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Abstract

Perfectly matched layers (PMLs) are used for the numerical solution of wave propagation problems on unbounded
regions. They surround the finite computational domain (obtained by truncation) and are designed to attenuate and com-
pletely absorb all the outgoing waves while producing no reflections from the interface between the domain and the layer.
PMLs have demonstrated excellent performance for many applications. However, they have also been found prone to
instabilities that manifest themselves when the simulation time is long. Hereafter, we propose a modification that stabilizes
any PML applied to a hyperbolic partial differential equation/system that satisfies the Huygens’ principle (such as the 3D
d’Alembert equation or Maxwell’s equations in vacuum). The modification makes use of the presence of lacunae in the
corresponding solutions and allows us to establish a temporally uniform error bound for arbitrarily long-time intervals.
At the same time, it does not change the original PML equations. Hence, the matching properties of the layer, as well
as any other properties deemed important, are fully preserved. We also emphasize that besides the aforementioned
PML instabilities per se, the methodology can be used to cure any other undesirable long-term computational phenome-
non, such as the accuracy loss of low order absorbing boundary conditions.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Numerical solution of infinite-domain problems requires truncation of the unbounded domain for the pur-
pose of constructing a finite-dimensional discretization. In doing so, one clearly needs to set some artificial
boundary conditions (ABCs) at the outer boundary of the finite computational domain [1,2]. The ABCs shall
provide a closure for the truncated formulation and guarantee that its solution will not differ much from the
corresponding fragment of the original infinite-domain solution (ideally, will coincide with it).

For the problems of propagation of electromagnetic waves, a very efficient closure mechanism was intro-
duced by Bérenger [3,4]. He proposed to surround the computational domain by a layer of artificial material
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capable of rapidly damping all the outgoing waves while generating no reflections from the interface between
the domain and the layer, regardless of the wave’s frequency or angle of incidence. It was called a perfectly
matched layer (PML). The PML capabilities were attained in work [3,4] by splitting the field components,
i.e., introducing additional unknowns and equations in the layer, and then using the resulting extra degrees
of freedom for the development of an efficient waves’ attenuation strategy. Subsequently, similar techniques
were proposed for other wave propagation problems, such as acoustics [5] and elasticity. Note that the PML
never alters the propagation speed as it would immediately create a scattering mechanism for the waves, it only
reduces their amplitude.

It has also been noticed [6], however, that the Bérenger’s split transforms the strongly hyperbolic (symmet-
ric) Maxwell’s equations into a weakly hyperbolic system, which, in turn, implies transition from strong well-
posedness to weak well-posedness of the Cauchy problem [7].1 A weakly well-posed system can become ill-
posed under a low order perturbation, and an example of such a perturbation for the Bérenger’s equations
was given in [6]. Even though it has later been shown [9] that the actual form of the Bérenger’s system does
not lead to ill-posedness, the system still remains only weakly well-posed, and a linear growth of the split field

components inside the PML is possible. This behavior may also lead to a purely numerical instability of the
discretization. In particular, it has been proved in [6] that the very popular Yee scheme [10] becomes uncon-
ditionally unstable in the PML [3,4], with the powers of the amplification matrices growing linearly as the
number of time steps increases.

From the standpoint of applications, the split field PML of [3,4] has demonstrated an overall excellent per-
formance. However, concerns about its well-posedness and stability have prompted the development of other
types of PMLs for computational electromagnetism [11–13] and other areas (e.g., acoustics [14]). These alter-
native strategies do not require splitting the field components in the PML, although they still introduce addi-
tional unknowns inside the layer. Later, however, the unsplit PMLs have also been found susceptible to

gradually developing instabilities [15]. They have first been predicted theoretically and then corroborated by

the actual computations, e.g., for the two-dimensional TE polarized Maxwell’s equations [15]. A systematic
experimental study of the long-time performance of unsplit PMLs with several commonly used explicit second
order schemes has been conducted in our recent paper [16].

Note that if some components of the solution begin to grow inside the PML, the resulting numerical arti-
facts from the layer may or may not contaminate the computational domain, depending on the particular
application and the design of the scheme. As mentioned, e.g., in [17], the Yee scheme can keep the instability
inside the layer, whereas a higher order scheme of [15] propagates it back to the domain. As, however, has
been noticed in [18], for the reason of improving the numerical performance on parallel platforms, a code that
includes a split field PML is often designed in such a way that the equations solved inside the domain (not in
the layer) are also split, although with no damping factors. In this case, even the Yee scheme appears capable
of allowing the contamination from the layer into the domain.

An approach has been proposed in [15] to cure the long-time instability of unsplit PMLs. This approach is
based on changing the governing equations in the layer. It has been experimentally shown to work well, but
theoretically it is unclear whether the modified layer remains perfectly matched and absorbing.

Other remedies can also be found in the literature. For example, the non-linear PML of [19] guarantees
boundedness of the energy integrals and strong well-posedness of the governing equations in the layer. How-
ever, its practical implementation requires a certain regularization to keep the denominators away from zero.
Again, computationally it has been shown to perform well, but the analysis does not extend to this case. The
complex frequency-shifted PML introduced in [20,21] and analyzed in detail in [17] also guarantees bounded-
ness of the energy integrals and strong well-posedness.2 However, the frequency shift in the PML leads to the
loss of frequency independent absorption [17].

Altogether, the aforementioned stabilizing changes inside the PML often show no detrimental effect of any
kind in the experiments, even when the supporting analysis is lacking. Moreover, according to a number of
authors (see, e.g., [8]), the long-time instability of the PMLs may only have a limited negative effect in practical
1 In fact, weak well-posedness characterizes all split field PMLs, see, e.g., [8].
2 For the analysis of well-posedness see also [22].
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computations, in particular, because often by the time it manifests itself the phase errors would have already
killed the solution [18]. We tend to believe, however, that the deterioration of solution due to the phase errors
is not always that rapid (Section 3), and as any potentially adverse phenomenon, the long-term instability of
the PMLs needs to be carefully addressed.

Therefore, the key objective of the current paper is to introduce a cure for the long-time instability of the

PMLs while keeping all the advantageous properties of a given layer unaffected (such as matching, absorption,

etc.). At least as important, the proposed cure has to be fully and rigorously justified. To achieve this objec-
tive, we employ the lacunae-based integration. We should additionally note that even though the lacunae-
based integration is presented hereafter as an approach to mitigating the long-time instability of the PMLs,
the analysis of Section 2 clearly indicates that it can also be used for alleviating any other undesirable long-time

phenomenon in computation, e.g., the deterioration of accuracy of low order local ABCs.
Lacunae-based methods for the numerical integration of hyperbolic equations and systems have been devel-

oped during the past several years. They apply to the equations that satisfy the Huygens’ principle [23–28]. For
the problem of radiation of waves by a known source, they guarantee a temporally uniform grid convergence
for any consistent and stable scheme [29]. The basic idea of lacunae-based methods is that once the domain of
interest falls completely into the lacuna of the solution [30], the integration does not need to be continued any
further. The presence of lacunae can also be efficiently exploited for the construction of exact ABCs3 for various
wave propagation problems [31–33]. These ABCs have only fixed and limited extent of temporal non-locality.

Hereafter, we apply the concepts of lacunae-based integration to the task of stabilization of PMLs. Our
main result is formulated in Section 2, see Theorem 1. It says that given a computational domain of finite size,
lacunae-based integration guarantees that the PML-generated errors will remain uniformly bounded for all
times. This results holds for any linear PML, and the governing equations in the layer do not have to be mod-
ified. In Section 3, we present the results of our numerical experiments for Maxwell’s equations that corrob-
orate the theoretical design properties of the algorithm. In Section 4, we describe the decomposition of the
original problem into the interior and auxiliary subproblems, which is the key element of lacunae-based ABCs
[31–33]. As far as the PMLs, this decomposition will also allow us to address a much broader class of formu-
lations than only the radiation of waves by known sources (e.g., scatterers in the domain). Finally, Section 5
contains the conclusions and some general discussion.

