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Abstract
We analyze the scattering of a plane transverse linearly polarized
electromagnetic wave off a plane interface between the vacuum and a given
material. For a variety of predominantly dielectric materials, from isotropic to
anisotropic and weakly conductive, we show that when the scattering is weak,
the first Born approximation predicts the correct scattered field in the vacuum
region. We also formulate and solve the corresponding linearized inverse
scattering problem. Specifically, we provide a necessary and sufficient condition
under which interpreting the target material as a weakly conductive uniaxial
crystal allows one to reconstruct all the degrees of freedom contained in the
complex 2 × 2 Sinclair scattering matrix. This development can help construct
a full-fledged radar ambiguity theory for polarimetric imaging by means of
a synthetic aperture radar (SAR), which is in contrast to the approach that
currently dominates the SAR literature and exploits a fully phenomenological
scattering matrix. Moreover, the linearized scattering off a material half-space
naturally gives rise to the ground reflectivity function in the form of a single
layer (i.e. a δ-layer) at the interface. A ground reflectivity function of this
type is often introduced in the SAR literature without a rigorous justification.
Besides the conventional SAR analysis, we expect that the proposed approach
may appear useful for the material identification SAR (miSAR) purposes.

(Some figures may appear in colour only in the online journal)

1. Background

1.1. Direct and inverse scattering problems

Maxwell’s equations of electromagnetism in CGS units [1, 2]:
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∂H
∂t

+ ∇ × E = 0, ∇ · H = 0,
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∂D
∂t

− ∇ × H = −4π

c
( j + j(ex)), ∇ · D = 0, (1)
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govern the electromagnetic field driven by the extraneous electric current with the density
j(ex) = j(ex)(x, t). In the system (1), c is the speed of light in vacuum, E and H denote the
vectors of the electric and magnetic field, respectively, and D is the vector of electric induction,
which is related to the electric field via the permittivity tensor ε = ε(x) (hereafter, the dot ‘ · ’
denotes the tensor convolution):

D = ε · E. (2)

The total current in the system (1) is a sum of j(ex) and the conductivity current j given by

j = σ · E. (3)

The quantity σ in (3) denotes the conductivity tensor, which may also vary in space: σ = σ(x).
We are assuming that the current j(ex) does not lead to the accumulation of the extraneous
electric charge, so that the second steady-state equation in the system (1) (the Gauss law of
electricity) is homogeneous. The magnetic permeability is assumed equal to 1 (for the range
of phenomena of interest) so that there is no need to distinguish between the magnetic field
and magnetic induction.

Let E(inc) and H(inc) denote the incident fields that satisfy the system (1) in vacuum:

1

c

∂H(inc)

∂t
+ ∇ × E(inc) = 0, ∇ · H(inc) = 0,

1

c

∂E(inc)

∂t
− ∇ × H(inc) = −4π

c
j(ex), ∇ · E(inc) = 0.

(4)

Then, the total fields that solve (1) can be represented as

E = E(inc) + E(sc) and H = H(inc) + H(sc), (5)

where the corrections E(sc) and H(sc) shall be attributed to the variation of ε and σ against the
background vacuum values ε = I (identity tensor) and σ = 0, respectively. Those corrections
are referred to as the scattered fields. The direct electromagnetic scattering problem is the
problem of determining the scattered fields E(sc) and H(sc) if ε = ε(x) and σ = σ(x)

are given. The inverse electromagnetic scattering problem rather consists in determining the
variable electric permittivity ε = ε(x) and conductivity σ = σ(x) under the assumption that
the scattered fields E(sc) and H(sc) are available. The region of space where ε = ε(x) and
σ = σ(x) are to be reconstructed is called the target. The inverse scattering problem may have
multiple solutions.

1.2. The first Born approximation

In the literature, the foregoing scattering problems are often studied using second-order
governing equations for the individual fields. Moreover, the inverse scattering problem can
be simplified by means of the linearization based on the first Born approximation; see [3,
chapter XIII]. It is typically used when the scattered field is much smaller than the incident
field, i.e. when the scattering is weak. This, in turn, can be expected to be the case when the
deviation of the material parameters at the target from the background parameters in vacuum
is small. In Appendix A, we show that when the target material is isotropic, i.e. when both the
permittivity and conductivity tensors are spherical, the governing equation for the scattered
electric field under the first Born approximation becomes (see equation (A.8))

1

c2

∂2E(sc)

∂t2
− �E(sc) = ν

∂2E(inc)

∂t2
− 4πσ

c2

∂E(inc)

∂t
, (6)
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where the scalar quantity ν is the ground reflectivity function (see formula (A.7)):

ν(x) = 1

c2
− 1

v(x)2
. (7)

In formula (7), v = v(x) is the local propagation speed in the material. More rigorously,
a solution by means of the first Born approximation can be obtained by truncating the
corresponding Neumann series after its linear term [4, chapter 6].

In the literature, the Born approximation is often discussed along with another
approximation, named after Rytov; see, e.g., [3, chapter XIII] and [5, 6]. It is known that
the Rytov approximation better describes the transmitted waves, i.e. the field inside the target
material, whereas the Born approximation is better suited for the reflected waves, i.e. for the
scattered field in vacuum (see, e.g., [6, 7] and references therein). We will focus on the first
Born approximation for the rest of this paper, because it provides a linearized scattering model
for the field reflected off the target into the vacuum region, which is convenient for SAR
applications.

We also note that in the Cartesian coordinates, the vector equation (6) decouples into three
independent scalar wave equations for the individual field components. This enables studying
the scattering problems in the scalar formulation [8], provided that the polarization of the field
is either not important or not detected by the specific equipment.

1.3. Scalar versus polarimetric SAR

Many currently operating SAR sensors use linear chirps

P(t) = A(t) eiω0t, where A(t) = χτ (t) eiαt2
, (8)

as interrogating waveforms [8]. In formula (8), ω0 is the carrier frequency, χτ (t) is the indicator
function of the interval [−τ/2, τ/2] and the modulating function A(t) varies slowly compared
to the fast oscillation eiω0t .

Let us first disregard the polarization and identify pulse (8) with the right-hand side of
the scalar counterpart of equation (A.5). This right-hand side shall be interpreted as the time
derivative of a given Cartesian component of the electric current at the emitting SAR antenna,
which is taken as a point source1 located at x ∈ R

3. Then, the corresponding component of
the incident field due to the emitted chirp (8) is given by the standard retarded potential of the
d’Alembert operator:

E (inc)(z, t) = 1

4π

P(t − |z − x|/c)

|z − x| . (9)

When substituting E (inc) of (9) into the right-hand side of equation (6), we can leave A( · )

out of the differentiation w.r.t. t, because A( · ) varies slowly. Subsequently, a solution of
equation (6) can be obtained with the help of the Kirchhoff integral. In particular, the scattered
field back at the antenna x is given by the following expression:

E (sc)(x, t) ≈ − ω2
0

16π2

∫∫ ∫
|x−z|�ct

ν̂(z)
|x − z|2 P(t − 2|x − z|/c) dz

= − ω2
0

16π2

∫∫ ∫
|x−z|�ct

ν̂(z)
|x − z|2 A(t − 2|x − z|/c) eiω0(t−2|x−z|/c) dz, (10)

where

ν̂(z)
def= ν(z) + i

4πσ (z)
ω0c2

. (11)

1 Actual SAR antennas have a special structure that enables narrowly directed radiation patterns [4].
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According to (10), the scattered field E (sc) can be interpreted as the result of application of a
Fourier integral operator (FIO), see, e.g., [4, 9–11], to the complex reflectivity function ν̂(z)
of (11) that combines the variation of the propagation speed c, see (7), and the variation of
the conductivity σ . This FIO can be approximately inverted by applying a matched filter to
E (sc) and accumulating the information due to multiple interrogating pulses (8) emitted from
and received by the antenna at different locations along its trajectory. This is the procedure of
SAR signal processing [4, 8, 12]; it allows one to reconstruct ν̂(z), i.e. to obtain the image.
Mathematically, this procedure is similar to the application of the adjoint operator, which
would have coincided with the true inverse of FIO (10) if the latter were a genuine Fourier
transform.

In general, ν̂(z) is a function of three variables, because z ∈ R
3. As, however, the

synthetic antenna is aligned with the flight trajectory or orbit, which is one dimensional, the
conventional SAR data collection algorithm (in the case of a monostatic non-interferometric
sensor) can generate only two-dimensional datasets; see [4]. At the same time, the primary
task of all practical SAR systems is imaging of the surface of the Earth from an aircraft or
from satellites. The introduction of the Earth’s surface as the geometric location (i.e. locus)
of all the targets naturally eliminates the third coordinate (i.e. fixes the altitude) and hence
makes the dimension of the dataset equal to that of the desired image. Mathematically, this
corresponds to considering the reflectivity function (11) in the form

ν̂(z) ≡ ν̂(z1, z2, z3) = ν̂(z1, z2)δ(z3), (12)

i.e. in the form of a single layer on the surface, where z1 and z2 are the two horizontal coordinates
and z3 is the vertical coordinate [8]. The resulting image then reconstructs ν̂(z1, z2), i.e. yields
the complex reflectivity function (11) on the surface of the Earth as a function of the two
horizontal coordinates.

In real applications, however, disregarding the polarization may not be appropriate, as the
field is always polarized, and its polarization may change due to the interaction with the target2.
Even in the simplest possible scenario, when a linearly polarized incident wave impinges on
a plane interface between the vacuum and an isotropic target material, the polarization angle,
generally speaking, tilts. A more sophisticated target material gives rise to a broader variety
of possible changes in the polarization of the scattered field; see section 2. Mathematically,
scattering off interfaces corresponds to a non-smooth permittivity ε(x) and/or conductivity
σ(x), when the regions of their regular behavior (the vacuum and the target) are separated by
a surface, at which these quantities (tensors) undergo jumps. Special boundary conditions are
required at this surface for a proper description of the scattering mechanism.

The methodology of SAR imaging that takes into account the polarization of interrogating
waves is known as the polarimetric SAR; see [13, 14]. As the antenna is typically far away from
the target, by the time the incident pulse reaches the target it can be sufficiently accurately
approximated by a transverse plane wave. Likewise, the scattered field can be effectively
thought of as a transverse plane wave by the time it reaches the antenna. Therefore, even
though the field vectors in R

3 are three dimensional, it is sufficient to consider only their
two transverse components if the third coordinate axis is chosen parallel to the direction of
propagation. Accordingly, there are two independent linear polarizations for either the incident
or scattered wave.

The theory of polarimetric SAR imaging is different from the scalar theory in that it
exploits a completely phenomenological framework; the polarimetric SAR literature has been
dominated by the phenomenological approach since the dissertation by Huynen [15]. Namely,
the vector of the incident electric field that has two (transverse) components and the vector of

2 It may also change due to the propagation in a chiral medium, e.g., the magnetized ionosphere.

4



Inverse Problems 28 (2012) 085009 M Gilman et al

the scattered electric field that also has two components are considered related by means of a
formal 2 × 2 matrix S:

E(sc) = SE(inc), (13)

called the Sinclair scattering matrix. The entries of the scattering matrix S are usually not
related to any physical characteristics of the target; they are rather introduced as the coefficients
of the transformation between E(inc) and E(sc). This is precisely what the phenomenological
nature of the approach of [15] means.

Note also that as the incident and scattered waves propagate in different directions, they
will be represented in different coordinate systems in formula (13), and hence the scattering
matrix S incorporates not only the transformation of the field per se, but also the change of the
coordinates. Moreover, as both fields related by (13) are assumed transverse plane waves, they
are attributed to different spatial locations—the target for the incident field and the receiving
antenna for the scattered field. In the time domain, which is common for SAR applications [4],
this would have also implied that the incident and scattered fields were evaluated at different
moments in time.

Note that using formula (10), one can also obtain a scalar counterpart of relation (13).
Consider a point scatterer of complex magnitude ν̂ located at z0 so that ν̂(z) = ν̂δ(z − z0).
Then, instead of (10), we can write (with the help of (9))

E (sc)(x, t) ≈ − ω2
0

4π

ν̂

|x − z0|︸ ︷︷ ︸
S

E (inc)(z0, t − |x − z0|/c). (14)

However, unlike the reflectivity function (11) that enters into (14) and (10), the entries of the
scattering matrix S of (13) do not directly represent any physics-based scattering mechanism
or material characteristics of the target; they are introduced just as the coefficients of a linear
transformation. Subsequently, various target decomposition techniques (see section 4 and
[14, chapters 4, 6, 7] for more details) attempt to attribute some physical properties of the
target (e.g., its symmetry, convexity, etc) to certain combinations of the entries of the observed
matrix S.

For SAR applications, one often considers two basic cases of a linearly polarized incident
field: horizontal polarization corresponds to the electric field vector normal to the plane of
incidence, whereas vertical polarization corresponds to the electric field vector parallel to the
plane of incidence. All other polarizations can be obtained as linear combinations of these
two. Accordingly, the entries of the scattering matrix (that are also referred to as channels) are
commonly denoted as

S =
[

SHH SHV

SVH SVV

]
, (15)

where for each matrix entry, the first and second letter of the subscript denote the polarization
of the scattered and incident field, respectively. In formula (15), SHH and SVV are the co-
polarized channels, and SHV and SVH are the cross-polarized channels. Fully polarimetric SAR
sensors produce four different images—one per channel3.

