΓ (x) = w(x) −
∫

Ω

GLwdy, x ∈ Ω. (17)

It is clear that the potential (17) is insensitive to the choice of w(x) as long as Trw = ξξξΓ .
The projection TrP Ω defined via formula (17) is the same as P Γ of (14). However, the
new definition (17) does not contain surface integrals and allows us to define Calderon’s
operators for the case of variable coefficients, when there is no known fundamental solution,
see Sect. 3.1.2.

If the governing equation is inhomogeneous on Ω : Lu = f , then the BEP (16) transforms
into (see [41, 42])

P Γ ξξξΓ + TrGf = ξξξΓ , (18)

where G denotes the Green’s operator, i.e., the inverse: Gf = ∫
Ω

G(x − y)f (y)dy. Theo-
rem 1 also gets modified accordingly: a given ξξξΓ satisfies the inhomogeneous BEP (18) if
and only if it is the trace of a solution u(x) to the inhomogeneous equation Lu = f on the
domain Ω . The proof of this equivalence statement is very similar to the proof of Theorem 1.

3.1.2 Variable Coefficients

We denote

g(x) =
{

Lw, x ∈ Ω,

0, x /∈ Ω.
(19)
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Then, the volume convolution integral on the right-hand side of formula (17) is a solution
to the equation Lv = g. This solution is obtained on R

n and then restricted to Ω . Using the
Green’s operator notation [introduced right after equation (18)] we can rewrite formula (17)
as:

P ΩξξξΓ = w − Gg ≡ w − G(Lw|Ω), x ∈ Ω. (20)

Now, let L be a more general operator, e.g., the variable coefficient Helmholtz operator
of (9), and let Ω0 be a larger region, Ω ⊂ Ω0 ⊆ R

n. Assume that for any sufficiently smooth
function g the equation Lv = g has a unique solution on Ω0 that satisfies the given boundary
condition on ∂Ω0.

Definition 1 The problem of solving equation Lv = g on Ω0 subject to the chosen bound-
ary condition on ∂Ω0 is referred to as the auxiliary problem (AP). We denote its solution
operator, i.e., the inverse operator for L subject to a given boundary condition on ∂Ω0, by
G, so that v = Gg.

With the new, more general, operators L and G, formula (20) still defines a generalized
Calderon’s potential, and the operator P Γ = TrP Ω is still a projection, i.e., P 2

Γ = P Γ . The
key property of the new projection P Γ is the same as that given by Theorem 1:

P Γ ξξξΓ = ξξξΓ ⇔ ∃u : ξξξΓ = Tru & Lu = 0 on Ω. (21)

In other words, a given density ξξξΓ belongs to the range of the projection, ξξξΓ ∈ ImP Γ , iff
it is the trace of a solution to Lu = 0 on Ω . The proof of this result uses the notion of
clear or minimal trace (or, alternatively, the notion of generalized potential with the density
from the space of jumps), and can be found in [42, Part II, Chap. 1]. We note that for
the equation with variable coefficients (9) and a(x, y) �= b(x, y) it may be more natural and
more beneficial, although not necessary, to redefine the functions ξξξΓ and the operator Tr, see
formula (13), and instead of the standard normal derivative ∂u

∂n
use the co-normal derivative

a ∂u
∂x

nx + b ∂u
∂y

ny .
We emphasize that the projection P Γ can be built using different APs. If the AP changes,

so does the operator G and hence P Γ , but the range of the projection ImP Γ remains un-
affected, because it contains traces of the solutions and only those traces. In other words,
when changing the AP one changes the projection angle onto the same subspace [42].

The flexibility in choosing the AP of Definition 1 translates into the flexibility of com-
puting G and hence P Γ . We choose the domain Ω0 and the boundary condition at ∂Ω0

so that the AP be computationally easy to solve. In most cases, the solver will not involve
convolutions. For constant coefficients, it may be based on a FFT. For variable coefficients,
it may be either a direct or an iterative solver. Our choices for the current study are outlined
in Sect. 5.

If the governing equation with variable coefficients is inhomogeneous on Ω , Lu = f ,
then instead of the homogeneous BEP of (21) the solutions u are characterized by the inho-
mogeneous BEP:

P Γ ξξξΓ + TrGf = ξξξΓ , (22a)

where G is the solution operator for the AP. Equation (22a) holds for a given ξξξΓ if and only
if

∃u : ξξξΓ = Tru & Lu = f on Ω. (22b)



160 J Sci Comput (2012) 53:150–193

The equivalence of (22a) and (22b) implies that the differential equation Lu = f , with the
entire variety of its solutions, is reduced from the domain Ω to the boundary Γ . In other
words, those and only those functions u on Ω that solve Lu = f have traces ξξξΓ that solve
P Γ ξξξΓ + TrGf = ξξξΓ . This is a far more general result than that of the classical potential
theory, when specific boundary value problems, such as Dirichlet or Neumann, are reduced
to Fredholm integral equations using specific representations, a double-layer or a single-
layer potential with an auxiliary density, respectively.

3.1.3 Boundary Conditions

Once the BEP of (22a), (22b) holds for some ξξξΓ , the corresponding solution u(x) on Ω is
given by the generalized Green’s formula:

u = P ΩξξξΓ + Gf. (23)

However, the BEP P Γ ξξξΓ + TrGf = ξξξΓ itself has multiple solutions ξξξΓ on Γ , because
the equation Lu = f has multiple solutions u on Ω . To obtain a unique solution, one must
impose boundary conditions on u, i.e., formulate a boundary value problem:

Lu = f on Ω and lΓ u = φ on Γ. (24)

Then, the boundary condition lΓ u = φ of (24) can be recast as

lΓ (P ΩξξξΓ + Gf ) = φ, (25)

and the system of (22a), (25) is solved with respect to ξξξΓ . In doing so, the operator lΓ that
defines the boundary condition in problem (24) can be arbitrary, ranging from very simple
(e.g., Dirichlet or Neumann) to very general (e.g., different type on different parts of Γ ,
nonlocal, etc.), yet system (22a), (25) on Γ is still equivalent to problem (24).

We emphasize that whereas system (22a), (25) automatically allows for variable coeffi-
cients inside Ω and basically any boundary condition on Γ , the classical potential theory
is limited to constant coefficients, and finding an appropriate boundary representation that
would lead to a Fredholm equation of the second kind requires special effort on a case-by-
case basis as soon as the boundary condition starts to differ from the simplest Dirichlet or
Neumann type.

3.1.4 Well-Posedness

We assume that the original boundary value problem (24) is well-posed, i.e., that its solution
exists, is unique, and continuously depends on the data f , φ in the sense of appropriately
chosen norms. Then, the equivalent problem on the boundary (18), (25) is also well-posed.
This means that if the BEP is perturbed, then the solution of the boundary system will also
get perturbed, and the perturbation of the solution will be bounded in the appropriate norm
by the perturbation introduced into the BEP.

Specifically, consider the homogeneous case:

Lu = 0 on Ω and lΓ u = φ on Γ,

for which the equivalent boundary formulation is

P Γ ξξξΓ − ξξξΓ = 0 and lΓ (P ΩξξξΓ ) = φ. (26)
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If the original problem is well-posed, then ‖u‖Ω ≤ c‖φ‖Γ , and consequently,

‖ξξξΓ ‖′
Γ ≤ c1‖φ‖Γ . (27)

This result has nothing to do with Calderon operators per se, it holds simply because ξξξΓ =
Tru. The choice of the norms ‖·‖Ω , ‖·‖Γ , and ‖·‖′

Γ is discussed in [42, Part I]; for example,
one can use the classical Hölder norms that account for the proper relationships between the
regularity of the solution u on the domain Ω , the boundary data φ, and the boundary trace
ξξξΓ .

Let us now assume that the BEP (16), which is equivalent to Lu = 0 on Ω , is not enforced
exactly, so that there is a perturbation ψψψΓ on the right-hand side, and instead of the original
problem (26) we are solving

P Γ ξξξΓ − ξξξΓ =ψψψΓ and lΓ (P ΩξξξΓ ) = φ. (28)

In practice, the perturbation ψψψΓ can be associated with the perturbations of the data (in-
homogeneity of the differential equation), or those of the coefficients of L, but its precise
nature is not important. We interpret ψψψΓ in formula (28) as a generic perturbation of the
BEP; and by definition, ψψψΓ belongs to the same space as ξξξΓ does. Then, estimate (27)
generalizes to

‖ξξξΓ ‖′
Γ ≤ C

(‖φ‖Γ + ‖ψψψΓ ‖′
Γ

)
,

where the constant C depends on the induced operator norms ‖P Ω‖ and ‖P Γ ‖, but does
not depend on either φ or ψψψΓ . The proof can be found in [42, Part II, Chap. 1]. It is based on
splitting the entire space of traces ξξξΓ on Γ into the direct sum: ImP Γ ⊕ KerP Γ . For wave
propagation problems, this implies the split into the subspaces of incoming and outgoing
waves with respect to Ω [30].

Unlike the method of difference potentials, BEM does not guarantee the well posedness
automatically, and one always needs to make sure that the boundary representation is given
by Fredholm integral equations of the second kind, see, e.g., [40], which may not be an easy
task for general boundary conditions.

3.2 Difference Potentials and Projections

We now define the difference potentials and discrete boundary projections for compact
schemes and describe their key properties. The corresponding definitions require additional
constructs compared to those given in [42] for standard schemes.

Let Ω0 ⊃ Ω be a regular domain, e.g., a rectangle in 2D or a parallelepiped in 3D, and
let N0, M0, and K0 be three discretizations grids on Ω0. Those grids may fully or partially
coincide (see Fig. 2), although in general they do not have to. For efficiency and convenience,
one should choose regular, e.g. Cartesian or polar, grids.

We approximate the solution u and the right-hand side f of the differential equation
Lu = f on the grids N0 and K0, respectively. To distinguish between continuous functions
of the argument x and discrete functions on the grid, we will use the notations u, f, etc., for
the latter. Let U0 be the space of grid functions defined on N0 and let F0 be the space of
grid functions on K0. Then, for the discrete solution u we have u ∈ U0, and for the discrete
source function f we have f ∈ F0.

On the grid M0 we define the residuals of the difference operators we use to construct
the approximation. Let G0 be the space of grid functions defined on M0. Then, we introduce
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Fig. 2 Cartesian grids for the compact scheme (10)

two operators:

L(h) : U0 �→ G0 and B(h) : F0 �→ G0.

The operator L(h) applies to the discrete solution u, and the operator B(h) applies to the data
f. The compact approximation can therefore be symbolically written as

L(h)
u = B(h)

f, (29)

where u and f are defined on the grids N0 and K0, respectively, whereas equality (29) itself
is enforced at the nodes of the grid M0. For a given node m ∈ M0, we will hereafter denote
the corresponding stencils of the operators L(h) and B(h) by Nm and Km, respectively.

For the compact fourth order accurate scheme (10) described in Sect. 2.2, Nm is a nine-
node 3 × 3 stencil and Km a five-node central difference stencil. They are depicted in Fig. 1
(on the left and on the right, respectively). The corresponding grids N0, M0, and K0 for
a square domain Ω0 are schematically shown in Fig. 2. According to the structure of the
stencils Nm and Km, the grid N0 consists of all Cartesian nodes on the square (see Fig. 2(a)),
the grid M0 consists of all the nodes except the outermost nodes (see Fig. 2(b)), and the grid
K0 consists of all the nodes except the four corner nodes (see Fig. 2(c)). The corner nodes
are excluded from K0 because in order to obtain B(h)f on M0, one does not need to know f

at the corners. (Note, in 3D both corner nodes and edge nodes would be excluded from K0.)
We now supplement the definition of the space U0 by boundary conditions on the bound-

ary of the square Ω0. We require that these boundary conditions be such as to guarantee
that the discrete equation L(h)u = g has a unique solution u ∈ U0 for any arbitrary g ∈ G0,
i.e., for any grid function g specified on M0. Note that since the scheme we are using is
compact, the discrete equation does not require any additional boundary conditions at ∂Ω0

beyond what is needed for the original differential equation.