2. Essentials of the algorithm and the main theorem

A typical problem setup is schematically represented in Fig. 1, and it is only for the convenience of plotting
that x is shown one-dimensional. In fact, we will always assume that x 2 R3, because lacunae exist only if the
number of space dimensions is odd [26]. Accordingly, the computational domain X is assumed to have diam-
eter d in R3. As far as its shape, from the standpoint of lacunae-based algorithms it is not important. However,
the application of PMLs typically requires simple computational domains, most often Cartesian rectangles
(parallelepipeds) or, sometimes, cylinders or spheres [18,22,34].

The PML surrounds the computational domain, see Fig. 1, and for simplicity we first assume that it has
infinite thickness. This means that all the waves entering the PML completely die off in the layer. In practice,
a PML always has finite thickness, such as in our numerical experiments of Section 3.

Let w ¼ wðx; tÞ denote the vector of unknowns (e.g., components of the electromagnetic field or parameters
of the fluid), and let it be governed by:
3 AB
ow
ot þ Lw ¼ f ðx; tÞ; x 2 R3; t > 0;

wðx; 0Þ ¼ u; x 2 R3;
ð1Þ
where the operator L is supposed to be linear and contain all the appropriate spatial derivatives of w as well as,
maybe, non-differentiated terms. We require that the differential operator o=ot þ L of (1) satisfies the Huygens’
principle [23–28]. Mathematically, this means that the waves due to a compactly supported source (in space-
time) have sharp aft fronts. In other words, at any fixed location of the observer these waves come and go, and
Cs that introduce no error due to the domain truncation.
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the solution becomes identically zero after a finite interval of time. This interval is no greater than the max-
imum distance between the observer and the source divided by the propagation speed c (e.g., the speed of light
or speed of sound).

According to [35], a scalar differential equation in the conventional 3þ 1 dimensional Minkowski space-
time is Huygens’ if and only if it is equivalent to the d’Alembert equation.This is a convenient criterion for
practice; in particular, both Maxwell’s equations [33] and linearized Euler’s equations (once the entropy waves
have been decoupled [32]) reduce to d’Alembert equations for individual electromagnetic or acoustic variables,
and as such are Huygens’.

The right-hand side (RHS) f ðx; tÞ in (1) represents the sources of the field; it is supposed to be compactly
supported in space and may operate continuously in time: suppf � X� ½0;þ1Þ. The initial data for problem
(1) are also assumed compactly supported: suppu � X. For Maxwell’s equations, f ðx; tÞ contains the extrane-
ous electric currents, and for the acoustics equations it contains volume velocities and forces that are assumed
to be given explicitly.

Let us denote by T ¼ d=c the characteristic time, which is required for the waves to cross the domain X, and
let T 1 > 0, see Fig. 1. We can represent the RHS f ðx; tÞ of (1), x 2 X, using the partition:
f ðx; tÞ ¼
X1
m¼0

f mðx; tÞ; f mðx; tÞ ¼
f ðx; tÞ; tm 6 t < tmþ1;

0; otherwise;

�
ð2Þ
where tm ¼ mT 1, m ¼ 0; 1; 2; . . . Next, consider the Cauchy problems:
owm
ot þ Lwm ¼ f mðx; tÞ; x 2 R3; t > tm;

wmðx; tmÞ ¼
u; m ¼ 0;

0; m > 0;

�
x 2 R3:

ð3Þ
Solution of problem number m from the set (3) is defined for t P tm � mT 1, but we can think that it is defined
for all t P 0 and is equal to zero for 0 6 t < tm. Then, because of the linear superposition and causality we
have:
wðx; tÞ ¼
XM

m¼0

wmðx; tÞ; x 2 R3; t P 0; ð4Þ
where M ¼defdt=T 1e � 1, and dae is the smallest integer P a (ceiling function).
Moreover, as the operator o=ot þ L is Huygens’, the solution of each problem (3) has a lacuna [30]. For the

constant propagation speed c, the shape of the lacuna is determined by the Kirchhoff integral [26] as explained,
e.g., in [29]. It is basically the common interior of all the light cones generated by a particular source. For a
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given m P 0, the domain X falls into this lacuna at the moment of time tm þ T 1 þ T � tmþ1 þ T . In other
words, once the source f mðx; tÞ ceases to operate (at t ¼ tmþ1), it takes another T seconds for the waves it
has generated to completely leave the domain X, see Fig. 1. Consequently,
wmðx; tÞ ¼ 0; x 2 X; t P tmþ1 þ T � tmþ1 þ d=c ð5Þ

and using (5), we can write instead of (4):
wðx; tÞ ¼
XM

m¼M0

wmðx; tÞ; x 2 X; t P 0; ð6Þ
where M0 ¼def½ðt � T Þ=T 1�, and ½�� denotes the integer part. Hence, we conclude that for any moment of time t,
see Fig. 1, only so many components wm of (3) contribute to the solution wðx; tÞ of problem (1) on the domain
X. These components are the M �M0 þ 1 terms in the sum (6), and their maximum number does not depend
on t. Moreover, each term may only differ from zero on X during the interval T 1 þ T , see (5), which does not
depend on t either.

Representation of the solution wðx; tÞ as the sum of a finite non-increasing number of components wmðx; tÞ
that each has a finite non-increasing ‘‘lifespan” on X is the key advantage provided by lacunae-based integra-

tion; it will be of fundamental importance for our subsequent analysis. As an example, consider
T 1 ¼ T ¼ d=c, see Fig. 1. Then, clearly, M0 ¼ M � 1 unless t happens to be an integer multiple of T, in which
case M0 ¼ M . Consequently, the number of terms in the sum (6) in the case T 1 ¼ T is normally equal to 2 and
sometimes reduces to 1. In practice, however, it will be both feasible and beneficial to take the value of T 1

several times larger than T, see Sections 3.3 and 3.4.
In reality we are not solving problem (1) directly. Instead, we are solving a combined formulation that

involves the PML outside X (see Fig. 1):
owðXÞ

ot
þ LwðXÞ ¼ f ðx; tÞ; x 2 X; t > 0; ð7aÞ

wðXÞðx; 0Þ ¼ u; x 2 X;

owðPMLÞ

ot
þ LðPMLÞwðPMLÞ ¼ 0; x 2 R3 n X; t > 0;

wðPMLÞðx; 0Þ ¼ 0; x 2 R3 n X: ð7bÞ
In doing so, problem (7a) is identical to (1) except that it is formulated on the bounded region X rather than on
R3. For the second problem, (7b), the vector of unknowns wðPMLÞ typically has more components than wðXÞ,
and the operator LðPMLÞ has additional terms that render the damping of waves. It is also required that the
continuity be enforced across the interface oX:
wðXÞðx; tÞ ¼MwðPMLÞðx; tÞ; x 2 oX: ð7cÞ

For unsplit PMLs, the matrix M should simply match the respective components. For split PMLs, the sum of
the split components in wðPMLÞ should be equal to the corresponding component of wðXÞ. Altogether, the ideal

PML of infinite thickness (7b), (7c) applied to the interior problem (7a) will guarantee:
wðXÞðx; tÞ � wðx; tÞ; x 2 X; t P 0: ð8Þ

The PML, however, is not ideal, and a convenient way to account for that is to introduce small perturbations n

of the initial data. In the continuous setting these perturbations are artificial, but in reality they originate from
the small residual terms of the approximation, i.e., from the truncation error [15]:
o~wðXÞ

ot
þ L~wðXÞ ¼ f ðx; tÞ; x 2 X; t > 0; ð9aÞ

~wðXÞðx; 0Þ ¼ uþ n; x 2 X;

o~wðPMLÞ

ot
þ LðPMLÞ~wðPMLÞ ¼ 0; x 2 R3 n X; t > 0; ð9bÞ

~wðPMLÞðx; 0Þ ¼ n; x 2 R3 n X:
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System (9) is to be supplemented by the same continuity condition (7c). It has been shown [6,15] that for both
split and unsplit PMLs the difference between the perturbed and unperturbed solution can grow as the time
elapses:
k~wðXÞð�; tÞ � wðXÞð�; tÞk 6 lðtÞknk0; ð10aÞ
k~wðPMLÞð�; tÞ � wðPMLÞð�; tÞk 6 lðtÞknk0: ð10bÞ
The rate of growth lðtÞ is determined by the particular PML; for standard PMLs it is either linear or quadratic
[6,9,15]. The appropriate choice of the norms k � k and k � k0 for some specific cases is discussed in [6,9,15]. Note
that estimate (10b) is always sharp, because the growth of certain components of the solution inside the PML
has actually been demonstrated in [9,15]. As far as the first estimate, (10a), according to [17] numerical arti-
facts from the PML may or may not propagate back into the domain X. If they don’t, then lðtÞ can be re-
placed by a true constant in (10a). We, however, will still be assuming the worst case scenario (10), for it
was experimentally shown in [15,16] that the artifacts from the layer can contaminate the computational do-
main. Moreover, the implementation strategies that emphasize parallel efficiency may make the propagation
of artifacts from the layer to the domain more likely [18].