In the frequency domain, the components of the electric field vector become complex,
and instead of the retarded time, as in formula (14), the solution acquires the corresponding
phase factor. The Sinclair matrix can then be represented as follows:

S = eiφ0

[
|SHH| |SHV| eiφHV

|SVH| eiφVH |SVV| eiφVV

]
, (16a)

3 In some inversion algorithms, the processing is not done channel by channel, but rather couples the channels, which
may provide additional benefits; see, e.g., [16].
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where φ0 is the common phase (also called the absolute phase) that basically yields the
distance (or time) that the scattered wave travels between the target and the receiving antenna,
and φHV, φVH and φVV are the relative phases. In particular, φVV is called the co-polarized
phase difference (CPD). The absolute phase φ0 is the principal quantity of interest in the case
of the SAR imaging by means of a scalar field; see, e.g., [8]. In that case, φ0 helps determine
the distance to the target, whereas the differences between the absolute phases of successive
pulses provide the mechanism of azimuthal resolution.

In the vector case, representation (16a) clearly shows that the complex-valued Sinclair
scattering matrix offers a total of seven additional degrees of freedom—four amplitudes and
three relative phases—on top of the scalar case. Consequently, eight independent quantities
(1+7) associated with every location yield as much information as one can obtain from a
polarimetric SAR image (i.e. four complex-valued images, one per channel) regardless of
what the actual target is.

We should also mention that extracting the common phase φ0 the way it is done in formula
(16a) removes a certain degree of arbitrariness that otherwise exists in the definitions. Indeed,
the scattering mechanism at the target can be such that every polarization undergoes a phase
shift upon reflection; see section 2. In this case, instead of (16a), we would have

S = eiφ̃0

[
|SHH| eiφ̃HH |SHV| eiφ̃HV

|SVH| eiφ̃VH |SVV| eiφ̃VV

]
def= eiφ̃0 S̃, (16b)

where the entries of the matrix represent the actual complex reflection coefficients, and φ̃0

accounts for the travel distance. The relation between the phases in (16a) and (16b) is obvious:
φ0 = φ̃0 + φ̃HH, but having only the overall matrix S as an observable, one cannot tell
unambiguously how to split φ0 into φ̃0 and φ̃HH. Therefore, it is common in the literature to
adopt normalization (16a) that keeps the HH entry of the matrix real.

Modern practical applications of radar polarimetry employ different empirical and semi-
empirical criteria that rely on the entries of the scattering matrix S. Examples include a
CPD-based study of oil spills [17], an algorithm for reconstructing the ocean surface slopes
that utilizes all four channels [18], several soil moisture retrieval algorithms analyzed in
[19] and vegetation classification technique that uses multi-frequency polarimetric data [20].
Additional references can be found in [14].

1.4. Objectives of the paper

Our primary objective is to build a material-based linearized scattering model for the case of
vector propagation. In other words, using the first Born approximation, we would like to relate
the entries of the scattering matrix S to the material properties of the target (its permittivity
and conductivity), similarly to how one defines the ground reflectivity function in the scalar
case; see formulae (7), (11) and (14).

Note that in the framework of the first Born approximation, one can formulate both a direct
and an inverse scattering problem. The direct problem consists in obtaining the scattered field
E(sc), given the incident field E(inc) and the material parameters ε and σ, and assuming that
the scattering is weak (see section 1.2). Of our primary interest is the corresponding linearized
inverse scattering problem, which consists in defining channels (15) as functions of the material
parameters, SHH = SHH(ε, σ), SVV = SVV(ε, σ), SHV = SHV(ε, σ) and SVH = SVH(ε, σ), so
that ε and σ can subsequently be reconstructed given the fields E(inc) and E(sc) in formula
(13), and again assuming that the scattering is weak.

The desired linearized scattering model shall be minimally complex in terms of the
structure of the tensors ε and σ. This means that it should not aim at more than recovering
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the four complex reflection coefficients contained in the matrix S̃ of (16b), which is a total
of eight degrees of freedom, because what the polarimetric SAR methodology is capable of
detecting is even one degree of freedom less; see formula (16a).

Availability of such a model may help develop the radar ambiguity theory4 for the
polarimetric case similarly to how it is done in the scalar case; see [8]. Besides, it may
prove useful for the material identification SAR (miSAR) applications.

The application of the first Born approximation in the vector case is similar to that in
the scalar case (discussed in section 1.2). Replacing the total electric field E by the incident
field E(inc) on the right-hand side of equation (A.4) and taking into account the Gauss laws
∇ · D = 0 and ∇ · E(inc) = 0, we obtain

1

c2

∂2E(sc)

∂t2
− �E(sc) = −ε − I

c2
· ∂2E(inc)

∂t2
− 4πσ

c2
· ∂E(inc)

∂t
. (17)

The main difference between this equation and its counterpart for the isotropic case,
equation (6), is that the material characteristics in equation (17) are tensors rather than scalars.
This implies that generally speaking, the vector equation (17) cannot be decoupled into the
independent scalar equations for the individual field components. Moreover, studying the
scattering of electromagnetic waves off interfaces requires special boundary conditions in
addition to the governing equations themselves. Those boundary conditions play a key role in
the construction of the first Born approximation for the case of vector fields; see section 2.

In section 2 of the paper, we carefully develop and analyze the first Born approximation
as it applies to scattering off a hierarchy of target materials. Starting with the simplest case of
an isotropic dielectric, we gradually increase the complexity of the material by allowing for
the anisotropy of ε and including the weak conductivity σ (anisotropic as well) so that finally
we reach the same number of the degrees of freedom as in (16a). The resulting material is a
uniaxial crystal (i.e. a birefringent medium) with the conductivity tensor that is also uniaxial,
and with both axes allowed to have arbitrary directions with respect to the incidence plane
and with respect to one another. We prove that the scattered field in vacuum obtained in this
linearized framework approximates the true reflected field that one can obtain with no use of
the Born approximation. We also obtain a necessary and sufficient condition for the existence
of a solution to the foregoing linearized inverse scattering problem. Under this condition,
the scattering matrix (16a) can be obtained by appropriately choosing the permittivities,
conductivities and angles that define the material and the orientation of its optical axis with
respect to the plane of incidence.

The second objective of this paper is related to the first one. Namely, in the linearized
framework that we have adopted for describing the scattering, a formal mathematical
justification is needed for the possibility of taking the ground reflectivity function in the
form of a single layer on the surface; see formula (12).

As of yet, the transition from the entire half-space occupied by the target material to the
target material concentrated only on the surface has been motivated by the mere convenience
of having the third coordinate removed from the radar dataset5; see the discussion around
equation (12). This, however, is not a rigorous argument. One rather needs to prove that the
linearized scattering off a material half-space can be equivalently reformulated as the linearized
scattering off a layer of monopoles at its surface only.
4 The approach to the theoretical assessment of the radar performance based on the analysis of the radar ambiguity
function; see, e.g., [4, chapters 5 and 11].
5 It is also supported by physical reasoning in the literature. For the microwave carrier frequencies ω0, the penetration
depth of the radar signals into the ground is very small, and all the reflections must be those off the surface. However,
the first Born approximation may lead to a certain inconsistency for the ground reflectivity function in the form (12).
Indeed, the single layer radiates in both directions, vacuum and material, which means that the scattered field actually
penetrates into the ground.
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In other words, we arrive at the following inverse source [21] problem: for the linearized
scattering off a half-space, find an equivalent surface reflectivity function of type (12) that
would yield the same scattered field in the vacuum region. In section 3, we solve this inverse
source problem and show that in the scalar case, the resulting ‘density’ ν̂(z1, z2) indeed appears
proportional to the target reflectivity function (11) on the surface. Moreover, we formulate and
solve a similar inverse source problem in the vector case as well. With the polarization taken
into account, the scattered field in the vacuum region can also be represented as a single-layer
surface potential with tensor densities proportional to the jumps of the material characteristics
at the interface. These topics are addressed in section 3, whereas in section 4, we discuss the
relation between our analysis and polarimetric target decomposition.

The main notation that will be used hereafter is explained in table 1.

2. Hierarchy of scattering models

2.1. Roadmap

In section 2, we present a detailed derivation of the first Born approximation for the scattering
of a linearly polarized electromagnetic wave off a material half-space. We consider several
types of materials: a perfect isotropic dielectric, a perfect birefringent (uniaxial) dielectric
and lossy isotropic and birefringent dielectrics. In each case, our first goal is to determine
the number of degrees of freedom associated with a given material in the linearized direct
scattering problem. This number is determined by the functional dependence of the reflection
coefficients on the material parameters.

In section 2.3, the scattering coefficients are derived for the isotropic case. First, the
Maxwell equations are transformed to the frequency domain, and the dependence of their
solution on the tangential variables is factored out using the uniformity of the formulation
along the interface. Then, the equations are linearized and reduced to a second-order ordinary
differential equation (ODE) that governs the propagation of the scattered field in the direction
normal to the interface. This equation is supplemented by the radiation conditions at infinity
and the matching conditions at the interface. It turns out that the key difference between
the horizontal and vertical polarizations is precisely in the interface conditions. For the
horizontal polarization, those conditions reduce to the continuity of the solution itself and
its first derivative across the interface. For the vertical polarization, the condition for the first
derivative becomes inhomogeneous, and this derivative undergoes a jump across the interface.
Accordingly, the reflection coefficients are different for two polarizations, while the dielectric
permittivity provides a single degree of freedom for this setting.

We note that the first Born approximation in the scalar (i.e. isotropic) case has been
extensively studied in the literature, and also used in the context of SAR applications. The
reason we include its detailed analysis in this paper is twofold. On one hand, it allows us to build
the framework and introduce the solution methodology that subsequently applies to the cases
with anisotropy and/or Ohmic losses. On the other hand, in its own right it helps us emphasize
a very important distinction between the horizontal and vertical incident polarizations. In the
case of a horizontal polarization, the linearized interface condition is homogeneous, and this
is precisely the case that has received most of the attention in the literature; see, e.g., [5]. For
the vertical polarization though, the linearized interface condition becomes inhomogeneous
and accordingly, the solution given by the first Born approximation is different even though
the linearized governing equation is the same as in the case of a horizontal polarization.

In the lossless anisotropic case (section 2.4), the polarizations are no longer independent,
and Maxwell’s equations reduce to a system of two coupled ODEs that govern the components
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Table 1. Key notation and its relations to be used hereafter.

Parameter name Notation Relations Reference

Dielectric tensor and its
reciprocal

ε, η D = ε · E; ε · η = I (18), (51)

Isotropic permittivity (or
dielectric constant)

ε, ε(z) ε(z) = 1 + θ (z)(ε − 1) (23)

Geometry and parameters
of the uniaxial
dielectric tensor

ε⊥, ε‖, �ε, α, β, γ �ε = ε‖ − ε⊥,
α2 + β2 + γ 2 = 1

(48)–(50)

Entries of the reciprocal
dielectric tensor

ηi j,i, j = x, y, z ηii = 1/εii; ηi j = −εi j for
i �= j

(52)

Conductivity tensor σ j = σ · E (3)
Isotropic conductivity σ j = σE (79)
Geometry and parameters

of the uniaxial
conductivity tensor

σ⊥, σ‖, �σ , ασ , βσ ,
γσ

�σ = σ‖ − σ⊥,
α2

σ + β2
σ + γ 2

σ = 1
section 2.5.1

Modified permittivity in
the frequency domain

ε̃ ε̃ = ε + i 4π

ω
σ (81)

Small parameter for the
first Born
approximation

� ‖ε − I‖ ∼ �, ‖σ‖ ∼ �ω,
|u(sc)| ∼ �|u0|

(22), (25c)

Differential operator
describing scattering,
right-hand-side
parameter

L̂, r L̂ = d2/dz2 + q2

q2
(28)

Electromagnetic field, its
components and
amplitudes

U ; u(inc), u(sc); u0,
u(z)

U = u(inc) + u(sc),
u(inc) = u0 ei(qz+Kx),
|u(sc)| ∼ �|u0|

(24)–(27)

Undetermined coefficients
for a solution in two
domains

A, B,C u(sc)(z) =
(Az + B)u0 eiqz for z > 0;
u(sc)(z) =
Cu0 e−iqz for z < 0

(33)

Free space and material (F ), (M) (F ) ≡ (z = −0) (20), figure 1
sides of the interface at (M) ≡ (z = +0)
z = 0
Boundary condition

parameter
R du

dz

∣∣
(M)

= du
dz

∣∣
(F )

+ Ru0 (34), (35)

Wave vector and its
components

k. K, q k2 = K2 + q2; K = k sin θi (21), (41), figure 1

Polarization ratio Q SVV = SHHQ, (45), (74), (75), (77), (83),
figure 2

of the electric and magnetic field normal to the plane of incidence. For this system, the first
Born approximation appears very convenient to implement in two stages: first the equations are
uncoupled and then the resulting individual equations are linearized. The end result depends on
the polarization of the incident wave. In each case (vertical or horizontal incident polarization),
one of the uncoupled equations describes the co-polarized scattering and the other describes
the cross-polarized scattering. The form of the resulting equations and interface conditions
turns out to be similar to the isotropic case, although the actual expressions for the reflection
coefficients are not the same and contain additional degrees of freedom.

