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The performance of many well-known methods used for the treatment of outer boundaries
in computational electromagnetism (CEM) may deteriorate over long time intervals. The
methods found susceptible to this undesirable phenomenon include some local low order
artificial boundary conditions (ABCs), as well as perfectly matched layers (PMLs). We pro-
pose a universal algorithm for correcting this problem. It works regardless of either why
the deterioration occurs in each particular instance, or how it actually manifests itself (loss
of accuracy, loss of stability, etc.). Our algorithm relies on the Huygens’ principle in the
generalized form, when a non-zero electrostatic solution can be present behind aft fronts
of the propagating waves, i.e., inside the lacunae of Maxwell’s equations. In this case, we
refer to quasi-lacunae as opposed to conventional lacunae, for which the solution behind
aft fronts is zero. The use of quasi-lacunae allows us to overcome a key constraint of the
previously developed version of our algorithm that was based on genuine lacunae. Namely,
the currents that drive the solution no longer have to be solenoidal. Another important
development is that we apply the methodology to general non-Huygens’ problems.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The most common way of attaining a finite-dimensional discretization for the numerical simulation of waves propagating
over unbounded regions is to truncate the original unbounded domain and set an appropriate artificial boundary condition
(ABC) at the resulting outer boundary [1,2]. In doing so, the corresponding finite computational domain usually covers the
area where all the phenomena and processes essential for a given formulation take place (e.g., waves generation, absorption,
or scattering), whereas its unbounded surrounding region, which is thrown away by truncation, is assumed to represent a
less sophisticated medium, say, homogeneous and isotropic. In the simplest case, the computational domain may be sur-
rounded by vacuum. In the literature, this geometric partition is often referred to as the partition between the near field
and the far field.

Once the waves leave the finite computational domain, they are not supposed to come back and should no longer affect
the near field solution. Accordingly, the role of the ABC is to enforce this behavior in simulations, i.e., to make the outer
. All rights reserved.
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boundary transparent for all the outgoing waves, and to eliminate the unphysical reflections. For time-dependent problems,
it is particularly important that the ABC maintains its non-reflecting properties as the time elapses. Then, we can expect that
the solution inside the computational domain will remain close to the corresponding fragment of the original infinite-do-
main solution (will coincide with it if the ABC is exact).

In the field of computational electromagnetism (CEM), there is a number of established techniques to build the ABCs
for Maxwell’s equations. In particular, there are popular ABCs that are local in space and time, and are typically derived
using asymptotic considerations, e.g., those of Bayliss and Turkel, Engquist and Majda, or Higdon (see the reviews [1,2]).
However, some of these techniques, while demonstrating excellent grid truncation properties over limited time inter-
vals, may suffer from a deterioration of performance in long-time computations, especially when implemented in a high
order setting. Indeed, the empirical study of [3] demonstrates that the solution obtained using Higdon and Bayliss–Tur-
kel fourth order ABCs in the two-dimensional Cartesian case becomes highly unstable already at moderate computa-
tional times; and that the instability most likely arises near the corners of the computational domain. In addition,
the analysis of [4] shows the possibility of a logarithmic error growth when the two-dimensional d’Alembert equation
is driven by a source that operates continuously in time, and is approximated on a half-plane truncated with high order
Engquist–Majda boundary conditions. Susceptibility of local ABCs to long-time error growth is also discussed in [5],
where a remedy is proposed based on representing the solution as a linear combination of modes that each propagates
and decays.

Another very efficient approach to the absorption of waves at the outer boundaries, the so-called perfectly matched layers
(PMLs), may also lead to long-time instabilities. They first appear in the layer and subsequently propagate back into the do-
main. The original split-field PML by Bérenger [6,7] turns out to be only weakly well-posed, and a linear growth of the split
field components inside the PML is possible already at the analytical level. In particular, it has been proven in [8] that a very
popular Yee scheme [9] becomes unconditionally unstable in the presence of the PML [6], with the powers of amplification
matrices growing linearly as the number of time steps increases.

Subsequent developments gave rise to unsplit PMLs, but the latter have also been found susceptible to gradually devel-
oping instabilities. First, the instabilities were predicted theoretically, and then also corroborated experimentally, see, e.g.,
[10]. In Section 6 of this paper, we show, in particular, how rapid the growth can be in the case of a three-dimensional unsplit
Cartesian PML. A systematic computational study of the long-time performance of unsplit PMLs with some commonly used
explicit second order schemes can be found in [11].

Several approaches have been proposed in the literature to correct the aforementioned long-time instabilities. However,
the ‘‘stabilized’’ versions of Higdon’s and Liao’s [12, Section 6.5] boundary conditions offered an improved performance but
did not eliminate the instability completely [3]. Furthermore, efforts to stabilize higher order ABCs were unsuccessful [13].
And when the stability is achieved, it often compromises the accuracy over the lower end of the frequency spectrum [14].

Stabilization techniques for PMLs include changing the governing equations in the layer [10] and introducing frequency-
shifted [15–17] or non-linear [18] PMLs. All these modifications perform well computationally, but theoretically it is not
clear whether the modified layer remains perfectly matched or absorbing, in particular, absorbing regardless of the
frequency.

The main objective of the current paper is to develop a method that would fully prevent the long-time deterioration of the
solution in CEM when it is caused by the outer artificial boundary. In doing so, the key idea is rather not to go deep into what
actually causes the problem in each specific case, but have a universal methodology that would work independently of both
the type of the ABC (or PML) and the nature of deterioration. We would also want it to be rigorously justified, and to have it
preserve all the advantageous properties of a given ABC, such as the degree of transparency for a local method or the match-
ing and absorption properties for a PML. The only assumption we make is that the chosen ABC or PML should be able to main-
tain its design characteristics over a relatively short yet reasonable interval of time (compared to the overall duration of
computation).

To achieve our objective of preventing the long-time deterioration, we employ a special time-marching technique based
on quasi-lacunae of Maxwell’s equations [19]. The notion of quasi-lacunae generalizes that of conventional lacunae in the
sense of Petrowsky [20]. Namely, in the case of quasi-lacunae, there may be a steady-state electrostatic solution behind
aft fronts of the propagating waves, whereas for genuine lacunae the solution behind the aft fronts is zero (the Huygens’
principle). Accordingly, the integration technique developed in this paper generalizes the one that we have constructed pre-
viously based on the notion of classical lacunae [21–24].

The original lacunae-based integration of [21–24] applies successfully to various wave propagation problems and al-
lows one to obtain temporally uniform error bounds, which is the main reason why it proves useful for eliminating the
long-time deterioration. In particular, we have used it in work [25] for stabilizing the unsplit PMLs. However, its imple-
mentation in CEM encounters difficulties related to the nature of the Maxwell equations themselves. Namely, Maxwell’s
equations have classical lacunae only in a very special case, when the currents that drive the solution are solenoidal, i.e.,
divergence-free. Therefore, to be able to use the lacunae-based time-marching for Maxwell’s equations, one needs to con-
struct the auxiliary divergence-free currents [24]. The key advantage of the method proposed in this paper is that it re-
moves this limitation.

Another important development presented in the current paper is the methodology of stabilizing the ABC (or PML) for
general non-Huygens’ problems. It requires splitting the original problem into the interior and auxiliary sub-problems.
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Whereas this technique was previously employed in [22–24], the stabilization approach of [25] was tested only for the gen-
uine Huygens’ formulations.

When splitting the original infinite-domain problem, the resulting interior (sub-)problem is set on the bounded compu-
tational domain, whereas its auxiliary counterpart is first considered to be formulated on the entire space, and then trun-
cated by the chosen ABC (or PML). The two problems are connected to each other. Solution to the auxiliary problem (AP)
provides the outer boundary data for the interior problem and thus renders its closure. In turn, the AP itself is driven by
the source terms that are derived from the solution of the interior problem right next to the boundary.

The advantage of the foregoing split is that the interior problem will now contain all the essential near field components
of the original formulation yet it will not need any ABCs. As for the AP, in the simplest CEM setting it is a plain initial value
problem for constant coefficient Maxwell’s equations. The AP is driven by the prescribed currents and truncated by the cho-
sen ABC or PML. It is much easier to analyze than the original problem. In particular, one can see that if the currents are com-
pactly supported in time, then solution to the AP will have a quasi-lacuna.

The actual currents that drive the AP are not compactly supported in time, they rather operate continuously. We, how-
ever, can partition them into intervals of finite duration. Then, because of the linear superposition, the overall solution of the
AP will be the sum of the solutions due to individual partition elements. Each of those individual solutions has a quasi-la-
cuna, and once the computational domain falls completely into it (which happens after a predetermined finite interval of
time), the integration does not need to be carried on any further. In other words, we replace one long-time integration of
the AP by a series of short-time integrations, which allows us to limit any potentially negative effect of the ABC or PML uni-
formly in time.

Let us emphasize that the assumption of good performance of the original ABC or PML over a limited yet non-negligible
period of time is important. If the original treatment of the outer boundary causes an immediate rapid increase of the error,
then the approach proposed in this paper will not be able to correct it. For example, following the methodology of [26], it was
proven in [27] that Higdon’s and other similar ABCs are strongly stable in the sense that they guarantee the existence of a
non-increasing energy functional. As, however, pointed out by the authors of [27] and also by Ditkowski [28], this requires
sufficiently smooth data. Otherwise, Higdon’s ABCs may become unstable, and then lacunae-based integration will not pro-
vide a remedy.

Note that a number of papers in the literature refer to the Huygens’ principle as a useful tool for many applications,
including the development of numerical methods. In most cases, however, what these publications exploit is not the full
fledged Huygens’ principle, but rather the well-known Huygens’ construction, which is common, e.g., in optics [29]. The dif-
ference is fundamental. The Huygens’ principle sets forth the existence of aft fronts of the waves and is accompanied by addi-
tional constraints, such as the odd number of space dimensions. The Huygens’ construction, on the other hand, deals only
with the propagating fronts; it considers the front at every given moment of time as a collection of secondary sources so that
the propagating field at subsequent moments of time can be interpreted as the field due to those sources.

The Huygens’ secondary sources and the Huygens’ construction have proven useful, in particular, in the area of active con-
trol of sound. The JMC method (Jessel–Mangiante–Canevet), see [30–35] and also [36,37], uses the information about the
noise to be canceled at the perimeter (surface) of the region to be protected, and explicitly builds the Huygens’ anti-noise
sources in the form of acoustic monopoles, dipoles, and quadrupoles at the boundary (see [38] for a brief comparison of
JMC with other active noise control methods). A similar idea was used by Charles et al. [39] and Mangiante and Charles
in [40] to build the absorbing boundary conditions for computational acoustics. Namely, the Huygens’ secondary sources
in [39,40] eliminate the outgoing acoustic waves in the special transition region that surrounds the computational domain.

In electromagnetism, the Huygens’ construction can be interpreted as a particular realization of the electromagnetic
equivalence theorem by Schelkunoff [41], see also [12, Section 8.4]. This theorem says that the field on a given region (inte-
rior or exterior), regardless of its actual sources located outside of this region, can be reproduced as the field from the spe-
cially chosen auxiliary currents at the boundary of the region. If the boundary is identified with a ‘‘frozen’’ propagating front
at a given fixed moment of time, then the equivalence theorem yields the Huygens’ construction.

In work [42,43], Bérenger uses the equivalence theorem to design the subgridding techniques for the numerical solution
of Maxwell’s equations; in work [44], the subgridding approach of [42,43] is extended by Costen and Bérenger to the case of
frequency dependent (i.e., dispersive) media; and in work [45], Bérenger builds the Huygens’ absorbing boundary conditions
for time-domain Maxwell’s equations. In this approach, the Huygens’ secondary sources cancel out the outgoing electromag-
netic field and hence prevent it from getting reflected off the artificial outer boundary. Even though there is no formal con-
nection, work [45] can be thought of as an extension of work [39,40] from the scalar acoustic fields to the vector
electromagnetic fields.