Our goal is to show that if the plain integration of system (7) is replaced by the lacunae-based integration,
then estimates (10) can be improved and made uniform in time. First of all, we need to see that lacunae-based
integration applies to (7). In the unperturbed case, formula (8) means that if f ðx; tÞ is partitioned according to
(2), then the solutions of individual problems with the PML will still have lacunae on the domain X. The only
difference is that the waves that leave X after the time T elapses will no longer travel freely but will rather be
absorbed by the PML. Hence, we can write similarly to (6):
wðXÞðx; tÞ ¼
XM

m¼M0

wðXÞm ðx; tÞ; x 2 X; t P 0; ð11Þ
where the individual terms wðXÞm ðx; tÞ, m ¼ 0; 1; 2; . . ., satisfy [cf. (3) and (7)]:
owðXÞm

ot
þ LwðXÞm ¼ f mðx; tÞ; x 2 X; t > tm; ð12aÞ

wðXÞm ðx; tmÞ ¼
u; m ¼ 0

0; m > 0;

(
x 2 X;

owðPMLÞ
m

ot
þ LðPMLÞwðPMLÞ

m ¼ 0; x 2 R3 n X; t > tm; ð12bÞ

wðPMLÞ
m ðx; tmÞ ¼ 0; x 2 R3 n X;

wðXÞm ðx; tÞ ¼MwðPMLÞ
m ðx; tÞ; x 2 oX: ð12cÞ
To account for the ‘‘misbehavior” of the PML, equations (12a), (12b) need to be perturbed the same way as we
have perturbed (7a), (7b) to obtain (9):
o~wðXÞm

ot
þ L~wðXÞm ¼ f mðx; tÞ; x 2 X; t > tm; ð13aÞ

~wðXÞm ðx; tmÞ ¼
uþ n0; m ¼ 0

nm; m > 0;

(
x 2 X;

o~wðPMLÞ
m

ot
þ LðPMLÞ~wðPMLÞ

m ¼ 0; x 2 R3 n X; t > tm; ð13bÞ

~wðPMLÞ
m ðx; tmÞ ¼ nm; x 2 R3 n X:
Solutions of the respective problems (12) and (13), (12c) will satisfy the same estimates (10) as satisfied by the
solutions of (7) and (9). However, the key advantage of exploiting the lacunae is that for every m ¼ 0; 1; 2; . . .,
the corresponding system only needs to be integrated over the interval T 1 þ T . Hence,
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k~wðXÞm ð�; tÞ � wðXÞm ð�; tÞk 6 Cknmk
0
; ð14aÞ

k~wðPMLÞ
m ð�; tÞ � wðPMLÞ

m ð�; tÞk 6 Cknmk
0
; ð14bÞ
where C ¼ lðT 1 þ T Þ is a constant. Another key advantage of using lacunae is a finite and non-increasing
number of summation terms in formula (11). Combined with estimate (14a), formula (11) yields (by the tri-
angle inequality):
k~wðXÞð�; tÞ � wðXÞð�; tÞk 6 C0 sup
m
knmk

0
; ð15aÞ
where C0 ¼ C � ðM �M0 þ 1Þ and the norms knmk
0 are assumed bounded altogether. In contradistinction to

(10a), estimate (15a) implies that even if the PML errors contaminate X, the resulting error on X will remain

uniformly bounded for all times. Note that according to (8), wðXÞð�; tÞ can be replaced with wð�; tÞ on the left-
hand side of (15a), which means that we have proved:

Theorem 1. Let X � R3 be a bounded domain, and let problem (1) be solved using a PML around X combined

with the lacunae-based algorithm, see (11) and (12). Then, assuming that supmknmk0 <1, the error on X due to

the perturbation (13) of the PML will remain uniformly bounded for all times:
k~wðXÞð�; tÞ � wð�; tÞkX 6 C0 sup
m
knmk

0
: ð15bÞ
Estimate (15b) provides an error bound for the domain X. In fact, the error growth inside the PML is also
uniformly bounded, i.e., an estimate similar to (15b) holds for the complementary domain R3 n X as well. It,
however, should be written differently:
XM

m¼M0

~wðPMLÞ
m ð�; tÞ �

XM

m¼M0

wðPMLÞ
m ð�; tÞ

�����
����� 6 C0 sup

m
knmk

0
: ð15cÞ
The first and second terms on the left-hand side of (15c) are solutions in the PML with and without pertur-
bations, respectively. They are left in the form of the sums because the lossy equations of the PML shall not be
expected to be Huygens’, and formula (11) will not, generally speaking, hold. In other words, since the solu-
tion is represented as a finite sum of terms with finite lifespan, the uniform bound (15c) is guaranteed. How-
ever, unlike on X, the solutions obtained in the PML with and without lacunae will not be the same.

3. Numerical experiments

In this section, we demonstrate the performance of the algorithm introduced in Section 2.

3.1. Computational setup

For the purpose of relating to prior work, in our numerical experiments we would like to stay as close as
possible to the setup of [15]; a very similar setup was also used in our recent paper [16]. The two key differences
between the simulations in the current paper and those conducted in [15,16] are that here we are using cylin-
drically symmetric geometry so that to be able to take advantage of the three-dimensional effects (lacunae) in
an essentially two-dimensional setting, and also that in [15,16] the solution was driven by the initial conditions
whereas here it is driven by a continuously operating source term on the right-hand side (described in Section
3.2).

3.1.1. Governing equations and geometry

Let r, z, and h denote the cylindrical coordinates; the assumption of axial (cylindrical) symmetry implies
that all the derivatives with respect to the polar angle vanish: o

oh � 0. Then, the full Maxwell system of equa-
tions gets split into two independent subsystems that correspond to the transverse magnetic (TM) and trans-
verse electric (TE) modes. Following [15,16], we will be solving the TE Maxwell equations in vacuum (c is the
speed of light):
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1

c
oEr

ot
þ oH h

oz
¼ � 4p

c
jr;

1

c
oEz

ot
� 1

r
oðrH hÞ

or
¼ � 4p

c
jz;

1

c
oH h

ot
� oEz

or
� oEr

oz

� �
¼ 0;

ð16Þ
where Er and Ez denote the radial and axial components of the electric field, respectively, and H h denotes the
angular component of the magnetic field. The first two equations in system (16) represent the Ampère law and
are driven by the extraneous electric current with the components jr and jz. The third equation in (16) repre-
sents the Faraday law and is homogeneous (no magnetic currents). The unsteady equations (16) are supple-
mented by the steady-state equation
1

r
oðrErÞ

or
þ oEz

oz
¼ 4pq; ð17Þ
where q is the electric charge density. Eq. (17) is the Gauss law of electricity, it relates the flux of the electric
field through a given closed surface to the charge contained inside. A necessary solvability condition for sys-
tem (16) and (17) is the continuity equation that represents the conservation of charge:
oq
ot
þ 1

r
oðrjrÞ

or
þ ojz

oz
¼ 0: ð18Þ
As long as condition (18) holds for the source terms q, jr, and jz, the steady-state Eq. (17) can be left out of the
consideration when time-marching the unsteady Eq. (16).