In the case of a lossy material (section 2.5), we show that the presence of a weak
conductivity is equivalent to having a small imaginary part in the overall complex permittivity,
which, in turn, makes the small parameter of the first Born approximation complex. This

9
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Table 2. Overview of scattering models and their properties: material parameters, non-zero
reflection coefficients and the maximum number of degrees of freedom. The wavy underline
in the third column means that the values may be complex.

Model of scatterer

Independent
material
parameters

Non-zero
reflection
coefficients

Max.
number
of d.o.f. Section #

Perfect isotropic dielectric ε HH, VV 1 2.3
Lossy isotropic dielectric ε, σ HH, VV 1 2.5.2
Perfect uniaxial dielectric, interface in

the basal plane
ε⊥, ε‖ HH, VV 2 2.4.5

Lossy uniaxial dielectric with spherical
conductivity tensor, interface in the
basal plane

ε⊥, ε‖, σ HH, VV 3 2.5.3

Perfect uniaxial dielectric, the arbitrary
direction of optical axis

ε⊥, ε‖, α, γ HH, VV, HV,
VH

4 2.4.7

Lossy uniaxial dielectric, the arbitrary
direction of optical axis

ε⊥, ε‖, α, γ ,
σ⊥, σ‖, ασ , γσ

HH, VV, HV,
VH

8 2.5.4

observation significantly simplifies the treatment of the lossy materials. In particular, the
functional representation of the imaginary part of the scattering matrix turns out to be the
same as that of the real part. Hence, the anisotropic conductivity yields the same number of
degrees of freedom as does the anisotropic permittivity.

In table 2, we provide the number of degrees of freedom and list the independent material
parameters for each of the cases we have considered.

Having identified the degrees of freedom that characterize every material included into
our analysis, we move on toward addressing the next goal of this section, which is to solve the
corresponding linearized inverse scattering problem. Specifically, we would like to see whether
a given scattering matrix can be obtained by adjusting the available degrees of freedom, i.e.
by appropriately choosing the characteristics of the target material. In theorem 1, we furnish
a necessary and sufficient condition for the solvability of this inverse problem in the case of a
lossless birefringent material, and in corollary 1, we extend this result to the case of a lossy
anisotropic material.

2.2. General formulation

We consider the scattering of a monochromatic plane wave off a material half-space with
permittivity tensor ε and conductivity tensor σ. Since all the fields depend on time as e−iωt ,
where ω is the frequency, we conduct the analysis in the frequency domain. For transverse
electromagnetic waves with no extraneous currents6, the unsteady equations of the system (1)
with equation (3) taken into account reduce to

∇ × E = ikH and ∇ × H = −ikD + 4π

c
σ · E, (18)

where k = ω/c. Equation (2) and the Gauss laws of electricity and magnetism (steady-state
equations in (1)) keep their form in the frequency domain.

Denote x = (x, y, z) ∈ R
3 and assume that the half-space z < 0 is occupied by vacuum,

whereas the half-space z > 0 is filled with the material. The plane of incidence is defined as
to contain the wave vector of the incident wave and the normal to the interface z = 0; with no
loss of generality, we take it as the (x, z) plane (see figure 1). The problem is essentially two

6 The excitation in the problem will be provided by incident plane waves.
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K

α

γ

q

β

x

c = (α, β, γ)

z y

interface

k = (K, 0, q)

free space

material

plane of incidence

Figure 1. Schematic for the scattering problem off an anisotropic half-space. The vector
k = (K, 0, q) is the incident wave vector, see formula (21). The vector c = (α, β, γ ) is a unit
vector along the optical axis (see section 2.4). Note that α, β and γ denote the direction cosines
rather than the actual angles.

dimensional, as the wave vectors of the incident, reflected and transmitted waves all belong to
the plane of incidence. Hence, the electromagnetic fields do not depend on the y coordinate
(although the vectors may have y components).

Then, the system (18) takes the form

−∂Ey

∂z
= ikHx, −∂Hy

∂z
= −ikD̃x,

∂Ex

∂z
− ∂Ez

∂x
= ikHy,

∂Hx

∂z
− ∂Hz

∂x
= −ikD̃y,

∂Ey

∂x
= ikHz,

∂Hy

∂x
= −ikD̃z,

(19)

where D̃x, D̃y and D̃z are the components of the vector D̃ = ε · E + (4π i/ω)σ · E. In the free
space (vacuum), we have ε = I and σ = 0.

At the interface z = 0, the following boundary conditions are imposed on the tangential
components of the electric and magnetic field [2, 22]:

Ex|(F ) = Ex|(M), Ey|(F ) = Ey|(M), (20a)

Hx|(F ) = Hx|(M), Hy|(F ) = Hy|(M). (20b)

The subscripts (F ) and (M) in formulae (20) denote the free space (z = −0) and material
(z = +0) side of the interface, respectively.

11
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The incident field in formulae (5) is chosen as a plane wave:

(E(inc), H(inc)) = (
E(inc)

0 , H(inc)

0

)
ei(qz+Kx), (21)

where K is the common horizontal wavenumber for all plane waves in the problem, and

q = (k2 − K2)1/2

is the vertical component of the incident wave vector (see [2, 22, 23]).
In addition to the interface conditions (20) for the total field, the scattered field

(E(sc), H(sc)) should also satisfy the radiation conditions as z → ±∞ (see formulae (29)).
In the textbook approach to problem (19)–(20) (see, e.g., [3, 2]), the incident field (21) is

restricted to the free space, while the system (19) is solved with respect to the scattered field,
and its solutions are found separately for the vacuum and material half-spaces. These solutions,
called the reflected and transmitted fields, respectively, are combined with the incident field,
and then matched at the interface using boundary conditions (20). A comprehensive account
of this approach can be found, e.g., in [22]. For the particular case of a perfect isotropic
dielectric, the amplitude and direction of the reflected and transmitted fields are given by the
classic Fresnel’s equations and Snell’s law; these expressions (see, e.g., [2, 3]) are valid for
the arbitrary values of ε. Besides, various simplifications can be considered depending on the
specific structure of ε and σ [23].

As indicated in section 1.4, our goal is to analyze the linearized scattering case. Therefore,
in the material domain z > 0, we assume that

‖ε − I‖ ∼ � and ‖σ‖ ∼ �ω, (22)

where � is a small parameter, so that the scattering is weak. To study the existence of a solution
to the resulting inverse scattering problem, we will use the first Born approximation to obtain
a series of direct scattering solutions for a hierarchy of settings, starting from the simplest
case, i.e. that of a perfect isotropic dielectric. The Fresnel and other exact solutions, linearized
according to (22), will be used for the validation of the solutions obtained with the help of the
first Born approximation.

2.3. The first Born approximation for a perfect isotropic dielectric

2.3.1. Governing equations. Assume that in the material, the dielectric tensor is spherical,
which means that the permittivity is scalar, and that the conductivity is zero. Since σ = 0, the
components of the vector D̃ in (19) can be replaced by those of D. Since ε = ε(z)I in the
entire space, the vectors D and E are proportional, i.e.

Di(x, z) = ε(z)Ei(x, z) for i = x, y, z,

where

ε(z) = 1 + θ (z)(ε − 1), (23)

θ (z) is a unit step function and ε > 1 is the permittivity in the material domain z > 0 (see
[2, 3]). In this case, the equations for the variables Ex, Ez, Hy and for Hx, Hz, Ey in the system
(19) are decoupled. This means that the system (19) admits a solution with Ex = Ez = Hy = 0,
which is called horizontal polarization, and another solution with Hx = Hz = Ey = 0, called
vertical polarization. Each of these solutions is governed by the scalar Helmholtz equation

∂2U

∂x2
+ ∂2U

∂z2
+ ε(z)k2U = 0, (24)

where U (x, z) represents any nonzero Cartesian component of E or H.

12
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To build the first Born approximation for the scattering of a plane incident wave in either
of the two basic polarizations defined above, we represent the total field U in (24) as a sum of
the incident and scattered fields as in (5):

U = u(inc) + u(sc), (25a)

take the incident field in the form (21)

u(inc) = u0 ei(qz+Kx) (25b)

and assume that

|u(sc)| ∼ �|u0|, (25c)

where the small parameter � is introduced in (22). In doing so, both the incident and scattered
components of the field occupy the entire space. Substituting equality (25a) into (24) and
taking into account that u(inc) satisfies the same equation (24) but with ε = 1, we arrive at the
equation for u(sc):

∂2u(sc)

∂x2
+ ∂2u(sc)

∂z2
+ k2u(sc) = −(ε(z) − 1)k2(u(inc) + u(sc)). (26)

The first Born approximation consists in disregarding the second-order term (ε − 1)u(sc), see
formulae (22) and (25c), on the right-hand side of equation (26). Moreover, as everything in
our formulation is uniform along the plane (x, y), see figure 1, the dependence of the solution
on x and y must be the same in the entire space (see [2, chapter X]). This, in particular, implies
that the horizontal component of the wave vector is the same for both the incident field (21),
(25b) and the scattered field, so that we can take

u(sc) = u(z) eiKx. (27)

Equation (27) helps us reduce (26) to the following equation for u(z):

1

u0
L̂u = g(z) ≡ −rθ (z) eiqz, L̂

def= 1

q2

d2

dz2
+ 1, (28)

where r = (ε − 1)k2/q2. Note that the incident field satisfies the equation L̂u(inc) = 0. The
solution u(z) of equation (28) should also satisfy the radiation conditions at infinity:

1

iq

du

dz
− u = 0 as z → ∞ and

1

iq

du

dz
+ u = 0 as z → −∞. (29)

The overall solution to equation (28) will be obtained as the sum of the general solution
to the corresponding homogeneous equation and a particular solution to the inhomogeneous
equation (28). For the general solution to the homogeneous equation L̂u = 0 subject to the
radiation conditions (29), we can write

u(h)(z) =
{

Bu0 eiqz, z > 0,

Cu0 e−iqz, z < 0,
(30)

where B and C are constants. A particular solution to the inhomogeneous equation (28), which
accounts for the resonance between L̂ and g(z) on the material domain z > 0, is given by

u(p)(z) =
{

Au0z eiqz, z > 0,

0, z < 0,
(31)

where the value of A is obtained by the method of undetermined coefficients:

A = irq

2
. (32)

13
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Combining (30) and (31), we obtain the overall scattering solution in the form

u(sc)(z) =
{
(Az + B)u0 eiqz, z > 0 (material),
Cu0 e−iqz, z < 0 (vacuum),

(33)

where the constants B and C shall be determined with the help of the interface conditions (20).
The constant C can be interpreted as the reflection coefficient.

In sections 2.3.2 and 2.3.3, we will show that whereas the governing differential
equation (28) and the value of r on its right-hand side are the same for both polarizations, the
interface conditions (20), as expressed via the single unknown function u, appear different for
the horizontal and vertical polarizations. Specifically, in either case the interface conditions
can be written as

u|(M) = u|(F ) ; du

dz

∣∣∣∣
(M)

= du

dz

∣∣∣∣
(F )

+ Ru0, (34)

where the constant R depends on the polarization (it may be equal to zero). Accordingly,
solution (33) also appears different for the horizontal and vertical polarizations. In particular,
substituting (33) and (32) into (34), we can express the reflection coefficient C via the
parameters r and R:

C = B = − r

4
+ R

2iq
, (35)

which indicates that the reflection coefficient depends on the polarization via R.
Finally, let us note that equation (28) can also be solved by convolution with the

fundamental solution (see, e.g., [5]). As we explain in section 3 though, the deficiency of
this approach is precisely in that it offers no easy way of accounting for the different interface
conditions (i.e. different values of R) that correspond to different polarizations.