We re-emphasize though that all of the aforementioned papers exploit only the Huygens’ construction for forward prop-
agation, and never make any use of the full Huygens’ principle, i.e., of the presence of aft fronts and lacunae. The latter rep-
resent a considerably more subtle phenomenon, and as mentioned by Ga_rding [46], can be thought of as ‘‘the result of fancy
cancellations between branches of analytic functions.’’ There are actually very few publications in the literature that do at-
tempt to apply the ideas related to the aft fronts and lacunae in the numerical context, and among those we mention work by
Warchall [47,48]. The focus of this work is on the study of domains of dependence and domains of influence for constant
coefficient hyperbolic systems, and on the development of the treatment of artificial boundaries that would take advantage
of the fact that the data at a given time only inside the domain fully determine the propagation through the outer boundary
at all subsequent times. This work by Warchall, however, presents only preliminary theoretical observations. Its practical
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implementation, if there is ever one, is contingent upon the availability of ‘‘an explicit method for propagation of waves
through an artificial domain boundary, using only data at a single time inside the domain, in such a way as to duplicate ex-
actly the propagation in unbounded space.’’ As of yet, such a method has not been found. Contrary to that, the algorithm we
present hereafter uses the right-hand sides (source terms of the governing equations), rather than the Cauchy data, to prop-
agate the information through the artificial boundaries.

The rest of the current paper is organized as follows. In Section 2, we introduce the notion of quasi-lacunae for Maxwell’s
equations and describe the lacunae-based time-marching algorithm. In Section 3 we outline the idea of implementing the
lacunae-based integration on its own, i.e., without having it coupled with any ABC or PML. In Section 4, we prove that for
a given computational domain of finite size, lacunae-based integration guarantees that any errors related to the outer bound-
ary will remain uniformly bounded for all times. This is our central theoretical result. It holds for any type of treatment cho-
sen for the artificial boundary, whether it is an ABC or a PML. Moreover, the chosen treatment does not have to be modified
in any way for the lacunae-based integration to apply. In Section 5, we describe the actual numerical procedure that we use;
it includes the decomposition of the original problem into the interior and auxiliary sub-problems and application of the
method to non-Huygens’ problems. Section 6 describes the numerical setup, and Section 7 contains the results of our com-
putations in a non-Huygens’ setting, for which the three-dimensional Maxwell equations are terminated by an unsplit PML.
These results corroborate the theoretical design properties of the algorithm. Section 8 contains conclusions and discussion.

2. Time-marching using quasi-lacunae of Maxwell’s equations

The propagation of unsteady electromagnetic waves in vacuum is governed by the time-dependent Maxwell’s equations:
1
c
@E
@t
� curl H ¼ �4p

c
j; ð1Þ

1
c
@H
@t
þ curl E ¼ �4p

c
jM
: ð2Þ
In system (1) and (2), E is the electric field, H is the magnetic field, c is the speed of light, and the normalization is chosen so
that both the permittivity and permeability of vacuum are equal to one, e0 = l0 = 1. Eq. (1), the Ampère law, is driven by the
external electric current with the density j = j(x, t), and Eq. (2), the Faraday law, is driven by the external magnetic current
with the density jM = jM(x, t). Eqs. (1) and (2) are supplemented by two steady-state equations, the Gauss law of electricity:
div E ¼ 4pq; ð3Þ
and the Gauss law for magnetism:
div H ¼ 4pqM; ð4Þ
where the quantities q = q(x, t) and qM = qM(x, t) are densities of the electric and magnetic charge, respectively. Note that
whereas the electric charge q and current j have a precise physical meaning, see, e.g., [49], the magnetic charge qM and cur-
rent jM do not exist in nature and are introduced only for the convenience of mathematical analysis, as they make Eqs. (1)–
(4) look symmetric.

The currents and charges that drive system (1)–(4) are subject to the conservation requirement [49,50]. For sufficiently
smooth solutions, the conservation of electric charge can be written in the form of the continuity equation:
@q
@t
þ div j ¼ 0: ð5Þ
Then, taking the divergence of both sides of Eq. (1) and using Eq. (5), we obtain:
@

@t
div E ¼ 4p @q

@t
:

Integrating this equality from t = 0 to a given time t and assuming for simplicity that the initial conditions are zero, we arrive
at Eq. (3). We therefore conclude that in the time-dependent framework the Gauss law of electricity shall be regarded as an
implication of the Ampère law and the conservation requirement. In particular, the charge q = q(x, t) on the right-hand side
(RHS) of Eq. (3) shall be interpreted as the charge accumulated from t = 0 to the present moment of time t due to the current
j(x, t). If div j = 0, then @q

@t ¼ 0 and no accumulation of charge occurs. A similar conclusion can be drawn regarding the accu-
mulation of magnetic charge and the Gauss law for magnetism (4).

Next, taking curl of Eq. (2), differentiating Eq. (1) with respect to time, substituting into one another, and using the iden-
tity curl curlE = �DE + grad divE along with Eq. (3), we arrive at the vector d’Alembert equation for the electric field:
1
c2

@2E
@t2 � DE ¼ �4p 1

c2

@j
@t
þ 1

c
curl jM þ gradq

� �
: ð6Þ
A very similar argument yields the vector d’Alembert equation for the magnetic field:
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Fig. 1. Quasi-lacuna of the solution generated by compactly supported sources.
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@2H
@t2 � DH ¼ �4p 1

c2

@jM

@t
� 1

c
curl jþ gradqM

" #
: ð7Þ
Let us now assume that the currents j and jM are compactly supported in space and time on some bounded domain
Q � R3 � ½0;þ1�. If the RHSs of Eqs. (6) and (7) were compactly supported as well, then we could have claimed that the solu-
tions E and H have classical lacunae in the sense of Petrowsky [20]. However, due to the terms gradq and gradqM, the RHSs
of Eqs. (6) and (7) may remain non-zero even after the currents j and jM cease to operate. This corresponds to the accumu-
lation of electric charge according to the continuity equation (5), and to the accumulation of magnetic charge according to
the similar equation: @qM

@t þ divjM ¼ 0. Then, as we have shown in [19], instead of the classical lacunae the solutions E = E(x, t)
and H = H(x, t) will have quasi-lacunae:
E ¼ Est; H ¼ Hst 8x; t 2
\
ðn;sÞ2Q

fðx; tÞjjx� nj < cðt � sÞ; t > sg: ð8Þ
In formula (8), Est = Est(x) and Hst = Hst(x) are the electrostatic and magnetostatic fields due to the accumulated electric and
magnetic charges q = q(x) and qM = qM(x). These fields satisfy the Poisson equations:
DEst ¼ 4pgrad q ð9Þ
and
DHst ¼ 4pgrad qM; ð10Þ
respectively. In addition, Est and Hst would have vanished if they were to extend all the way to infinity. For every moment of
time t though, the fields Est and Hst are defined not on the entire space R3, but only inside what would have been a classical
lacuna of the corresponding solution,1 i.e., behind the aft (trailing) fronts of the propagating waves. In other words, unlike in
the case of classical lacunae, when the solution behind aft fronts is identically zero, in the case of quasi-lacunae the solution
behind aft front reaches a steady state yet it is not necessarily zero. The existence of sharp aft fronts in odd-dimension spaces
is known as the Huygens’ principle, see, e.g. [51,52].

Formula (8), along with (9) and (10), can be proven by analyzing the solution in the form of the Kirchhoff integral, and
showing that for the points inside the lacuna it reduces to the classical Newton’s volume potential; see [19] for detail. Qual-
itatively, the concept of quasi-lacunae can be interpreted as a gradual onset of the electrostatic (and magnetostatic) solution.
Indeed, the unsteady waves generated by the compactly supported currents j(x, t) and jM(x, t) propagate toward infinity, leav-
ing behind their aft fronts the steady-state solution for the electromagnetic field driven by the charges q(x) and qM(x). As
t ?1, the area occupied by the steady-state solution expands, and in the limit it will coincide with the entire space R3. Note
also that if q = qM = 0, then the steady-state solution is zero as well, and the quasi-lacuna becomes a conventional lacuna.
This happens, in particular, when the currents j and jM are solenoidal: div j = 0 and div jM = 0.

The existence of quasi-lacunae suggests the following way of integrating system (1) and (2). Let S � R3 be a bounded
computational domain, on which the currents j and jM are compactly supported in space, so that on R3 n S the Maxwell equa-
tions are homogeneous. Moreover, let those currents operate only between the moments of time t0 and t1. In other words, we
are assuming that the currents are compactly supported on the region Q = {(x, t)jx 2 S, t0 < t < t1} in space–time, see Fig. 1. Our
intersection of all characteristic cones (i.e., light cones) of the wave equation (6) or (7) once the vertex of the cone sweeps the support Q of the RHS.
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objective is to compute the fields E and H only on S, while truncating all of its unbounded complement and replacing it by an
ABC or a PML at the outer boundary @S.

Let us introduce the time interval Tint defined as the sum of the time needed for the waves to cross the domain S plus the
operational time of the sources T0 = t1 � t0:
T int ¼
def 1

c
diamSþ T0: ð11aÞ
Then, we can make the following easy observation. By the time
t2 ¼def t0 þ T int ð11bÞ
the domain S will completely fall into the quasi-lacuna (8), and will remain inside the quasi-lacuna for all t > t2. In other
words, once the currents ceases to operate (at t = t1), it takes an additional 1

c diamS ‘‘seconds’’ for the waves they have gen-
erated to leave the domain S. Consequently, we can integrate system (1) and (2) on the finite interval Tint using any appro-
priate scheme, and then stop the integration, because at t2 = t0 + Tint the solution on S reaches its steady state and remains
unchanged thereafter. If we terminate the computational domain by an ABC or a PML, then no adverse phenomenon, such as
an instability, related to the treatment of the outer boundary @S will be able to manifest itself in the course of integration,
provided that the interval Tint is not too long.

We, however, cannot restrict ourselves to the case of external currents operating for a limited period of time only. Let us
therefore consider the currents on the RHS of system (1) and (2) that operate continuously for 0 < t < +1 while still being
compactly supported in space on the bounded domain S. We can partition these currents into the intervals of finite duration
T0:
jðx; tÞ ¼
X1
i¼0

jiðx; tÞ; jiðx; tÞ ¼
jðx; tÞ; iT0 6 t < ðiþ 1ÞT0;

0; otherwise;

�

jMðx; tÞ ¼
X1
i¼0

jM
i ðx; tÞ; jM

i ðx; tÞ ¼
jMðx; tÞ; iT0 6 t < ðiþ 1ÞT0;

0; otherwise:

( ð12Þ
Then, each system (1) and (2) driven by the RHS (12) for a particular i (a partial subproblem) will have a quasi-lacuna, and as
such, can be integrated independently starting from
tðiÞ0 ¼
def iT0 ð13aÞ
until [cf. formula (11b)]
tðiÞ2 ¼
def tðiÞ0 þ T int; ð13bÞ
where Tint is given by (11a). At tðiÞ2 , the solution to partial subproblem i reaches its steady state on the domain of interest S.
Hence, it does not need to be advanced any further. The overall solution can subsequently be obtained by linear superposi-
tion. If each partial subproblem is terminated by an ABC or a PML at @S, then no detrimental effect related to the chosen
treatment of the outer boundary will manifest itself provided that the integration interval Tint of (11a) is not too long.