At the axis of the cylindrical system, Maxwell’s equations require additional attention. Under the natural
assumption that all the physical quantities involved must be continuous and bounded, one can easily see that
the vector components H h, Er, and jr can only meet the constraint of axial symmetry if they vanish at r ¼ 0:
H hðt; r; zÞjr¼0 ¼ 0; Erðt; r; zÞjr¼0 ¼ 0; jrðt; r; zÞjr¼0 ¼ 0: ð19Þ
The axial components Ez and jz do not have to vanish, although given (19), the third equation of system (16)
reduces to oEz

or jr¼0 ¼ 0. The first equation of system (16) reduces to the identity 0 ¼ 0 on the axis, and the only
equation that does not degenerate is the second equation. Taking into account the first equality from (19), we
can use the Taylor formula for r	 1 and write: H hðt; r; zÞ ¼ oHh

or jr¼0 � r þOðr2Þ. Consequently,
1
r

oðrHhÞ
or ¼ 1

r
oHh
or jr¼0 � or2

or þOðrÞ, which yields: 1
r

oðrHhÞ
or jr¼0 ¼ 2 oHh

or jr¼0. Therefore, on the axis we have:
1

c
oEz

ot
� 2

oH h

or
¼ � 4p

c
jz: ð20Þ
The geometry of the problem is schematically shown in Fig. 2. The computational domain has a rectangular
shape in the ðr; zÞ variables:
X ¼ fðr; zÞk0 6 r 6 5;�5 6 z 6 5g:
The currents (and charges) that drive the solution, see equations (16), (17), are assumed to be compactly sup-
ported in space on the ball R � ðr2 þ z2Þ1=2

6 R0, and we typically choose R0 ¼ 3. The computational domain
is terminated by the PML of width l ¼ 1 in the axial direction, see Fig. 2. In fact, with the proper choice of
damping the width of the layer beyond a certain point no longer affects the quality of the solution on X (see
Section 3.4).

3.1.2. PML

For our computations we take the mathematically derived unsplit PML of [13]. In the experiments of [16],
this layer has clearly shown to be prone to the undesirable growth of the solution for long integration times.
We note that originally the PML of [13] was constructed for the two-dimensional Cartesian TE Maxwell equa-
tions. As, however, the axial coordinate of the cylindrical system is essentially Cartesian, the layer of [13] can
be exported to the setup shown in Fig. 2 with no change at all:
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1

c
oEr

ot
þ oH h

oz
¼ �2rEr � rP ;

1

c
oEz

ot
� 1

r
oðrH hÞ

or
¼ 0;

1

c
oH h

ot
� oEz

or
� oEr

oz

� �
¼ r0Q; ð21Þ

1

c
oP
ot
¼ rEr;

1

c
oQ
ot
¼ �rQ� Er:
Note that the PML (21) is built for the homogeneous Maxwell equations, because the right-hand sides of sys-
tem (16), i.e., the currents, may only differ from zero for R 6 R0 and hence vanish near the outer boundary of
X, see Fig. 2. Compared to (16), system (21) contains two additional unknown quantities, P ¼ P ðt; r; zÞ and
Q ¼ Qðt; r; zÞ. These quantities are identically equal to zero on X, and in the layer they are governed by
two additional ordinary differential equations. The quantity r ¼ rðzÞ in (21) is the damping coefficient. It is
also identically zero on X, whereas in the PML a certain degree of flexibility exists in choosing r. In our com-
putations, we will follow the recommendation of [15] and define:
rðzÞ ¼
r0

5�z
l

� �3
; �5� l 6 z 6 �5;

0; �5 < z < 5;

r0
z�5

l

� �3
; 5 6 z 6 5þ l:

8><>: ð22Þ
For the PML of width l ¼ 1, see Fig. 2, we normally take r0 ¼ 10 in (22).

3.1.3. Boundary conditions

The PML itself is terminated at z ¼ 5þ l and z ¼ �5� l either by zero Dirichlet boundary conditions for
all field variables or by locally one-dimensional characteristic boundary conditions. Again, as indicated in Sec-
tion 3.4, if the damping inside the layer is sufficiently strong, the boundary conditions at the outer boundaries
of the PML make little or no difference as far as the quality of the solution on X. The use of characteristic
boundary conditions, however, may bring along an additional benefit. With these boundary conditions, if
the layer is switched off (i.e., if r � 0 everywhere), the boundary still has some non-reflecting properties suf-
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ficient for computing the solution with a ‘‘non-catastrophic” accuracy over a reasonably long time interval.
This computation (see Section 3.4) allows us to unambiguously attribute the undesirable long-term growth
to the presence of the PML, because having the PML switched on or off appears the only difference between
the two otherwise identical settings. Note that a similar argument was previously used in [16] for identifying
the roots of the long-time growth of the solution.

The quasi-one-dimensional characteristic boundary conditions are set at the outer boundaries of the PML
by artificially disregarding the r derivatives in system (16) and setting to zero the incoming Riemann variables.
In doing so, we are disregarding the PML (21) near the boundary and setting the boundary conditions for the
homogeneous version of Maxwell’s equations (16). In the quasi-one-dimensional z framework, we consider
two equations:
4 Re
1

c
oEr

ot
þ oH h

oz
¼ 0 and

1

c
oH h

ot
þ oEr

oz
¼ 0: ð23Þ
By adding and subtracting Eq. (23) to/from one another, we realize that the Riemann variable H h � Er is
incoming at z ¼ 5þ l and the Riemann variable H h þ Er is incoming at z ¼ �5� l, see Fig. 2. Consequently,
the desired characteristic boundary conditions are:
H h � Erjr¼5þl ¼ 0 and H h þ Erjr¼�5�l ¼ 0: ð24Þ
The far field treatment that we adopt for the radial direction differs from the one in the axial direction. An
unsplit PML similar to (21) but built for the genuinely cylindrical setting4 is not readily available. Therefore,
we have decided to introduce a large buffer region and terminate it with the first order Bayliss–Turkel local
boundary conditions [36–39]. For the size of the domain X in the radial direction equal to 5, we may take,
e.g., r0 ¼ 15, see Fig. 2. The motivation is that as the amplitude of the waves generated by the sources inside
X decays proportionally to R�1 � ðr2 þ z2Þ�1=2, for a sufficiently remote boundary r ¼ r0 the magnitude of the
reflections produced by the Bayliss–Turkel boundary conditions will be small. The computations of Section
3.4 corroborate that the magnitude of those reflections can indeed be driven down below the truncation error
level inside X.

The Bayliss–Turkel boundary conditions are standard, but their derivation for system (16) requires a little
extra care. As for any quasi-one-dimensional treatment, we disregard tangential derivatives (i.e., z derivatives)
at the boundary r ¼ r0 and from the homogeneous Maxwell equations obtain the following independent sec-
ond order equations for the filed components Ez and H h:
1

c2

o2Ez

ot2
¼ 1

r
o

or
r
oEz

or

� �
; ð25aÞ

1

c2

o
2H h

ot2
¼ o

or
1

r
oðrH hÞ

or

� �
: ð25bÞ
Eq. (25a) is the standard scalar d’Alembert equation, because Ez is a Cartesian vector component. Eq. (25b) is
a vector d’Alembert equation, because H h is a non-Cartesian component. In the frequency space, Eqs. (25a)
and (25b) transform into
o
2bEz

or2
þ 1

r
obEz

or
þ x2

c2
bEz ¼ 0; ð26aÞ

o2 bH h

or2
þ 1

r
o bH h

or
� 1

r2
bH h þ

x2

c2
bH h ¼ 0: ð26bÞ
Eq. (26a) is a Bessel equation of order m ¼ 0 and Eq. (26b) is a Bessel equation of order m ¼ 1 because they can
both be reduced to the respective standard forms by the change of variable y ¼ kr, where k ¼ x=c. Accord-
ingly, the radiation solutions of these equations are given by the Hankel functions H ð2Þm ðkrÞ, where m ¼ 0 cor-
responds to (26a) and m ¼ 1 corresponds to (26b). Therefore, the radiation boundary conditions can be
call, unlike z, r of the cylindrical system is not a Cartesian variable.
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obtained by requiring that the desired solution be parallel to H ð2Þm ðkrÞ in the sense of the corresponding Wrons-
kian (see [2, Section 1.2]):
obEz

or
� bEz

o
or H ð2Þ0 ðkrÞ
H ð2Þ0 ðkrÞ

¼ 0; ð27aÞ

o bH h

or
� bH h

o
or H ð2Þ1 ðkrÞ
H ð2Þ1 ðkrÞ

¼ 0: ð27bÞ
For large arguments y, the Hankel functions have the following asymptotic:
H ð2Þm ðyÞ ¼
ffiffiffiffiffi
2

py

s
e�iðy�pm

2�
p
4Þ þOðy�3

2Þ
so that for any m we have:
d

dy
H ð2Þm ðyÞ 
 �

1

2y
H ð2Þm ðyÞ � iH ð2Þm ðyÞ;
and consequently,
d

dr
H ð2Þm ðkrÞ 
 � 1

2r
� ik

� �
H ð2Þm ðkrÞ:
Therefore, disregarding the residual terms of the asymptotic, we can write instead of (27a), (27b):
obEz

or
þ 1

2r
bEz þ ikbEz ¼ 0; ð28aÞ

o bH h

or
þ 1

2r
bH h þ ik bH h ¼ 0: ð28bÞ
Back in the time domain, boundary conditions (28a), (28b) transform into
1

c
oEz

ot
þ oEz

or
þ 1

2r
Ez ¼ 0; ð29aÞ

1

c
oH h

ot
þ oH h

or
þ 1

2r
H h ¼ 0 ð29bÞ
and we realize that in the end of the day both field variables, Ez and H h, satisfy the same boundary condition
even though the governing Eqs. (25a) and (25b) are different. The Bayliss–Turkel boundary conditions (29a)
and (29b) are to be set at the far field boundary r ¼ r0, see Fig. 2.