2.3.2. Horizontal polarization. In this case, the unknown quantity in equation (24) is usually
taken as U = Ey, with the other two nonzero field components being Hx and Hz. The first
equation (19) then implies

Hx = i

k

dEy

dz
, (36)

so that boundary conditions (20) reduce to

Ey|(F ) = Ey|(M) and
dEy

dz

∣∣∣∣
(F )

= dEy

dz

∣∣∣∣
(M)

. (37)

Boundary conditions (37) imply the continuity of the total field (25a) and its first normal
derivative at the interface. As the incident field (25b) and its derivative are continuous at z = 0,
so are the scattered field u(sc) = E (sc)

y and its first derivative with respect to z:

E (sc)
y

∣∣
(F )

= E (sc)
y

∣∣
(M)

and
dE (sc)

y

dz

∣∣∣∣∣
(F )

= dE (sc)
y

dz

∣∣∣∣∣
(M)

. (38)

Conditions (38) are used to determine the constants B and C in (33). A comparison of (38)
to (34) shows that R = 0, so, according to (35), the co-polarized reflection coefficient for the
horizontal polarization is given by7

SHH
def= C = B = − r

4
= −1

4

k2

q2
(ε − 1). (39)

7 Hereafter, we identify the reflection coefficients with the entries of the scattering matrix S of (15); see section 2.3.4.
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At the same time, the Fresnel solution [3, chapter I] gives the following expression for
the exact reflection coefficient in the case of horizontal polarization:

S(exact)
HH = − sin(θi − θt )

sin(θi + θt )
, (40)

where θi is the incidence angle and θt is the refraction angle (defined by Snell’s law):

sin θi = K

k
, sin θt = 1√

ε
sin θi. (41)

Formulae (40) and (41) do not involve linearization and are valid for arbitrary values of ε.
A comparison of the linearized solution (33), (32) and (39) to the Fresnel solution (40),

(41) shows the deficiency of the former: in the material, it has a component that grows linearly
as z increases, which is not physical. In addition, expression (33) does not provide the correct
wavenumber and propagation direction of the refracted wave, which restricts the validity of
the first Born approximation inside the material to the area [6]:

|z| � z0 ∼ π

|q − q(exact)| ≈ 2πq

k2|ε − 1| ,

where q(exact) is the z-component of the refracted wavenumber obtained from Snell’s law:

q(exact) = √
εk cos θt = k

√
ε − sin2 θi,

see the second equation in formula (41).
However, formulae (33) and (39) are useful in the vacuum region: the wavenumber and

propagation direction of the scattered field in vacuum are correct, and one can also see that
the reflection coefficient (39) given by the first Born approximation coincides with the linear
term in the expansion of the exact reflection coefficient (40) in powers of � = ε − 1. Indeed,
using equations (41) and taking into account that cos θi = q/k and also

ε cos2 θt = ε − (1 − cos2 θi) = cos2 θi

(
1 + �

k2

q2

)
,

we can transform expression (40) as follows:

S(exact)
HH =

1√
ε

sin θi cos θi − 1√
ε

cos θi sin θi(1 + �k2/q2)1/2

1√
ε

sin θi cos θi + 1√
ε

cos θi sin θi(1 + �k2/q2)1/2

= 1 − (1 + �k2/q2)1/2

1 + (1 + �k2/q2)1/2
= −1

4

k2

q2
� + O(�2) = SHH + O(�2).

2.3.3. Vertical polarization. In this case, we take U = Hy in equation (24). The first interface
condition for Hy at z = 0 is the continuity of Hy itself; see (20). The second interface condition
is obtained from the continuity of Ex, using the relation

ε(z)Ex = − i

k

dHy

dz
(42)

that follows from (18), and taking into account that ε = 1 for z < 0; see formula (23).
Altogether, this yields the following boundary conditions for Hy at z = 0:

Hy|(F ) = Hy|(M),
dHy

dz

∣∣∣∣
(F )

=
(
ε−1 dHy

dz

)∣∣∣∣
(M)

. (43)

The key difference between these boundary conditions and boundary conditions (37) that
we have obtained for the horizontal polarization is the presence of the factor ε−1 in the
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condition for the normal derivative (i.e. z-derivative) in (43). Because of this factor, for the
vertical polarization, the normal derivative of the total field is no longer continuous, and rather
undergoes a jump at z = 0, which is due to the jump of ε−1; see (43). As the derivative of
the incident field (25b) is still continuous, the discontinuity appears in the z-derivative of the
scattered field:

ε−1
dH (sc)

y

dz

∣∣∣∣∣
(M)

− dH (sc)
y

dz

∣∣∣∣∣
(F )

= (1 − ε−1)
dH (inc)

y

dz

∣∣∣∣∣
z=0

.

Multiplying both sides of this equality by ε and disregarding the quadratic term

(ε − 1)
dH (sc)

y

dz

∣∣
(F )

= O(�2) on the left-hand side, we arrive at the inhomogeneous linearized
interface condition for the normal derivative of H (sc)

y :

dH (sc)
y

dz

∣∣∣∣∣
(M)

− dH (sc)
y

dz

∣∣∣∣∣
(F )

= (ε − 1)
dH (inc)

y

dz

∣∣∣∣∣
z=0

. (44)

Comparing (44) to (34) while taking into account (25b), we obtain R = iq(ε − 1). Hence,
according to (35), we obtain (cf formula (39))

SVV
def= C = B = − r

4
+ ε − 1

2
= SHHQ, where Q = K2 − q2

k2
. (45)

The true reflection coefficient for this polarization is given by the Fresnel solution [3,
chapter I] (cf formula (40))

S(exact)
VV = tan(θi − θt )

tan(θi + θt )
= sin θi cos θi − sin θt cos θt

sin θi cos θi + sin θt cos θt
, (46)

where θi and θt are defined in (41). As in the case of the horizontal polarization, see
section 2.3.2, reflection coefficient (45) derived with the help of the first Born approximation
can also be obtained by linearization of the exact reflection coefficient (46) with respect to �:

S(exact)
VV = ε − (1 + �k2/q2)1/2

ε + (1 + �k2/q2)1/2
= −1

4

k2

q2
� + ε − 1

2
+ O(�2) = SVV + O(�2),

where we have used the same transformations as in section 2.3.2.
The plots in figure 2(a) show the exact and linearized reflection coefficients for

both polarizations, as well as the polarization ratio Q, calculated using the first Born
approximation and according to the Fresnel formulae. As expected, the accuracy of the first
Born approximation decreases as the value of (ε − 1) increases. Note that the typical values
of the refractive index

√
ε are between 1 and 2 [3, chapters I and II].

Remark. The expression for the polarization ratio Q in formula (45) indicates that the scattered
field in the vertical polarization vanishes if |K| = |q|, i.e. if the incidence angle is π/4. In
other words, the Brewster angle in the linearized framework is equal to π/4. This should be
expected for a weakly refractive material, in which the direction of the transmitted ray is close
to that of the incident one (i.e. |θi − θt | ∼ �; see formula (41)), and hence perpendicular to the
direction of the reflected ray (see, e.g., [3, chapter I]).

2.3.4. Discussion of the isotropic case. Hereafter, we restrict our analysis to the scattering
of plane transverse waves off a plane interface, so that the tangential components of the wave
vectors for the incident, transmitted and reflected fields are the same. Under these assumptions,
the reflection angle is known, and hence the reflection coefficients computed in sections 2.3.2
and 2.3.3 (and sections 2.4 and 2.5 for other types of scatterers) already take into account the
transformation between the coordinate systems used for representing the incident field and the
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(a) (b)

(c)

Figure 2. Reflection coefficients and polarization ratios for the linearized and full formulation:
(a) lossless isotropic dielectric; (b) and (c): lossless birefringent dielectric with ε⊥ and ε‖ as
independent variables, respectively.

reflected field; see the discussion after equation (13). Moreover, as we are considering only
genuine plane waves, we can attribute both E(sc) and E(inc) in formula (13) to the same location
right at the interface, rather than to different spatial locations in the far field (that allow one to
approximate a more general wave form by a plane wave). Therefore, we may actually leave
out the common phase φ0, see (16a), that takes into account the propagation distance/time,
and directly associate the reflection coefficients we compute with the corresponding entries of
the scattering matrix S. This approach will be adopted for the rest of the paper.

The analysis of the reflection coefficients (39) and (45) shows that scattering off a perfect
isotropic dielectric yields only one degree of freedom in the scattering matrix S of (15). At
the same time, the reflection coefficients for two polarizations, SHH and SVV, differ by a factor
of Q, see formula (45), that does not depend on the material properties at all. Therefore,
when this type of scattering material is assumed, the only quantity that can be reconstructed
from measurements is ε − 1, which also happens to be the only physical characteristic of the
target, regardless of the received polarization(s). If, however, there is a mismatch between the
observations and the predictions of the model (e.g., if the ratio of the received co-polarized
signals differs substantially from Q, or if significant cross-polarized components are detected),
then the use of a more comprehensive model for the scattering material may be justified (see
sections 2.4 and 2.5).
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2.4. Perfect birefringent dielectric

2.4.1. Governing equations. A perfect (i.e. lossless) anisotropic medium is characterized by
the dielectric tensor ε that relates the components of D and E:

Di = εi jE j, i, j = x, y, z, (47)

while σ is a zero tensor, so that D̃ in (19) is still the same as D. For a birefringent material (i.e.
a uniaxial crystal), there exists a coordinate system x′, y′, z′, in which the tensor ε is diagonal
and relation (47) simplifies to

Dx′ = ε⊥Ex′ , Dy′ = ε⊥Ey′ , Dz′ = ε‖Ez′ . (48)

Let c be a unit vector along the z′ axis, and let α, β and γ be its x, y and z components,
respectively (see figure 1). The components of a unit vector are related by

α2 + β2 + γ 2 = 1. (49)

Then, the entries of the tensor ε become (see [22, 23])

εxx = ε⊥ + α2�ε, εyy = ε⊥ + β2�ε, εzz = ε⊥ + γ 2�ε,

εxy = εyx = αβ�ε, εxz = εzx = αγ�ε, εyz = εzy = βγ�ε,
(50)

where �ε = ε‖ − ε⊥. The diagonal terms in (50) are O(1), while the off-diagonal terms are
O(�) (cf the first relation in formula (22)).

The isotropic case considered in section 2.3 is characterized by �ε = 0. There, the
off-diagonal terms in (50) vanish and the two basic polarizations (horizontal and vertical) in
the system (19) separate. They are described individually by equation (24) for Ey and Hy,
respectively. If �ε �= 0 though, then the two polarizations remain coupled. However, the
treatment of this case is greatly simplified in the presence of a small parameter �. Namely,
our assumption that the dielectric is weak implies that the coupling terms are small. For the
case of weak coupling, it still makes sense to use Ey and Hy as the unknowns in the problem,
because it simplifies the analysis of the Born approximation and makes the comparison to the
isotropic case (equation (24)) easier.

To reduce the system (19) to two equations for Ey and Hy, we will use the inverse dielectric
tensor η defined as

Ei = ηi jD j, i, j = x, y, z. (51)

The entries of this tensor, accurate to O(�), are

ηxx = 1/εxx, ηyy = 1/εyy, ηzz = 1/εzz,

ηxy = ηyx = −εxy, ηxz = ηzx = −εxz, ηyz = ηzy = −εyz,
(52)

which can be proven by observing that all entries of the tensor ε · η − I are o(�). Then, we
eliminate all field components except Ey and Hy from the system (19) as follows.

(i) Dependence (27) on the x coordinate is assumed for all field components, so in the system
(19), we replace ∂/∂x by iK and ∂/∂z by d/dz, respectively. This allows us to explicitly
express the components Dx, Dz, Hx and Hz via Ey, Hy and their derivatives with respect
to z:

Dx = − i

k

dHy

dz
, Dz = −K

k
Hy, (53a)

Hx = i

k

dEy

dz
, Hz = K

k
Ey. (53b)
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(ii) Formulae (53b) are substituted into the expression for Dy in (19), which yields

Dy = − 1

k2

(
d2Ey

dz2
− K2Ey

)
. (54)

(iii) Equations (53a) and (54) are substituted into formula (51), which leads to the following
expressions for Ex and Ez:

Ex = −ηxx
i

k

dHy

dz
− ηxy

1

k2

(
d2Ey

dz2
− K2Ey

)
− ηxz

K

k
Hy, (55a)

Ez = −ηzz
K

k
Hy − ηxz

i

k

dHy

dz
− ηyz

1

k2

(
d2Ey

dz2
− K2Ey

)
, (55b)

whereas for Ey, we obtain(
ηyy

d2

dz2
+ k2 − K2ηyy

)
Ey = −k

(
iηxy

d

dz
+ Kηyz

)
Hy. (56)

(iv) Expressions (55) are substituted into the y component of the Faraday law in (19) (the
equation that relates Ex, Ez and Hy). After simplifications, we arrive at(

ηxx
d2

dz2
+ k2 − K2ηzz

)
Hy − 2iηxzK

dHy

dz
= − i

k

(
iηyzK − ηxy

d

dz

)(
d2Ey

dz2
− K2Ey

)
.

(57)

Note that the isotropic equation (24) can be derived from equation (56), or from
equation (57), by setting �ε = 0 in formulae (50) and (52). As will be seen in sections 2.4.2
and 2.4.3, equations (56) and (57) are particularly well suited for computing the scattered field
because of the way they couple the components Ey and Hy. Specifically, for electromagnetic
fields represented in the form (25a), it appears very convenient to carry out the Born
approximation in two stages: first decouple equations (56) and (57) from one another, and
then linearize the resulting individual equations.

The system (56), (57) will also require boundary conditions at z = 0; see (20). The
boundary conditions will be obtained with the help of relations for Hx and Ex in formulae
(53b) and (55a). In the isotropic case, expression (55a) with (52) taken into account reduces
to (42), as expected. In the anisotropic case, the right-hand side of expression (55a) will
be responsible for the inhomogeneous boundary conditions (similar to (42) and (44) in the
isotropic case) for the vertical polarization of the scattered field8.