Time-marching of the overall solution requires summation of the individual contributions for all i = 0,1,2, . . . However,
the causality principle implies that for any given moment of time t, no portion of the RHS (12) that corresponds to later times
can contribute to the solution. Therefore, the summation will not extend to infinity and will rather terminate at
N1 ¼

defdt=T0e � 1, where d�e is the ceiling function, i.e., the smallest integer greater than or equal to its argument. Otherwise,
there will be terms of two different types in the sum. First, there will be a finite number of unsteady terms Ei(x, t) and Hi(x, t),
i = N0, . . . ,N1, [solutions of (1) and (2), (12)] that have not reached their steady state on S yet, and still need to be taken into

account. The index N0 corresponds to the last term, counting backwards, for which the domain S is not completely inside the

quasi-lacuna yet; it is given by N0 ¼ t�diam S=c
T0

h i
, where [�] denotes integer part. In addition, there will be steady-state terms in

the overall sum for each field: Est
N0
ðxÞ and Hst

N0
ðxÞ. These terms are generated by the electric and magnetic charges, respec-

tively, accumulated over the period 0 < t < N0T0, i.e., for the operational time of the first N0 partial sources (12),
i = 0, . . . ,N0 � 1. Altogether, we can thus write:
Eðx; tÞ ¼ Est
N0
ðxÞ þ

XN1

i¼N0

Eiðx; tÞ; ð14Þ
and a similar expression for the magnetic field. It is very important that the number of unsteady terms on the RHS of Eq. (14)

remains bounded for all times and N1 � N0 þ 1 6 diamS=c
T0

h i
þ 2.

The fields Est
N0
ðxÞ and Hst

N0
ðxÞ are the electrostatic and magnetostatic contributions, respectively, to the total electromag-

netic field. They are due to the external charges that are given functions of space and time. In formula (14) and the similar
expression for H(x, t), these static fields are to be evaluated at the time t = N0T0. This can be done by solving the Poisson
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equations (9) and (10) on S, subject to the appropriate (Laplace) ABC at the boundary @S. Interpretation of Est
N0
ðxÞ and Hst

N0
ðxÞ

as solutions of the Poisson equation on S is useful for the theoretical analysis that leads to Theorem 1, see the discussion on p.
12.

In practice, however, Est
N0
ðxÞ and Hst

N0
ðxÞ can be obtained without having to actually solve Eqs. (9) and (10). Instead, those

fields can be computed on S in the course of regular time-marching once the unsteady part of the solution has left the do-
main, see Section 6.8.

Let us reiterate that if div j = 0 and div jM = 0, then neither the electric nor magnetic charge accumulates because @q
@t ¼ 0

and @qM

@t ¼ 0, and the quasi-lacuna transforms into a conventional lacuna. The field inside the conventional lacuna is zero,
and accordingly, there is no steady-state contribution Est

N0
ðxÞ to the sum (14) in this case (likewise for the magnetic field).

In our previous work [24,25], we have built a family of numerical algorithms for Maxwell’s equations that relied on conven-
tional lacunae. In particular, the algorithm of [25] offered stabilization of PMLs. Those algorithms, however, required con-
struction of the special solenoidal auxiliary currents, which was accomplished theoretically, but in practice led to
additional overheads.The key advantage of using quasi-lacunae instead of classical lacunae for time-marching the Maxwell’s
equations is that they impose no constraints on the sources of the field. This is due to the steady-state term in the sum (14) that
carries forward the ‘‘residual’’ contribution of all those partial sources (12), for which the unsteady waves have already left
the domain S. Yet another advantage compared to work [25] is that in the current paper we show how quasi-lacunae can help
stabilize the treatment of outer boundaries for general non-Huygens’ problems.

3. Standalone implementation

Besides having it coupled with an ABC or a PML, lacunae-based integration can be implemented on its own. This, in fact,
was the original approach, see [21,22]. During the time interval Tint the maximum distance any wave can travel in space is
cTint. Therefore, we can consider external boundaries with arbitrary (reflecting) properties for solving each of the individual
Maxwell’s systems for i = 0,1,2, . . . As long as none of these boundaries is located closer than half of that maxim distance, c
Tint/2, to @S, the solution Ei, Hi inside S will not feel their presence for tðiÞ0 6 t 6 tðiÞ2 . In other words, to obtain the correct solu-
tion on the domain of interest S, each individual solution Ei, Hi needs to be computed on a bounded auxiliary domain of the
maximum size Z = diamS + c Tint, see Fig. 1. Compared to setting an ABC or a PML at @S, this approach requires a larger com-
putational domain, yet appears provably free from any error associated with the grid truncation.

In [21,22], the standalone lacunae-based integration was successfully applied to the scalar d’Alembert equation; in [23]
the methodology was extended to the equations of acoustics, and [24] it was extended further — to Maxwell’s equations.
Moreover, in the recent paper [53] lacunae-based open boundary conditions have been constructed and tested for a consid-
erably more general setting than linear wave-type equations — 2D nonlinear dissipative magnetohydrodynamics (MHD).
Even in this context, when the existence of lacunae can be claimed only approximately rather than exactly, lacunae-based
ABCs have consistently outperformed other more standard ABCs.

4. A temporally uniform error bound

In this section, we show that time-marching Maxwell’s equations with the help of quasi-lacunae, as suggested in Sections
2 and 3, eliminates all possible error growth that may originate from setting an ABC or a PML at the boundary @S of the com-
putational domain S.

In matrix notation, Maxwell’s equations (1) and (2), along with the appropriate initial conditions, can be written as
1
c
@w
@t
þ bLw ¼ fðx; tÞ; x 2 R3; t > 0;

wðx;0Þ ¼ uðxÞ; x 2 R3;

ð15Þ
where w = [E,H]T is the vector of field components, bL is the operator written as a symbolic matrix:
bL ¼ 0 �curl
curl 0

� �
; ð16Þ
u(x) is the initial data, and f(x, t) = [�4pj(x, t)/c, � 4pjM(x, t)/c]T is the RHS of the Maxwell system. Both u(x) and f(x, t) are
assumed compactly supported in space, so that the far field part of problem (15) is homogeneous. To solve problem (15)
on the computer, we choose a bounded computational domain S such that suppu � S and supp f � S, and set an ABC or a
PML at its boundary @S:
1
c
@wðSÞ

@t
þ bLwðSÞ ¼ fðx; tÞ; x 2 S; t > 0;bCwðSÞðx; tÞ ¼ 0; x 2 @S; t > 0;

wðSÞðx;0Þ ¼ uðxÞ; x 2 S:

ð17Þ
The operator bC in formula (17) represents the aforementioned ABC or PML. In the case of an ABC, bC specifies certain (local)
relations between the field components and, perhaps, their derivatives. In the case of a PML, the operator bC does not have a
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straightforward explicit definition. Having such a definition though is not even necessary for the purpose of our analysis. It is
sufficient to assume that the relations between the field components w(S)(x, t) enforced by bC are equivalent to setting a spe-
cific PML outside @S.

An ideal ABC or PML would guarantee that the solutions of problems (15) and (17) coincide on the domain S
2 The
approxi
wðx; tÞ � wðSÞðx; tÞ; x 2 S; ð18Þ
for any moment of time t > 0. In practice, however, this can hardly be achieved, and instead of equality (18) we would nor-
mally expect that the following inequality holds:
kwðx; tÞ �wðSÞðx; tÞk 6 dðbCÞ; x 2 S: ð19Þ
The constant d on the RHS of (19) depends on the operator bC, i.e., on the quality of the ABC or PML at @S. In the ideal case,
d = 0, and then (19) transforms into (18). Otherwise, d is non-zero; in the case of an ABC it may depend, for example, on the
order of the boundary condition (see,e.g., [54–56]), whereas in the case of a PML it may depend, in particular, on its thick-
ness. In all cases, however, a non-deteriorating long-time performance implies that d does not depend on time, or more pre-
cisely, remains bounded as the time elapses.

As mentioned in Section 1 though, this is not always the case either. To account for the possible adverse behavior, we
follow the suggestion of [10] and interpret any long-time error growth as the growth of small perturbations in the data that
drive the problem.2 Specifically, along with the true bounded-domain solution w(S) that satisfies system (17), we consider its
perturbed counterpart ~wðSÞ that satisfies the system with the perturbed boundary data, initial data, and the RHS:
1
c
@ ~wðSÞ

@t
þ bL ~wðSÞ ¼ fðx; tÞ þ l; x 2 S; t > 0;bC ~wðSÞðx; tÞ ¼ �; x 2 @S; t > 0;

~wðSÞðx;0Þ ¼ uðxÞ þ n; x 2 S:

ð20Þ
The difference between the perturbed and unperturbed solutions may grow on the domain S as the time t elapses:
k ~wðSÞðx; tÞ �wðSÞðx; tÞk 6 gðtÞk½l; �; n�k0: ð21Þ
The rate of growth g(t) is determined by a particular ABC or PML; for example, some well-known PMLs have been reported to
demonstrate a linear or quadratic growth [8,57,10]. The notation [l,�,n] on the RHS of inequality (21) represents a symbolic
vector of all perturbations of the data in system (20). The choice of norms k � k and k � k0 for some specific cases is discussed in
[8,57,10].

We emphasize that inequality (21) is quite general in the sense that it allows the perturbations of the data to grow with a
prescribed rate, yet the reason for the growth may be arbitrary and it does not need to be known.

Inequality (21) implies that the perturbations that are small initially may increase with no bound for large integration
times. If, however, the plain integration of system (17) is replaced by the integration that uses quasi-lacunae (see Section
2), then estimate (21) can be drastically improved and, in fact, made uniform in time. Indeed, both solutions, w(S)(x, t) and
~wðSÞðx; tÞ, can be partitioned similarly to how it is done in Eq. (14):
wðSÞðx; tÞ ¼ wðSÞ;st
N0
ðxÞ þ

XN1

i¼N0

wðSÞi ðx; tÞ; ð22Þ

~wðSÞðx; tÞ ¼ ~wðSÞ;st
N0
ðxÞ þ

XN1

i¼N0

~wðSÞi ðx; tÞ; ð23Þ
where wðSÞ;st
N0
ðxÞ; ~wðSÞ;st

N0
ðxÞ and wðSÞi ðx; tÞ; ~wðSÞi ðx; tÞ; i ¼ N0; . . . ;N1, represent the corresponding steady-state and time-depen-

dent terms, respectively. Since each unsteady term needs to be integrated only for a limited time Tint, see formula (11a), esti-
mate (21) yields for i = N0, . . . ,N1:
~wðSÞi ðx; tÞ �wðSÞi ðx; tÞ
��� ��� 6 C0k½li;�i; ni�k

0
; ð24Þ
where C0 = g(Tint) is a constant, and [li,�i,ni] are the perturbations of the data for the ith partial problem. As the overall num-

ber of unsteady terms N1 � N0 + 1 in either sum (22) or (23) does not exceed the value diam S=c
T0

h i
þ 2 for all times, we can use

the triangle inequality and obtain the following estimate for the unsteady contributions to the sums (22) and (23):
XN1

i¼N0

~wðSÞi ðx; tÞ �
XN1

i¼N0

wðSÞi ðx; tÞ
�����

����� 6 C1 sup
i
k½li;�i; ni�k

0
: ð25Þ
se perturbations may have arbitrary nature, although in the numerical context it is convenient to associate them with the residual terms of the
mation, i.e., with the truncation error.
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In formula (25), C1 = C0 �max{N1 � N0 + 1}, and the supremum (least upper bound) on the RHS of the inequality can naturally
be assumed bounded. We use max{N1 � N0 + 1} in the estimate because both N1 and N0 depend on t (see Section 2) and hence
the quantity N1 � N0 + 1 is not necessarily constant; however, this quantity remains bounded for all t.

The steady-state part of the solution, wðSÞ;st
N0
ðxÞ, may also suffer from the grid truncation effects. Indeed, the static fields

Est
N0
ðxÞ and Hst

N0
ðxÞ, see formula (14), satisfy the Poisson equations (9) and (10), respectively, at t = N0T0. Once the unbounded

domain Rn of these equations is truncated and reduced to S, the actual steady-state component of the solution may get per-
turbed due to the perturbations w of the data, i.e., of the RHS to the Poisson equation (9) or (10), as well as of the ABC chosen
to solve these equations (a steady-state ABC must still guarantee estimate (19)). Then, the difference between the perturbed
and unperturbed steady-state solutions satisfies
3 In t
inside t
~wðSÞ;st
N0
ðxÞ �wðSÞ;st

N0
ðxÞ

��� ��� 6 C2kwk00; ð26Þ
where C2 is a constant. The most important consideration regarding the steady-state contribution to the overall solution
though is that it needs to be evaluated at the predetermined moments of time: t = iT0, i = 1, 2,. . ., (see Section 2), and every
time the new steady-state component is included, the previous one should be disregarded. Consequently, as long as the
quantities q and qM on the RHS of Eqs. (9) and (10) are given, there is no cumulative effect for the error.3

Finally, combining estimates (19), (25), and (26) with the help of the triangle inequality, we arrive at the following result.