3.1.4. Discretization

The problem we have described is discretized on the grid with square cells: hz ¼ hr ¼ h. To demonstrate the
convergence, we actually use a sequence of grids in Section 3.4 with h ¼ 0:1; 0:05; 0:025, and 0.0125. The spa-
tial derivatives in system (16) (as well as in (17)) are approximated by central differences with second order
accuracy, and the temporal derivatives are approximated by the conventional fourth order Runge–Kutta
method (see, e.g., [40, Section 9.4]). The overall scheme is standard and we therefore do not write it out explic-
itly except for the approximation of the radial derivative:
1

r
oðrH hÞ

or
jn ¼

1

rn

rnþ1H hnþ1 � rn�1H hn�1

2h
þOðh2Þ;
where rn ¼ nh, n ¼ 0; 1; 2; . . . The same scheme was used in [16] in the Cartesian case, and it led to the growth
of the solution inside the PML.

The spatial derivatives in the on-axis Eq. (17) and in the boundary conditions (29a) and (29b) are approx-
imated by one-sided differences with second order accuracy, and all temporal derivatives, including those of P

and Q in the PML (21) are approximated by the same Runge–Kutta scheme.
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The characteristic boundary conditions (24) are approximated in the context of Runge–Kutta time march-
ing. Let s be the time step and assume that the right boundary z ¼ 5þ l ¼ 6, see Fig. 2, corresponds to m ¼ M
on the grid. At the first stage of Runge–Kutta, we write for the first Eq. (23):
eErM ¼ ErM �
cs
2

H hMþ1 � H hM�1

2h
and combine it with the second order approximation of the first Eq. (24):
ErM ¼
H hMþ1 þ H hM�1

2
:

Then, eliminating the ghost variable H hMþ1, we obtain:
eErM ¼ ErM 1� cs
2h

	 

þ cs

2h
H hM�1 ð30aÞ
and likewise for the magnetic field with the help of the second Eq. (23):
eH hM ¼ H hM 1� cs
2h

	 

þ cs

2h
ErM�1: ð30bÞ
Relations (30a) and (30b) are the discrete characteristic boundary conditions. Similar relations can be ob-
tained for other stages of Runge–Kutta and for the opposite boundary z ¼ �5� l() m ¼ �M .

3.2. Test solution

To study the performance of the algorithm, we would like to be able to compute the actual numerical error
on the grid at different moments of time. As such, we need the exact solution, and we obtain it by ‘‘backward
engineering.”

We begin with the standard scalar retarded potential:
/ ¼ vðt � R=cÞ
R

ð31Þ
that solves the three-dimensional d’Alembert equation driven by the source term 4P dðxÞ � vðtÞ, where R ¼ jxj.
The modulating function vðtÞ is assumed to be sufficiently smooth for �1 < t <1 and vðtÞ � 0 for
t < 0.Along with the cylindrical coordinates ðr; h; zÞ, let us also consider the Cartesian coordinates ðx; y; zÞ,
so that x ¼ r cos h, y ¼ r sin h, and R2 ¼ r2 þ z2 ¼ x2 þ y2 þ z2. By differentiating the retarded potential / of
(31), we obtain:
/0x ¼ � vðt � R=cÞ
R2

� 1

c
v0ðt � R=cÞ

R

� �
x
R
; ð32aÞ

/0y ¼ � vðt � R=cÞ
R2

� 1

c
v0ðt � R=cÞ

R

� �
y
R
: ð32bÞ
The derivatives /0x �
o/
ox and /0y �

o/
oy are solutions of the d’Alembert equation driven by the dipoles 4P

d0xðxÞ � vðtÞ and 4P d0yðxÞ � vðtÞ, respectively.
Next, we introduce a new vector field B by defining its Cartesian components:
Bx ¼ �/0y ; By ¼ /0x; Bz ¼ 0;
where /0x and /0y are given by (32a) and (32b), respectively. For the cylindrical components of B we therefore
have:
Bh ¼ � sin hBx þ cos hBy ¼ � vðt � R=cÞ
R2

� 1

c
v0ðt � R=cÞ

R

� �
r
R
; ð33aÞ

Br ¼ cos hBx þ sin hBy ¼ 0: ð33bÞ
By design, the vector field B ¼ Bðx; tÞ is a solution to the three-dimensional vector d’Alembert equation driven
by the following dipole at the origin:
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4Pð�d0yðxÞ; d
0
xðxÞ; 0Þ � vðtÞ:
This solution is axially symmetric, because oBh
oh ¼ 0. This solution is also singular at the origin. Therefore, we

introduce a scalar multiplier function w ¼ wðRÞ that should have at least p continuous derivatives for R P 0.
We require that wðRÞ � 1 for R P R0, see Fig. 2, and wð0Þ ¼ w0ð0Þ ¼ � � � ¼ wðpÞð0Þ ¼ 0. In practice, we take
p ¼ 6 and build wðRÞ on 0 6 R 6 R0 as a polynomial of degree 13.

Having constructed wðRÞ, we introduce a new vector field eBðx; tÞ ¼ Bðx; tÞ � wðRÞ, which no longer has a
singularity at the origin. Moreover, it even turns into zero at R ¼ 0 along with at least p � 2 of its
derivatives, see formula (33a). Note that for R > R0 the vector field eBðx; tÞ is still an axially symmetric solution
to the homogeneous three-dimensional d’Alembert equation. The test solution for Maxwell’s equations (16)
will be obtained by using eBðx; tÞ as a generating function for the vector potential of the electromagnetic field.

It is well known that even though the three-dimensional electromagnetic field consists of two vector quan-
tities, the electric field E and the magnetic field H (six scalar components altogether), there are, in fact, only
four independent scalar quantities that determine the field. These four quantities are conveniently represented
as the vector potential A and the scalar potential u. Moreover, the vector and scalar potentials are not defined
uniquely either, they may be required to satisfy additional constraints. Each particular form of A and u under
a given set of constraints is known as a gauge, and the independence of E and H on the specific choice of the
gauge is known as gauge invariance [41, Chapter 3]. The Coulomb gauge corresponds to u � 0, then
E ¼ � 1

c
oA

ot
and H ¼ curlA: ð34Þ
Let us define the vector potential as A ¼ curleB so that
Ar ¼ �
oeBh

oz
; Az ¼

1

r
oðreBhÞ

or
; and Ah ¼ 0: ð35Þ
The vector potential A ¼ Aðt; r; zÞ is also a solution to the three-dimensional d’Alambert equation; this equa-
tion is homogeneous for R > R0 and inhomogeneous for R 6 R0. The specific form of inhomogeneity for A can
be derived, but it is of no immediate importance, because what we need is the right-hand sides of the Maxwell
equations that drive the fields.