Definition 2 The problem

L(h)
u = g, u ∈ U0, (30)

will be referred to as the discrete auxiliary problem (cf. continuous Definition 1 in
Sect. 3.1.2).

Solution of the discrete AP (30) defines the discrete Green’s operator:

G(h) : G0 �→ U0,
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i.e., the inverse operator to L(h) under the constraint u ∈ U0. Note that while the choice of
the boundary condition for the discrete AP, i.e., the definition of the space U0, affects the
operator G(h) and hence the discrete potentials and projections that we introduce below, it
does not affect the final approximate solution of problem (24) as long as the AP is uniquely
solvable and well-posed. Therefore, it is beneficial to formulate the discrete AP so as to
facilitate the most efficient numerical computation of its solution on the grid N0. Specific
choices of the boundary conditions for the discrete AP that we made for our simulations are
outlined in Sect. 5.

Note, that if the continuous source function f (x, y) is sufficiently smooth on the entire
square Ω0, and if f is the trace of this function on the grid K0, then u = G(h)B(h)f is a
fourth order accurate approximation of the solution u to the differential equation Lu = f

on Ω0 subject to the chosen boundary condition at ∂Ω0. We, however, will also be solving
the discrete AP (30) for other types of data g ∈ G0, in particular, for data that are not nec-
essarily regular and are not necessarily representable in the form B(h)f for a smooth f (i.e.,
smooth f ).

These constructs simplify in the case of conventional, i.e., non-compact schemes. Since
there is no stencil operating on the data, the operator B(h) is essentially the identity. More
precisely,

B(h)
f|m =

{
fm, m ∈ M0,

0, m /∈ M0.

Consequently, the functions from F0 and G0 coincide on M0, and there is no need to
keep separate grids M0 and K0 and separate spaces G0 and F0. Instead, the space of discrete
right-hand sides F0 can be defined directly on the grid M0, on which the residuals of the
operator L(h) are defined. Then, the scheme itself is written as L(h)u = f, where f ∈ F0,
and along with the boundary condition in the form u ∈ U0 we obtain the discrete AP [cf.
formula (30)] that should be uniquely solvable and well-posed. Previously, it was this AP
that was used in the literature for constructing the difference potentials and projections for
various problems, see [42] and [45, Chap. 14].

For a given domain Ω , we consider the following grid subsets:

M
+ = M0 ∩ Ω, M

− = M0\M
+ = M ∩ (Ω0 \ Ω),

N
+ = ∪

m∈M+Nm, N
− = ∪

m∈M−Nm, γ = N
+ ∩ N

−.
(31)

The set γ defined in (31) is called the grid boundary. It is a “fringe” of nodes of N0 that
straddles the boundary Γ = ∂Ω . A fragment of a grid boundary γ for the nine-node 3 × 3
stencil Nm is schematically shown in Fig. 3.

We emphasize that the partition of M0 into M
+ and M

− defined by formula (31) is purely
geometric; it is based on the location of every node of M0 either inside or outside Ω and so
M

+ ∩M
− = ∅. At the same time, the sets N

+ and N
− are obtained as the union of all stencils

Nm while the center of the stencil m belongs to M
+ and M

−, respectively. Consequently,
the sets N

+ and N
− overlap, and their intersection is the grid boundary γ . We re-emphasize

that the grid N0 is regular and is not required to conform to the shape of Γ .
Let ξγ be a function specified at the grid boundary γ . Choose an arbitrary w ∈ U0 such

that w|γ = ξγ or equivalently, Tr(h) w = ξγ . Apply the discrete operator L(h) to w and trun-
cate the result to the subset M

+ ⊂ M0. The difference potential with the density ξγ is defined
as [cf. formula (20)]:

P N+ξγ = w − G(h)
(
L(h)w|M+

)
, n ∈ N

+. (32)
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Fig. 3 Schematic for the grid
boundary γ

L(h)w|M+ means that the operator L(h) is first applied to w and then the result is truncated,
i.e., left unchanged on M

+ and replaced by zero on M
− = M0 \ M

+. G(h) in formula (32) is
the inverse of L(h) obtained by solving the difference AP (30) on the regular grid N0. By def-
inition, the difference potential P N+ξγ of (32) is a solution to the homogeneous difference
equation on M

+:

L(h)[P N+ξγ ] = 0. (33)

We emphasize that the right-hand side g = L(h)w|M+ , for which the discrete AP (30) is
solved in order to compute the potential (32), is a special auxiliary right-hand side. We do
not require that it can be represented in the form B(h)f, where f is the trace of a smooth
function f (x) on the grid.

According to the definition of the difference potential (32), the difference boundary pro-
jection is given by [cf. formula (14)]:

P γ ξγ = Tr(h) P N+ξγ . (34)

We now consider the difference equation L(h)u = B(h)f, see (29), but only on the sub-grid
M

+, rather then on the entire M0. It approximates the governing differential equation on
Ω from the definition of the original boundary value problem (24). The key property of
the projection P γ in (34) parallels the corresponding key property in the continuous case,
see (22a), (22b),—a given ξγ satisfies the inhomogeneous difference BEP:

P γ ξγ + Tr(h) G(h)B(h)
f = ξγ (35)

iff there exists u on N
+ such that L(h)u = B(h)f on M

+ and Tr(h)
u = ξγ . If (35) holds, then

the corresponding solution u on N
+ is given by the discrete generalized Green’s formula [cf.

formula (23)]:

u = P N+ξγ + G(h)B(h)
f. (36)

In other words, the discrete BEP (35) equivalently reduces the discrete approximation
L(h)u = B(h)f of the differential equation Lu = f from the grid domain to the grid bound-
ary γ . As in the continuous case, the discrete BEP (35) itself has multiple solutions, because
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the difference equation L(h)u = B(h)f has multiple solutions. To obtain a full discretization
that would parallel the continuous boundary equations (22a), (25), and would have a unique
solution, one also needs to take into account the boundary condition on Γ , see formula (24).
This question is addressed in Sect. 4.3.

We note, that the definition of the difference potential (32) does not depend on the op-
erator B(h) that distinguishes between a compact and a conventional (i.e., non-compact)
discretization. The reason for that is clear: the continuous potential (20) is a solution to the
homogeneous equation Lu = 0 on Ω . However, when the compact scheme (29) is applied to
a homogeneous equation, it becomes L(h)

u = 0. Therefore, the operator B(h) plays no role
in representing the solutions to the homogeneous equations. Indeed, the difference poten-
tial (32), which is a discrete counterpart of (20), is a solution to the homogeneous equation
L(h)

u = 0 on M
+, see formula (33).

On the other hand, for the inhomogeneous equation Lu = f the contribution of the data
f (x) enters into the BEP (35) via B(h)f, where f represents f (x) on the grid. When com-
puting B(h)

f, a subtle yet important issue arises. Technically, the source function f (x) in
the boundary value problem (24) is given only on Ω and may not even be known/defined
anywhere outside Ω . Hence, the discrete source function f can be considered given only

on the grid subset KΩ
def= (K0 ∩ Ω) ⊂ K0, whereas to compute B(h)

f on M
+ it needs to be

known on a wider subset K
+ = ∪m∈M+Km, where Km is the stencil of B(h). To obtain the

values of f at the nodes K
+ \ KΩ that lie outside Ω , a special extension procedure needs to

be employed. This procedure, as well as other details of the computational algorithm, are
discussed in Sect. 4.

4 Solution Algorithm

Hereafter, we will be computing only sufficiently smooth 2D solutions with no singulari-
ties. This implies, in particular, that all the components of the formulation that may affect
the regularity of the solution, such as the source function f and the boundary data φ, see
formula (24), have to be sufficiently smooth. The same applies not only to the data, but also
to the geometry. Namely, we assume that the boundary Γ = ∂Ω is a smooth closed curve,
see Fig. 3. The formulations that involve singular behavior, for example, due to geometric
irregularities of Γ , as well as 3D formulations, will be addressed in a future publication.

4.1 Representation of the Solution at the Boundary

We begin by representing the trace of the continuous solution u to problem (24) at the
boundary Γ . This will later be used to have the solution itself approximated on the grid N

+,
see (31), and reconstructed by means of the discrete Green’s formula (36).

We introduce a basis in the space of functions ξξξΓ defined on the boundary Γ . Since ξξξΓ

are vector-functions with two components, the basis will consist of two sets of functions:

. . . ,ψψψ
(−j)

0 , . . . ,ψψψ
(−3)

0 ,ψψψ
(−2)

0 ,ψψψ
(−1)

0 ,ψψψ
(0)

0 ,ψψψ
(1)

0 ,ψψψ
(2)

0 ,ψψψ
(3)

0 , . . . ,ψψψ
(j)

0 , . . . ,

. . . ,ψψψ
(−j)

1 , . . . ,ψψψ
(−3)

1 ,ψψψ
(−2)

1 ,ψψψ
(−1)

1 ,ψψψ
(0)

1 ,ψψψ
(1)

1 ,ψψψ
(2)

1 ,ψψψ
(3)

1 , . . . ,ψψψ
(j)

1 , . . . ,
(37a)

where for every j

ψψψ
(j)

0 = (
ψ

(j)

0 ,0
)

and ψψψ
(j)

1 = (
0,ψ

(j)

1

)
. (38)
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So for a given ξξξΓ = (ξ0, ξ1) the expansion with respect to the basis (37a) can be written as

ξξξΓ =
∞∑

−∞
c0jψψψ

(j)

0

︸ ︷︷ ︸
(ξ0,0)

+
∞∑

−∞
c1jψψψ

(j)

1

︸ ︷︷ ︸
(0,ξ1)

. (37b)

Since Γ is a smooth closed contour, and the solutions of interest u are also smooth, we can
consider the components of ξξξΓ = Tru to be smooth periodic functions of the arc length s.
Hence, a natural choice for the basis (37a) is the trigonometric system so that in (38) we
have:

ψ
(j)

0 = eij 2πs
S and ψ

(j)

1 = eij 2πs
S . (39)

where S is the total length of Γ .
The following consideration is of key importance: even though the system of func-

tions (37a)) is infinite, the Fourier series (37b) for any ξξξΓ = Tru will converge rapidly
because of the smoothness. Hence, to obtain sufficient accuracy one can truncate it after
a relatively small number of terms. Therefore, instead of (37a) we will be considering a
finite-dimensional basis

ψψψ
(−M)

0 , . . . ,ψψψ
(−3)

0 ,ψψψ
(−2)

0 ,ψψψ
(−1)

0 ,ψψψ
(0)

0 ,ψψψ
(1)

0 ,ψψψ
(2)

0 ,ψψψ
(3)

0 , . . . ,ψψψ
(M)

0 ,

ψψψ
(−M)

1 , . . . ,ψψψ
(−3)

1 ,ψψψ
(−2)

1 ,ψψψ
(−1)

1 ,ψψψ
(0)

1 ,ψψψ
(1)

1 ,ψψψ
(2)

1 ,ψψψ
(3)

1 , . . . ,ψψψ
(M)

1

(40a)

composed of functions (38), (39), for which expansion (37b) becomes:

ξξξΓ =
M∑

−M

c0jψψψ
(j)

0

︸ ︷︷ ︸
(ξ0,0)

+
M∑

−M

c1jψψψ
(j)

1

︸ ︷︷ ︸
(0,ξ1)

. (40b)

The coefficients c0j and c1j of expansion (40b) will be the actual unknowns for which we
will be solving in the method of difference potentials. The choice of M in formulae (40a)
and (40b) is discussed in Sect. 4.3 and also in Sect. 5.