Let us now consider the two basic polarizations of the incident wave separately. For each
one, the scattered field can also be polarized either vertically or horizontally.

2.4.2. Horizontal polarization of the incident wave. In this case, the component Hy is present
only in the scattered field; hence, Hy = O(�) (see (25c)). Therefore, the right-hand side of
equation (56) appears O(�2) because according to (50) and (52), ηxy ∼ �ε = O(�) and
ηyz ∼ �ε = O(�). As such, this right-hand side can be neglected, and the co-polarized
scattering for the horizontal incident polarization is described by(

ηyy
d2

dz2
+ k2 − Kηyy

)
Ey = 0.

8 The inhomogeneous boundary condition will apply to the co-polarized component of the scattered field when the
incident field is polarized vertically, and to the cross-polarized component of the scattered field when the incident
field is polarized horizontally.
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This equation can be transformed into

L̂Ey = ηyy − 1

q2

(
K2 − d2

dz2

)
Ey, (58)

where the operator L̂ is defined in (28). Linearization of (58) according to (25) yields

1

E (inc)

0y

L̂E (sc)
y = (ηyy − 1)k2

q2
θ (z) eiqz, (59)

which coincides with equation (28) for r = −(ηyy − 1)k2/q2 and u0 = E (inc)

0y .
Since in the co-polarized case the scattered wave is also polarized horizontally, Ey and

Hx must be continuous at z = 0; see (20), where the expression for Hx is given by the first
equality of (53b). Recalling that the incident field is continuous at the interface along with its

normal derivative, we obtain the continuity of E (sc)
y and

dE (sc)
y

dz :

E (sc)
y

∣∣
(F )

= E (sc)
y

∣∣
(M)

,
dE (sc)

y

dz

∣∣∣∣∣
(F )

= dE (sc)
y

dz

∣∣∣∣∣
(M)

, (60)

so that in formula (34) we have R = 0. Interface conditions (60) are the same as (38) in the
isotropic case. Using (35) for E (sc)

y , we obtain the following reflection coefficient:

SHH = 1

4

k2

q2
(ηyy − 1). (61)

For �ε = 0, formula (61), with the help of (52), reduces to the isotropic expression in (39),
as expected.

For the cross-polarized scattering, i.e. the vertical polarization of the scattered wave, we
linearize equation (57) taking into account that H (inc)

y = 0 and hence Hy = H (sc)
y = O(�)

according to (25c). Thus, on the left-hand side we may replace ηxx and ηzz by 1. The remaining
off-diagonal terms of η are O(�); hence, we drop the ηxz term on the left-hand side and replace
Ey by E (inc)

y on the right-hand side. This yields(
d2

dz2
+ q2

)
H (sc)

y = − i

k

(
iηyzK − ηxy

d

dz

)(
d2E (inc)

y

dz2
− K2E (inc)

y

)
. (62)

Equation (62) can be transformed into
1

E (inc)

0y

L̂H (sc)
y = k

q

(
ηxy − K

q
ηyz

)
θ (z) eiqz. (63)

As the polarization of the scattered field is vertical, Hy = H (sc)
y and Ex must be continuous

at z = 0; see (20). We use formula (55a) for Ex to express the interface conditions via the
y-components of the fields. Using H (sc)

y = O(�) and recalling that the off-diagonal terms of η

are alsoO(�), we can set ηxx = 1 in the first term and drop the third term on the right-hand side
of that relation. Thus, we arrive at the following interface condition for the normal derivative
of H (sc)

y :

− i

k

dH (sc)
y

dz

∣∣∣∣∣
(F )

= − i

k

dH (sc)
y

dz

∣∣∣∣∣
(M)

+ ηxyE (inc)

0y . (64)

It is inhomogeneous due to the second term on the right-hand side of (55a) (cf (44)).
To define the cross-polarized reflection coefficient for this case, we use the following

convention: if the scattered field in vacuum is given by H (sc)
y = H (sc)

0y eiKx−iqz (see
equations (27) and (33)), then the reflection coefficient will be

SVH
def= H (sc)

0y

/
E (inc)

0y . (65)
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Next, we introduce the notation

G± def= −
(

ηxy ± K

q
ηyz

)
= �ε

(
αβ ± K

q
βγ

)
(66)

(see (52) for the components of η) and match equation (63) to (28), which yields u0 ≡ E (inc)

0y
and r = kG−/q (note the minus sign in (66)). We also match the interface condition (64) to
the second condition (34), which yields R = −ikηxy. Substituting these values of r and R into
(35), we express the cross-polarized reflection coefficient defined by (65) as

SVH = 1

4

k

q
G+. (67)

2.4.3. Vertical polarization of the incident wave. We start with the co-polarized scattering
again. For this case, we have E (inc)

y = 0 and, consequently, Ey = E (sc)
y = O(�). As

ηyz ∼ ηxy = O(�), the right-hand side of equation (57) can be dropped, making this equation
homogeneous: (

ηxx
d2

dz2
+ k2 − K2ηzz

)
Hy − 2iηxzK

dHy

dz
= 0.

Linearization of this equation gives

1

H (inc)

0y

L̂H (sc)
y =

(
(ηxx − 1) + K2

q2
(ηzz − 1) − 2ηxz

K

q

)
θ (z) eiqz, (68)

where H (inc)

0y is the amplitude of the incident wave. The interface conditions for this co-polarized
case require the continuity of Hy and Ex at z = 0. Given the continuity of the incident field
along with its normal derivative, the second equation of (20b) yields the continuity of H (sc)

y ,
while for Ex we employ formula (55a) and after the linearization obtain

− i

k

dH (sc)
y

dz

∣∣∣∣∣
(F )

= − i

k

dH (sc)
y

dz

∣∣∣∣∣
(M)

+ q

k
(ηxx − 1)H (inc)

0y − K

k
ηxzH

(inc)

0y . (69)

Similarly to the isotropic case, see formula (44), the normal derivative of H (sc)
y is discontinuous

at the interface. Comparing (68) and (69) to (28) and (34), we obtain

r = −
(

(ηxx − 1) + K2

q2
(ηzz − 1) − 2ηxz

K

q

)
and R = iKηxz − iq(ηxx − 1).

Then, using formula (35), we obtain

SVV = −1

4

(
(ηxx − 1) − K2

q2
(ηzz − 1)

)
. (70)

For �ε = 0, formula (70), with the help of (52), reduces to the isotropic expression in (45),
as expected.

The cross-polarized field in this case is governed by the linearized equation (56):(
d2

dz2
+ q2

)
E (sc)

y = −k

(
iηxy

d

dz
+ Kηyz

)
H (inc)

y ,

which can be transformed into
1

H (inc)

0y

L̂E (sc)
y = k

q2

(
qηxy − Kηyz

)
θ (z) eiqz. (71)

Remarkably, the value of r in (71) and (63) is the same, r = kG−/q, where G− is defined by
(66). The difference between the cross-polarized case of section 2.4.2 and the cross-polarized
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case considered here is in the boundary conditions. Indeed, for the current cross-polarized
case, we require the continuity of Ey and Hx at z = 0, which translates into the homogeneous
boundary conditions (60) by taking into account that Ey = E (sc)

y and using the first equation
of (53b) for Hx. Hence, R = 0, and using formula (35) for E (sc)

y with u0 ≡ H (inc)

0y , we arrive at
the reflection coefficient

SHV = −1

4

k

q
G−, (72)

which is different from (67). In formula (72), SHV is defined similarly to (65),

SHV
def= E (sc)

0y /H (inc)

0y provided that E (sc)
y = E (sc)

0y eiKx−iqz for z < 0.

2.4.4. Scattering coefficients for a perfect birefringent dielectric. For future reference, we
present here the expressions for the reflection coefficients given by (61), (70), (67) and (72) in
the following form (expressions (50), (52) and (66) have also been used):

SHH = −1

4

k2

q2
(ε⊥ − 1 + β2�ε),

SVV = 1

4

(
(ε⊥ − 1 + α2�ε) − K2

q2
(ε⊥ − 1 + γ 2�ε)

)
,

SHV = −1

4

k

q

(
α − K

q
γ

)
β�ε,

SVH = 1

4

k

q

(
α + K

q
γ

)
β�ε.

(73)

2.4.5. Scattering off the basal plane. We start analyzing particular geometries by assuming
that the interface between the vacuum and material is normal to the optical axis, in which
case we say that it coincides with the so-called basal plane. Substituting α = 0, β = 0 and
γ = 1 (see figure 1) into equations (73), we obtain the following expressions for the reflection
coefficients:

SHH = −1

4

k2

q2
(ε⊥ − 1),

SVV = SHHQ, where Q = 1

k2

(
K2 ε‖ − 1

ε⊥ − 1
− q2

)
, (74)

SVH = 0, SHV = 0.

Comparing the values of Q in formulae (74) and (45), we see that unlike in the isotropic
case (see figure 2(a)), the ratio of the co-polarized reflection coefficients now depends on the
material properties. Indeed, while the quantity Q in (45) depends only on the incident angle,
in (74) it may assume any real value, depending on (ε⊥ − 1) and (ε‖ − 1). Therefore, this
scattering configuration has two degrees of freedom rendered by the real-valued reflection
coefficients SHH and SVV.

Once the co-polarized channels SHH and SVV have been defined according to (74), one can
look into the possibility of reconstructing the material parameters ε⊥ and ε‖ while interpreting
SHH and SVV as the given data. It turns out that the system (74) can be solved with respect to
ε⊥ and ε‖ for any values of the observables SHH and SVV. However, not every choice of the
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input data results in a physically feasible solution. In particular, the value of Q = SVV/SHH

should satisfy the condition

Q + q2

k2
> 0 (75)

in order for the susceptibilities to be positive:

ε⊥ − 1 > 0 and ε‖ − 1 > 0. (76)

If condition (75) is not satisfied, then at least one of the requirements on the material parameters
in (76) will not be met.

2.4.6. Arbitrary direction of the optical axis. The analysis of the last two equations in
(73) shows that the cross-polarized channels are nonzero if β �= 0 and β �= 1, i.e. when the
optical axis is neither parallel nor perpendicular to the plane of incidence (note that the basal
plane case considered in section 2.4.5 corresponds to β = 0, i.e. the optical axis is parallel to
the incidence plane, and thus provides only co-polarized scattering channels; see (74)). The
cross-polarized channels are also proportional to �ε, which once again shows that they vanish
in the isotropic case. The ratio of the two off-diagonal entries of the scattering matrix is given
by

SHV

SVH
= −qα − Kγ

qα + Kγ
.

This expression can help identify the individual effects of α and γ . If α = 0, then the off-
diagonal entries are equal. If γ = 0, i.e. the optical axis is parallel to the interface, then the
sum of the off-diagonal entries is zero. In either of these two cases, the overall number of
degrees of freedom is 3, otherwise, i.e. when αβγ �= 0, it is 4.

The ratio Q of two co-polarized reflection coefficients for the arbitrary direction of the
optical axis differs from that given in formula (74), but still depends on �ε:

Q = SVV

SHH
= 1

k2(ηyy − 1)
(K2(ηzz − 1) − q2(ηxx − 1))

= 1

k2

(
K2 ε⊥ − 1 + γ 2�ε

ε⊥ − 1 + β2�ε
− q2 ε⊥ − 1 + α2�ε

ε⊥ − 1 + β2�ε

)
. (77)

The plots in figures 2(b) and (c) illustrate how Q depends on ε⊥ and ε‖ for θi = π/9.
The exact formulation is made according to [22]. Similarly to the reflection coefficients in
figure 2(a), the linearized and exact values are close if |ε⊥ − 1| � 1 and |ε‖ − 1| � 1.

2.4.7. Discussion of the lossless birefringent medium. Compared to the isotropic case
characterized by the scalar dielectric coefficient ε (section 2.3), the case of a perfect uniaxial
dielectric is controlled by four parameters: ε⊥, ε‖, α and γ (note that β is not an independent
quantity due to relation (49)). Depending on the particular geometry, this case may provide
two (γ = 1, section 2.4.5), three (α = 0, βγ �= 0 or γ = 0, αβ �= 0) or four (αβγ �= 0)
degrees of freedom (section 2.4.6). However, the mere availability of the correct number of
degrees of freedom does not, generally speaking, guarantee that the problem of reconstructing
the material properties from reflection coefficients has a solution for any angle of incidence
and any input data (i.e. any arbitrary values of the observable quantities SHH, SVV, SHV and
SVH).

The issue of solvability of the aforementioned problem is addressed by the following.
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Theorem 1. Equations (73) can be solved with respect to ε⊥, ε‖, α and γ for the given SHH,
SVV, SHV, SVH and θi if and only if

(SVV + V SHH)2 � 4V SHVSVH, (78)

where

V = q2 − K2

k2
= cos2 θi − sin2 θi = cos 2θi,

and θi is the angle of incidence defined in (41).