Using the definition of vector potential (35) and applying transformation (34), we obtain the following
components of electromagnetic field:
Ezðt; r; zÞ ¼ �
1

c3R6
ðc2v0ðt � R=cÞððr2 � 2z2ÞRwðRÞ � r2R2w0ðRÞÞ þ R2ð�cr2Rw0ðRÞv00ðt � R=cÞ

þ wðRÞðcðr2 � 2z2Þv00ðt � R=cÞ þ r2Rvð3Þðt � R=cÞÞÞÞ; ð36aÞ

Erðt; r; zÞ ¼ �
rz

c3R6
ðc2v0ðt � R=cÞð�3RwðRÞ þ R2w0ðRÞÞ � R2ð�cRw0ðRÞv00ðt � R=cÞ

þ wðRÞð3cv00ðt � R=cÞ þ Rvð3Þðt � R=cÞÞÞÞ ð36bÞ
and
H hðt; r; zÞ ¼
r

c3R5
ðc3vðt � R=cÞð�2Rw0ðRÞ þ R2w00ðRÞÞ � R2ð2cRw0ðRÞv00ðt � R=cÞ

þ c2v0ðt � R=cÞð2w0ðRÞ � Rw00ðRÞÞ � wðRÞðcv00ðt � R=cÞ þ Rvð3Þðt � R=cÞÞÞÞ: ð36cÞ
By design, the fields given by (36a), (36b), (36c) solve the Maxwell equations (16), and the resulting currents jr

and jz that we calculate below are non-zero only for R 6 R0. Moreover, as according to (34) divE ¼ � 1
c

odivA
ot ,

and A ¼ curl~B, the electric field of (36a), (36b) is solenoidal, divE ¼ 0, and consequently, the continuity Eq.
(18) is satisfied identically.

The currents jr and jz are obtained by substituting the fields (36a), (36b), (36c) into the first two equations
of system (16):
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� 4p
c

jzðt; r; zÞ ¼
1

c3R7
ð�c3vðt � R=cÞð4ðr2 � z2ÞRw0ðRÞ � R2ðð3r2 � 2z2Þw00ðRÞ � r2Rwð3ÞðRÞÞÞ

� R2ð�3cr2R2v00ðt � R=cÞw00ðRÞ þ 2w0ðRÞðcðr2 � 2z2ÞRv00ðt � R=cÞ þ r2R2vð3Þðt � R=cÞÞ
þ c2v0ðt � R=cÞð4ðr2 � z2Þw0ðRÞ þ Rð�3r2 þ 2z2Þw00ðRÞ þ r2R2wð3ÞðRÞÞÞÞ; ð37aÞ

� 4p
c

jrðt; r; zÞ ¼
rz

c3R7
ðc3vðt � R=cÞð8Rw0ðRÞ � R2ð5w00ðRÞ � Rwð3ÞðRÞÞÞ þ R2ð�3cR2v00ðt � R=cÞw00ðRÞ

þ 2w0ðRÞð3cRv00ðt � R=cÞ þ R2vð3Þðt � R=cÞÞ
þ c2v0ðt � R=cÞð8w0ðRÞ � 5Rw00ðRÞ þ R2wð3ÞðRÞÞÞÞ: ð37bÞ
By design, the solution of Maxwell’s equations (16) driven by the currents (37a) and (37b) and subject to the
homogeneous initial conditions is given by the fields (36a)–(36c). In Section 3.4, we solve system (16) with the
right-hand sides (37a) and (37b) numerically and evaluate the error by comparing the solution computed on
the grid with the exact solution (36a)–(36c).

3.3. Implementation issues

An important consideration to be addressed when implementing the strategy of Section 2 in a computa-
tional setting is how to preserve the lacunae in the numerical solution. It is clear that a straightforward par-
tition of the continuously operating source according to formula (2) may create discontinuities at the splitting
points tm, m ¼ 0; 1; 2; . . ., even if the function f ðx; tÞ itself is smooth. From the standpoint of the original Huy-
gens’ principle, having a discontinuous right-hand side presents no problem, and the sharp aft fronts will
remain sharp aft fronts. In the discrete context, however, the discontinuities may lead to the deterioration
(or loss) of consistency by the scheme, and the aft fronts will then be ‘‘smeared out” by numerical artifacts.

Therefore, following our previous work [29,31–33], we introduce an alternative approach to partitioning
the RHS f ðx; tÞ. Consider a smooth partition of unity schematically shown in Fig. 3. Let T 0 be the size (dura-
tion) of each partition element, and DT be the width (duration) of the transition zone. Denote by fðtÞ the
smooth compactly supported function that renders the partition so that fðtÞ � 1 for DT 6 t 6 T 0 � DT and
fðtÞ þ fðt � ðT 0 � DT ÞÞ � 1 for T 0 � DT < t < T 0. Then, the individual partition elements are obtained by a
mere translation: fðt � mðT 0 � DT ÞÞ, m ¼ �1; 0; 1; 2; . . .

Having introduced the partition of unity shown in Fig. 3, we redefine the partition of the RHS (2) as fol-
lows. Let T 1 ¼

def T 0 � DT , then
f ðx; tÞ ¼
P1
m¼0

f mðx; tÞ;

f mðx; tÞ ¼
f ðx; tÞ � fðt � mT 1Þ; tm 6 t < tmþ1 þ DT ;

0; otherwise;

� ð38Þ
where tm ¼ mT 1, m ¼ 0; 1; 2; . . . Formula (38) applies uniformly to all m ¼ 0; 1; 2; . . . except that no change of
the RHS is needed near t ¼ 0 and f 0ðx; tÞ � f ðx; tÞ for 0 6 T 6 DT . The key difference between the new par-
tition (38) and the previous partition (2) is that as long as f ðx; tÞ is smooth, all f mðx; tÞ defined by formula (38)
are also smooth. Hence, no loss of consistency shall be expected for any discretization applied to individual
subproblems (3) or (12). Therefore, the corresponding numerical solutions will have the lacunae approximated
on the grid with the accuracy that pertains to the specific scheme.
ΔTT0

0 Δ(t−(T T)ζ )(t)ζ −

Fig. 3. Smooth partition of unity.
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The use of the overlapping partition (38) instead of (2) causes only minor changes in the algorithm of Sec-
tion 2. In fact, all the formulae stay the same, and only instead of (5) we now write:
wmðx; tÞ ¼ 0; x 2 X; t P tmþ1 þ DT þ T � tmþ1 þ DT þ d=c; ð39Þ

because the source f mðx; tÞ ceases to operate at t ¼ tmþ1 þ DT rather than at t ¼ tmþ1, as in Section 2. Accord-
ingly, in formula (6) we need to redefine the lower summation index: M0 ¼

def½ðt � DT � T Þ=T 1�, where ½�� de-
notes the integer part, as before. In the computations of Section 3.4, the value of T 0 is typically taken
much larger than DT , see Fig. 3, and even a few times larger than T ¼ d=c. This, in particular, means that
we always have tm þ DT þ T < tmþ1. Consequently, the number of terms M �M0 þ 1 in the sum (6) is equal
to either 2 or 1. Namely,
M �M0 þ 1 ¼
2; if tm 6 t 6 tm þ DT þ T ;

1; if tm þ DT þ T < t < tmþ1:

�
ð40Þ
It should also be noted that in the context of Maxwell’s equations (16), the RHS f ðx; tÞ is given by the com-
ponents of the current jr and jz. In the test solution of Section 3.2, the current (37a) and (37b) is constructed
solenoidal, and the charge density q is zero, so that the continuity Eq. (18) is satisfied identically. Obviously,
the partition (38) will keep the current solenoidal, and hence the necessary solvability condition (18) for Max-
well’s equations will automatically hold for every individual subproblem (3).

3.4. Results of computations

The modulating function vðtÞ that we take for our experiments is
vðtÞ ¼
Pj¼4

j¼1

aj sinðxjtÞ; if t P 0;

0; if t < 0;

8><>: ð41Þ
where the frequencies xj, j ¼ 1; . . . ; 4, are chosen incommensurate:
x1 ¼ 1; x2 ¼
ffiffiffiffiffiffiffiffi
3=2

p
x1; x3 ¼

ffiffiffi
2
p

x1; x4 ¼
ffiffiffi
3
p

x1
so that to avoid periodicity, and the coefficients aj, j ¼ 1; . . . ; 4, are given by
a1 ¼ �
1

x1ðx2
1 � x2

2Þðx2
1 � x2

3Þðx2
1 � x2

4Þ
;

a2 ¼ �
1

x2ðx2
2 � x2

1Þðx2
2 � x2

3Þðx2
2 � x2

4Þ
;

a3 ¼ �
1

x3ðx2
3 � x2

1Þðx2
3 � x2

2Þðx2
3 � x2

4Þ
;

a4 ¼ �
1

x4ðx2
4 � x2

1Þðx2
4 � x2

2Þðx2
4 � x2

3Þ
;

which guarantees that vðtÞ of (41) and its derivatives up to order 6 are continuous on the entire line ð�1;1Þ,
while vð7Þð0þ 0Þ ¼ 1.