Theorem 1. Let S � R3 be a bounded computational domain, and let problem (15) be solved on S using an appropriate ABC or PML
that reduces it to problem (17). Let problem (17) be time marched with the help of quasi-lacunae. Then, assuming that
supik[li,�i,ni]k0 <1 and kwk00 <1, the error on the computational domain S will remain uniformly bounded for all times:
k ~wðSÞðx; tÞ �wðx; tÞk 6 dðbCÞ þ C1 sup
i
k½li;�i; ni�k

0 þ C2kwk00: ð27Þ
Theorem 1 guarantees that regardless of what causes the original long-time deterioration, time-marching with the help of
quasi-lacunae will prevent any possible error growth.
5. Application to non-Huygens’ problems

From the standpoint of applications though, the key problem of interest is typically more sophisticated than that studied
in Sections 2 and 4. It may involve some complex phenomena that take place on a bounded region S � R3, i.e., in the near
field, and manifest themselves by the radiation of electromagnetic waves in the far field, i.e., in R3 n S:
bF x; t;w;
@w
@t

;
@w
@x

; . . .

� �
¼ 0; x 2 S; t > 0;

1
c
@w
@t
þ bLw ¼ 0; x 2 R3 n S; t > 0;

wðx;0Þ ¼ 0; x 2 R3 n S:

ð28Þ
In formula (28), we use the generic operator notation bFð� � �Þ to account for everything that may potentially be going on inside
S, for example, the generation of electromagnetic field by currents, scattering off specific geometric shapes, propagation
though a lossy and/or dispersive medium, nonlinear effects, etc. At the same time, the far-field solution is supposed to be
governed by the constant coefficient homogeneous Maxwell equations, so that the operator bL in (28) is given by formula
(16). The overall problem (28) is assumed uniquely solvable and well-posed.

For the purpose of solving problem (28) on the computer, the far field is, again, truncated and replaced by an ABC or a PML
at the outer boundary @S. The goal of our study is the same as before, namely, to make sure that numerical performance of
the chosen ABC or PML does not deteriorate over long time intervals. However, the method developed and analyzed in Sec-
tions 2 and 4 will not, generally speaking, apply directly to the new formulation (28). In fact, all we require of this new for-
mulation is the overall existence, uniqueness, and well-posedness. In doing so, the near field may be quite complex, the
governing equations bFð� � �Þ ¼ 0 on S may not even be Maxwell’s (unlike in Sections 2 and 4), and hence the problem may
not even be Huygens’. Therefore, the application of time-marching based on quasi-lacunae will require additional constructs.

Specifically, we decompose problem (28) into the interior and auxiliary problems (AP). This decomposition was intro-
duced previously for the integration techniques and the ABCs based on conventional lacunae, see [21–24]. The interior prob-
lem is posed on S:
bF x; t;w;
@w
@t

;
@w
@x

; . . .

� �
¼ 0; x 2 S; t > 0;

wðx; tÞ ¼ wauxðx; tÞ; x 2 @S; t > 0;
ð29Þ
he current version of the algorithm, we do not solve the Poisson equations (9) and (10) explicitly, and rather use the steady-state solution that forms
he quasi-lacunae in the course of time-marching. The resulting effect on the accumulation of error is discussed on page 23, around Eq. (61).
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Fig. 2. Computational setup for a non-Huygens’ problem.
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and instead of an ABC (or a PML) at the outer boundary, we simply require that its solution coincide at @S with the solution
waux(x, t) of the AP. The AP, in turn, is formulated on the entire space R3 as a pure Maxwell’s system in vacuum subject to the
homogeneous initial conditions:
4 In t
says tha
current
1
c
@waux

@t
þ bLwaux ¼ fauxðx; tÞ; x 2 R3; t > 0;

wauxðx;0Þ ¼ 0; x 2 R3:

ð30Þ
Its solution is driven by the auxiliary electric and magnetic currents fauxðx; tÞ ¼ � 4p
c ½j; j M�T that link the interior and the aux-

iliary problems and are constructed as follows.
Let w(x, t) be the solution to problem (28). Consider a smooth scalar function l(x), which satisfies l(x) � 1 for x 2 R3 n S

and l(x) � 0 for x 2 Se, where Se = {xjx 2 S, dist (x,@S) > e}. In other words, l(x) is zero ‘‘well inside’’ S, and is equal to one
everywhere outside S. It undergoes a smooth transition from zero to one in a narrow region of width e next to the boundary
@S from the interior side, see Fig. 2.

Next, we multiply w(x, t) by l(x) and apply the full left-hand side operator of Maxwell’s system (15) to this product every-
where on R3 for all t > 0. This yields the RHS to the AP (30):
fauxðx; tÞ ¼def 1
c
@lw
@t
þ bLlw: ð31Þ
Obviously, faux = 0 for x 2 Se and any t > 0, because l = 0 on Se, and also faux = 0 for x 2 R3 n S and any t > 0, because l = 1 on
R3 n S and consequently, the function lw solves the homogeneous Maxwell equations. The only region where faux may differ
from zero is the transition region SnSe.

As the Cauchy problem for constant coefficient Maxwell’s equations has a unique solution, we conclude that the solution
waux(x, t) to the AP (30) driven by the auxiliary currents faux of (31) coincides with the solution to problem (28) everywhere
on the exterior domain R3 n S for all t > 0.4 Therefore, we can use this solution waux to supply the required outer boundary data
to the interior problem (29), and thus expect that the solution w(x, t) to the latter will coincide with the solution of the original
problem (28) on the interior domain S for all t > 0.

Consequently, the solution w(x, t) needed on S for defining the auxiliary currents by means of formula (31) can be inter-
preted as a solution to the interior problem (29) rather than that to the original problem (28). This consideration completes
the decomposition of the overall problem (28) into the interior and auxiliary sub-problems (29) and (30). The latter two
problems are not independent. Solution to the AP (30) provides the boundary closure for the interior problem (29), whereas
solution to the interior problem is used for generating the source terms (31) for the AP.

The AP (30) is still formulated on an unbounded region. Hence, in practice it has to be truncated and solved with the help
of an ABC or a PML. It is natural to solve the AP on the same bounded domain S, see Fig. 2, and terminate it with the same ABC
or PML at @S that we would have used for the original problem (28). In other words, having performed the decomposition of
problem (28) into problems (29) and (30), we can transfer the task of setting the ABC or PML at @S from the original problem (28) to
the AP (30). The key benefit from employing the foregoing decomposition is that the AP satisfies the (generalized) Huygens’ prin-
ciple. Therefore, we can integrate the AP using quasi-lacunae and thus guarantee the non-deteriorating performance of any
ABC or PML chosen for truncating the auxiliary grid.
he literature on electromagnetism, a very similar result is often referred to as the electromagnetic equivalence theorem, see [41] or [12, Section 8.4]. It
t the field on a given region, regardless of its actual sources (outside of this region), can be reproduced as the field from the specially chosen auxiliary

s at the boundary.
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At the discrete level, the interior problem and the AP are time marched synchronously. Once the interior solution is ad-
vanced by one time step, the auxiliary sources faux can also be advanced by one time step. Then, the exterior solution waux

can be obtained on the next time level; it needs to be known only right outside S. This solution provides the missing closure
for the interior problem on the upper time level, after which the interior solution can be advanced yet once again, and the
procedure cyclically repeats itself. In Section 6, we provide the full implementation detail.

6. Numerical setup

We will implement the algorithm of Section 5 in a full 3D Cartesian setting for the computational domain shaped as a
parallelepiped. At the outer surface of the parallelepiped the grid will be terminated by the unsplit PML by Zhao and Can-
gellaris [58], see Appendix A. This combination of the geometry and the treatment of the outer boundary is popular for CEM
applications.

We will first demonstrate that the standard non-modified PML set as a wave absorber at the outer boundaries of the 3D
Cartesian grid generates instabilities already at the moderate computational times. Then, we will show that the integration
based on quasi-lacunae completely removes the deterioration and allows one to compute the solution for as long as required.

In the interior of the computational domain we will be solving the standard Maxwell equations in vacuum driven by the
given external currents. These equations have a simple axially symmetric exact solution (a regularized oscillating dipole)
that we will use as a reference for comparison with the numerical results. Let us emphasize that despite of its axial symmetry
the problem will be solved using 3D Cartesian coordinates, taking no advantage of the more convenient spherical or cylin-
drical geometry (that could lead to a reduced dimension). This will allow us to identify the instability induced by the Carte-
sian PML and to demonstrate that it can be cured with a quasi-lacunae based approach. We also re-emphasize that even
though the interior problem we have currently chosen is merely the constant coefficient Maxwell equations driven by known cur-
rents, we will take no advantage of this fact and rather develop a full-fledged decomposition approach described in Section 5 that
allows to treat the interior problem as non-Huygens’.

6.1. Governing equations and geometry

Let z be the axis of symmetry for the solution. In this case, the full Maxwell system of equations gets split into two inde-
pendent subsystems that correspond to the transverse magnetic (TM) and transverse electric (TE) modes. Hereafter, we focus
on the TM mode. In the spherical coordinate system (r,h,u), the TM mode relates two non-zero components of the electric
field, Er and Eh, and one (angular) component of magnetic field, Hu. However, the split takes place only in the spherical or
cylindrical coordinates. In the Cartesian coordinates (x,y,z), the TM mode contains a total of five Cartesian components of
the field vectors Ex, Ey, Ez, Hx, and Hy (note that Hz � 0) that satisfy the conventional Maxwell equations:
� @Hy

@z
¼ 1

c
@Ex

@t
þ 4p

c
jx; ð32Þ

@Hx

@z
¼ 1

c
@Ey

@t
þ 4p

c
jy; ð33Þ

@Hy

@x
� @Hx

@y
¼ 1

c
@Ez

@t
þ 4p

c
jz; ð34Þ

@Ez

@y
� @Ey

@z
¼ �1

c
@Hx

@t
; ð35Þ

@Ex

@z
� @Ez

@x
¼ �1

c
@Hy

@t
; ð36Þ

@Ey

@x
� @Ex

@y
¼ 0: ð37Þ
In this system, Eqs. (32)–(34) represent the Ampère law and are driven by the external currents jx, jy, jz. The Faraday law is
given by equations (35)–(37) and is homogeneous (no magnetic currents exist in nature). Eq. (37) is what remains of the
Faraday’s law in the z direction (Hz � 0); it will not be a part of the numerical algorithm or subsequent analysis.

Let us now define the computational domain S. First of all, the foregoing axial symmetry implies that it is sufficient to
compute the solution only within one octant, i.e., on one eighth of a Cartesian cube centered at the origin. This is because
each component of the solution possesses a certain parity, i.e., Ex, Ey, Ez, Hx, and Hy are even or odd functions of the Cartesian
variables x, y, and z (see Section 6.5):
Exð�xÞ ¼ �ExðxÞ; Exð�yÞ ¼ ExðyÞ; Exð�zÞ ¼ �ExðzÞ; ð38Þ
Eyð�xÞ ¼ EyðxÞ; Eyð�yÞ ¼ �EyðyÞ; Eyð�zÞ ¼ �EyðzÞ; ð39Þ
Ezð�xÞ ¼ EzðxÞ; Ezð�yÞ ¼ EzðyÞ; Ezð�zÞ ¼ EzðzÞ; ð40Þ
Hxð�xÞ ¼ �HxðxÞ; Hxð�yÞ ¼ �HxðyÞ; Hxð�zÞ ¼ HxðzÞ; ð41Þ
Hyð�xÞ ¼ �HyðxÞ; Hyð�yÞ ¼ HyðyÞ; Hyð�zÞ ¼ HyðzÞ: ð42Þ
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Hence, one can compute the fields only for x P 0, y P 0, and z P 0. In doing so, symmetry relations (38)–(42) will provide the
boundary conditions on the planes x = 0, y = 0, z = 0. Therefore, we choose the computational domain S in the form of a par-
allelepiped (see Fig. 3):
S ¼ fðx; y; zÞ : 0 6 x 6 a; 0 6 y 6 b; 0 6 z 6 cg:
In our experiments, we always set a = b = c = 2.4 cm. Electric currents jx, jy, and jz that drive the solution, see equations (32)–
(37), are compactly supported inside the computational domain S.