4.2 Equation-Based Extension

Next, we extend a given ξξξΓ from Γ to γ using the governing equation Lu = f . In this sec-
tion we address only the simplest case, whereas in Appendix A we analyze a more general
setting.

Consider the Helmholtz equation (9) with a variable k, and assume that the boundary Γ

is a circle of radius R centered at the origin (while the discretization grid is Cartesian, see
Fig. 2). It will be convenient to recast (9) in polar coordinates:

∂2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2

∂2u

∂θ2
+ k2(r, θ)u = f. (41)

Let ξξξΓ = (ξ0, ξ1)|Γ be given on Γ = {(r, θ)|r = R, 0 ≤ θ < 2π} so that ξ0 = ξ0(θ) and
ξ1 = ξ1(θ). In the vicinity of Γ , we define a new smooth function v = v(r, θ) by means of
the Taylor formula:

v(r, θ) = v(R, θ) +
L∑

l=1

1

l!
∂lv(R, θ)

∂rl
(r − R)l, (42)
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where the specific choice of L is discussed in Sect. 4.3. The zeroth and first order derivatives
in formula (42) are obtained by requiring that Trv = ξξξΓ :

v(R, θ) = ξ0(θ) and
∂v(R, θ)

∂r
= ξ1(θ). (43)

All higher order derivatives in formula (42) are determined with the help of (41) applied to
v. The second order radial derivative is obtained immediately from (41) by substituting (43):

∂2u(R, θ)

∂r2
= − 1

R
ξ1(θ) + 1

R2

∂2ξ0(θ)

∂θ2
− k2(R, θ)ξ0(θ) + f (R, θ). (44)

The third radial derivative is obtained by differentiating equation (41) once with respect to
r and then using (41) again to eliminate ∂2u

∂r2 :

∂3u

∂r3
− 1

r2

∂u

∂r
+ 1

r

∂2u

∂r2
− 2

r3

∂2u

∂θ2
+ 1

r2

∂3u

∂θ2∂r
+ ∂k2

∂r
u + k2 ∂u

∂r

= ∂3u

∂r3
− 2

r2

∂u

∂r
− 3

r3

∂2u

∂θ2
+ 1

r2

∂3u

∂θ2∂r
+

(
∂k2

∂r
− k2

r

)
u + k2 ∂u

∂r
+ f

r
= ∂f

∂r
, (45)

which, after the substitution of expressions (43), yields:

∂3u(R, θ)

∂r3
= 2ξ1(θ)

R2
+ 3

R3

∂2ξ0(θ)

∂θ2
− 1

R2

∂2ξ1(θ)

∂θ2

−
(

∂k2(R, θ)

∂r
− k2(R, θ)

R

)
ξ0(s) − k2(R, θ)ξ1(θ) − f (R, θ)

R
+ ∂f (R, θ)

∂r
.

(46)

Likewise, the fourth radial derivative is obtained by differentiating (45), eliminating ∂2u

∂r2

with the help of (41), and substituting (43):

∂4u(R, θ)

∂r4
= −6ξ1(θ)

R3
+

(
2k2

r2
− 11

r4

)
∂2ξ0(θ)

∂θ2
+ 6

R3

∂2ξ1(θ)

∂θ2
+ 1

R4

∂4ξ0(θ)

∂θ4

−
(

∂2k2

∂r2
− 1

R

∂k2

∂r
+ 3k2

R2
− k4 + 1

R2

∂2k2

∂θ2

)
ξ0(s) − 2

(
∂k2

∂r
− k2

R

)
ξ1(θ)

+
(

3

R2
− k2

)
f − 1

R

∂f

∂r
+ ∂2f

∂r2
− 1

R2

∂2f

∂θ2
, (47)

where k2, f and their derivatives are taken at (R, θ). Additional derivatives are computed
similarly.

Once the derivatives for l = 0, . . . ,L in formula (42) have been obtained, one can con-
struct v(r, θ) in the vicinity of the curve Γ . We emphasize that formula (42) should not be
interpreted as an approximation of a known function v(r, θ) by its truncated Taylor’s expan-
sion. Rather, formula (42) is the definition of a new function v(r, θ). In practice, we need the
function v(r, θ) only at the nodes of the grid boundary γ . We will call it the equation-based
extension of ξξξΓ from Γ to γ :

ξγ = ExξξξΓ
def= v(r, θ)|γ , (48)
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where v(r, θ) is defined by means of formula (42). Later, extension (48) will be applied to
the basis functions (40a). This can be done easily because for each basis function (38) since
both components are known, see (39), and hence we can begin the Taylor formula (42) as
in (43).

In addition to the extension (48), we will need another extension—for the right-hand
side f . As indicated in the end of Sect. 3.2, the source term f (x) for the boundary value
problem (24) may not even be defined anywhere beyond the domain Ω , but the discrete
right-hand side f needs to be known at the nodes K

+ \KΩ in order to apply the operator B(h)

in formulae (35) and (36). To obtain f at the nodes K
+ \ KΩ , which are located close to Γ

yet outside Ω , we will also employ the Taylor formula [cf. formula (42)]:

f (r, θ) = f (R, θ) +
L−2∑

l=1

1

l!
∂lf (R, θ)

∂rl
(r − R)l. (49)

Since, f (x) is defined on Ω , as opposed to ξξξΓ , which is defined only on Γ , the derivatives
of f that enter into formula (49) can be computed as plain one-sided radial derivatives on
the interior side of Γ . Then, the extension by means of formula (49) will result in an overall
function f (x) that will have at least L − 2 continuous derivatives on a domain somewhat
larger than Ω . Note, that since f is on the right-hand side of a second order differential
equation, we need two fewer derivatives in the expansion (49) than in (42). The choice of L

is discussed in Sect. 4.3.
In Appendix A, we show how to build similar extensions when Γ is an ellipse, and when

Γ is a general simple (non-self-intersecting) smooth closed contour on the plane.

4.3 The System of Equations

We have so far introduced a basis for representing ξξξΓ on Γ in Sect. 4.1, and we have con-
structed the extension from Γ to γ in Sect. 4.2 and in Appendix A. We will now seek ξξξΓ in
the form (40b), for which the extension (48), or more generally, (87), satisfies the discrete
BEP (35).

We take ξξξΓ in the form (40b), where the coefficients c0j and c1j , j = −M, . . . ,M , are
yet undetermined, extend it from Γ to γ using the equation-based extension (48) or (87),
and substitute the resulting ξγ into the BEP (35):

M∑

−M

c0jP γ Exψψψ
(j)

0 +
M∑

−M

c1jP γ Exψψψ
(j)

1 + Tr(h) G(h)B(h)
f

=
M∑

−M

c0j Exψψψ
(j)

0 +
M∑

−M

c1j Exψψψ
(j)

1 , (50)

where we assume that f has been obtained with the help of the extension (49) or more
generally, (88). We introduce the vector of undetermined coefficients:

c = [c0−M, . . . , c0M︸ ︷︷ ︸
c0

, c1−M, . . . , c1M︸ ︷︷ ︸
c1

]T (51)
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and the corresponding operator (matrix) of columns P γ Exψψψ
(j)

0 − Exψψψ
(j)

0 ≡ (P γ −
I γ )Exψψψ

(j)

0 and P γ Exψψψ
(j)

1 − Exψψψ
(j)

1 ≡ (P γ − I γ )Exψψψ
(j)

1 , j = −M, . . . ,M :

Q = [
(P γ − I γ )Exψψψ

(−M)

0 , . . . , (P γ − I γ )Exψψψ
(M)

0︸ ︷︷ ︸
Q0

,

(P γ − I γ )Exψψψ
(−M)

1 , . . . , (P γ − I γ )Exψψψ
(M)

1︸ ︷︷ ︸
Q1

]
. (52)

The dimension of the vector c is 2(2M + 1), and the dimension of the matrix Q is |γ | ×
2(2M + 1), where |γ | is the number of nodes in the grid boundary γ . Individual columns of
Q are obtained by extending the individual basis functions of (40a) with the help of (87) and
then applying the discrete boundary projection P γ of (34). The latter operation involves the
solution of the difference AP (30). With the definitions of c and Q given by (51) and (52),
(50) can be written as

Qc = −Tr(h) G(h)B(h)
f. (53)

Equation (53) should be interpreted as a system of linear algebraic equations for the coeffi-
cients c of (51). Once c is known, the extension (87) of the resulting ξξξΓ of (40b) will satisfy
the discrete BEP (35). Since, the BEP is equivalent only to the governing equation on the
domain and does not account for the boundary conditions, then, in addition to system (53),
one still needs to consider the boundary condition of (24) in order to uniquely determine c.

A key advantage of the proposed methodology is that it offers a very natural and efficient
way of handling the boundary conditions. In fact, no approximation of the boundary con-
ditions on the grid is ever required, because the unknown coefficients c directly represent
the trace of the continuous solution u at the continuous boundary Γ , see (40b). This trace
is a smooth function on the boundary. Hence, integrals, e.g., the far field pattern, can be
calculated very accurately.

We first assume that the boundary condition lΓ u = φ of (24) is of the Dirichlet type:

u|Γ = φ.

This is equivalent to specifying the first component of ξξξΓ , ξ0 = φ, because the first compo-
nent of the trace Tru is the Dirichlet data, see formula (13). Therefore, using the partition
of c into c0 and c1, see formula (51), we claim that the coefficients c0 = [c0−M, . . . , c0M ]T
are known and hence system (53) transforms into

Q1c1 = −Q0c0 − Tr(h) G(h)B(h)
f, (54)

where the vector of unknowns is c1, and the matrix Q has been partitioned into Q0 and Q1
according to the partition of c, see formula (52).

Likewise, if the boundary condition lΓ u = φ of (24) is of Neumann type:

∂u

∂n

∣
∣∣∣
Γ

= φ,

then the second component of ξξξΓ can be considered known, ξ1 = φ, which means that the
coefficients c1 = [c1−M, . . . , c1M ]T are available, and system (53) becomes

Q0c0 = −Q1c1 − Tr(h) G(h)B(h)
f, (55)

where the vector of unknowns is c0.
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Let lΓ u = φ of (24) be a Robin boundary condition:

αu + β
∂u

∂n
|Γ = φ ⇔

[
α 0
0 β

]
ξξξΓ = φ,

where α and β are two given constants. Then, using orthogonality of the basis functions
(40a), one can easily obtain

αc0j + βc1j = cφj
, j = −M, . . . ,M, (56)

where cφj
are the coefficients of expanding φ with respect to the same basis functions (39).