Let us first demonstrate the adverse effect that we would subsequently like to counter. The geometry of the
computation is shown in Fig. 2, the width of the PML is set to l ¼ 1, and the magnitude of damping r0 ¼ 10,
see formula (22). The PML is terminated with the characteristic boundary conditions (24).

In Fig. 4, we are showing the profiles of the error (its binary logarithm) for the magnetic field H h evaluated
on the domain X in the maximum (i.e., L1) norm. The solutions are computed on the sequence of four square
cell grids with sizes h ¼ 0:1; 0:05; 0:025, and 0.0125. The H h error at every grid node is defined as the difference
between the numerical solution and the exact solution (36c). The computations are run until t ¼ 400, which is
about 40 times the time required for the waves to cross the computational domain X.
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Some immediate observations from Fig. 4 are as follows. At the initial stage of computation the numerical
solution demonstrates the design rate of grid convergence — Oðh2Þ; this is most clearly seen on the zoomed-in
plot of Fig. 4b. At later stages, however, the error starts to increase, and the solution deteriorates, see Fig. 4a.
The rate of deterioration is pretty much the same for all grids, however, the onset occurs somewhat earlier on
finer grids.

In Fig. 5, we are showing two plots similar to those from Fig. 4. The computational setup that corresponds
to Fig. 5 is identical to that behind Fig. 4 with one major exception — the PML is switched off, i.e., rðzÞ � 0.
We see that the behavior of the error curves shown in Fig. 5 differs from that of Fig. 4 in two key aspects. On
one hand, the grid convergence gets saturated rather early, there is practically no difference in the absolute
value of the error already between h ¼ 0:05 and h ¼ 0:025. The explanation is straightforward — the error
inside X is dominated by the reflections from the boundaries z ¼ 5þ l and z ¼ �5� l, see Fig. 2, and the mag-
nitude of those reflections is not related to the grid size. In other words, the characteristic boundary conditions
(24) only allow to get so far down in error. On the other hand, we see that in Fig. 5 there is no long-time error
growth of the type Fig. 4 shows. As the PML is the only difference between the two setups, we conclude that
the deterioration of the numerical solution observed in Fig. 4 should unambiguously be attributed to the pres-
ence of the PML.
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To avoid any potential inaccuracies in the foregoing comparison, in Fig. 6 we are showing the same error
profiles as in Fig. 4a and Fig. 5a, but grouped according to the grid. This allows us to present the PML and no-
PML error curves for every grid right next to one another in precisely the same scale. We conclude that on the
coarsest grid h ¼ 0:1, see Fig. 6a, the overall error is dominated by that of the interior discretization, because
the two curves coincide in the beginning and at a later stage the PML solution deteriorates. On finer grids, see
Figs. 6b–d, the accuracy of the PML solution at the initial stage improves as the grid size decreases, but then
the long-time instability kicks in. At the same time, the error curves for the characteristic boundary conditions
remain ‘‘flat” for all t, but the accuracy does not improve as the grid is refined because of the reflections from
the outer boundary.

Several comments are in order before we proceed to describing the results of computations with the lacu-
nae-based method of Section 2.

� The error profiles for Er and Ez in all the cases (including those with lacunae) look very much like those for
H h, and we do not present them hereafter.
� We have repeated the PML computations with the layer twice as thick, l ¼ 2, and the results were practi-

cally indistinguishable from those shown in Fig. 4. Hence, we conclude that already with l ¼ 1 the layer
provides enough damping so that the error on X is dominated by that of the interior discretization. We later
corroborate this conclusion by the computations with genuine lacunae-based termination as in [29].
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� We have also repeated the PML computations while terminating the layer with the zero Dirichlet boundary
conditions rather than the characteristic boundary conditions (24). Again, the results were practically indis-
tinguishable from those shown in Fig. 4. Hence, we conclude that as long as the layer provides enough
damping, the outer boundary condition does not make much of a difference.
� The increase of r0 does not make any difference in the results either.
� Finally, the log-linear curves shown in Fig. 4a indicate that as the computation advances, the error

increases with a slow yet exponential rate. At the same time, the continuous analysis of [15] predicts a poly-
nomial growth. On one hand, we note in this regard that the problem analyzed in [15] was driven only by
the initial conditions and had zero RHS, whereas in this paper the solution is driven by a continuously
operating source. On the other hand, the polynomial growth was predicted in [15] for a continuous formu-
lation based on the presence of multiple eigenvalues in the amplification matrix. At the same time, we have
seen in [16] that sometimes a multiple eigenvalue may get split by the discretization yet the growth will stay
while in some other cases a multiple continuous eigenvalue will remain multiple for the discretization yet
there will be no growth. Consequently, we can say that the reasons for the long-term deterioration of solu-
tion in the PML may not be fully understood yet, and there is apparently room for the growth faster than
polynomial. (The observed growth is not a numerical instability, because it is not faster on finer grids.)
However, as mentioned in Sections 1 and 2, and as subsequent computations clearly show, the lacunae-
based integration allows to correct the long-time growth regardless of its origins and its specific rate (as long
as the latter is not catastrophically fast).

Let us now demonstrate how the lacunae-based integration is combined with the PML (21). For the param-
eters of the partition, we take T 0 ¼ 44 and DT ¼ 2, see Fig. 3. In Fig. 7, we are showing the results of com-
putations for exactly the same setup as the one behind Fig. 4, but with the lacunae-based correction applied
(the vertical scale on Fig. 4a and Fig. 7a is not the same). We see that the long-time growth completely dis-
appears due to the lacunae-based correction, and the numerical solution shows the design second order grid
convergence for the entire duration of the integration interval.

As before, to avoid any potential inaccuracies in the foregoing comparison, say, due to different scales on
different plots, in Fig. 8 we are showing the same error profiles as in Figs. 4a and 7a, but grouped according to
the grid. This allows us to present the pure PML error profiles and the PML + lacunae profiles for every grid
right next to one another in precisely the same scale. We see that at the initial stage the two error curves coin-
cide on every grid, and the actual values of the error are decreasing with the design rate as the grid is refined.
Later, the pure PML solutions completely lose their accuracy, whereas the solutions with the lacunae-based
correction can maintain it for as long as the computation is run.
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We note that the computational overhead associated with the application of lacunae-based algorithm along
with the PML is not overwhelming. According to formula (40), the fraction of the overall time when we need
to compute two solutions is ðT þ DT Þ=ðtmþ1 � tmÞ, and the rest of the time we compute only one solution. For
the domain X shown in Fig. 2, we have T 
 11 (recall, c ¼ 1), and with T 0 ¼ 44 and DT ¼ 2 we can write:
T þ DT
tmþ1 � tm

� T þ DT
T 1


 0:31;
which puts the overhead at approximately 31%. The same series of computations with the PML and lacunae-
based correction was, in fact, repeated for T 0 ¼ 64 and DT ¼ 2. The results were very similar to those shown in
Figs. 7 and 8, with the overhead of about 21%.

The only question that still needs to be addressed is that of the ‘‘optimality” of the proposed lacu-
nae + PML treatment of the boundaries. In other words, whether or not a different approach can offer an even
better overall accuracy compared to what Figs. 7 and 8 show. To look into this issue, we compare the results
obtained using the combination of lacunae and the PML with those obtained using the pure lacunae-based
termination of the computational domain [29]. The original method of [29] requires buffer zones to surround
X wider than the PML, and consequently, the computations are more expensive. However, the method of [29]
provably introduces no error associated with the domain truncation. Hence, the only source of the error on X is
the interior discretization. In Fig. 9, we compare the error profiles for the pure lacunae case and for the lacu-
nae + PML case on four grids.
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We see that the two curves basically sit on top of one another for every grid. Hence, the error on X obtained
using the combined lacunae + PML methodology is the same as that for the pure lacunae-based approach. As
the latter is due to the interior discretization only, we conclude that the accuracy of the boundary treatment
offered by the combined lacunae + PML methodology exceeds the accuracy of the scheme on X and conse-
quently, the overall accuracy cannot be further improved by changing the boundary procedure.

