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Abstract
We are solving the multi-D nonlinear Helmholtz

equation that governs the propagation of intense laser
light in Kerr dielectrics. Our numerical method ad-
dresses a key challenge in numerical optics, namely,
singular behavior of solutions when the backscat-
tered component of the electric field is neglected. It
also guarantees high-order accuracy in the presence
of material discontinuities. The key components of
the method include a semi-compact finite-difference
scheme, a nonlocal two-way artificial boundary con-
dition, and a nonlinear Newton’s solver. Our simula-
tion provide the first ever direct numerical evidence
that the singularity of the solution which character-
izes the paraxial propagation of high power beams
disappears once the non-paraxial effects are included.

1 Mathematical Model
The propagation of linearly polarized, continuous

wave beams in isotropic Kerr media is governed by
the scalar nonlinear Helmholtz equation (NLH):

Ezz + ∆⊥E + k2
0

(
1 + (2n2/n0)|E|2

)
E = 0, (1)

where E = E(z,x ) is the electric field, k0 is the linear
wavenumber, n0 is the linear index of refraction and
n2 is the Kerr coefficient. The impinging beam in (1)
propagates along the coordinate z, and ∆⊥ denotes
the Laplacian w.r.t. the remaining coordinate(s) x .

The NLH (1) is a reduced model obtained from
Maxwell’s equations by a series of approximations.
Yet its significance lies in the fact that it is the sim-
plest model in nonlinear optics that enables the prop-
agation of waves in all directions. In particular, it ac-
counts for the important phenomenon of backscatter-
ing, which is due to the nonlinearly induced nonuni-
formities of the overall refraction index in (1).

Introducing the ansatz E = eik0zφ, where the enve-
lope φ = φ(z,x ) is assumed to vary slowly compared
with the fast carrier oscillation eik0z, one can neglect
the small φzz term (i.e., make the paraxial, or forward
scattering, approximation), and reduce the NLH (1)
to the nonlinear Schrödinger equation (NLS):

2ik0φz + ∆⊥φ+ 2k2
0n2/n0|φ|2φ = 0. (2)

The NLS (2) is a canonical model in nonlinear op-
tics for the propagation of intense laser beams in Kerr
media. In particular, it captures the central phe-
nomenon of nonlinear self-focusing. Yet, solutions to
equation (2) can become singular (collapse) at a finite
propagation distances if the input power exceeds a
certain critical limit. The effect of collapse, however,
is clearly non-physical because it assumes that a fi-
nite amount of power focuses to a point; besides, the
paraxial approximation itself breaks down near the
singularity. Therefore, a question of key importance
is whether the singularity formation is arrested by
“taking a step back” and employing the scalar NLH.

2 Numerical Method
We solve the NLH (1) for the plane-parallel slab

of Kerr material immersed into a homogeneous lin-
ear medium. The Kerr slab itself can be layered,
or grated, in which case k0, n0, and n2 can all be
piecewise constant functions of z. In doing so, con-
tinuity of the field E and of its first derivative Ez

is assumed at all material interfaces. In the trans-
verse direction(s), the properties of the medium re-
main smooth. The solution is driven by a single or
multiple laser beam(s) that impinge on the Kerr slab
either normally or at an angle.

Any discretization of the NLH (1) must be of
high-order accuracy so as to minimize the number
of points per wavelength required for solving equa-
tion (1) with sub-wavelength resolution on a large
domain, and also help resolve the small-scale phe-
nomenon of backscattering against the background of
a forward-propagating wave. Besides, it must main-
tain accuracy across the material discontinuities.

The desirable properties are attained by a fourth-
order semi-compact scheme built on a uniform rect-
angular grid aligned with the slab and the material
interfaces. The geometry may be either Cartesian or
cylindrical with z being the axis. As there are no ma-
terial discontinuities in the direction(s) orthogonal to
z, the scheme uses standard central differences on a
five-node stencil. In the direction z, the scheme em-
ploys a compact three-node stencil. It appears par-



ticularly convenient for handling the interfaces (en-
forcing the continuity conditions), and it also helps
reduce the bandwidth of the final matrix.

The interior discretization is supplemented by non-
local two-way artificial boundary conditions (ABCs)
in the direction z, and by local radiation boundary
conditions at the transverse far-field boundaries. The
ABCs make the outer surfaces of the slab transparent
for the outgoing radiation and at the same time cor-
rectly prescribe the given incoming beam(s). They
are obtained by separating the variables in the linear
region (right outside the Kerr slab) and subsequently
selecting only the proper outgoing modes.

The resulting discrete system of nonlinear equa-
tions on the grid is solved by Newton’s method.
There is one nontrivial step in building the Newton’s
linearization. Namely, the nonlinearity in equation
(1) is non-differentiable in the sense of Frechét for
complex-valued solutions. Hence, equation (1) has
first to be recast as a system of two real equations,
after which Newton’s linearization becomes possible.

3 Results

Figure 1: Arrest of collapse.

Figure 1 is an example showing that the forma-
tion of singularity is suppressed in the case of non-
paraxial propagation governed by the NLH (1). The
specific quantity plotted is the longitudinal energy
flux, and the parameters of computation are chosen
such that the corresponding NLS solution would have
blown up, i.e., collapsed. Instead, in Figure 1 we see
a rather sharp focusing of the beam followed by its
defocusing. This is a clear indication that the waves’
collapse is indeed arrested by nonparaxiality.

There is another group of interesting nonlinear
wave phenomena that can be, and have been, sim-
ulated using the NLH (1). Namely, for the propaga-
tion in waveguides solutions to the NLS (2) exist in

the form of spatial solitons that can sustain them-
selves and propagate over long distances essentially
with no diffraction. However, it was not clear until
our recent work whether similar solutions existed in
the case of nonparaxial propagation.

Using the new numerical methodology, not only
have we been able to compute the nonparaxial soli-
tons, but also show that they can be very narrow
in width, about one carrier wavelength λ = 2π/k0.
In contradistinction to that, the NLS (2) does not
admit narrow solitons. We have also been able to
compute interactions (“collisions”) between counter-
propagating spatial solitons, see Figure 2. We note
that the NLH (1) appears a naturally well suited
model for analyzing this configuration, whereas the
NLS (2) entails some inherent mathematical difficul-
ties related to the propagation in opposite directions.
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Figure 2: Collision of solitons.

4 Conclusions
For the first time in the literature, our work pro-

vides direct numerical evidence that nonparaxiality
arrests the collapse of focusing nonlinear waves. Be-
sides, and also for the first time ever, the new method
helps compute the (narrow) nonparaxial solitons and
their collisions. The computations are done with
high-order accuracy, which is maintained in the pres-
ence of material discontinuities as well. More detail
can be found in references [1], [2].
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