The boundary data at the outer planes x = a, y = a, and z = a will be taken from the solution to the AP (auxiliary problem),
in accordance with the algorithm described in Section 5.

6.2. Auxiliary problem

The AP is governed by the Maxwell equations for vacuum with the specially designed right-hand sides (auxiliary cur-
rents). The equations are essentially the same as (32)–(37) except that (i) there may be a non-physical magnetic current
in the AP, and (ii) the AP is terminated by the PML that leads to a modification of the governing equations near the exterior
boundaries, see Section 6.3 and Appendix A. As explained in Section 5, the AP plays a pivotal role for the analysis of non-Huy-
gens’ formulations, because the decomposition of the original problem into the interior and auxiliary problems leaves all the
complex phenomena in the interior, whereas the AP itself becomes Huygens’ and can therefore be treated with the help of
quasi-lacunae.

The auxiliary currents are built from the solution E, H to the interior problem. For example, the x-component of the elec-
tric current and the y-component of the magnetic currents are given by
4p
c

jx ¼ �
1
c
@lEx

@t
� @lHy

@z
;

4p
c

j M
y ¼ 1

c
@lHy

@t
þ @lEx

@z
� @lEz

@x
; ð43Þ
where l = l(x) is the multiplier function introduced in Section 5. Note that since Hz � 0 and Eq. (37) holds, the z-component
of the magnetic current vanishes, jM

z � 0.
Compared to the interior problem, the AP will be solved on a somewhat larger cube
Saux ¼ fðx; y; zÞ : 0 6 x 6 a0; 0 6 y 6 a0; 0 6 z 6 a0g; ð44Þ
where a0 > a. The auxiliary domain Saux contains the computational domain S for the interior problem, as well as the PML that
extends from @S outward (see Fig. 3).

Next, we actually define the function l(x) that specifies the shape of the transition zone where the auxiliary currents ex-
ist, and actually helps construct those auxiliary currents, see formula (43). It is convenient to choose a spherically symmetric
function l ¼ lðrÞ; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
:

lðrÞ ¼ P4
r � aþ e

e

	 

; ð45Þ
where P4(x) is smooth, equal to zero for x 6 0, equal to one for x P 1, and coincides with a polynomial of degree seven on the
interval 0 6 x 6 1:
auxiliary

sources

PML

PML

x

y

z

l

a a’

a

a’

domain Saux

domain S

ε

Fig. 3. Geometric setup. A two-dimensional section of the cube by the xy-plane.
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P4ðxÞ ¼
0; x 6 0;
35x4 � 84x5 þ 70x6 � 20x7; 0 6 x 6 1;
1; x P 1:

8><>:

The derivatives of P4(x) up to third order are equal to zero at the points x = 0 and x = 1. Therefore, the function l(r) given by
formula (45) increases smoothly from zero to one in the spherical layer a � e 6 r 6 a of width e. The auxiliary currents are
localized precisely in this layer, see Fig. 3. Indeed, when r < a � e we have l(r) = 0 and hence j = 0 and jM = 0, whereas for r > a
we have l(r) = 1 so that the interior problem transforms into the homogeneous Maxwell equations and the auxiliary currents
vanish as well, see, e.g., formula (43).

Note that as we set up the computations using Cartesian coordinates, we could have also chosen the transition zone to be
adjacent to the boundary @S from the inside. Then, there would have been no vacuum region between the transition zone and
the PML, see Fig. 3. We will test this alternative configuration in the future.

Finally, as the solution to the AP clearly inherits the symmetry properties discussed in Section 6.1, relations (38)–(42) can
be used in the capacity of the boundary conditions at the planes x = 0, y = 0, and z = 0. Namely, they help define the values of
the solution at the ghost nodes according to the specific parity of every given field component at every given symmetry
plane.

6.3. PML

The outer part SauxnS of computational domain Saux is occupied by the PML of width l = 0.75 cm in each coordinate direc-
tion, see Fig. 3. For our computations, we take the unsplit PML derived by Zhao and Cangellaris in [58] for the Cartesian coor-
dinate system. This PML is standard and well-known, and we present its governing equations in Appendix A. As the goal of
this paper is to demonstrate the performance of the new stabilization technique based on quasi-lacunae, we use the original
version of the PML [58] with no additional ‘‘fixes’’ reported in the literature.

6.4. Boundary conditions

At the outer boundaries x = a0, y = a0, and z = a0 of the domain Saux, the PML itself is terminated either by zero Dirichlet
boundary conditions for the tangential components of the magnetic field, or by a local artificial boundary condition. If the
damping inside the layer is sufficiently strong, the boundary conditions at the outer boundaries of the PML do not affect
the quality of the solution on S. The use of the ABC, however, may provide an additional benefit. In this case, if the layer
is switched off (i.e., if rx = ry = rz = 0 everywhere), the boundaries still possess some non-reflecting properties sufficient
for computing the solution with an acceptable accuracy. A computation of this kind (see Section 7) allows us to unambig-
uously attribute the undesirable long-time growth of the solution to the presence of the PML, because having the PML
switched on or off appears the only difference between the two otherwise identical computational strategies.

The simplest local non-reflecting boundary condition at @ Saux can be taken in the form
Haux ¼ n� Eaux; ; ð46Þ
where n is the unit normal vector to @Saux in the outward direction. As the boundary @Saux is composed of Cartesian planes,
then in every given instance the vector n coincides with the corresponding unit vector ex, ey, or ez. Expression (46) involves
the tangential components of the field vectors and holds for a plane wave propagating along n. Without analyzing the non-
reflecting properties of the ABC (46) to any degree of detail, we note that the flux of electromagnetic energy
S ¼ c
4p
ðEaux �HauxÞ ¼ c

4p
jHauxj2n
is directed outwards as long as (46) holds. In other words, the energy ‘‘drains out’’ of the computational domain thus aiding
toward the stability of the algorithm.

As the ABC (46) is designed to absorb the plane waves that propagate normally to the boundary, it can be only an approx-
imate radiation boundary condition. For the wave fronts that are not planar, or even for the plane waves but propagating in
other directions, the ABC (46) will necessarily lead to partial reflections, see [1,2]. To somewhat reduce those reflections, we
could have interpreted n in formula (46) as the unit radius vector, n = r/jrj, rather than the unit normal to @Saux, because the
wave fronts in the far field are nearly spherical. However, since the geometry we have chosen is Cartesian, and the design of
local non-reflecting ABCs is not the primary focus of this paper, it is more convenient to use the simplest Cartesian version of
(46), when n is the normal to @Saux, as long as the performance is acceptable for the current demonstration purposes (see
Section 7).

6.5. Test solution

To study the performance of the algorithm, we need to be able to compute the actual numerical error on the grid at dif-
ferent moments of time. The explicit form of the reference solution that we use can be compactly written via field compo-
nents in the spherical coordinate system (r,h,u):
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Er ¼ wðrÞ2d0 cos h
r3 vþ

_vr
c

� �
� d0 cos h

r2 vþ
_vr
c
þ

€vr2

c2

� �
@w
@r
; ð47Þ

Eh ¼ wðrÞ d0 sin h
r3 vþ

_vr
c
þ

€vr2

c2

� �
; ð48Þ

Hu ¼ wðrÞd0 sin h
cr3

_vr þ
€vr2

c

� �
: ð49Þ
This solution originates from the field radiated by a pointwise oscillating dipole d(t) = d0v(t) located at the origin of the coor-
dinate system and oriented along the z-axis. The modulating function v(t) is assumed smooth, and v(t) � 0 for t < 0. To sup-
press the singularities in the origin, solution (47)–(49) is regularized by introducing a smooth multiplier w(r) that should
have at least three continuous derivatives at r = 0, leading to asymptotic behavior wðrÞ ¼ Oðr3Þ as r ? 0. The components
of the correspondent electric current that drives the solution (47)–(49) are:
jr ¼
d0 cos h

cr2
_vþ

€vr
c
þ v

v
r2

c2

0@ 1A @w
@r
; ð50Þ

jh ¼ �
d0 sin h

cr3
_vr þ

€vr2

c

� �
@w
@r
: ð51Þ
In Eqs. (47)–(51), the argument of the modulating function v is the retarded time s = t � r/c, and the dot denotes differen-
tiation with respect to time, e.g., _v � @vðt�r=cÞ

@t . The solution given by formulae (47)–(49) obviously satisfies the symmetry con-
straints introduced in Section 6.1.

In Section 7, we solve system (32)–(37) with the right-hand sides (50) and (51) numerically (it is the interior problem, and
the right-hand sides are transformed to the Cartesian coordinates), and evaluate the error by comparing the solution com-
puted on the grid with the exact solution (47)–(49).

6.6. Discretization

Eqs. (32)–(37) that govern the solution to the interior problem are discretized on the grid with square cells: hx = hy = hz = h
using the conventional second order accurate Yee scheme [9], see Appendix B. The AP of Section 6.2 is approximated using
the same Cartesian grid and the same scheme. The AP grid extends to the entire domain Saux, and involves the PML that ter-
minates the interior domain S, see Fig. 3. Accordingly, the resulting discretization involves the discretization of the PML Eq.
(64), see Appendix A, by means of the Yee scheme. The auxiliary ODEs (65) are approximated with second order accuracy on
the same staggered grid. The PML itself is terminated either by the zero Dirichlet boundary condition or by the simple ABC
(46), see Section 6.4. The thickness of the spherical layer a � e 6 r 6 a, see Fig. 3, was about six grid cells in all our simula-
tions. To demonstrate the grid convergence, we use a sequence of grids with h = 0.15, 0.075 and 0.0375 cm, see Section 7.

6.7. Time-marching

The discrete time-marching procedure is organized as follows. The Yee scheme updates the numerical solution in two
stages. First, it advances the electric field in time. To do so, i.e., to update Ezð Þniþ1=2;jþ1=2;k according to Eq. (66), the magnetic
field needs to be known on the entire grid including the boundary values of the tangential components ðHyÞnþ1=2

N;jþ1=2;k and
ðHxÞnþ1=2

iþ1=2;N;k at the planes x = a and y = a, i.e., at i = N and j = N, respectively. Next, the magnetic field is updated, see Eq.
(67). However, this update can be done only inside the computational domain and not at the boundary. Indeed, the boundary
values ðHxÞnþ1=2

iþ1=2;N;k cannot be updated according to (67) as it would require the knowledge of the electric field Ez outside the
computational domain. Likewise, the boundary values ðHyÞnþ1=2

N;jþ1=2;k cannot be updated using the discrete counterpart of Eq.
(36). As the tangential components of the magnetic field at the boundary become unavailable at the next time level, the next
full update of the electric field will not be possible either. Therefore, an alternative procedure is needed for defining the tan-
gential components of the magnetic field at the boundary planes x = a, y = a, and z = a at each time level. The alternative pro-
cedure that we propose exploits the split into the interior and auxiliary sub-problems (Section 5) and the integration of the
AP using quasi-lacunae (Sections 2 and 4).