4. Extensions

In this section, we review the application of lacunae-based methods to setting the ABCs [31–33], and show
that the same approach will allow us to extend the applicability of the proposed lacunae-based stabilization of
PMLs well beyond the simple problems of radiation of waves by known sources. The following problem for-
mulation that requires unsteady ABCs is typical for many applications. The wave field of interest is generated
inside the bounded domain X � R3 and further propagates outward. We assume that in the far field, i.e., on
the complementary domain R3 n X, the propagation of waves is governed by the linear homogeneous system
[cf. formula (1)]:
ow

ot
þ Lw ¼ 0; x 2 R3 n X; t > 0: ð42Þ
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For our analysis we need to assume that Eq. (42) is Huygens’. The waves’ generation mechanism inside X can
be sophisticated. It can include actual sources (antennas), scatterers, and other objects, there can be damping,
the waves can undergo multiple scattering, etc. Moreover, the model inside X does not have to be Huygens’.
Our key assumption, however, is that the overall problem solved both inside and outside X has a unique solution.
The goal is to be able to actually solve this problem only in the near field, i.e., on X, while truncating all of its
exterior and replacing it with the appropriate closure procedure at the external boundary oX, e.g., the ABCs or
PML. The assumption on the overall unique solvability will allow us to focus independently on the design of
the closure, i.e., on the proper treatment of the outgoing waves.

The first step is the decomposition of the original problem into the interior and auxiliary subproblems. The
interior problem is formulated on the bounded domain X, it is obtained by truncating the original formulation
and as such, it inherits all the features of the latter. It is the interior problem that requires a closure at oX. The
auxiliary problem is formulated on the entire space R3. This problem is of the type (1), with the homogeneous
initial conditions: u ¼ 0. Its solution is driven by the specially constructed auxiliary source terms f ðx; tÞ that
are compactly supported in space for all times on a narrow region X n Xe next to the boundary oX, see Fig. 10.
All the sophisticated features of the interior problem (such as scatterers) are supposed to be confined to Xe.

The two problems are connected to one another. The auxiliary sources depend on the interior solution right
inside X, and the solution of the auxiliary problem right outside X can provide the missing data and thus
enable a closure for the interior formulation. The construction of the auxiliary sources is described in [31–
33]. It guarantees equivalence between the original problem before the decomposition and the two subproblems
after the decomposition considered together. This means, in particular, that the solution of the auxiliary prob-
lem on R3 n X, i.e., the outgoing field, coincides with the solution of the original problem. The key benefit from
employing the decomposition is that by design, the auxiliary problem satisfies the Huygens’ principle. The
unsteady ABCs of [31–33] are obtained by solving the auxiliary problem with the help of lacunae and supply-
ing the missing boundary data to the interior problem.

We emphasize that although the auxiliary sources depend on the interior solution, it does not imply that the
interior problem requires a separate algorithm to be solved. Likewise, the fact that the closure for the interior
problem is provided by the exterior solution does not imply that the auxiliary problem has to be solved on the
extended region far away from X. In fact, both problems are time marched synchronously. Once the interior
solution is advanced one time step, the auxiliary sources can also be advanced one time step. Then, the exterior
solution can be obtained on the next level; it needs to be known only right outside X. This solution provides
the missing closure for the interior problem on the upper time level, after which the interior solution can be
advanced yet one more step, and the procedure cyclically repeats itself. We refer the reader to [31–33] for addi-
tional detail on lacunae-based ABCs.

The exact same idea of decomposition can be applied in the framework of stabilizing the PMLs. The PML
that surrounds X, see Fig. 1, is designed to absorb all the outgoing waves. The outgoing waves are the same
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whether they are due to the original radiation/scattering mechanism on Xe or to the auxiliary sources on
X n Xe, see Fig. 10. Hence, the lacunae-based methodology of Section 2 can be applied to the auxiliary prob-
lem, which will enable stabilization of the PML without having to put any restrictions on the model inside Xe

(besides the requirement of the overall unique solvability).

5. Discussion

In Section 2, we have proved theoretically, and in Section 3 shown experimentally, that lacunae-based inte-
gration indeed provides an efficient tool for removing the long-term instabilities induced by PMLs. In doing
so, the numerical error becomes uniformly bounded in time.

There is actually no contradiction in obtaining temporally uniform error bounds for the problem that is
only weakly well-posed. The explanation is that the lacunae-based algorithm alters the solution of the com-
bined problem inside the PML, and the overall solution coincides with the solution of (1) only on the domain
X, where the Huygens’ principle holds. At the same time, unlike in [15], the PML equations never get modified
by lacunae-based integration, and for each problem (12) the layer remains perfectly matched and absorbing.

It is also clear that even though we have only considered the perturbations of the initial data n in Section 2,
we would have obtained similar temporally uniform estimates if the perturbations of the RHS were included
as well. The computations of Section 3 corroborate this conclusion experimentally.

The analysis of Section 2 imposes no constraints on the rate of growth lðtÞ, see (10), and C0 in inequality
(15b) is a constant in any event. The actual value of this constant C0 ¼ lðT 1 þ T Þ � ðM �M0 þ 1Þ, however,
may or may not be acceptable in a particular context. If lðtÞ is a slowly increasing function, such as a low
degree polynomial, then C0 will not be large. In Section 3.4 we saw that the PML-induced growth may, in fact,
be non-uniform. At the initial stage, there was no growth at all, and after that it would pick up. Hence, we
chose the parameters in such a way so that to keep T 1 þ T within the range of no growth and consequently
have a low value of lðT 1 þ T Þ.

It is also important to emphasize that the source of the growth inside the PML does not matter either. It can
be the mechanism identified in [15], but by no means does it have to be this mechanism only. For example, if
the corner in the PML leads to long-term instabilities, the lacunae-based methodology will address those as
well. In fact, since the idea of the lacunae-based methodology that we have introduced is to represent the solu-
tion that evolves over long times as the sum of a finite number of components that each has a finite fixed ‘‘life-
span,” the methodology can be used for alleviating any other undesirable long-term phenomenon in
computation.

Note, however, that while the proposed procedure alleviates the growth of the field inside the PML, it does

not offer a fix for the numerical instability. In other words, if the error estimate for the scheme deteriorates as
the grid is refined, the deterioration will be inherited by the discretization of every problem (12). If, however,
the deterioration rate is slow (e.g., linear as in [6]), then the overall algorithm may still be viable.

The computational overhead of the proposed procedure is � ðT þ DT Þ=T 1, which can be kept at acceptable
levels by choosing sufficiently large T 1 ¼ T 0 � DT . Specific values should be determined by actual numerical
experiments.

In Section 2, we have only considered a PML of infinite thickness, whereas in real implementations, such as
that of Section 3, the thickness is always finite. Termination of the PML at a finite distance results in reflec-
tions from the outer boundary that propagate back through the layer and then re-enter the computational
domain. If, however, the damping inside the PML is sufficiently strong, the magnitude of these reflections
is small. Hence, even though the lacunae-based algorithm won’t help remove or reduce those reflections,
the accuracy of the combined PML + lacunae boundary procedure can still be made sufficiently high so that
to have the overall accuracy inside the computational domain dominated by that of the interior discretization
(Section 3.4).

For Maxwell’s equations, there is a necessary solvability condition given by the continuity equation for cur-
rents and charges (Eq. (18) in the cylindrically symmetric TE case). Partition of the RHS (38) may break the
continuity, that’s why for the numerical tests of Section 3 we have chosen zero charges and solenoidal currents
(37a), (37b) that satisfy the continuity equation identically. As far as the more general framework outlined in
Section 4, it has been shown in [33] that the auxiliary sources on X n Xe, see Fig. 10, can also be obtained in the
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form of solenoidal currents and zero charges. Hence, they can withstand partition (38) with no violation of
continuity.

Finally, the original problem (1) was formulated for a first order system, and numerical simulations of Sec-
tion 3 have also been conducted using the first order system (16) as an example. Instead, we could have had a
second order equation or system in (1), e.g., the d’Alembert equation itself. Note, there are examples of
systems, as opposed to scalar equations, that do not reduce to the d’Alembert equation and yet are Huygens’.5
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