Hence, introducing cφ = [cφ−M
, . . . , cφM

]T , we can recast system (53) as follows:

(
Q1 − β

α
Q0

)
c1 = −Q0cφ − Tr(h) G(h)B(h)

f, (57a)

where the vector of unknowns is c1, and once it is determined, the remaining coefficients c0

are obtained via (56). Of course, instead of (57a) we could have written
(

Q0 − α

β
Q1

)
c0 = −Q1cφ − Tr(h) G(h)B(h)

f. (57b)

The three systems (54), (55), and (57a), (57b) provide simple examples of how most
typical boundary conditions can be handled by the method of difference potentials. It is to
be noted that in the framework of the classical boundary integral equations only Dirichlet
and Neumann boundary conditions can be handled fairly easily, whereas for Robin bound-
ary conditions the approach is already not as straightforward. The method of difference
potentials, on the other hand, enables a straightforward treatment of very general boundary
conditions. In particular, in Sect. 6 we outline some non-standard boundary value problems
that we plan to address in the future.

Assume now that the coefficients c have been determined by solving system (54), or
system (55), or one of the systems (57a), (57b). Then, we can reconstruct ξξξΓ using for-
mula (40b), obtain ξγ with the help of (87), and finally apply the discrete Green’s for-
mula (36), which yields the difference solution u on N

+. This completes the solution al-
gorithm. Of course, an important question that still remains is how to actually solve the
corresponding system (54), (55), or (57a), (57b).

Each of the systems (54), (55), or (57a), (57b) is a system of |γ | linear algebraic equations
with 2M + 1 unknowns. As the discretization grid is refined, the quantity |γ | increases, see
Fig. 3, while M remains fixed. Given that the typical wavelength is on the order of, and often
smaller than the characteristic size, and also that at least several grid points per wavelength
are required to provide for a sufficient resolution, one can expect that for all “meaningful”
grids |γ | > 2M + 1. Therefore, it is natural to solve the corresponding system (54), (55),
or (57a), (57b) in the sense of the least squares. We need to emphasize that even though a
system with fewer unknowns than equations is formally overdetermined, its solution will be
“almost classical”—within the accuracy of approximation, because the original boundary
value problem (24) has a unique solution. In this perspective a solution, in the sense of the
least squares, can be interpreted as a procedure that offers improved robustness. The least
squares solution can be computed using a QR decomposition.

Having completed the description of the algorithm, we still need to discuss how to choose
L in the Taylor formula (82) that yields the extension (87), and how to choose M in for-
mulae (40a) and (40b). The choice of L, in particular, is closely related to the rate of grid
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convergence of the discrete solution to the continuous solution, as discussed in the following
section.

4.4 Accuracy

Approximation of continuous potentials of elliptic operators by the corresponding difference
potentials has been investigated by Reznik [38], see also [42]. Below, we outline some of the
Reznik’s results as they apply to the specific formulation we are studying. The Helmholtz
operator on the left-hand side of (9) is an elliptic differential operator L of order q = 2.
Assume L is approximated by the difference operator L(h) with accuracy O(hp). So for a
regular scheme we can write

∥∥L(h)
u − (Lu)|M0

∥∥
δ
≤ const · hp · ‖u‖2+p+δ, (58a)

whereas for a compact scheme (Sect. 2) we have

∥∥L(h)
u − B(h)(Lu)|K0

∥∥
δ
≤ const · hp · ‖u‖2+p+δ. (58b)

The norm on the right-hand side of each inequality (58a), (58b) is the continuous Hölder
norm of order 2 + p + δ ≡ q + p + δ, and the norm on the left-hand side of each inequality
(58a), (58b) is the discrete Hölder norm of order δ on the space F0, where δ ≥ 0. To define
the approximation of the continuous potential by the difference potential, we first need to
modify the definitions of the potentials (20) and (32), respectively.

For a given ξξξΓ , consider the same smooth auxiliary function w(x), x ∈ Ω0, Trw = ξξξΓ ,
as in Sect. 3.1, and the same g(x) given by formula (19). In addition, introduce the function
w̃(x), x ∈ Ω0:

w̃(x) =
{

w(x), x ∈ Ω,

0, x ∈ Ω0\Ω,

that coincides with w(x) on Ω and is equal to zero elsewhere on Ω0. The modified contin-
uous potential

P Ω0ξξξΓ = w̃ − Gg ≡ w̃ − G(Lw|Ω), x ∈ Ω0, (59)

is defined on Ω0 and coincides with the potential P ΩξξξΓ of (20) on Ω ⊂ Ω0.
Similarly, for a given ξγ consider the same auxiliary grid function w ∈ U0, Tr(h) w = ξγ ,

as in Sect. 3.2, and introduce a modified grid function w̃ ∈ U0:

w̃n =
{

wn, n ∈ N
+,

0, n ∈ N0\N
+,

that coincides with w on N
+ and is equal to zero elsewhere on the grid N0. The modified

difference potential

P N0ξγ = w̃ − G(h)
(
L(h)w|M+

)
, n ∈ N0, (60)

is defined on N0 and coincides with the potential P N+ξγ on N
+ ⊂ N0.

Let the extension operator Ex of (87) be defined by the Taylor formula (82) of order
L = q +p ≡ 2 +p [see (48) and (42), respectively, for the polar case]. Assume, in addition,
that the discrete inverse operator G(h) approximates the continuous inverse operator G with
accuracy O(hp) weakly, as described in [38], see also [42, Part III, Sect. 1.4]. Then, for a
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given continuous density ξξξΓ , the difference potential P N0ξγ of (60) with the grid density
ξγ = ExξξξΓ approximates the continuous potential P Ω0ξξξΓ of (59) in the following sense:

‖P Ω0ξξξΓ − P N0ξγ ‖2+ε ≤ const · hp−ε. (61)

In formula (61), ε is arbitrary, with 0 < ε < 1, and the norm on the left-hand side of inequal-
ity (61) is the discrete Hölder norm of order 2 + ε = q + ε on the space of grid functions
U0 defined on N0. Inequality (61) essentially implies that the values of the potential P ΩξξξΓ ,
along with those of its derivatives up to order q = 2, are approximated by P N+ξγ every-
where on Ω and up to Γ with accuracy O(hp−ε), where p is the accuracy of approximation
of the continuous operator L by the difference operator L(h) and ε > 0 is arbitrary.

Provided that the density ξξξΓ is obtained as described in Sect. 4.3, inequality (61) also
implies that the discrete solution u given by (36) will converge as h → 0 to the continuous
solution u of the corresponding problem (24) with the same rate and in the sense of the same
norm as in (61).

In our experiments, we have additionally determined that the estimate L = 2+p ≡ q +p

is not sharp, and a lower value of L can, in practice, be chosen. We have used three different
schemes: the standard (i.e., non-compact) second order accurate central difference scheme, a
fourth order accurate compact scheme (10) applied to both constant and variable coefficients,
and a sixth order accurate compact scheme of [48] for constant coefficients, see Sect. 5.
In each case, we have found that taking L = p already guarantees the design rate of grid
convergence. Therefore, in all our simulations we took L = 2 for the second order scheme,
L = 4 for the fourth order scheme, and L = 6 for the sixth order scheme.

The value of M in formulae (40a), (40b) that provides sufficient accuracy is, of course,
formulation dependent. For smooth solutions, however, the error due to the truncation of
the Fourier series [i.e., due to the replacement of (37b) by (40b)] may typically be driven to
machine zero already for M on the order of a few tens. This accuracy normally exceeds any
accuracy that one would expect to obtain on the grid, and so in practice the value of M can
be taken even smaller.

Therefore, there are two strategies for choosing the value of M . The first one is to fix it at
a given level, e.g., the level that would guarantee the machine precision of the expansion at
the boundary. In this case, M is not related to the size of the discretization grid. It is chosen
once for a given problem, and then the convergence of the method is monitored by refining
the grid while keeping the value of M fixed. This is the strategy adopted in the current paper,
see Sect. 5. In the other strategy the value of M is chosen so as to have the accuracy of the
expansion at the boundary match that of the approximation on the grid inside the domain.
In this case, M will depend on the grid size, but will always be smaller than the fixed value
that guarantees machine precision. Therefore, this approach offers additional efficiency. Its
practical implementation will be discussed in a future publication.

4.5 Summary of Computational Procedure

The key steps of the proposed computational algorithm are the following:

1. Choose the discrete AP (30). Its domain Ω0 should contain Ω , the grid N0 should pro-
vide sufficient resolution [through its sub-grid N

+, see formula (31)], and the boundary
condition u ∈ U0 should guarantee unique solvability and well-posedness. Other than
that, there are no constraints. The AP should be formulated so as to enable an easy and
efficient numerical solution.
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(a) As recommended in Sect. 3.2, Ω0 should be a regular domain, such as a rectangle or
a disk, and N

0 should be a regular structured grid, e.g., uniform Cartesian or polar.
(b) If the coefficients of the governing equation are constant, the AP (30) can be solved

by separation of variables/FFT, and its boundary condition u ∈ U0 should be chosen
accordingly (for a compact scheme we do not need more boundary conditions than
for the differential equation).

(c) In the case of variable coefficients, the AP can be solved either by a sparse LU
decomposition or by an iterative method.

2. Introduce the finite-dimensional representation (39), (40a), (40b) for ξξξΓ on Γ .
(a) Select M by expanding the given boundary data φ, see formula (24), with respect

to the chosen system of functions (37a), (38), (39), and truncating the expansion at
the machine precision level.

(b) It is to be expected that larger values of M will be needed for higher frequen-
cies/shorter wavelengths.

3. Build the required grid sets according to the definition (31).
4. For each basis function of (40a), construct its equation-based extension from Γ to γ

using (82), (87).
5. Apply the discrete boundary projection P γ of (34) to the resulting extension ξγ ,

which requires a single solution of the discrete AP (30), i.e., the computation of
G(h)(L(h)w|M+), where Tr(h) w = ξγ .

6. From P γ ξγ , compute the corresponding column of the matrix Q of (52).
7. Implement the extension (88) for the source function f , evaluate B(h)f, and compute

G(h)B(h)f,—this involves one more solution of the discrete AP (30).
8. Depending on the specific formulation of the boundary value problem (24), set up the

corresponding linear system (54), (55), or (57a), (57b) (Dirichlet, Neumann, or Robin
boundary conditions, respectively).

9. Solve the resulting system (54), (55), or (57a), (57b) using the QR decomposition.
10. Having obtained the solution of the linear system, i.e., the vector of coefficients c

of (51):
(a) Use formula (40b) to compute the actual boundary trace of the solution u to prob-

lem (24), ξξξΓ = Tru.
(b) Extend ξξξΓ from Γ to γ with the help of (82), (87).
(c) Obtain the solution u on the grid N

+ using the generalized discrete Green’s for-
mula (36).

(d) Evaluation of the difference potential (32) that enters into (36) requires one addi-
tional solution of the difference AP (30).

4.6 Complexity

The key contribution to the overall complexity of the proposed algorithm is the repeated
solution of the discrete AP (30). Altogether, it needs to be solved a maximum of 2(2M +
1)+2 = 4(M +1) times. Therefore, the value of M impacts strongly on the efficiency of the
method. However, only the right-hand side of the AP changes, whereas the operator remains
the same. In the case of constant coefficients, each of the 4(M + 1) requires a FFT solve
which has a log-linear complexity with respect to the dimension (i.e., the number of nodes)
|N0| of the grid N0. In the case of variable coefficients, the overall complexity will be that
of a single sparse LU decomposition of a matrix of dimension |N0| × |N0| plus 4(M + 1)

backward substitutions, each with linear complexity with respect to |N0|.
In the case of variable coefficients, one can also use an iterative solver. In 3D, an iterative

solver becomes a necessity even in the case of constant coefficients. Since we require the
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solution of a number of systems with the same matrix and different right-hand sides, we
could use the block version of many of the Krylov iterative schemes; see, for example,
[11, 12, 17]. Alternately, we can use the iterative scheme Risolv of [52]. Then, one needs
to find the optimal parameters of the algorithm only once independent of the RHS. Let Nnz

be the number of non-zero entries in the system matrix that has the dimension |N0| × |N0|,
NK be the dimension of the Krylov subspace, and NA be the number of times we apply the
Arnoldi algorithm. Then the total amount of work for the first solve, i.e., for one RHS, is

approximately NA × NK × Nnz + NA × N2
K

2 |N0|. For each subsequent solve the total work is
approximately NA ×NK ×Nnz. Hence, it no longer depends on N2

K|N0|, which means that the
dependence on the dimension |N0| of the system matrix disappears, and the dependence on
the dimension NK of the Krylov subspace becomes linear rather than quadratic. Regarding
preconditioning of the Helmholtz equation, see, e.g. [13–16].