Theorem 1 is proved in Appendix B. Theorem 1 shows, in particular, that for the linearized
scattering off a plane interface between the vacuum and a lossless birefringent dielectric, the
inverse problem does not have a solution for all possible combinations of reflection coefficients;
see (78). It is not clear ahead of time what may be causing this limitation of solvability: whether
it is the type of the material that we have chosen or the linearization itself. We address this
question in Appendix C by conducting numerical simulations for the exact formulation of the
direct scattering problem. It turns out that even with no linearization, there are still regions in
the space of reflection coefficients for which there is no solution. Moreover, if in the case of
weak scattering (when the linearization applies) neither the linearized nor the original problem
happens to have a solution, then the regions of no solution for both problems seem to coincide.
Hence, the limitation of solvability of the linearized inverse problem shall be attributed to the
type of the target material rather than to the first Born approximation.

2.5. Isotropic and anisotropic lossy dielectric

2.5.1. Modified permittivity tensor in the presence of a finite conductivity. First, we consider
the case of an isotropic lossy dielectric, i.e. ε = εI, σ = σI, where ε > 0 and σ > 0 are
scalars. Then, the propagation is governed by equations (18) supplemented by the material
relations

D = εE and j = σE. (79)

Given (79), the second equation of (18) transforms into

∇ × H = −ikε̃E,

where (cf formula (11))

ε̃ = ε + i
4πσ

ω
= 1 + (ε − 1) + i

4πσ

ω
. (80)

This is equivalent to the previously considered case of a perfect isotropic dielectric
(section 2.3) with a redefined dielectric constant. The applicability of the first Born
approximation (see section 2.3.1) requires that the conductivity term in expression (80) be
small, or 4πσ/ω ∼ � � 1; see (22). If this condition is satisfied, then all the formulae in
section 2.3 remain valid, with ε replaced by ε̃.

We will now extend this consideration to anisotropic permittivity and conductivity. For the
latter, we assume a uniaxial model described by the parameters σ⊥, σ‖, ασ , βσ and γσ , similarly
to the model of the dielectric tensor described in section 2.4.1. Hence, the representation of the
conductivity tensor in the coordinates of figure 1 will be given by formula (50) with (σ⊥, σ‖)
substituted for (ε⊥, ε‖) and (ασ , βσ , γσ ) substituted for (α, β, γ ). Given this representation
and the linearity of relations (79), we can derive the following tensor counterpart of the scalar
formula (80):

ε̃ = ε + i
4π

ω
σ. (81)
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Next, note that the reflection coefficients in (73) are linear functions of susceptibilities
(ε‖ − 1) and (ε⊥ − 1) (note that �ε ≡ (ε‖ − 1) − (ε⊥ − 1)), which is in agreement with the
first Born approximation being a linear perturbation method with the susceptibilities playing
the role of small parameters. Therefore, with the conductivities taken into account, the new
scattering amplitudes can be calculated by simple substitution rules, e.g., for SHH, we have

SHH = −1

4

k2

q2
((ε⊥ − 1) + β2�ε)

⇓
S̃HH = −1

4

k2

q2

(
(ε⊥ − 1) + β2�ε + i

4π

ω

(
σ⊥ + β2

σ�σ
))

,

(82)

where �σ = σ‖ − σ⊥.

2.5.2. Isotropic permittivity and isotropic conductivity. The reflection coefficients (39) and
(45), modified by the foregoing procedure, contain the factor of (ε̃ − 1), see (80), and thus
become complex. Their complexity affects the phase of the reflected wave. However, the ratio
of the reflection coefficients for the vertical and horizontal polarizations is still equal to the
same quantity Q defined in (45). Moreover, the phase difference between the two reflection
coefficients, or CPD, remains unchanged, i.e. equal to zero. As such, despite the changes in
the values of the reflection coefficients due to a finite conductivity, this case still has only one
degree of freedom, the same as the case of a perfect isotropic dielectric (see section 2.3.4).

2.5.3. Anisotropic permittivity and isotropic conductivity: reflection from basal plane. We
analyze the effect of conductivity on the scattering amplitudes obtained in section 2.4.5
assuming that the conductivity is isotropic, i.e. σ⊥ = σ‖ = σ . In this case, the value of Q in
(74) should be replaced by

Q = 1

k2

(
K2 ε‖ − 1 + (i4πσ )/ω

ε⊥ − 1 + (i4πσ )/ω
− q2

)
. (83)

The new quantity Q defined by (83) depends on σ provided that ε⊥ �= ε‖. This means that the
conductivity σ brings along a new degree of freedom to the scattering matrix. Qualitatively,
the difference compared to the lossless case (74) is that the ratio of the co-polarized scattering
amplitudes becomes complex, which introduces a phase shift between the corresponding
scattered waves (i.e. a nonzero CPD). In particular, if the incident wave is polarized linearly,
then the scattered field will be polarized elliptically.

Similarly to the case of zero conductivity (section 2.4.5), finite conductivity may also
result in solutions that are not feasible from the standpoint of physics. For example, expression
(83) can be rewritten as

Q1
def= k2

K2

(
Q + q2

k2

)
= ε‖ − 1 + (i4πσ )/ω

ε⊥ − 1 + (i4πσ )/ω
. (84)

If we assume that the conductivity and susceptibilities are positive, i.e. σ > 0, ε⊥ − 1 > 0
and ε‖ − 1 > 0, then both the real and imaginary parts of the numerator and denominator in
the last expression of (84) are positive. It means, in particular, that

Re(Q1) > 0. (85a)

As the imaginary parts of the numerator and denominator are equal, by comparing the absolute
values, we obtain{

Im(Q1) < 0 if |Q1| > 1,

Im(Q1) > 0 if |Q1| < 1.
(85b)
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Recall that Q (and, consequently, Q1) is an observable: Q = SVV/SHH. If, however, the
observed value of Q1 does not satisfy (85), then the assumption that the conductivity and the
two susceptibilities are positive is violated.

2.5.4. Anisotropic permittivity and conductivity. Let P = ((ε⊥ − 1), (ε‖ − 1), α, β, γ )

be a set of parameters defining the permittivity of the material (section 2.4.1), and C =
(σ⊥, σ‖, ασ , βσ , γσ ) be a set of parameters of the material conductivity (section 2.5.1). As
shown in section 2.5.1, the effect of a finite ‘uniaxial’ conductivity can be described by
adding imaginary components to the reflection coefficients. For each coefficient, the functional
dependence of the imaginary part on the parameters C is similar to that of the real part on P
(as illustrated by formula (82)). For the entire matrix of reflection coefficients S (essentially
equivalent to the scattering matrix S of (15); see section 2.3.4), this functional dependence
may be expressed as

S = S(P,C) =
[

SHH(P) SHV(P)

SVH(P) SVV(P)

]
+ i

4π

ω

[
SHH(C) SHV(C)

SVH(C) SVV(C)

]
. (86)

In the first term on the right-hand side of (86), the entries SHH, SVH, SHV and SVV of the matrix
are real-valued functions of P defined by (73). In the second term, the same functions are
applied to C.

It has been shown in section 2.4.6 and Appendix B that for the lossless material, the set
of permittivity parameters P provides up to four degrees of freedom to the scattering matrix
S of (86). Further, we note that the real and imaginary parts of S depend on P and C the
same way up to a multiplicative constant 4π/ω in front of the imaginary part. Hence, the set
of conductivity parameters C provides up to four additional degrees of freedom to the matrix
S. Altogether, the combination of P and C provides up to eight degrees of freedom to the
complex-valued matrix S.

The result of theorem 1 naturally extends from the lossless material to the lossy material
via the following.

Corollary 1. The permittivity parameters P and the conductivity parameters C can be
reconstructed from the given complex-valued entries of the scattering matrix S of (86) if
and only if the inequalities

(Re(SVV) + V Re(SHH))2 � 4V Re(SHV) Re(SVH), (87a)

(Im(SVV) + V Im(SHH))2 � 4V Im(SHV) Im(SVH) (87b)

hold simultaneously.

Each of inequalities (87a) and (87b) is similar to inequality (78) in theorem 1. We can
note again that the functional dependence of Re(S ) and Im(S ) on P and C, respectively, is the
same up to a constant factor. Thus, the proof of corollary 1 reduces to the proof of theorem 1
applied independently to Re(S ) and Im(S ).

For this most general setting, it is also possible to formulate the criteria for a solution to
the inverse problem to be physical, i.e. to satisfy the conditions ε⊥ > 1, ε‖ > 1, σ⊥ > 0 and
σ‖ > 0 (see sections 2.3.4, 2.4.5 and 2.5.3 for particular cases). The resulting expressions,
however, are cumbersome, and we omit them here.

2.5.5. Discussion of lossy materials. Altogether, the case of anisotropic permittivity and
conductivity has eight independent material parameters and may provide up to eight degrees
of freedom to the scattering matrix. If the hypothesis of corollary 1 holds, then the material
parameters can be successfully reconstructed from the observables. At the same time, the
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particular cases of isotropic conductivity considered in sections 2.5.2 and 2.5.3 illustrate that
the introduction of a new physical effect that modifies the scattering mechanism does not
necessarily lead to an increased number of the degrees of freedom. Some other simplifications
may also reduce the number of degrees of freedom. For example, the assumption that the
dielectric axis coincides with the conductivity axis will reduce the number of independent
parameters from 8 to 6.

Similarly to sections 1.2 and 2.3.2, the first Born approximation does not provide a
physically viable solution in the material, which in the case of a finite conductivity would be
a spatially decaying wave. Indeed, in order for the transmitted wave to decay as z → +∞,
the component of its wavenumber normal to the interface should have an imaginary part.
However, after the linearization, see equations (26) and (28), the only possible representation
for the scattered field is given by (33), where the value of q is always real and is defined by
the incident field. Thus, the effect of conductivity is restricted to the changes in the amplitude
and phase of the reflected wave.

Let us also recall that even though the observed scattering matrix (15) or (86) has four
complex-valued entries, in practice it may appear impossible to distinguish between the relative
phase and the common phase that accounts for the travel distance. Hence, it is customary to
keep the HH entry of the scattering matrix real, see the discussion around equations (16),
which reduces the number of degrees of freedom to 7.

3. Convolution with the fundamental solution and surface potentials

Having discussed the linearized scattering off a half-space filled with various types of materials,
we recall that in the context of SAR imaging, the ground reflectivity function is taken in the
form of a single layer, see formula (12), or in other words, the target material is considered
concentrated only on the surface of the half-space. In this section, we show that for every
material considered in section 2, scattering off a material subspace can be equivalently
reformulated as scattering off a layer of monopoles on its surface.

3.1. Lossless isotropic target

Let us return for the moment to the simplest case of a perfect isotropic dielectric. We will
provide a somewhat different interpretation of the solutions obtained in section 2.3 that will
help us justify the use of the ground reflectivity function for SAR imaging in the form of a
single layer on the interface z = 0; see formula (12).

For the operator L̂ of (28), we first define its fundamental solution E = E (z) as a solution
to the inhomogeneous equation L̂E = δ(z) subject to the radiation conditions (29). The
fundamental solution exists, is unique, and is given by

E (z) = 1

2iq
eiq|z|. (88)

Recall that for the scattering solution in the form (33), we have B = C (see (35)) for the
‘homogeneous’ part of the solution, u(h)(z); see (30). Consequently, u(h)(z) can be represented
in the form of a single-layer potential:

u(h)(z) = E (z) ∗ Nδ(z) = NE (z). (89)

The magnitude of the δ-function at the interface, i.e. the density N of the potential, is equal to
the jump of its derivative at z = 0, i.e.

N =
[

du(h)

dz

]
z=0

= 2iqCu0, (90)
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where we use the notation[
du

dz

]
z=0

def= du

dz

∣∣∣∣
(M)

− du

dz

∣∣∣∣
(F )

. (91)

The quantity N in (90) depends on the polarization. For the horizontal polarization, the
continuity of du(sc)

dz at z = 0, see (38), implies that the jump of du(h)

dz should be negative of du(p)

dz :[
du(h)

dz

]
z=0

= −
[

du(p)

dz

]
z=0

,

Using (32), we obtain (cf formula (39))

NHH = − iq

2

k2

q2
(ε − 1)u0, (92)

where u0 is the amplitude of the incident wave for the horizontal polarization, i.e. E (inc)

0y .
For the vertical polarization, formula (44) yields[

du(h)

dz

]
z=0

= −
[

du(p)

dz

]
z=0

+ (ε − 1)
du(inc)

dz

∣∣∣∣
z=0

,

where u(inc) is given by (25b). Consequently (cf formula (45)),

NVV = − iq

2

k2

q2
(ε − 1)u0 + iq(ε − 1)u0 = QNHH. (93)

Here, u0 is the amplitude of the incident wave for the vertical polarization, i.e. H (inc)

0y .
In either case, (92) or (93), the solution u(h)(z) of (89) coincides in the vacuum region

z < 0 with the overall scattering solution u(sc)(z); see formulae (33) and (30). This means
that the reflected field given by the first Born approximation for the scattering off a material
half-space can be equivalently represented as the reflected field due to the linearized scattering
off a specially chosen δ-layer at the boundary of the half-space. Moreover, for both horizontal
and vertical polarizations, the magnitude of the single layer is proportional to (ε − 1)u0 or
equivalently, to the scalar lossless ground reflectivity function (7) times the incident field at
the interface:

N ∝ (ε − 1)u0 =
(

c2

v2
− 1

)
u0 = c2νu0.