Assume that we have updated the electric and magnetic field as outlined above, and obtained the values of En+1 and Hn+3/2

everywhere on the interior grid except at the boundary, where the magnetic field has not been updated. Then, we can mul-
tiply the resulting En+1 and Hn+3/2 by the function l of (45) and define the auxiliary currents as follows:
4p
c
ðjzÞ

nþ1=2
iþ1=2;jþ1=2;k ¼ �

1
c

ðlEzÞnþ1
iþ1=2;jþ1=2;k � ðlEzÞniþ1=2;jþ1=2;k

s
þ
ðlHyÞnþ1=2

iþ1;jþ1=2;k � ðlHyÞnþ1=2
i;jþ1=2;k

hx

�
ðlHxÞnþ1=2

iþ1=2;jþ1;k � ðlHxÞnþ1=2
iþ1=2;j;k

hy
; ð52Þ
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4p
c

jM
x

	 
nþ1

iþ1=2;jþ1=2;k
¼ 1

c

lHxð Þnþ3=2
iþ1=2;j;k � ðlHxÞnþ1=2

iþ1=2;j;k

s
þ
ðlEzÞnþ1

iþ1=2;jþ1=2;k � ðlEzÞnþ1
iþ1=2;j�1=2;k

hy

�
ðlEyÞnþ1

iþ1=2;j;kþ1=2 � ðlEyÞnþ1
iþ1=2;j;k�1=2

hz
: ð53Þ
Note that the unknown boundary values of the (tangential) magnetic field are not required to compute the auxiliary currents
since the latter differ from zero only in the transition zone, see Fig. 3, and vanish, in particular, at the outer boundary of S.

Having obtained the auxiliary currents j and jM that drive the AP, see formulae (52) and (53), we can advance the discrete
solution to the AP by one time step. This can be done everywhere on S, including the boundaries, because the AP is termi-
nated by the PML outside S. And as the solutions to the interior and auxiliary problems coincide at the boundaries x = a, y = a,
and z = a, we can recover the tangential components of the magnetic field needed for the interior problem. Therefore, the
solution to the interior problem can be advanced further in time by one additional step, and the procedure cyclically repeats
itself.

The key consideration is that the AP is time-marched with the help of quasi-lacunae, as described in Sections 2 and 4. In
other words, what we actually integrate in time is those partial problems of type (1) and (2), (12), terminated by the PML,
that have not yet reached their respective steady states on S, and hence still need to be carried on. For every given moment of
time t, these are the partial problems i = N0, . . . ,N1, see formula (14), where N0 and N1 individually depend on t, but their dif-
ference N1 � N0 remains bounded by a fixed quantity for all times.

In practice, one may either solve the partial problems (1), (2), (12) individually, or time-march the solution of the AP in its
entirety. In any event, once the lower limit of summation N0 = N0(t) in formula (14) becomes larger than the index i of a given
partial problem, the solution of the latter, Ei (and Hi), must be excluded from the overall sum and must remain excluded
continuously thereafter. If the solution of the AP is marched in its entirety, this can be done by recomputing and then sub-
tracting the contribution for a given i from the overall solution of the AP.

In addition to the unsteady components Ei (and Hi), the overall solution of the AP on S contains the steady-state part, Est

(and Hst), see (14). One can obtain Est and Hst by solving the Poisson equations (9) and (10), subject to the appropriate ABC at
@S. Alternatively, one can obtain Est and Hst with the help of the same time-depended scheme (Yee scheme) as used for inte-
grating the Maxwell equations, merely as the solution that forms inside the quasi-lacuna once the unsteady waves have left
the computational domain. We adopt the second approach in the current paper as it has proven efficient in practice, see the
discussion around Eq. (61).

Let us note that having the correct steady-state components Est and Hst in the overall solution of the AP is important only
when this solution is used to provide the boundary data for the interior problem. For time-marching the AP per se, what
matters is only to let the unsteady components of the solution out of the computational domain. The steady-state compo-
nent does not evolve between the updates by its very nature, and does not need to be time-marched. Therefore, when the
contribution for a given i is removed, it can be removed from the solution of the AP completely, i.e., both the unsteady part, as
well as the steady-state one. The steady-state component is subsequently brought back, but only when setting the boundary
conditions for the interior problem.

In Fig. 13 (see p. 36), we are showing the block diagram of the entire algorithm. In Section 6.8, we discuss some additional
implementation details for the discrete formulation.

6.8. Additional implementation details

Partitioning of the RHS to the AP according to formula (12) may appear problematic in the discrete setting, because each
partial source ji; jM

i is turned on and off abruptly. The resulting discontinuities at ti = iT0 will lead to the loss of consistency by
the scheme and to ‘‘smearing out’’ of the sharp aft fronts of the outgoing waves. Therefore, following our previous analysis
[21–23], we introduce a ‘‘smooth’’ approach to the partitioning of the RHSs j and jM.

Let us consider a smooth partition of unity on the semi-infinite interval t P 0:
8t P 0 : 1 ¼
X1
i¼0

fðt � ði� 1ÞT1Þ; suppfðtÞ ¼ ½T1 � DT;2T1�; ð54Þ
0

1

T
0

ΔT

0

ζ(t) ζ(t−T
1
)

T
1

T
1
−ΔT 2T

1

Fig. 4. A smooth partition of unity.
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as schematically shown in Fig. 4. Here T0 is the size (duration) of each partition element (as in Section 2), DT is the width
(duration) of the overlapping interval, and
5 The
of solvi
T1 ¼def T0 � DT: ð55Þ
We denote by f(t) a smooth compactly supported function that defines the partition so that f(t) � 1 for T1 6 t 6 2T1 � DT and
f(t) + f(t + T1) � 1 for T1 � DT < t < T1. The individual partition elements are obtained by a mere translation: f(t � (i � 1)T1),
i = 0,1,2, . . .

Multiplying the continuously operating currents j and jM by the sum given in formula (54), we obtain [cf. formula (12)]:
jðx; tÞ ¼
X1
i¼0

jiðx; tÞ; jiðx; tÞ ¼ jðx; tÞfðt � ði� 1ÞT1Þ;

jMðx; tÞ ¼
X1
i¼0

jM
i ðx; tÞ; jM

i ðx; tÞ ¼ jMðx; tÞfðt � ði� 1ÞT1Þ;
ð56Þ
so that for each i = 0,1,2, . . . the partitioned RHSs (56) are compactly supported on the domain
Q i ¼ fðx; tÞjx 2 S; iT1 � DT < t < ðiþ 1ÞT1g: ð57Þ
Unlike in the case of partition (12), the functions (56) are smooth in both space and time. Hence, the finite-difference scheme
is now expected to reproduce the quasi-lacunae phenomenon for each partial problem with its design accuracy. Moreover,
because of the overlap DT that partition (56) has and partition (12) does not, both the moment tðiÞ0 of inception of the ith
partial source, as well as the moment tðiÞ2 , when the domain S falls completely into the quasi-lacuna of the solution due to
this source, need to be redefined compared to formulae (13). Namely, instead of (13a) we now have:
tðiÞ0 ¼
def iT1 � DT; ð58aÞ
where T1 is defined by (55) (except for i = 0, for which tðiÞ0 ¼ 0), and (13b) is replaced by
tðiÞ2 ¼
def tðiÞ0 þ T int; ð58bÞ
where tðiÞ0 has a new definition (58a), and Tint is still given by (11a).
Given the partition (56), the ith partial subproblem is included into the calculation at tðiÞ0 defined by (58a) and is dropped

at tðiÞ2 defined by (58b), when the solution reaches the steady state on the domain of interest S. Similarly to Section 2, the
interval between the termination time tðiÞ1 ¼

defðiþ 1ÞT1 of the ith partial current, see formula (57), and the moment of time
tðiÞ2 is equal to 1

c diam S‘‘seconds,’’ which is the time needed for the waves to leave the domain S.
When the lacunae-based algorithm of Section 2 is applied to a Huygens’ problem, it needs the accumulated charges q(x, t)

and qM(x, t) as the source terms of Eqs. (9) and (10), respectively. These accumulated charges enable the computation of the
steady-state contribution to the overall solution. For the partition of unity (54), the electric charge accumulated during the
time period 0 < t < tðN0�1Þ

1 due to operation of the first N0 partial currents ji, i = 0, . . . ,N0 � 1, is expressed as
qðx; tðN0�1Þ
1 Þ ¼ qðx;N0T1 � DTÞ �

Z N0T1

N0T1�DT
div jðx; tÞfðt � ðN0 � 2ÞT1Þdt; ð59Þ
and similarly for the magnetic charge and the corresponding magnetic currents jM
i . The first term on the right-hand side of

(59) represents the charge accumulated during the period 0 < t < N0T1 � DT, whereas the integral adds the charge accumu-
lated during the ‘‘decline’’ phase (see Fig. 4) of the last partial current, jN0�1. As long as q (x, t) can be considered a given func-
tion of space and time, it is only the integral term in (59) that needs to be evaluated numerically. Numerical integration may,
in principle, introduce some additional error on the right-hand side of Eqs. (9) and (10), but as the length of the integration
interval in formula (59) is fixed and equal to DT, estimate (26) will still hold, except that the constant C2 formally becomes a
function of DT:
~wðSÞ;st
N0
ðxÞ �wðSÞ; st

N0
ðxÞ

��� ��� 6 C2ðDTÞkwk00: ð60Þ
As such, the overall error estimate (27) will hold as well, again, with C2(DT) substituted for C2.
For the non-Huygens’ formulation of Section 5 though, only the currents j(x, t) and jM(x, t) can be considered given func-

tions of space and time,5 whereas the charges q(x, t) and qM(x, t) are not defined independently. Consequently, the first term on
the right-hand side of formula (59) needs to be evaluated numerically as well. This approach may be prone to the accumulation
of error as it involves the integration of the continuity equation (5) between t = 0 and t = N0T1 � DT.

In the actual computations however, we do not solve the Poisson equations (9) and (10) explicitly. We rather employ an
alternative approach and use the steady-state solution computed by the same Yee scheme. It develops and stays on S after all
the unsteady waves leave. Let Ei = Ei(x, t) denote the electric field due to the partition element i, as in Section 2. Then, at
currents are computed based on the interior solution in the course of the combined time-marching, see formulae (52) and (53), yet from the standpoint
ng the AP they are interpreted as given functions.



574 S.V. Petropavlovsky, S.V. Tsynkov / Journal of Computational Physics 231 (2012) 558–585
t P tðiÞ2 it reaches the steady state on the domain S and remains unchanged continuously thereafter, i.e., Eiðx; tÞ ¼ Est
i ðxÞ for all

t P tðiÞ2 and x 2 S. Hence, the overall steady-state contribution to the solution of the AP at the moment of time t is given by
EstðxÞ ¼
XN0�1

i¼0

Est
i ðxÞ; x 2 S; ð61Þ
where N0 = N0(t) is defined in Section 2. This approach to evaluating Est(x) does not involve the integration of the continuity
equation. It may still be prone to the accumulation of error though because in formula (61) the steady-state contributions
from all the elements of the partition (56), starting with i = 0, are summed up. Yet the error growth may not be faster than
linear with respect to N0, because all individual errors associated with individual terms of the sum (61) are bounded, see
formula (24). In practice, the behavior of the method was even more favorable, as no accumulation of error associated with
the use of formula (61) has been observed at all, see Section 7. This suggests that a theoretical analysis of this case (the cur-
rents are given but the charges are not) may in the future lead to a uniform estimate similar to that given by Theorem 1.

In addition, let us re-emphasize that even though the partition of the source terms in time (electric and magnetic cur-
rents) presented in Fig. 4 is the same as we used in our prior work, see, e.g., [25], the current approach is fundamentally dif-
ferent from the previous one. In [25], we have indicated that lacunae-based integration can help stabilize an ABC or a PML for
a non-Huygens’ problem, but have never implemented the idea because it required the solenoidal (i.e., divergence-free) aux-
iliary currents. Those auxiliary currents were built and tested earlier for standalone lacunae-based ABCs, see Section 3 and
[24] for detail, but it was a rather cumbersome and non-trivial component of the algorithm. In the current paper, we are
using quasi-lacunae instead of the conventional lacunae, and hence the auxiliary currents do not have to be solenoidal,
see formula (43). This presents a major simplification over both [24,25].