Another contribution to the overall complexity is that of the QR decomposition. If the
modified Gram-Schmidt algorithm is used, then the corresponding cost is about 2(2M +
1)2|γ | operations, where for the current two-dimensional setting |γ | ∼ √|N0|. The cost of
all other components of the algorithm, see Sect. 4.5, is negligible. In the simulations reported
below (Sect. 5), as the discretization grid is refined only the quantities |N0| and |γ | increase,
whereas M stays the same.

5 Numerical Experiments

5.1 Schemes of Various Accuracy for the Constant Coefficient Helmholtz Equation

We first solve the interior Dirichlet problem for the constant coefficient homogeneous
Helmholtz equation:

�u + k2u = 0 on Ω,

u|Γ = φ,
(62)

on the domain Ω which is a disk of radius R = 3 centered at the origin. The auxiliary
problem (see Definition 1) is formulated on a larger square

Ω0 = {
(x, y) | − π ≤ x, y ≤ π

} ⊃ Ω,

and consists of solving the inhomogeneous Helmholtz equation

�v + k2v = g

subject to the zero Dirichlet boundary condition:

v|∂Ω0 = 0.

To avoid resonances and guarantee uniqueness of the solution to the AP, we require that
k2 �= l2 + m2, where l and m are any two integer numbers. The AP is solved by a sparse LU
decomposition.

We take the test solution of problem (62) in the form of a plane wave:

u(x, y) = ei(kxx+kyy), where k2
x + k2

y = k2, (63)
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Fig. 4 Real part of the test
solution (63) for k = 25.6

so that the boundary data in (62) become

φ(θ) = eiR(kx cos θ+ky sin θ), (64)

where θ is the polar angle. The specific values that we choose are: kx = 4
5 k and ky = 3

5k.
To discretize the Helmholtz equation, we use a uniform in both directions Cartesian grid

with size h on the square Ω0 (the domain of the AP). In doing so, the circular boundary Γ

of the domain Ω , i.e., the domain of the original problem (62), does not conform to the grid.
The Helmholtz equation is discretized by means of the following three schemes:

1. The standard central difference second order accurate scheme on the five-node stencil;
2. The fourth order accurate compact scheme of Sect. 2.2, which uses the nine-node stencil

shown in Fig. 1 (left) [the equation in (62) is homogeneous, and no stencil is needed
for the right-hand side]. For the case of k = const, the scheme simplifies compared to
formula (10);

3. The sixth order accurate compact scheme of [48], which uses the same nine-node stencil.

The goals of the computations below are to demonstrate the design order of grid convergence
of the numerical solution to the exact solution for a non-conforming boundary, and to see
what minimum number of Taylor derivatives is needed in formula (42) to maintain this
convergence for every order of accuracy. An additional goal is to show how the pollution
effect [1, 4, 23] manifests itself.

The grid convergence is studied by solving on a sequence of grids of increasing dimen-
sion: 2d × 2d , from 16 × 16 to the maximum of 1024 × 1024, so that for a given d the grid
size h = 2π

2d =π21−d , and it is halved every time the grid dimension is increased.
We have solved problem (62) for five different values of the wavenumber k: 1, 3, 6.7,

12.8, and 25.6. For the highest k that we have considered, the test solution (63) already
exhibits a fair amount of oscillations on the domain Ω—about 25 full wavelengths along
the diameter, as shown in Fig. 4. The results of computations for all k’s are presented in
Tables 1 through 5.

The dimension M of the basis (40a) is chosen by Fourier transforming the boundary data
(64) of problem (62) and truncating the series at the machine precision level (real*8).
The resulting values of M for every k are provided in the captions to Tables 1, 2, 3, 4, 5.
We see that M increases as k increases. This is not surprising, as the solution becomes more



176 J Sci Comput (2012) 53:150–193

Table 1 Grid convergence for the wavenumber k = 1 and the dimension of the basis (40a) M = 17. Note that
the apparent breakdown of convergence of higher order schemes on finer grids is due to the loss of significant
digits, as the absolute levels of the error become very small and approach the machine zero

Grid Scheme

2nd order ctr. difference 4th order compact 6th order compact

‖u − unum‖∞ Conv. rate ‖u − unum‖∞ Conv. rate ‖u − unum‖∞ Conv. rate

16 × 16 3.474855 × 10−2 – 4.590536 × 10−4 – 3.626766 × 10−6 –

32 × 32 5.346252 × 10−3 2.7004 5.163260 × 10−6 6.4742 8.250530 × 10−9 8.7800

64 × 64 1.238241 × 10−3 2.1102 1.704410 × 10−7 4.9209 6.486869 × 10−11 6.9908

128 × 128 3.001289 × 10−4 2.0446 9.090205 × 10−9 4.2288 1.112940 × 10−12 5.8651

256 × 256 7.389904 × 10−5 2.0220 3.272063 × 10−10 4.7960 2.343009 × 10−12 −1.0740

512 × 512 1.835138 × 10−5 2.0097 2.457055 × 10−11 3.7352 7.287204 × 10−12 −1.6370

1024 × 1024 4.571995 × 10−6 2.0050 3.070920 × 10−11 −0.3217 2.411052 × 10−11 −1.7262

Table 2 Grid convergence for the wavenumber k = 3 and the dimension of the basis (40a) M = 28

Grid Scheme

2nd order ctr. difference 4th order compact 6th order compact

‖u − unum‖∞ Conv. rate ‖u − unum‖∞ Conv. rate ‖u − unum‖∞ Conv. rate

16 × 16 2.157031 – 1.093211 – 6.252035 × 10−2 –

32 × 32 2.212195 × 10−1 3.2855 1.491703 × 10−3 9.5174 1.905533 × 10−5 11.6799

64 × 64 6.296501 × 10−2 1.8129 4.695925 × 10−5 4.9894 2.743013 × 10−7 6.1183

128 × 128 1.621645 × 10−2 1.9571 2.736886 × 10−6 4.1008 3.956555 × 10−9 6.1154

256 × 256 4.049416 × 10−3 2.0017 1.612331 × 10−7 4.0853 5.830238 × 10−11 6.0845

512 × 512 1.008930 × 10−3 2.0049 9.823236 × 10−9 4.0368 1.288003 × 10−12 5.5003

1024 × 1024 2.515190 × 10−4 2.0041 6.235303 × 10−10 3.9777 7.870095 × 10−12 −2.6112

Table 3 Grid convergence for the wavenumber k = 6.7 and the dimension of the basis (40a) M = 43

Grid Scheme

2nd order ctr. difference 4th order compact 6th order compact

‖u − unum‖∞ Conv. rate ‖u − unum‖∞ Conv. rate ‖u − unum‖∞ Conv. rate

16 × 16 8.228113 – 7.976387 – 1.459757 × 10 –

32 × 32 4.299483 0.9364 1.001469 × 10−1 6.3155 1.071898 × 10−2 10.4113

64 × 64 1.933134 1.1532 4.111705 × 10−3 4.6062 1.345917 × 10−4 6.3154

128 × 128 3.065574 × 10−2 2.6567 2.420283 × 10−4 4.0865 1.845635 × 10−6 6.1883

256 × 256 7.028536 × 10−3 2.1249 1.488596 × 10−5 4.0232 2.757929 × 10−8 6.0644

512 × 512 1.861682 × 10−3 1.9166 9.101549 × 10−7 4.0317 4.192718 × 10−10 6.0396

1024 × 1024 4.726287 × 10−4 1.9778 5.640010 × 10−8 4.0123 1.170244 × 10−11 5.1630
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Table 4 Grid convergence for the wavenumber k = 12.8 and the dimension of the basis (40a) M = 66

Grid Scheme

2nd order ctr. difference 4th order compact 6th order compact

‖u − unum‖∞ Conv. rate ‖u − unum‖∞ Conv. rate ‖u − unum‖∞ Conv. rate

16 × 16 3.135403 × 10 – 7.284196 × 10 – 9.174488 × 10 –

32 × 32 2.693366 × 10 0.2192 4.960223 3.8763 1.344958 × 10 2.7701

64 × 64 8.177246 0.2192 1.233802 2.0073 8.032610 × 10−2 7.3875

128 × 128 1.095035 × 10 −0.4213 3.200884 × 10−2 5.2685 1.039313 × 10−3 6.2722

256 × 256 2.603452 2.0725 2.048553 × 10−3 3.9658 1.395774 × 10−5 6.2184

512 × 512 6.781712 × 10−1 1.9407 1.277844 × 10−4 4.0028 2.125559 × 10−7 6.0371

1024 × 1024 1.448771 × 10−1 2.2268 7.718401 × 10−6 4.0493 3.172309 × 10−9 6.0662

Table 5 Grid convergence for the wavenumber k = 25.6 and the dimension of the basis (40a) M = 111

Grid Scheme

2nd order ctr. difference 4th order compact 6th order compact

‖u − unum‖∞ Conv. rate ‖u − unum‖∞ Conv. rate ‖u − unum‖∞ Conv. rate

16 × 16 1.144291 × 102 – 2.065713 × 103 – 1.175546 × 104 –

32 × 32 4.851901 × 10 1.2378 8.885777 × 10 4.5390 4.453015 × 10 8.0443

64 × 64 1.280298 × 10 1.9221 2.818431 4.9785 1.219721 × 10 1.8682

128 × 128 1.901798 × 10 −0.5709 4.128656 × 10−1 2.7711 1.039313 × 10−3 5.5781

256 × 256 1.448009 × 10 0.3933 1.737760 × 10−1 1.2484 1.973019 × 10−3 7.0158

512 × 512 4.563927 1.6657 4.317500 × 10−3 5.3309 2.883989 × 10−5 6.0962

1024 × 1024 3.892365 0.2296 2.603055 × 10−4 4.0519 4.398634 × 10−7 6.0349

oscillatory;1 for example, our highest k = 25.6 corresponds to over 75 full wavelengths
along the circumference R = 3. On the other hand, we also see in Tables 1 through 5 that
the accuracy actually achieved on the grid is often orders of magnitude less than the machine
precision. This indicates that the chosen M may be superfluous, and the same accuracy of
the solution can be obtained using a smaller basis (40a) at a lower computational cost. For
example, the fourth order computations presented in Table 5 (k = 25.6) were repeated for
M = 94 (instead of m = 111) with the same results.

Altogether, Tables 1, 2, 3, 4, 5 show that for every scheme we have tested, the proposed
methodology guarantees the design rate of grid convergence for a non-conforming boundary
and a Cartesian grid.