This explains why for the analysis of the reflected field in the framework of the first Born
approximation, the ground reflectivity function can be chosen in the form of a single layer at
the material interface; see formula (12). We also note that according to the electromagnetic
equivalence theorem by Schelkunoff [24], the field on a given region, regardless of its actual
sources located outside of this region, can be reproduced as the field from the specially chosen
auxiliary sources at the boundary of the region.

Given representation (89) of the reflected field as a convolution with the fundamental
solution, one can formulate a natural question of whether or not the entire scattering solution
can be obtained as a convolution integral. In fact, equation (28) has been solved by convolution
in [5]. This approach, however, suffers from two limitations. First, the convolution of the
fundamental solution (88) with the right-hand side g(z) of (28) leads to a diverging improper
integral over the interval 0 � z < ∞, and the use of the limiting absorption principle in [5]
for ‘fixing’ the divergence lacks mathematical rigor. But even disregarding that, the second
limitation is more important. For a bounded continuous right-hand side g(z) in (28), the
convolution integral yields a C1 smooth function. This implies, in particular, the continuity
of the resulting solution and its first derivative at z = 0, which corresponds to the horizontal
polarization only. In other words, a straightforward convolution-based approach cannot account
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for any boundary conditions other than (38) and hence cannot be used for studying other
polarizations. To analyze the vertical polarization, an additional singular term at z = 0 due to
boundary condition (44) should be taken into account along with the right-hand side g(z).

3.2. Anisotropic and lossy targets

The approach of section 3.1 can be extended to include more complex cases considered in
table 2. The new effects to be described are the cross-polarized components in the scattered
field and the phase shift due to a finite conductivity.

For an incident wave in one of the two basic polarizations, the presence of two components
in the scattered field (co-polarized and cross-polarized) can be described by a two-dimensional
vector δ-layer. In doing so, formula (89) applies to each component of the vector δ-layer
separately. For a birefringent scatterer considered in section 2.4, we can use relation (90)
and express the components of the vector density using reflection coefficients defined by
formulae (73):

MH =
[

NHH

NVH

]
= 2iqE (inc)

0y

[
SHH

SVH

]
, MV =

[
NVV

NHV

]
= 2iqH (inc)

0y

[
SVV

SHV

]
. (94)

A finite conductivity affects the density of the δ-layers given by formulae (92)–(94)
through the modified dielectric tensor ε̃ of (81) and the corresponding changes in the reflection
coefficients (see section 2.5.1).

4. Application to polarimetric target decomposition

The polarimetric target decomposition [14, 25] can be viewed as a heuristic method of solving
the inverse scattering problem. Basically, the goal is to represent the scattering matrix9 as a
linear combination of the basis matrices:

S = c1S1 + c2S2 + c3S3 + c4S4, (95)

where each of Si, i = 1, 2, 3, 4, represents a particular scattering mechanism, and the ci,
i = 1, 2, 3, 4, are complex-valued coefficients to be determined. For example, the Pauli
matrices

S1 =
[

1 0
0 1

]
, S2 =

[
1 0
0 −1

]
, S3 =

[
0 1
1 0

]
, and S4 =

[
0 −i
i 0

]
may be associated with single-bounce and double-bounce scattering off plane surfaces with
different orientation; see [14, chapter 6]. The choice of the basis Si for decomposition specifies
the range of admissible scattering mechanisms, whereas the decomposition coefficients ci

determine the (relative) weights for individual mechanisms.
If some a priori knowledge about the actual scattering process is available, then it may

be beneficial to choose one (or more) of the matrices Si as the matrix of reflection coefficients
for a given scattering mechanism (see, e.g., formula (B.1)). This choice allows one to estimate
the role of a particular mechanism in the overall scattering, and makes it easier to interpret the
results of decomposition. For example, some foliage penetration and terrain scattering models
[25, section VI] involve multiple scattering channels where one of the stages is the ‘mirror’
reflection from the ground. The models developed in section 2 may be used to represent this
‘mirror reflection’ stage for sufficiently large radar wavelengths that allow one to neglect the
roughness of the surface.

9 In practice, the decomposition is often applied to the coherency and covariance matrices, whose entries are second-
order moments of the particular combinations of entries of the Sinclair scattering matrix; see [14, chapters 3, 6]. The
decomposition considered here is called the ‘coherent decomposition.’
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In the current work, we analyze the Sinclair scattering matrices built from physical
principles. We can therefore expect that if an appropriate basis is chosen, then the polarimetric
target decomposition will yield the corresponding material characteristics. For a lossless
material, the matrix of reflection coefficients (73) can be equivalently represented as

S =
[

SHH SHV

SVH SVV

]
= −1

4

k2

q2

(
(ε⊥ − 1)S1 + �εS2 + q

k
αβ�εS3 − K

k
γ β�εS4

)
, (96)

where the matrices Si, i = 1, 2, 3, 4, are given by

S1 =
⎡
⎣1 0

0
K2 − q2

k2

⎤
⎦, S2 =

⎡
⎣β2 0

0
K2γ 2 − q2α2

k2

⎤
⎦, S3 =

[
0 1

−1 0

]
and S4 =

[
0 1
1 0

]
.

Hence, we can interpret formula (96) as a polarimetric target decomposition of type (95) with
c1 = ε⊥ − 1, c2 = �ε, c3 = qαβ�ε/k and c4 = −Kγ β�ε/k (up to a common multiplicative
factor of − 1

4
k2

q2 , which can also be combined with the geometric attenuation coefficient). If
we have decomposition (96), then of the four material parameters to be reconstructed, the two
permittivities are obtained directly from c1 and c2, while the relations for c3 and c4 provide two
equations for two of the three directional cosines of the optical axis (with the third expressed
via (49)). The problem however is that the entries of the matrix S2 depend on the material
parameters (direction angles for the optical axis) and cannot be defined without having to solve
the inverse problem first. It is possible though to break the loop by taking any diagonal matrix
not proportional to S1 instead of S2. For example, the following set of matrices

S1 =
⎡
⎣1 0

0
K2 − q2

k2

⎤
⎦, S ′

2 =
⎡
⎣0 0

0
K2

k2

⎤
⎦ S3 =

[
0 −1
1 0

]
and S4 =

[
0 1
1 0

]
(97)

forms a basis in the space of 2×2 matrices with real entries, does not depend on the material
properties and hence can be used for target decomposition. The disadvantage of this set is that
the resulting value of c2 will, generally speaking, differ from �ε, and thus the values of ξ , α

and γ calculated from c1, c3 and c4 will also be incorrect. Still, expansion (95) with respect to
basis (97) is capable of detecting several types of configurations (see figure 1):

(i) isotropy (ζ = 0), by observing that c2 = c3 = c4 = 0;
(ii) the optical axis being either parallel to the incidence plane (β = 0) or perpendicular to it

(β = 1, α = γ = 0), when c2 �= 0, c3 = c4 = 0;
(iii) the optical axis being horizontal, excluding the cases in item (ii) (α �= 0, β �= 0, γ = 0)

when c3 �= 0, c4 = 0;
(iv) the optical axis lying in the plane normal to both the interface and the incidence plane,

excluding the cases in item (ii) (α = 0, β �= 0, γ �= 0) when c3 = 0, c4 �= 0;
(v) any of the ‘main diagonal’ directions of the optical axis (|α| = |β| = |γ | = 1/

√
3), when

c2 = 0, c3 �= 0, c4 �= 0, etc.

Thus, basis (97) appears suitable for the qualitative classification of birefringent targets,
although exact determination of the material parameters still requires solving a nonlinear
system (73) that consists of four equations. It is to be noted though that in practice, the
equalities in criteria (i)–(v) shall be replaced by thresholds that would take into account
the accuracy of the measurements and the noise levels. The questions related to noise and
experimental accuracy will be addressed in a future publication.

Lossy targets can be identified by detecting a phase shift other than 0 or π between
the channels. As the imaginary part of the matrix S is similar in structure to the real part
(see formula (86)), a complex counterpart of the set of matrices (97) can be used for the
decomposition of Im(S ), which is equivalent to allowing the coefficients ci to become complex.
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5. Discussion and future work

We have analyzed the linearized scattering of a plane transverse electromagnetic wave off a
material half-space filled with an anisotropic (birefringent) weakly conductive dielectric. Our
main findings are as follows.

• We have shown that the first Born approximation correctly predicts the scattered field (both
amplitude and phase for each polarization) in the vacuum region.

• We have demonstrated that with the polarization and anisotropy taken into account, the
linearized scattering off a material half-space can still be equivalently reformulated in the
vacuum region as scattering off a specially chosen δ-layer at the interface. This justifies
the choice of a ground reflectivity function in the form of a single layer at the surface of a
target, which is common for SAR applications.

• The corresponding inverse scattering problem consists in reconstructing the material
characteristics, i.e. the permittivities, conductivities and direction angles at the target,
from the observable quantities, i.e. from the four complex-valued entries of the Sinclair
scattering matrix. We have provided a necessary and sufficient condition (see theorem 1
and corollary 1) for this inverse problem to have a solution in the linearized framework.

As of yet, our analysis is limited to ‘mirror’ scattering off a flat surface, and does not
account for backscattering. Hence, in the context of SAR, it may be useful for bistatic rather
than monostatic imaging, i.e. for the case when the transmitting and receiving antennas are
two different antennas at two different locations. Another possible application of this ‘mirror
reflection’ mechanism is to be a ground reflection component in composite foliage penetration
and terrain scattering models [25, section VI].

To account for backscattering, one needs to include additional scattering mechanisms,
e.g., surface roughness and/or variation of material parameters on the scale of the wavelength.
This will be a subject for the future study.

In this paper, we have not formally considered any variation of material characteristics
along the interface; that is why we could assume that all the waves have a common horizontal
component K of the wavenumber; see figure 1. It is obvious, however, that our analysis
extends with no change to the case of slowly varying material characteristics. This means,
in particular, that we can consider ground reflectivity functions that vary along the interface,
but only if λ � d, where λ is the wavelength and d is the characteristic scale of material
variations defined, e.g., as d−1 ∼ |∇ ε̂|/|ε̂|, where ε̂ can stand for any of the actual physical
quantities that we have taken into account. The constraint λ � d should not present a major
limitation for SAR applications, because the SAR resolution is typically much larger than
the wavelength anyway (see [8]). On the other hand, our current analysis does not apply to
short-scale material variations, d ∼ O(λ), and to include those it will need to be modified.
This is related to accounting for backscattering.

Our motivation for analyzing the first Born approximation in the case of polarized waves
and anisotropic targets was the possibility of building a polarimetric SAR ambiguity theory
similarly to how it is done in the scalar case. This, in particular, may help extend the results
of [26] on mitigating the ionospheric distortions of spaceborne SAR images from the case
of scalar imaging to the case of polarimetric imaging that also involves Faraday rotation in
the magnetized ionosphere. It may also appear useful for miSAR applications (see section 4).
Based on the analysis in this paper, we conclude that the polarimetric ambiguity theory can
be built provided that the hypotheses of theorem 1 and corollary 1 hold. It is also to be noted
that the limitation of solvability of the linearized inverse problem imposed by theorem 1 is
apparently due to the type of the material that we have chosen (a birefringent dielectric with
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weak anisotropic conductivity) rather than to the linearization itself (see appendix C). Giving
a physical interpretation to inequality (78), as well as, perhaps, considering other materials
and answering a related question of having non-physical solutions to the inverse problem, see
sections 2.3.4, 2.4.5, 2.5.3 and 2.5.4, will be a subject for the future study.
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Appendix A. Governing equations

By subtracting equations (4) from respective equations (1) and using (3), we obtain the
following governing equations for the scattered fields:

1

c

∂H(sc)

∂t
+ ∇ × E(sc) = 0, ∇ · H(sc) = 0,

1

c

∂E(sc)

∂t
− ∇ × H(sc) = −1

c

[
(ε − I ) · ∂E

∂t
+ 4πσ · E

]
, ∇ · E(sc) = −∇ · (D − E).