7. Results of computations

For our numerical experiments, we take w(r) = 1 � exp(�r5) in formulae (47)–(49). This guarantees that the fields are
smooth and bounded at the origin: Er � r2, Eh � r2, and Hu � r3. Moreover, due to the exponential decay of the derivative
w0(r) = 5r4exp(�r5) the external currents (50) and (51) appear essentially confined to the domain S. We also take d0 = 1 in
Eqs. (47)–(51).

The modulating function v(t) is chosen as
vðtÞ ¼ sin4 x1t þ sin4 x2t; if t P 0;
0; if t < 0;

(
ð62Þ
where the frequencies x1, x2 are incommensurate, x1 ¼ 1=2;x2 ¼ x1=
ffiffiffi
2
p

, so that the solution is not periodic in time. The
function v(t) of (62) and its derivatives up to order 3 are continuous at t = 0:
vð0Þ ¼ _vð0Þ ¼ €vð0Þ ¼ v
v
ð0Þ ¼ 0:
We will first demonstrate the onset of instability in the original PML — the particular effect that we would like to have
suppressed by our methodology. For that purpose, we numerically solve the Maxwell equations (32)–(37) on the domain S,
and terminate this domain by the PML (64), (65) so that the entire computation is run on the domain Saux, see formula (44)
and Fig. 3. The solution is driven by the external currents (50) and (51) and hence the exact solution (47)–(49) is available for
comparison. We emphasize that this is a reference computation for which we need neither the decomposition into the inte-
rior and auxiliary sub-problems nor the temporal partition. The width of the PML is fixed to 0.75 cm on every grid we use,
which means that the number of cells in the layer increases as the grid size h decreases. The magnitude of the damping coef-
ficient is r0 = 10, see Section 6.3. The PML is terminated by the simple ABC (46).

In Fig. 5, we are showing the binary logarithms of the error in Ex as functions of time for three grids with square cells:
h = 0.15, 0.075, and 0.0375 cm. The error in Fig. 5, as well as in Figs. 6–10, is defined as the relative error, i.e., as the difference
between the numerical solution and the exact solution (47)–(49) divided by the magnitude of the exact solution. It is eval-
uated on the domain S in the maximum norm (L1). The computations are run until ct = 105, which corresponds to about 12
times the time required for the waves to cross the domain S.

At the beginning stage of the computation, the numerical solution exhibits the design rate of grid convergence, Oðh2Þ, see
the enlarged plot in Fig. 5(b). However, at a certain moment of time the error starts to increase very rapidly. The rate of this
increase is nearly the same for all grids, but on the finest grid the blow-up is somewhat delayed, see Fig. 5(a). When the norm
of the error reaches a certain level (e.g., the logarithm is equal to roughly 15 on the grid with h = 0.075), we call is a complete
loss of accuracy and stop the computation.

We also note that the initial spike of the error appears in Fig. 5 because what is actually plotted is the relative error, and
the exact solution (47)–(49) is very small at the beginning stage of the computation due to our choice of the modulating
function v(t), see formula (62).

In Fig. 6, we are showing the error profiles with the PML switched off, i.e., with rx = 0, ry = 0, and rz = 0 everywhere in the
layer, so that the computational domain is terminated only by the ABC (46). Otherwise, the setup is identical to that of Fig. 5.
We see that the error curves in Fig. 6 differ from those in Fig. 5 in two key aspects. On one hand, the Oðh2Þ grid convergence
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can hardly be identified in Fig. 6; in particular, there is basically no difference in the absolute value of the error between
h = 0.075 and h = 0.0375. The reason for that is obvious. The error inside the computational domain S is dominated by reflec-
tions from the outer boundaries x = a0, y = a0, and z = a0, and the magnitude of those reflections is not related to the grid size.
In other words, the accuracy of the local first order ABC (46) appears worse than that of the interior scheme. On the other
hand, in sharp contrast to Fig. 5, the errors in Fig. 6 stay bounded for all times, and there is no growth. As the PML is the only
difference between the two setups, we conclude that the deterioration of the numerical solution observed in Fig. 5 should
unambiguously be attributed to the presence of the PML. Note that the computation interval ct = 600 corresponds to about
70 times the time required for the waves to cross the domain S.

To avoid any potential inaccuracies, in Fig. 7 we present the same error profiles as in Figs. 5 and 6, except that the PML and
no-PML error curves for every grid are given on a separate plot. We conclude that on the coarsest grid, h = 0.15, see Fig. 7(a),
the overall error is dominated by that of the interior discretization, because the two curves are nearly identical at the begin-
ning of the calculation, but at a later stage the PML solution deteriorates. On finer grids, see Fig. 7(b) and (c), the accuracy of
the PML solution at the initial stage improves as the grid size decreases, which is an indication of grid convergence, but later
the instability of the PML kicks in. At the same time, the error curves for artificial boundary conditions (46) remain ‘‘flat’’ for
all times, but the accuracy does not improve as the grid is refined due to the reflections from the outer boundaries.

Prior to presenting the results of computations with quasi-lacunae, we note the following:
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	 The error profiles for Ey, Ez, Hx, and Hy are very similar to those for Ex (including the case with quasi-lacunae case reported
below), and hence we do not present them hereafter.
	 We have observed in our experiments that the decrease of the damping coefficient r inside the PML could somewhat

extend the interval of time before the onset of the error build-up, and vice versa, the increase of r helps shorten this inter-
val of time. However, reducing r cannot be considered a good remedy for mitigating the instability generated by the PML
because on one hand the error build-up occurs anyway, albeit a bit later, and on the other hand, if r is too small, then the
PML does not guarantee a sufficient damping of the outgoing waves, and the overall accuracy is affected by the boundary
conditions set at its outer boundaries.
	 We have also conducted computations with the zero Dirichlet boundary conditions that replace the ABC (46) at the outer

boundary of the PML. The results were practically indistinguishable from those shown in Fig. 5. Hence, we conclude that
as long as the damping in the layer is sufficient, the outer boundary condition has little effect on the solution.
	 Prior to computing the solution in the Cartesian coordinates, we have also computed it in the spherical coordinates, with

only three rather than five field components in the TM mode, see Sections 6.1 and 6.5. We have used the unsplit spherical
PML of [59] that was derived from the same principles as the Cartesian PML (64) and (65). However, we did not see any
signs of instability or accuracy loss in the spherical case. The likely reason is that the spherical PML is uni-directional,
whereas the Cartesian PML has edge and corner regions that are apparently more susceptible to the development of
instabilities.
	 The initial spike of the error, which can be seen in Fig. 5 and which we attribute to the fact that this is relative error, can-

not be observed in either Figs. 6 or 7 merely because of a lower plotting resolution. Namely, to graphically represent the
data for the abscissa range of [0,600] (Figs. 6 and 7), as opposed to [0,105] (Fig. 5(a)), we coarsen the original dataset by
keeping only every eighth point for h = 0.15, every sixteenth point for h = 0.075, and every thirty second point for
h = 0.0375, and leaving out all others.
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Let us now proceed to presenting the main experimental result of the paper. Namely, we will show that having the PML
enhanced by the time-marching based on quasi-lacunae completely eliminates the long-time deterioration of the numerical
solution.

We choose the following parameters of the temporal partition: cT0 = 10 diamS 
 42 cm (where c = 1 is the speed of light,
and diamS ¼

ffiffiffi
3
p

a 
 4:2 cm, see Fig. 3) and cDT = 0.1cT0 = 4.2 cm. For these parameters, the number of partial problems (1),
(2), (12) that may overlap at any given moment of time never exceeds two. The actual percentage of time with the overlap
(as opposed to the time when only one partial problem needs to be integrated) is
1
c diam Sþ DT

T0 � DT

 22%: ð63Þ
We will see that this quantity is related to the overhead of the proposed computational procedure.
In Fig. 8, we are showing the results of computations for exactly the same setup as the one that corresponds to Fig. 5,

except that the solution is time-marched with the help of quasi-lacunae. We see that the long-time deterioration is elimi-
nated, and as the grid size decreases, the numerical solution converges to the exact one with the design rate, Oðh2Þ, for the
entire duration of integration. In Fig. 9 we are showing the same error profiles as in Figs. 8 and 5(a), except that the ‘‘only
PML’’ curve and the ‘‘PML and quasi-lacunae’’ curve for each individual grid are presented on a separate plot. This allows us
to use the same scale. We see that at the initial stage of computation the two error curves coincide on each grid, and also that
the actual values of the error decrease with second order accuracy as the grid is refined. Later, the pure PML solutions blow
up whereas the solutions computed with the help of quasi-lacunae maintain their stability for as long as the computation is
run.
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Finally, we compare the results obtained using the combination of quasi-lacunae and the PML with those obtained using
quasi-lacunae as the sole termination of the computational domain. This approach, as described in Section 3, requires a
wider buffer zone around the computational domain S compared to the PML, and consequently, the computations are more
expensive. Yet this method introduces no error associated with the domain truncation, and the only source of error on S is
the interior discretization. In Fig. 10, we compare the error profiles for the pure quasi-lacunae case with those for the quasi-
lacunae and PML case on different grids.

We see that the two curves nearly coincide for each grid. Hence, the error on S obtained using the combined quasi-lacunae
and PML methodology is the same as that for the pure quasi-lacunae based approach. As the latter is due to the interior dis-
cretization only, we conclude that the accuracy of the boundary procedure offered by the combined quasi-lacunae and PML
methodology already exceeds the accuracy of the scheme on S and consequently, the overall accuracy cannot be further im-
proved by changing the treatment of the outer boundary.

Let us now assume that the complexity of solving the original problem with the PML and with no lacunae-based correc-
tion (the ‘‘baseline’’ computation presented in Fig. 5) is A + P units of cost per unit time, where A is the cost of integrating
inside the domain S,P is the cost of applying the PML on SauxnS, see Fig. 3, and the unit of cost may be a flop or a CPU second
or any other appropriate measure. The original procedure, however, cannot be used for integrating over arbitrarily long time
intervals, because it blows up. Therefore, it is supplemented by the lacunae-based correction. Let us assume for simplicity
that the cost of integrating the AP on S is also A per unit time, then the overall complexity for one interior problem and
one AP solved simultaneously will be 2A + P, because the PML is used only for the AP. This is the theoretical minimum cost,
which can be used as a reference. However, solving the interior problem along with only one AP at every given moment of
time is not sufficient for correcting the long-time deterioration, because it does not allow to apply the lacunae-based inte-
gration to the AP. To allow for that, there must be an overlap between the APs, and for our current implementation this over-
lap was 22%, see formula (63). In other words, we were solving two APs simultaneously for 22% of the time and one AP for the
rest of the time. Consequently, the total cost was A + 1.22(A + P) per unit time. The overhead can then be defined as the ratio
of the actual cost to the reference minimum cost, which corresponds to the limit of the zero overlap:
Aþ 1:22ðAþ PÞ
2Aþ P

:

Alternatively, one can think of the overhead as the ratio of the actual cost to the cost of solving the original problem with the
PML:
Aþ 1:22ðAþ PÞ
Aþ P

:

The second measure is somewhat less representative in our view because the reference cost of A + P pertains to the algorithm
that does not work over long times at all, whereas the reference cost 2A + P corresponds to the theoretically minimal amount
of correction.

Let us also note that a more traditional way of looking at complexity is to measure everything in terms of the grid dimen-
sion, see [2, Section 3.7], and relate the cost to the error. Along these lines, we can say that for the implementation tested in
the current paper both A and P are proportional to h�4, where h is the size of the spatial discretization. This, however, is not
sufficient for understanding the complexity of the proposed procedure. Indeed, traditionally we estimate the cost of a meth-
od on a given fixed interval of time assuming that it produces the solution of a reasonable quality. In doing so, we are inter-
ested to see how the cost of implementation depends on various parameters of the method and on the required final
accuracy. Here, on the other hand, the baseline method is assumed to perform well only over some limited interval of time,
after which it blows up. Hence, the goal is to have its original accuracy restored for arbitrarily long times. Therefore, we do
not need to relate the complexity to accuracy, because this relation is already built into the definition of the baseline method
over the time of its acceptable performance. We rather need to compare the actual cost of having the baseline method cor-
rected for long times with the theoretically minimum possible cost. Of course, in this context we are talking about a univer-
sal correction, as opposed to various specific corrections that apply to specific methods, see Section 1.