Note, that all the computations presented in Tables 1, 2, 3, 4, 5 were conducted for L = p,
i.e., for the number of Taylor derivatives in formula (42) equal to the order of accuracy of
the scheme. This value of L is already lower than L = 2 + p predicted by the theoretical
estimate of [38]. To see whether or not our current choice of L can be improved further, we
have conducted similar computations, but for an even smaller number of Taylor derivatives,
L = p −1. In Table 6, we present the results for k = 3. The data show a certain deterioration
of the convergence rate (cf. Table 2), which indicates that the number of terms L in the

1Convergence of the Fourier series remains exponential due to the smoothness, but the constants become
larger.
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Table 6 Grid convergence for the wavenumber k = 3 and the dimension of the basis (40a) M = 28

Grid Scheme

2nd order ctr. difference 4th order compact 6th order compact

‖u − unum‖∞ Conv. rate ‖u − unum‖∞ Conv. rate ‖u − unum‖∞ Conv. rate

16 × 16 3.752407 – 2.907471 × 10−1 – 7.342967 × 10−2 –

32 × 32 2.290364 × 10−1 4.0342 1.010567 × 10−2 4.8465 1.432143 × 10−4 9.0020

64 × 64 6.503502 × 10−2 1.8163 8.516129 × 10−4 3.5688 3.976092 × 10−6 5.1707

128 × 128 1.990979 × 10−2 1.7077 7.105160 × 10−5 3.5833 9.373316 × 10−8 5.4066

256 × 256 5.743664 × 10−3 1.7934 4.898880 × 10−6 3.8583 1.693751 × 10−9 5.7903

512 × 512 2.130201 × 10−3 1.4310 3.736573 × 10−7 3.7127 3.099734 × 10−11 5.7719

1024 × 1024 4.835611 × 10−4 2.1392 2.310974 × 10−8 4.0151 7.720891 × 10−12 2.0053

equation-based extension formulae (42), (48) should not be taken any lower than the order
of accuracy p of the scheme.

5.2 Variable Wavenumber Helmholtz Equation with Fourth Order Accuracy

We now use the fourth order accurate compact scheme (10) to solve the inhomogeneous
Helmholtz equation (9) with variable wavenumber inside circles and ellipses, subject to the
Dirichlet or Neumann boundary conditions. The goal of the computations is to demonstrate
the capability of the proposed method to address variable coefficients and various types of
the boundary conditions, and again, to show the design order of grid convergence for non-
conforming boundaries (the discretization grid is always Cartesian). The domain Ω ⊂ Ω0

is either a disk of radius R = 1 centered at the origin, or the interior of the ellipse with the
major semi-axis a = 1 and minor semi-axis b = 1/2, see formula (69).

The Helmholtz equation (9) that we solve on the domain Ω has a variable wavenumber
k. For the case of the disk we choose

k = k0e
−10(r−r0)6r6 cos θ , (65)

and for the case of the ellipse we take

k = k0e
−10(r−r0)6r6

, (66)

where r is the polar radius and θ is the polar angle and the parameter r0 = 1.6. The profiles
of k are schematically shown in Fig. 5.

In either case, circle or ellipse, the exact solution is chosen in the form:

u = eikx . (67)

Since k is variable, see formulae (65) and (66), this solution is not a plane wave, as shown
in Fig. 6. The corresponding right-hand side f (x, y) in formula (9) is obtained by backward
engineering, i.e., by substituting u given by (67) into the left-hand side of the Helmholtz
equation.

The boundary condition at Γ = ∂Ω for the Helmholtz equation (9) can be of either
Dirichlet or Neumann type. The required boundary data are also obtained by backward
engineering, i.e., by taking the trace of either the solution u itself or its normal derivative ∂u

∂n

at the boundary Γ .
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Fig. 5 Profiles of the variable
wavenumber k on Ω0 for
k0 = 25; the part inside Ω is
emphasized

(a) Ω is a circle, formula (65)

(b) Ω is an ellipse, formula (66)

In the case of Ω being a disk of radius R = 1, the AP (see Definition 1) is formulated on
the square

Ω0 = {
(x, y) | − 1.2 ≤ x, y ≤ 1.2

}

with the following boundary conditions:

v = 0 at y = ±1.2,

and

dv

dx
+ iv = 0 at x = 1.2 and

dv

dx
− iv = 0 at x = −1.2. (68)

The pair of complex boundary conditions (68) guarantees that regardless of k there will be
no resonances in the solution of the AP on the square Ω0.



180 J Sci Comput (2012) 53:150–193

Fig. 6 Real part of the test
solution (67) for k0 = 25

(a) Circle

(b) Ellipse

In the case of the ellipse, the AP is formulated on the rectangle

Ω0 = {
(x, y) | − 1.2 ≤ x ≤ 1.2, −0.7 ≤ y ≤ 0.7

}

with the boundary conditions:

v = 0 at y = ±0.7,

and the same complex boundary conditions (68) at x = ±1.2.
Similar to Sect. 5.1, the AP is discretized on a sequence of uniform in each direction

Cartesian grids of dimension 2d × 2d , with the maximum of 2048 × 2048. For a given d , the
grid size in the case of a square is h = 2.4

2d , and the grid sizes in the case of a rectangle are
hx = 2.4

2d and hy = 1.4
2d . The grid sizes are halved every time d is incremented by 1, which is

convenient for studying the convergence. As in Sect. 5.1, the AP is also solved by the sparse
LU decomposition.
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Table 7 Grid convergence of the solution to the Dirichlet problem for the ellipse a = 1, b = 1
2 . Variable

coefficient Helmholtz equation (9) and a fourth order compact scheme (10)

Grid Ellipse

k0 = 5, M = 42 k0 = 15, M = 54 k0 = 25, M = 67

‖u − unum‖∞ Conv. rate ‖u − unum‖∞ Conv. rate ‖u − unum‖∞ Conv. rate

16 × 16 8.283939 – 3.950658 × 10 – 5.206655 × 10 –

32 × 32 1.978583 × 10−2 8.7097 6.015599 × 10−1 6.0372 3.388063 × 10 0.6199

64 × 64 3.104902 × 10−4 5.9938 7.001777 × 10−3 6.4248 8.662025 × 10−2 8.6115

128 × 128 1.659692 × 10−5 4.2256 7.492233 × 10−4 3.2243 5.811711 × 10−3 3.8977

256 × 256 5.597237 × 10−7 4.8901 2.551093 × 10−5 4.8762 3.104959 × 10−4 4.2263

512 × 512 2.094249 × 10−8 4.7402 1.551669 × 10−6 4.0392 1.881038 × 10−5 4.0450

1024 × 1024 6.565249 × 10−10 4.9954 9.538440 × 10−8 4.0239 1.160326 × 10−6 4.0189

2048 × 2048 2.761463 × 10−11 4.5713 5.897927 × 10−9 4.0155 7.200706 × 10−8 4.0102

Table 8 Grid convergence of the solution to the Dirichlet problem for the circle R = 1. Variable coefficient
Helmholtz equation (9) and a fourth order compact scheme (10)

Grid Circle

k0 = 5, M = 32 k0 = 15, M = 54 k0 = 25, M = 73

‖u − unum‖∞ Conv. rate ‖u − unum‖∞ Conv. rate ‖u − unum‖∞ Conv. rate

16 × 16 3.038830 – 1.517016 × 102 – 1.571341 × 102 –

32 × 32 2.231693 × 10−2 7.0892 3.324707 5.5119 1.304138 × 10 3.5908

64 × 64 1.405180 × 10−3 3.9893 1.032080 × 10−1 5.0096 2.744285 2.2486

128 × 128 7.302520 × 10−5 4.2662 5.746378 × 10−3 4.1668 5.751020 × 10−2 5.5765

256 × 256 4.465171 × 10−6 4.0316 3.454849 × 10−4 4.0560 3.678247 × 10−3 3.9667

512 × 512 2.701632 × 10−7 4.0468 2.125100 × 10−5 4.0230 2.265488 × 10−4 4.0211

1024 × 1024 1.680068 × 10−8 4.0072 1.321587 × 10−6 4.0072 1.405292 × 10−5 4.0109

2048 × 2048 1.040726 × 10−9 4.0129 8.239623 × 10−8 4.0035 8.745530 × 10−7 4.0062

Numerical results of solving the Dirichlet problem for the variable coefficient Helmholtz
equation (9) are presented in Table 7 in the case of an ellipse and in Table 8 in the case
of a circle. For the range of k’s that we have investigated, k0 = 5, 15, and 25, the data in
the tables fully corroborate the design fourth order rate of grid convergence for the compact
Cartesian scheme (10) when the non-conforming boundaries are handled by the method of
difference potentials.

Similar numerical results for the Neumann problem are presented in Table 9 for the
ellipse and in Table 10 for the circle. As in the case of the Dirichlet problem, the data in
the tables fully corroborate the design fourth order rate of grid convergence of the proposed
methodology.

6 Conclusions

We have described a combined implementation of the method of difference potentials along
with the compact high order accurate finite difference schemes for the numerical solution of
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Table 9 Grid convergence of the solution to the Neumann problem for the ellipse a = 1, b = 1
2 . Variable

coefficient Helmholtz equation (9) and a fourth order compact scheme (10)

Grid Ellipse

k0 = 5, M = 42 k0 = 15, M = 54 k0 = 25, M = 67

‖u − unum‖∞ Conv. rate ‖u − unum‖∞ Conv. rate ‖u − unum‖∞ Conv. rate

16 × 16 4.267776 × 10 – 1.772119 × 102 – 3.649132 × 102 –

32 × 32 9.712126 × 10−2 8.7795 2.316084 6.2576 3.309569 − ×10 3.4628

64 × 64 7.548180 × 10−3 3.6856 6.203786 × 10−2 5.2224 1.573478 × 10−2 7.7165

128 × 128 4.486249 × 10−4 4.0725 4.713176 × 10−3 3.7184 1.589413 × 10−3 3.3074

256 × 256 2.486193 × 10−5 4.1735 2.419222 × 10−4 4.2841 6.383346 × 10−4 4.6380

512 × 512 1.372890 × 10−6 4.1787 1.635393 × 10−5 3.8868 4.329843 × 10−5 3.8819

1024 × 1024 9.028545 × 10−8 3.9266 9.750050 × 10−7 4.0681 2.425497 × 10−6 4.1580

2048 × 2048 5.198146 × 10−9 4.1184 6.308512 × 10−8 3.9500 1.584606 × 10−8 3.9361

Table 10 Grid convergence of the solution to the Neumann problem for the circle R = 1. Variable coefficient
Helmholtz equation (9) and a fourth order compact scheme (10)

Grid Circle

k0 = 5, M = 32 k0 = 15, M = 54 k0 = 25, M = 73

‖u − unum‖∞ Conv. rate ‖u − unum‖∞ Conv. rate ‖u − unum‖∞ Conv. rate

16 × 16 1.188942 – 8.839874 × 10 – 1.713283 × 102 –

32 × 32 1.801846 × 10−2 6.0441 6.391570 × 10 5.5119 7.346974 × 10 1.2215

64 × 64 1.245872 × 10−3 3.8542 3.179250 × 10−1 5.0096 2.938586 4.6440

128 × 128 5.731111 × 10−5 4.4422 3.336937 × 10−2 4.1668 4.978325 × 10−2 5.8833

256 × 256 4.343596 × 10−6 3.7219 2.037841 × 10−3 4.0560 2.970674 × 10−3 4.0668

512 × 512 2.118921 × 10−7 4.3575 1.218354 × 10−4 4.0230 1.810039 × 10−4 4.0367

1024 × 1024 1.467516 × 10−8 3.8519 7.567901 × 10−6 4.0072 1.144116 × 10−5 3.9837

2048 × 2048 8.996365 × 10−10 4.0279 4.64726 × 10−7 4.0035 7.144455 × 10−7 4.0013

wave propagation problems in the frequency domain. The governing Helmholtz equation is
approximated on a regular structured grid, which is efficient and entails a low computational
complexity. At the same time, the method guarantees no loss of accuracy for curvilinear
non-conforming boundaries, and can also handle variable coefficients that describe a non-
homogeneous medium. As such, the resulting method provides a viable alternative to both
BEM and high order FEM.