(A.1)

Note that the scattered field E(sc) appears both on the left-hand side and on the right-hand side
of the second pair of equations of (A.1). Differentiating the Ampère law in (A.1) with respect
to time, we have

1

c

∂2E(sc)

∂t2
− ∂

∂t
∇ × H(sc) = −1

c

[
(ε − I ) · ∂2E

∂t2
+ 4πσ · ∂E

∂t

]
, (A.2)

and taking the curl (i.e. ∇×) of the Faraday law in (A.1), we obtain

1

c

∂

∂t
∇ × H(sc) + ∇ × ∇ × E(sc) = 1

c

∂

∂t
∇ × H(sc) − �E(sc) + ∇∇ · E(sc) = 0. (A.3)

The operation ∇∇· on the right-hand side of equation (A.3), see also (A.4) and (A.6), means
the gradient of the divergence of the corresponding vector. Substituting the time derivative of
∇ × H(sc) from equation (A.3) into equation (A.2), and also taking into account the Gauss law
of electricity in (A.1), we arrive at

1

c2

∂2E(sc)

∂t2
− �E(sc) = −ε − I

c2
· ∂2E

∂t2
− 4πσ

c2
· ∂E

∂t
+ ∇∇ · (D − E), (A.4)

where on the left-hand side we have the standard constant coefficient d’Alembert operator
acting on E(sc), and on the right-hand side we have additional occurrences of the scattered
field via equations (2) and (5). Similarly, the incident electric field that provides the source
terms for (A.4) is governed by the d’Alembert equation

1

c2

∂2E(inc)

∂t2
− �E(inc) = −4π

c2

∂ j(ex)

∂t
. (A.5)

If the target material is isotropic, i.e. if ε = c2

v2 I, where v = v(x) is the local propagation
speed, and σ = σI, then equation (A.4) simplifies, and we have

1

c2

∂2E(sc)

∂t2
− �E(sc) = ν(x)

∂2E
∂t2

− 4πσ

c2

∂E
∂t

+ ∇∇ ·
(

c2

v2
− 1

)
E, (A.6)
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where the scalar quantity

ν(x)
def= 1

c2
− 1

v(x)2
(A.7)

is known as the (target) reflectivity function (see, e.g., [4, chapter 6]).
In the context of inverse scattering, equation (A.6) shall be interpreted as an equation for

ν and σ , whereas E(sc) provides the data. A key difficulty, however, is that the scattered field is
not known at the target. For example, for the synthetic aperture radar (SAR) applications, see,
e.g., [4], E(sc) is known at the receiving antenna, which is airborne or spaceborne, whereas
at the target, i.e. on the ground, it is not known. This makes the inverse problem nonlinear,
because the unknown material characteristics ν and σ are multiplied on the right-hand side of
(A.6) with the unknown scattered field.

A well-known remedy is to assume that the scattering is weak, and employ the first Born
approximation; see [3, chapter XIII]. Under this assumption, the total field E on the right-hand
side of equation (A.6) is replaced with the incident field E(inc) only, which makes the inverse
problem linear. The rationale is that in the case of weak scattering, both the deviations of the
material parameters from the vacuum values are small, and the scattered field E(sc) is also
small, so their products on the right-hand side of equation (A.6) can be neglected. Moreover,
the last term on the right-hand side of (A.6) drops as well because we first invoke the Gauss
law of electricity from the system (1) in the form ∇ · c2

v2 E = 0 and then the Gauss law of
electricity for the incident field from the system (4). Altogether this yields

1

c2

∂2E(sc)

∂t2
− �E(sc) = ν

∂2E(inc)

∂t2
− 4πσ

c2

∂E(inc)

∂t
. (A.8)

The first Born approximation can also be given another equivalent interpretation based
on the perturbation theory. In this framework, the zeroth-order solution is the incident field
governed by equation (A.5), and the equation for the first-order perturbation is obtained
from equation (A.6) by replacing the total solution on its right-hand side by the zeroth-order
solution, which yields equation (A.8). Again, considering no more than first-order perturbations
is justified only if the scattering is weak, i.e. if |ν| � 1/c2 and σ/ω � 1, where ω is the
typical frequency. These two requirements are equivalent to treating the difference between
the complex electric permittivity and one as a small parameter; it is used for deriving the first
Born approximation for a hierarchy of scattering problems in section 2 (see formulae (22) and
(25)).

Appendix B. Proof of theorem 1

Reflection coefficients obtained with the help of the first Born approximation for a lossless
birefringent target are given by formulae (73). Introducing the new variable ξ = ε⊥ − 1 and
denoting ζ = �ε, we rewrite these formulae as follows:

SHH = −1

4

k2

q2
(ξ + β2ζ ),

SVV = 1

4

(
(ξ + α2ζ ) − K2

q2
(ξ + γ 2ζ )

)
,

SHV = −1

4

k

q

(
α − K

q
γ

)
ζβ,

SVH = 1

4

k

q

(
α + K

q
γ

)
ζβ.

(B.1)
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These expressions can also be obtained by linearization of the exact reflection coefficients
given in [22]; for a special case of γ = 0, formulae (B.1) can be obtained by linearization of
the results of [23] as well.

Formulae (B.1) define four functions of the arguments ξ , ζ , α and γ (with β expressed
via (49)). Therefore, we can introduce the Jacobian∣∣∣∣∂(SHH, SVV, SHV, SVH)

∂(ξ, ζ , α, γ )

∣∣∣∣ =
∣∣∣∣Kk4(K2(α2 − 1) − q2(γ 2 − 1))ζ 2

128q7

∣∣∣∣ . (B.2)

One can see that the right-hand side of (B.2) is nonzero at least for some values of the arguments.
Indeed, if ζ �= 0 (i.e. if the material is anisotropic), then we can choose independent directional
cosines α and γ so that the numerator on the right-hand side of (B.2) is nonzero. Thus,
in the vicinity of such points in the parameter space, the transformation from (ξ , ζ , α, γ )

to (SHH, SVV, SHV, SVH) is locally non-degenerate, and preserves the number of degrees of
freedom. This local non-degeneracy, however, does not guarantee that the system (B.1) can
be resolved for (ξ , ζ , α, γ ) given arbitrary scattering data (i.e. the left-hand side of the
system (B.1)).

To find out when the system (B.1) has a solution, we denote Z = K/q = tan θi, and
transform the last two equations of the system to

S+ = γ ζβ, S− = αζβ, (B.3)

where

S+ = 2

Z
√

1 + Z2
(SVH + SHV) and S− = 2√

1 + Z2
(SVH − SHV).

Next, we introduce

D = S−

S+ = α

γ
, (B.4)

which, together with (49), yields

β2 = 1 − γ 2(1 + D2). (B.5)

We can eliminate ξ from the first two equations of (B.1) to obtain

S̃ = ζW, (B.6)

where

S̃ = 4

(
SVV + SHH

1 − Z2

1 + Z2

)
,

W = (Z2 − 1) + γ 2(D2 − Z2 + (1 − Z2)(1 + D2)).

(B.7)

Using equations (B.5), (B.6) and the second equation of (B.3), we arrive at

P2γ 2D2(1 − γ 2(1 + D2)
) = W 2, (B.8)

where P = S̃/S−. As W in formula (B.7) is linear w.r.t. γ 2, equation (B.8) is biquadratic w.r.t.
γ . A solution for γ 2 exists if and only if the corresponding discriminant is nonnegative, which
can be shown to be equivalent to

P2 � 4
(D2 − Z2)(Z2 − 1)

D2
. (B.9)

Condition (B.9) can be transformed into (78) using equations (B.3), (B.7) and (B.8).
It should also be noted that whereas the right-hand side of (B.8) is always nonnegative,

the left-hand side is nonnegative only if

0 � γ 2 � 1

1 + D2
. (B.10)
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This means that if condition (B.9) for the existence of a solution to (B.8) with respect to γ 2 is
satisfied, then this solution, i.e. γ 2, satisfies (B.10). If (B.9) has two solutions, then both should
satisfy (B.10). The second inequality in (B.10), together with equations (B.4) and (B.5), also
ensures that 0 � α2 � 1 and 0 � β2 � 1 (see (49)).

If condition (B.9) (or its equivalent (78)) is satisfied, then γ 2 can be found by solving
(B.8), and the sign of γ can be chosen arbitrarily because the system (B.1) is invariant w.r.t.
the transformation (α, β, γ ) −→ (−α,−β,−γ ). Then, the value of α is obtained from (B.4),
ζ from (B.6), β from any of the equations (B.3) and ξ from the first equation of system
(B.1). With that, all the material parameters are determined, which completes the proof of
theorem 1.

Appendix C. Numerical study of the exact formulation

Theorem 1 indicates that the linearized inverse problem has a solution only for certain
combinations of the reflection coefficients SHH, SVV, SHV, SVH and the incidence angle
θi. For example, if α = 0, then SHV = SVH, see formulae (B.1), and the right-hand
side of inequality (78) is negative provided that θi > π/4. Hence, inequality (78) holds
automatically, and the linearized inverse problem always has a solution for θi > π/4. On
the other hand, for θi < π/4 inequality (78) puts an additional constraint on the values of
the reflection coefficients and thus implies a limitation of solvability of the linearized inverse
problem.

While inequality (78) may be given a physical interpretation later on, currently we
would like to try and answer the question of whether the foregoing limitation of solvability
(theorem 1) is due to the type of the target material that we have chosen (a birefringent dielectric
with weak anisotropic conductivity) or to the linearization itself. Expressions for the exact (i.e.
not linearized) reflection coefficients can be found, e.g., in [22, equation (6.61)]. However, that
system (unlike the linearized system (B.1)) has proven too complicated for analytical inversion.
Instead, we employ a numerical approach. First, we sample the domain of feasible material
parameters (typically, ε‖ and ε⊥ are taken between 1 and 5) with a sufficiently high rate, and
calculate the exact reflection coefficients for every sample, i.e. solve the direct problem exactly
with the help of [22]. In doing so, we obtain a cloud of points in the three-dimensional space
of coefficients SHH, SVV and SHV = SVH. Areas of no solution would correspond to the regions
with no points inside the cloud, i.e. to the voids. To see whether or not there are any voids, we
plot several cross-sections of the cloud normal to the SVH axis. As, however, the cloud consists
of discrete points, we rather take slices of finite thickness in SVH and collapse all the points
inside each slice onto the (SHH, SVV) plane for plotting.

The visualization we have described reveals distinct voids in the cloud of the results
for the exact formulation of the direct scattering problem. Those voids can, in particular, be
clearly seen in figure C1, where we show the values of ε‖ as they depend on SHH, SVV and
SVH. Inside the voids, the solution to the original (i.e. not linearized) inverse problem does not
exist, because the corresponding values of the reflection coefficients cannot be obtained using
any choice of the material parameters.

Moreover, as θi = 2π/9 � π/4 in figure C1, the linearized problem may have no solution
according to theorem 1. The region where the linearized solution does not exist (see inequality
(78)) is bounded by two straight red lines on each of the plots in figure C1. We see that when
the scattering is weak, i.e. when all the reflection coefficients SHH, SVV and SVH are small,
those red lines appear tangential to the apparent boundaries of a given void that corresponds
to the exact formulation. This is precisely the behavior that would be natural to expect in the
case when both the linearized and the original inverse problem have regions with no solution.
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Figure C1. ε‖ as a function of the exact reflection coefficients for α = 0 and θi = 2π/9. The value
of ε‖ is indicated by color. The horizontal axis is SHH and the vertical axis is SVV, as indicated
in the middle plot. The approximate ranges for the cloud of the results are −0.5 � SHH � 0,
−0.2 � SVV � 0.6 and 0 � |SVH| � 0.11. The gap between the two red lines corresponds to the
region for which inequality (78) does not hold, i.e. for which the linearized inverse problem has no
solution.

This tangential behavior can be observed more clearly in figure C2, which is a zoom-in of the
middle plot in the top row of figure C1.

Let us also note that whereas for larger values of the incidence angle, θi > π/4, the
linearized inverse problem has a solution, the original, i.e. not linearized, inverse problem
may still have no solutions. We illustrate that in figure C3, which is similar to figure C1 in
every respect except that θi = π/3 and the computed ranges for SHH, SVV and SVH appear
somewhat different. From figure C3, it is apparent that when all three coefficients SHH, SVV

and SVH are small, which is basically equivalent to the linear regime (weak scattering), there
are no voids in the cloud of the results and the solution exists, as expected. As, however, the
scattering becomes stronger so that SVH increases, a void appears again indicating a limitation
of solvability10.

Altogether, our rigorous analysis of the first Born approximation along with the
simulations conducted for the unabridged formulation indicates that for the weak scattering
regime when the two formulations are supposed to be close, the linear and nonlinear problems
indeed have or do not have a solution simultaneously. In particular, the full nonlinear problem
will have no solution for the same combinations of parameters for which the linearized problem

10 The voids we discuss here provide additional constraints, beyond the general limitations on the solvability of the
inverse problem that come, e.g., from the conservation of energy.
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Figure C2. Zoom-in of the middle plot in the top row of figure C1.

Figure C3. ε‖ as a function of the exact reflection coefficients for α = 0 and θi = π/3. The value
of ε‖ is indicated by color. The horizontal axis is SHH and the vertical axis is SVV, as indicated
in the middle plot. The approximate ranges for the cloud of the results are −1 � SHH � 0,
−0.4 � SVV � 0.4 and 0 � |SVH| � 0.2.
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has no solution. This means that the linearization is apparently not the reason for the loss of
solvability, and that the result of theorem 1 should most likely be attributed to the properties
of the target material that we have taken for our analysis rather than ‘blamed’ on the first Born
approximation.
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