8. Discussion

We have built and tested a special time-marching algorithm for the numerical integration of unsteady electromagnetic
problems. It exploits the presence of quasi-lacunae in the solutions of Maxwell’s equations, and can be applied to any dis-
cretization of these equations on the grid. For Huygens’ problems driven by known sources (electric and/or magnetic cur-
rents and charges), our algorithm guarantees that the error on a given grid will stay bounded for all times. When the grid
size decreases, the error will also decrease with the design rate of the scheme. Moreover, it will decrease uniformly in time,
which is equivalent to having a temporally uniform grid convergence.

A more realistic problem formulation would typically involve the radiation of waves toward infinity, but altogether will
not necessarily be Huygens’. In that case our methodology can be combined with an appropriate procedure used for the
treatment of the artificial outer boundary, such as an ABC or a PML. Through the decomposition of the original problem into
the interior and auxiliary sub-problems, it provides for a uniform non-deteriorating performance of the chosen ABC or PML
for all times, without compromising any of its original properties, such as the accuracy or degree of absorption. In other



580 S.V. Petropavlovsky, S.V. Tsynkov / Journal of Computational Physics 231 (2012) 558–585
words, our methodology prevents the loss of accuracy/stability by the ABC or PML over long integration times — an adverse
phenomenon reported by different authors in the literature. In doing so, only the far-field part of the overall formulation
must satisfy the (generalized) Huygens’ principle, whereas inside the computational domain, i.e., in the near field, the model
may not be Huygens’ at all.

We emphasize that the proposed algorithm will correct the long-time behavior of any ABC or PML. An important question
in this context is at what level will the error eventually stabilize. Our central theorem, Theorem 1 of Section 4, only requires
that the growth of the error that characterizes the original non-modified ABC or PML be controlled by some function g = g(t),
but imposes essentially no constraints on g. For example, in Section 7 we saw that g(t) may show no evidence of growth at an
early stage of the computation, but may then display a sharp explosive error buildup. After the new time-marching algo-
rithm is applied, the error stabilizes at the level �g(Tint), where Tint is bounded from below by the time needed for the waves
to cross the computational domain. Tint may also be chosen greater than 1

c diamS (see Section 7), which potentially increases
the error but reduces the computational overhead that the new procedure entails. Hence, we can always think about striking
the right balance between the overhead and the final accuracy. As to whether or not the error �g(Tint) for the chosen Tint is
acceptable in a given setting, it obviously depends on the specific application. Consequently, the choice of Tint or equivalently,
the choice of the partition shown in Fig. 4, shall be made based on the experiments.

The quasi-lacunae approach introduced in this paper can be considered an extension of our previous technique [25,24]
based on the classical lacunae in the sense of Petrowsky. The current approach has a considerably wider applicability range
though because of a key improvement in its design. Namely, it does not require the artificial solenoidal currents that guar-
antee the existence of classical lacunae in the solutions of Maxwell’s equations. Similarly to the original lacunae-based ap-
proach of [24], the quasi-lacunae methodology can also be applied to the treatment of outer boundaries completely on its
own, without having to be tied to any ABC or PML. This may require a wider buffer region around the computational domain
than, say, an average PML would need. On the other hand, the shape of the boundary in this case can be quite general, and the
methodology will remain provably free from any error associated with the grid truncation.

It should also be mentioned that some formulations may involve only one current (electric or magnetic), whereas the
other current is zero.6 In this case, the field with no current of its own will have genuine lacunae as opposed to quasi-lacunae.
In turn, the discretization, at least on staggered grids, can be set up so that only the components of this field appear at the actual
outer boundary. Therefore, a standard lacunae-based procedure of [25,24] can be applied, regardless of the possible non-sole-
noidal nature of the other current.

The decomposition of the original problem into the interior and auxiliary sub-problems discussed in Section 5 can, in fact,
be considered a generalization of the electromagnetic equivalence theorem by Schelkunoff, see [41] or [12, Section 8.4]. The
transition region SnSe, see Fig. 2, on which the auxiliary sources faux of (31) are defined, can actually be taken as narrow as
desired,7 and in the limit can be reduced to the surface @S itself. Then, l(x) becomes a step (Heaviside) function in the normal
direction, and the auxiliary sources faux reduce to surface currents that shall formally be thought of as distributions, i.e., d-layers
on the surface. These surface currents will be the same as those that appear in the equivalence theorem, and the field they gen-
erate on the exterior region will be the same as the original field. Hence, the electromagnetic equivalence theorem can be ob-
tained as a direct implication of the solvability and uniqueness results for Maxwell’s equations. As mentioned in Section 1, there
are publications in the literature that exploit the electromagnetic equivalence theorem in the computational context, see, e.g.,
[42–45].

Note also that a fair degree of flexibility exists when combining the interior and auxiliary sub-problems. For the purpose
of matching the two solutions, there is no need to know the interior solution inside S except on the transition region SnSe
because l(x) = 0 on Se. Therefore, the two problems can, for example, be solved on two different grids. In doing so, the inte-
rior grid may need to be sophisticated to account for the geometry, while the exterior grid can have a much simpler struc-
ture. The two grids should overlap only in the vicinity of @S; they may either coincide (point-match) there or alternatively,
once can interpolate between the grids (chimera strategy).

In our simulations, we computed the steady-state component of the overall solution by summing up the individual con-
tributions generated by each partial problem in the course of its time-marching, see formula (61). This approach is straight-
forward and easy to implement, especially in the non-Huygens’ setting of Section 5, but it formally takes us beyond Theorem
1, as the overall solution then includes the sum of an increasing number of individual static components. In practice, how-
ever, we still did not observe any long-time error accumulation, see Section 7, at least for those regimes that we have con-
sidered. This useful experimental observation indicates that a further theoretical analysis may be justified aimed at
extending Theorem 1 to the case when only the currents are given, whereas the charges are not.

Another future direction is the development of an alternative version of the methodology that would involve independent
solution of the Poisson equations (9) and (10) [or similar Poisson equations for the scalar electrostatic and magnetostatic
potentials, which will be cheaper]. For convenience, the Poisson discretization can be built on the same grid, on which
the Maxwell equations are discretized, and it shall guarantee at least the same order of accuracy. The ABC for the Poisson
equation at the outer boundary @S can be obtained using Calderon’s operators and the method of difference potentials,
see [1]. This approach guarantees high accuracy of the boundary treatment and is very flexible as far as the geometry.
6 There are no magnetic currents and no magnetic charges in genuine physics. Besides, the AP introduced in Section 5 for the analysis of non-Huygens’
problems may also be driven by only one current.

7 A relatively thin spherical transition zone defined by the function l of (45) appears to have introduced no additional error in the Cartesian setting.
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The Poisson problems need to be solved once per partition element. In other words, when the computational domain S falls
completely into the quasi-lacuna for a given i [which happens at t ¼ tðiÞ2 , see formula (58b)], the steady-state component of
the solution shall be recomputed. To do so, one uses the right-hand sides of Eqs. (9) and (10) given by the gradients of the
charge densities accumulated by the given moment of time tðiÞ2 .

Appendix A. Unsplit PML equations

Let Eaux and Haux denote the auxiliary electric and magnetic fields, i.e., the solution to the AP of Section 6.2. According to
[58], the modified Maxwell equations inside the PML can be written as follows:
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These equations are homogeneous since there are no currents beyond the computational domainS. Inside S, system (64)
transforms into Eqs. (32)–(37) for Eaux and Haux driven by the auxiliary currents j and jM. Compared to (32)–(37), system
(64) contains five additional unknown variables, EPML

x ; EPML
y ; EPML

z ; HPML
x , and HPML

y , which are the functions of space (x, y,
z) and time t. These functions coincide with the true auxiliary field components everywhere on S, but in the layer they
may be different. They are governed by five additional ordinary differential equations in the PML:
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The sixth auxiliary function is identically equal to zero, HPML
z � 0, because of the symmetry, see Section 6.1. This allows us to

drop the z-component of the Faraday law from system (64) that would otherwise be similar to Eq. (37) in the original Max-
well system.

The functions rx = rx(x), ry = ry(y), and rz = rz(z) are the damping coefficients that facilitate the decay of the waves inside
the PML in the directions x,y, and z, respectively. These functions are equal to zero everywhere on Saux except in the layer,
where they increase smoothly in the outward direction. For example, the quantity rx = rx(x) is defined as follows:
rxðxÞ ¼
r0

x�a
l

� �2
; x P a;

0; x < a:

(

For the PML of width l = 0.75 cm we take r0 = 10.
It is to be noted that the Cartesian PML Eqs. (64) and (65) differ for different parts of the layer that surrounds the com-

putational domain. Specifically, there is a difference between the so-called face-PML, edge-PML, and corner-PML regions, see
Fig. 11. In general, the PML is supposed to provide for a perfect matching between the layer and the interior of the compu-
tational domain, and also guarantee a sufficient attenuation of the outgoing waves. However, in the face-PML region it is
sufficient to have the decay of the field in only one direction — normal to the boundary, whereas the equations in the
edge-PML region and the corner-PML region are designed in a more complicated way so that to provide for a field decay
in two and three orthogonal directions simultaneously. It is the edge-PML and corner-PML regions that appear prone to
the long-term error buildup.
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Appendix B. The Yee scheme

In the Yee scheme [9], the field components are staggered on the grid in both space and time. The field allocation on an
elementary spatial cell is shown in Fig. 12.

As by now the Yee scheme has become the ‘‘industry standard,’’ see [12], we write out explicitly only two discrete equa-
tions that we will need for further discussion — the counterparts of Eqs. (34) and (35):
ðHyÞnþ1=2
iþ1;jþ1=2;k � ðHyÞnþ1=2

i;jþ1=2;k

hx
�
ðHxÞnþ1=2

iþ1=2;jþ1;k � ðHxÞnþ1=2
iþ1=2;j;k

hy
¼ 1

c

ðEzÞnþ1
iþ1=2;jþ1=2;k � ðEzÞniþ1=2;jþ1=2;k

s
þ 4p

c
ðjzÞ

nþ1=2
iþ1=2;jþ1=2;k; ð66Þ

ðEzÞnþ1
iþ1=2;jþ1=2;k � ðEzÞnþ1

iþ1=2;j�1=2;k

hy
�
ðEyÞnþ1

iþ1=2;j;kþ1=2 � ðEyÞnþ1
iþ1=2;j;k�1=2

hz
¼ �1

c

ðHxÞnþ3=2
iþ1=2;j;k � ðHxÞnþ1=2

iþ1=2;j;k

s
: ð67Þ
Here the subscripts i, j, and k (and the semi-integers) correspond to the spatial variables x,y, and z, respectively, whereas the
superscript n and the semi-integers correspond to the time variable t. As the scheme is explicit, the time step s must satisfy
the Courant stability constraint, and in our computations we typically choose s = 0.2h.

The case of i = 0, j = 0, or k = 0 requires a minor modification of the discrete equations. When, for example, i = 0 (which
corresponds to the plane x = 0), the symmetry relation (42) shall be exploited, i.e., Hy(0,y,z) = 0, and the first term on the
left-hand side of Eq. (66) transforms into
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Yes Apply the ABC or PML directly

No    

Original time-marching procedure prone to long-time deterioration

Enhanced time-marching algorithm based on quasi-lacunae

Update the boundary data required for further advancing the interior problem    

Fig. 13. Block diagram of the algorithm. Hk, Hi, k, and Hst
k are the tangential components of the total, partial # i, and steady-state magnetic field. The electric

field is not shown explicitly for brevity.
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Similar symmetry-based considerations apply to the other two boundary planes, y = 0 and z = 0, and to the remaining dis-
crete equations.
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