The performance of the method and, in particular, its design high order accuracy, has been
corroborated numerically by solving a variety of 2D interior Helmholtz problems, including
those with variable coefficients, on the Cartesian grid but for the boundaries shaped as circles
and ellipses.

Among other advantages of the proposed methodology are its capability to accurately
reconstruct the solution and/or its normal derivative directly at the boundary (without hav-
ing to interpolate and/or use one-sided differences, such as in conventional FD, and with no
additional developments needed in FEM, see, e.g., [9]), the absence of any singular inte-
grals or similar constructs, the minimum number of unknowns that characterize the discrete
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solution—just one per grid node, and the same number of boundary conditions needed for
the scheme as that needed for the underlying differential equation.

In the near future, we plan to apply the proposed methodology to exterior problems.
This will involve constructing the auxiliary problems (see Definitions 1 and 2) with the
appropriate artificial boundary conditions (ABCs), see [55]. For the constant coefficient 2D
Helmholtz equation (typical for the far field), the AP can be conveniently formulated using
polar coordinates, which enables a natural and efficient implementation of the exact non-
local ABCs in the Fourier space. In addition, we plan to extend the proposed methodology
from solving the interior and exterior scattering problems separately to solving the combined
reflection/transmission problems. The latter formulation will involve a joint solution of the
interior and exterior Calderon’s BEPs constructed at the interface between the interior and
exterior sub-regions.

Together with extending the algorithm to a broader range of formulations, we will explore
alternative strategies for choosing M—the dimension of the basis used for representing the
solution at the boundary Γ (40b). Specifically, we will include the capability of reducing
M in accordance with the expected accuracy on the grid. In addition to that, we will exam-
ine the possibility of using other bases, beyond the trigonometric system (37a), (38), (39).
We expect that applying the ideas of reduced order modeling [19] (or, similarly, principal
component analysis or proper orthogonal decomposition) will help us further reduce the di-
mension of the basis on Γ . Other bases may be convenient to use in the case of piece-wise
parametrization (see below).

We will also consider domains of a more general shape (beyond circles and ellipses), first
those with a smooth boundary, and subsequently those with the corners. Arbitrary smooth
boundaries will require a more general construction of the extension operators (see Ap-
pendix A), whereas corners will require special attention to possible singularities of the
solution. In either case, it may be more convenient to use a piece-wise parametrization
of the boundary rather that a global parametrization. In the case of corners, piece-wise
parametrization is a must, but it may still be very useful to have even if the boundary is
smooth, for example, when different parts of the boundary are defined by different formu-
lae, or when different types of the boundary or interface conditions are specified at different
parts of the boundary. A piece-wise parametrization will require separate bases of the type
(40a) for individual segments of the boundary. In this case, a natural choice may be to re-
place the trigonometric functions (39) with Chebyshev polynomials; other possibilities will
be investigated as well.

Yet another direction for future work will be to allow for multiple sub-regions, for ex-
ample, multiple scatterers immersed into the same background medium. The simplest case
will amount to considering a piece-wise constant function k2(x, y) in the Helmholtz equa-
tion (9), while more elaborate settings may also include the variation of material character-
istics [both ε and k, see (89)] inside each individual scatterer. We will still assume that sharp
variations are allowed only at the boundaries/interfaces, whereas inside each individual sub-
region the functions ε(x, y) and k2(x, y) vary smoothly. This keeps the overall problem
predominantly smooth. The method of difference potentials has previously been applied to
multiple subregions in the context of active noise control, see [34]. Its application to solving
the reflection/transmission problems for multiple scattering will be similar.

Applying the proposed methodology to 3D wave propagation will be more involved.
While all the fundamental concepts and constructs described in the paper, such as Calderon
operators and their properties, remain the same in 3D, a number of changes throughout the
entire numerical procedure will still be required. In particular, the coordinates associated
with the curve that we have introduced in Appendix A in order to build the equation-based
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extension will need to be replaced with surface-oriented coordinates, see [21]. The only type
of solvers for the AP that seem feasible in 3D are iterative solvers, and we plan to use the
Krylov-type algorithm Risolv of [52] with complex-shifted preconditioners [13–16] applied
with the help of multigrid.

The extension of the proposed methodology to time-dependent problems (e.g., the wave,
i.e., d’Alembert, equation instead of the Helmholtz equation) will require additional theo-
retical developments. Two types of methods that have been introduced and analyzed previ-
ously can prove useful in this context: the methods for unsteady control of sound [59], and
lacunae-based methods that are used for setting the unsteady ABCs [44, 56, 58], as well as
for achieving the improved performance over long times [35–37].

We also note that even though both our current implementation and future directions
focus on wave propagation problems, the method of difference potentials is capable of ad-
dressing a considerably broader range of formulations, including problems in heat transfer,
elasticity, fluid dynamics, and other areas, see [42].
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Appendix A: Coordinates Associated with a Curve and Equation-Based Extension

A.1 Elliptical Coordinates

Let Γ be an ellipse with semi-axes a and b:

x2

a2
+ y2

b2
= 1. (69)

Then, the equation-based extension (introduced in Sect. 4.2 for the case of a circle) is con-
venient to build using the elliptical coordinates.

Denote d = √
a2 − b2 the distance from the center of the ellipse (69) to either of its foci.

A common definition of elliptical coordinates (η,ϕ) is given by:
{

x = d coshη cosϕ,

y = d sinhη sinϕ,
(70)

where η ≥ 0 and ϕ ∈ [0,2π). The coordinate lines that correspond to (70) are families of
ellipses and hyperbolas on the plane, see Fig. 7. For a fixed η = η0, the coordinate line is an
ellipse:

x2

d2 cosh2 η0
+ y2

d2 sinh2 η0
= 1,

so that the original ellipse (69) corresponds to

η0 = 1

2
ln

a + b

a − b
. (71)

For a fixed ϕ = ϕ0, the coordinate line is a hyperbola:

x2

d2 cos2 ϕ0
− y2

d2 sin2 ϕ0
= cosh2 η − sinh2 η = 1.
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Fig. 7 Elliptical coordinates

The basis vectors for elliptical coordinates are (see Fig. 7):

e1 ≡ η̂ = ∂r

∂η
= (d sinhη cosϕ,d coshη sinϕ)

and

e2 ≡ ϕ̂ = ∂r

∂ϕ
= (−d coshη sinϕ,d sinhη cosϕ),

where r = (x, y) is the radius-vector defined via (70). Hence, the Lame coefficients are
equal to one another:

H1 ≡ Hη = |e1| = d

√
sinh2 η + sin2 ϕ = |e2| = H2 ≡ Hϕ. (72)

Accordingly, the Helmholtz equation (9) in the elliptical coordinates (70) transforms into

1

H 2

[
∂2u

∂η2
+ ∂2u

∂ϕ2

]
+ k2(η,ϕ)u = f, (73)

where H = Hη = Hϕ , see formula (72).
Suppose that ξξξΓ = (ξ0, ξ1)|Γ is given on the ellipse (69) so that ξ0 = ξ0(ϕ) and ξ1 =

ξ1(ϕ). In the vicinity of this ellipse, we define a new smooth function v = v(η,ϕ) by means
of the Taylor formula [cf. formula (42)]:

v(η,ϕ) = v(η0, ϕ) +
L∑

l=1

1

l!
∂lv(η0, ϕ)

∂ηl
(η − η0)

l, (74)

where η0 is given by expression (71), and the choice of L is discussed in Sect. 4.3. The zeroth
and first order derivatives in formula (74) are obtained by requiring that [cf. formula (43)]

v(η0, ϕ) = ξ0(ϕ) and
∂v(η0, ϕ)

∂η
= ξ1(ϕ). (75)
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Note that whereas in polar coordinates ∂v
∂n

= ∂v
∂r

, in elliptical coordinates we have: ∂v
∂n

= 1
H

∂v
∂η

.
The higher order derivatives for formula (74) are obtained via equation-based differentiation:

∂2u

∂η2
= H 2f − ∂2u

∂ϕ2
− H 2k2u = H 2f − ∂2ξ0

∂ϕ2
− H 2k2ξ0,

∂3u

∂η3
= 2H

∂H

∂η
f + H 2 ∂f

∂η
− ∂3u

∂η∂ϕ2
− 2

(
H

∂H

∂η
k2u + H 2k

∂k

∂η

)
u − H 2k2 ∂u

∂η

= 2H
∂H

∂η
f + H 2 ∂F

∂η
− ∂2ξ1

∂ϕ2
− 2

(
H

∂H

∂η
k2 + H 2k

∂k

∂η

)
ξ0 − H 2k2ξ1,

and

∂4u

∂η4
= 2

((
∂H

∂η

)2

+ H
∂2H

∂η2

)
f + 4H

∂H

∂η

∂f

∂η
+ H 2 ∂2f

∂η2
− ∂4u

∂η2∂ϕ2

− 2

(((
∂H

∂η

)2

+ H
∂2H

∂η2

)
k2 + 4H

∂H

∂η
k
∂k

∂η
+ H 2k

∂2k

∂η2
+ H 2

(
∂k

∂η

)2)
u

− 4

(
H

∂H

∂η
k2 + H 2k

∂k

∂η

)
∂u

∂η
− H 2k2 ∂2u

∂η2

= 2

((
∂H

∂η

)2

+ H
∂2H

∂η2

)
f + 4H

∂H

∂η

∂f

∂η
+ H 2 ∂2f

∂η2
− ∂4u

∂η2∂ϕ2

− 2

(((
∂H

∂η

)2

+ H
∂2H

∂η2

)
k2 + 4H

∂H

∂η
k
∂k

∂η
+ H 2k

∂2k

∂η2
+ H 2

(
∂k

∂η

)2)
ξ0

− 4

(
H

∂H

∂η
k2 + H 2k

∂k

∂η

)
ξ1 − H 2k2

(
H 2f − ∂2ξ0

∂ϕ2
− H 2k2ξ0

)
,

where

∂4u

∂ϕ2∂η2
= 2

((
∂H

∂ϕ

)2

+ H
∂2H

∂ϕ2

)
f + 4H

∂H

∂ϕ

∂f

∂ϕ
+ H 2 ∂2f

∂ϕ2
− ∂4u

∂ϕ4

− 2

(((
∂H

∂ϕ

)2

+ H
∂2H

∂ϕ2

)
k2 + 4H

∂H

∂ϕ
k

∂k

∂ϕ
+ H 2k

∂2k

∂ϕ2
+ H 2

(
∂k

∂ϕ

)2)
u

− 4

(
H

∂H

∂ϕ
k2 + H 2k

∂k

∂ϕ

)
∂u

∂ϕ
− H 2k2 ∂2u

∂ϕ2

= 2

((
∂H

∂ϕ

)2

+ H
∂2H

∂ϕ2

)
f + 4H

∂H

∂ϕ

∂f

∂ϕ
+ H 2 ∂2f

∂ϕ2
− ∂4ξ0

∂ϕ4

− 2

(((
∂H

∂ϕ

)2

+ H
∂2H

∂ϕ2

)
k2 + 4H

∂H

∂ϕ
k

∂k

∂ϕ
+ H 2k

∂2k

∂ϕ2
+ H 2

(
∂k

∂ϕ

)2)
ξ0

− 4

(
H

∂H

∂ϕ
k2 + H 2k

∂k

∂ϕ

)
∂ξ0

∂ϕ
− H 2k2 ∂2ξ0

∂ϕ2
.
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The function v(η,ϕ) of (74) evaluated at the nodes of the grid boundary γ is called the
equation-based extension of ξξξΓ from the ellipse Γ given by (69) to γ [cf. formula (48)]:

ξγ = ExξξξΓ
def= v(η,ϕ)|γ .

A.2 General Case

Equation-based extensions can also be built without assuming any special regular shape of
Γ , such as a circle or an ellipse. Suppose that Γ is a general non-self-intersecting smooth
closed curve on the plane, and that it is parameterized by its arc length s:

Γ = {
R(s)|0 ≤ s ≤ S

}
,

where R is the radius-vector that traces the curve. Assume for definiteness that as s increases
the point R(s) moves counterclockwise along Γ . The unit tangent vector to Γ is given by

τττ = τττ(s) = dR

ds
. (76)

In addition to the unit tangent, we also consider the unit normal to the curve Γ :

ννν = (νx, νy) = (τy,−τx). (77)

Given a counterclockwise parametrization R = R(s), the normal ννν of (77) will always be
pointing outward with respect to the domain Ω , and hence the pair of vectors (ννν,τττ ) will
always have a fixed right-handed orientation on the plane.

Note, that there is a simple relation between the tangent (76), the normal (77), and the
curvature κ of the curve Γ . It is given by the Frenet formula:

dτττ

ds
= κννν. (78)

The vector dτττ
ds

is directed toward the center of curvature, i.e., it may point either toward Ω

or away from Ω depending on which direction the curve bends. Since the normal (77) has a
fixed orientation, the curvature κ = κ(s) in formula (78) should be taken with the sign (see,
e.g., [32, Part 1]):

κ(s) =
{| dτττ

ds
|, if dτττ

ds
· ννν > 0,

−| dτττ
ds

|, if dτττ
ds

· ννν < 0.
(79)

We can now define the coordinates associated with the curve Γ . First, we re-emphasize
that since Γ is smooth, both the tangent τττ = τττ(s) and the normal ννν = ννν(s) are smooth func-
tions of s. Consider a point on the plane, which is a given node from the grid boundary γ .
Draw the shortest normal from this point onto the curve Γ . Suppose that the value of the
parameter of the curve at the foot of this normal is s, and the distance between the original
point and the foot of the normal is n, see Fig. 8. As the position of the point may be on
either side of the curve, the value of the distance n is taken with the sign: n > 0 corresponds
to the positive direction ννν, i.e., to the exterior of Ω , and n < 0 corresponds to the negative
direction of ννν, i.e., to the interior of Ω . The pair of numbers (n, s) provides the coordinates
that identify the location of a given point on the plane. These coordinates are obviously
orthogonal.
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Fig. 8 New coordinates (n, s)

and equation-based extension

A limitation of the coordinates (n, s) is that for a general shape of the boundary Γ there
may be some ambiguity, as it is possible that multiple shortest normals will exist for a given
node. Hence, the distance function will be multi-valued and not differentiable w.r.t. the arc
length s. This may happen, in particular, when the boundary Γ has a “cavity”. An obvious
sufficient condition that avoids such ambiguities is to require that the coordinates (n, s) be
used only inside a curvilinear strip of width 2R̄ that straddles Γ , where R̄ = mins R(s) is the
minimum radius of curvature. In other words, we require that if dτττ

ds
·ννν > 0 then n < κ̄−1 ≡ R̄,

and if dτττ
ds

· ννν < 0 then n > κ̄−1 ≡ −R̄. This limitation, however, is not severe, because we
use the coordinates (n, s) only for the points of the grid boundary γ , which are all about one
grid size h away from the curve Γ , see Figs. 3 and 8. Having multiple shortest distances for
a given node would then imply that the minimum radius of curvature R̄ is also of order h.
This means, in turn, that the grid does not adequately resolve the geometry, and needs to be
refined. Let us also note that the simulations in this paper, see Sect. 5, do not involve any
shapes with potential cavities, i.e., non-convex features with the curvature κ ∼ h−1. In the
future, we will analyze shapes with “small” features.

The coordinates (n, s) are orthogonal but not orthonormal. For a given point (n, s), its
radius-vector r is expressed as follows:

r = r(n, s) = R(s) + nννν(s) = (
Rx(s) + nνx(s),Ry(s) + nνx(s)

)

=
(

Rx + n
dRy

ds
,Ry − n

dRx

ds

)
,

and consequently, the basis vectors are given by

e1 = ∂r

∂n
=

(
dRy

ds
,−dRx

ds

)
= (τy,−τx) = ννν

and

e2 = ∂r

∂s
=

(
dRx

ds
+ n

d2Ry

ds2
,
dRy

ds
− n

d2Rx

ds2

)

=
(

dRx

ds
+ nκνy,

dRy

ds
− nκνx

)

= (τx − nκτx, τy − nκτy) = (1 − nκ)τττ ,
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where we have used formulae (76), (77), (78), and (79). Accordingly, the Lame coefficients
for the coordinates (n, s) are

H1 ≡ Hn = |e1| = 1

and

H2 ≡ Hs = |e2| = |1 − nκ| = 1 − nκ, (80)

where the last equality in (80) holds because n < κ−1 for κ > 0 and n > κ−1 for κ < 0.
In the coordinates (n, s), (9) becomes

1

Hs

[
∂

∂n

(
Hs

∂u

∂n

)
+ ∂

∂s

(
1

Hs

∂u

∂s

)]
+ k2(n, s)u = f, (81)

where Hs = Hs(n, s) is given by (80), and where we have taken into account that Hn ≡ 1.
Equation (81) will be used for building the equation-based extension of a given ξξξΓ from
the continuous boundary Γ to the nodes of the grid boundary γ similar to how the polar
Helmholtz equation (41) was used in Sect. 4.2 for building the corresponding extension
from the circle.

Note, that if Γ is a circle of radius R, then the foregoing general constructs transform
into the corresponding constructs for polar coordinates described in Sect. 4.2. Indeed, in this
case the curvature κ of (79) does not depend on s:

κ = − 1

R
,

and consequently [see formula (80)],

Hs = 1 + n

R
= R + n

R
= r

R
.

Then, according to (81) we can write:

�u = R

r

[
∂

∂n

(
r

R

∂u

∂n

)
+ ∂

∂s

(
R

r

∂u

∂s

)]
= 1

r

∂

∂n

(
r
∂u

∂n

)
+ R2

r2

∂2u

∂s2
.

Finally, we have n = r − R so that ∂
∂n

= ∂
∂r

, and s = Rθ so that ∂
∂s

= 1
R

∂
∂θ

, which yields:

�u = 1

r

∂

∂r

(
r
∂u

∂r

)
+ 1

r2

∂2u

∂θ2
.

Let ξξξΓ = (ξ0(s), ξ1(s)) be given on Γ . In the vicinity of Γ , we define a new smooth
function v = v(n, s) by means of the Taylor formula [cf. formula (42)]:

v(n, s) = v(0, s) +
L∑

l=1

1

l!
∂lv(0, s)

∂nl
nl. (82)

The zeroth and first order derivatives in formula (82) are obtained by requiring that Trv =
ξξξΓ :

v(0, s) = ξ0(s) and
∂v(0, s)

∂n
= ξ1(s). (83)
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All higher order derivatives in formula (82) are determined with the help of equation (81)
applied to v. For convenience, we multiply both sides by Hs and then solve for the second
derivative with respect to n, which yields:

∂2v

∂n2
= f̃ − k̃2(n, s)v − ∂

∂s

(
1

Hs

∂v

∂s

)
− ∂Hs

∂n

∂v

∂n
, (84)

where k̃ = Hsk, f̃ = Hsf , and ∂Hs

∂n
= −κ(s), see formula (80). Consequently,

∂2v(0, s)

∂n2
= f̃ (0, s) − k̃2(0, s)ξ0(s) − ∂

∂s

(
1

Hs

∂ξ0(s)

∂s

)
+ κ(s)ξ1(s). (85)

Next, we differentiate equation (84) with respect to n:

∂3v

∂n3
= ∂f̃

∂n
− ∂k̃2

∂n
v − k̃2 ∂v

∂n
− ∂

∂s

(
∂H−1

s

∂n

∂v

∂s

)
− ∂

∂s

(
1

Hs

∂

∂s

[
∂v

∂n

])
+ κ

∂2v

∂n2
, (86)

and substituting v(0, s) and ∂v(0,s)

∂n
from (83) and ∂2v(0,s)

∂n2 from (85), we obtain ∂3v(0,s)

∂n3 . Sim-

ilarly, the fourth normal derivative ∂4v(0,s)

∂n4 can be evaluated by differentiating equation (86)
with respect to n:

∂4v

∂n4
= ∂2f̃

∂n2
− ∂2k̃2

∂n2
v − ∂k̃2

∂n

∂v

∂n
− ∂

∂s

(
∂2H−1

s

∂n2

∂v

∂s

)

− 2
∂

∂s

(
∂H−1

s

∂n

∂

∂s

[
∂v

∂n

])
− ∂

∂s

(
1

Hs

∂

∂s

[
∂2v

∂n2

])
+ κ

∂3v

∂n3
,

and then substituting the previously computed derivatives v(0, s), ∂v(0,s)

∂n
, ∂2v(0,s)

∂n2 , and
∂3v(0,s)

∂n3 . Higher order derivatives (e.g., for the sixth order scheme) can be obtained in the
same manner.

As in (42), we emphasize that formula (82) is not an approximation of a given v(n, s) by
its truncated Taylor’s expansion. Rather it is the definition of a new function v(n, s). This
function is used for building the equation-based extension of ξξξΓ from Γ to γ :

ξγ = ExξξξΓ
def= v(n, s)|γ . (87)

So, extension (87) is obtained by drawing a normal from a given node of γ to Γ , see Fig. 8,
and then using the Taylor formula with higher order derivatives computed by differenti-
ating the governing equation (81). If Γ is a circle, then the derivatives with respect to n

in formula (82) become radial derivatives, and accordingly, the extension (87) transforms
into (48).

Extension of the right-hand side f is built with the help of the Taylor formula

f (n, s) = f (0, s) +
L−2∑

l=1

1

l!
∂lf (0, s)

∂nl
nl. (88)

The derivatives of f that enter into (88) can be computed as one-sided normal derivatives
on the interior side of Γ , similarly to how it is done for formula (49) when Γ is a circle.
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Note that for more complicated shapes it may often be convenient to have a piece-
wise parametrization for the curve Γ as opposed to the global parametrization. Piece-wise
parametrization and different bases (40a) for different portions of the boundary (e.g., in-
dependent Chebyshev systems) may also pave the way toward discontinuous coefficients
in the boundary conditions, non-smooth boundaries, and other formulations which will be
analyzed in the future, see Sect. 6.

It should finally be mentioned that a somewhat more elaborate procedure will yield an
equation-based extension for an equation more general than (9):

div(ε · gradu) + k2u = f. (89)

In formula (89), ε = ε(x, y) is a symmetric and positive definite tensor of rank 2. Equa-
tion (9) is a particular case of (89) where ε is the identity. In [6], we have considered another
particular case of (89), with ε being diagonal in the Cartesian coordinates: ε = diag{a, b}.
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