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IN DILUTE PLASMA∗

S. V. TSYNKOV†

Abstract. The propagation of waves is said to be diffusionless, and the corresponding governing
PDE (or system) is said to satisfy Huygens’ principle if the waves due to compactly supported sources
have sharp aft fronts. The areas of no disturbance behind the aft fronts are called lacunae. Dif-
fusionless propagation of waves is rare, whereas its opposite—diffusive propagation accompanied
by aftereffects—is common. Nonetheless, lacunae can still be observed in a number of important
applications, including the Maxwell equations in vacuum or in dielectrics with static response. In the
framework of these applications, lacunae can be efficiently exploited for the numerical simulation of
unsteady waves, and considerable progress has been made toward the development of lacunae-based
methods for computational electromagnetism. Maxwell equations in vacuum are Huygens’ because
they reduce to a set of d’Alembert equations. Besides d’Alembert equations, there are no other
scalar Huygens’ equations in the standard 3 + 1-dimensional Minkowski space-time. In terms of
physics, this means that the mechanisms of dissipation and dispersion destroy the lacunae. In fact,
all conventional low-frequency electromagnetic models, such as metals with Ohm conductivity, semi-
conductors, and magnetohydrodynamic media, are diffusive. An important case of the propagation
of high-frequency electromagnetic waves in plasma is governed by the Klein–Gordon equation. It
does not reduce to the d’Alembert equation either, and therefore the corresponding propagation is
diffusive as well. However, one can still identify “weak lacunae” in the solutions of the Klein–Gordon
equation, with the aft fronts that can be clearly observed, although they may not be as sharp as in
the pure Huygens’ case. Moreover, one can show that the “depth” of a weak lacuna is controlled by
the dimensionless ratio of the Langmuir frequency to the primary carrying frequency of the waves.
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1. Introduction.

1.1. The Huygens’ principle. Consider a three-dimensional Cauchy problem
for the wave (d’Alembert) equation:

(1.1)

1

c2
∂2ϕ

∂t2
− Δϕ = f(x , t), ϕ(x , 0) = ϕt(x , 0) = 0,

R
3 � x = (x1, x2, x3).

The fundamental solution of the d’Alembert operator is the expanding spherical wave
(single layer)

(1.2) E(x , t) =
Θ(t)

4π

δ(|x | − ct)

t
,
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where Θ(t) is the Heaviside function, and the solution to the Cauchy problem (1.1) is
given by the convolution of the fundamental solution (1.2) with the right-hand side
f(x , t), i.e., by the Kirchhoff integral

(1.3) ϕ(x , t) = E ∗ f =
1

4π

∫∫∫
�≤ct

f (ξ, t− �/c)

�
dξ,

where R
3 � ξ = (ξ1, ξ2, ξ3) and � = |x − ξ|.

Assume now that the right-hand side f(x , t) is compactly supported in space
and in time, i.e., that supp f ⊆ Q, where Q is a bounded region in R

3 × [0,+∞) ≡
{(x , t) |x ∈ R

3, 0 ≤ t < +∞}. Then, the Kirchhoff formula (1.3) immediately implies
that

(1.4) ϕ(x , t) ≡ 0 for (x , t) ∈
⋂

(ξ,τ)∈Q

{
(x , t)

∣∣|x − ξ| < c(t− τ), t > τ
}
.

The region of space-time defined by formula (1.4) is known as the lacuna of the
solution ϕ(x , t) of problem (1.1), because the solution vanishes there. This region
can be interpreted as the intersection of all the characteristic cones of the d’Alembert
equation, once the vertex of the cone sweeps the support Q of the right-hand side.

The presence of lacunae (or lacunas) in the solution is equivalent to the existence
of the sharp aft fronts of the waves. In other words, the perturbation due to a
compactly supported source first reaches a given fixed location of the observer and
then ceases completely once a finite interval of time has elapsed. Subsequently, the
solution at this location remains identically zero. Lacunae can then be viewed as areas
of “quietness” behind the aft fronts, and the latter, reciprocally, serve as boundaries
of the lacunae.

Differential equations, for which lacunae can be identified in their solutions, are
said to satisfy the Huygens’ principle. The most well-known classical example is
provided by the foregoing d’Alembert equation. The Huygens’ principle should not
be confused with another concept that bears the same name and that often appears
in the context of wave propagation in optics. Namely, according to the Huygens’
construction, at every given moment of time the front of the propagating wave can
be considered a collection of secondary sources that altogether define the wave field
at subsequent moments of time [5].

Existence of the lacunae is a rare and fragile property. Its opposite is known
as the diffusion of waves and is considered common. The diffusion manifests itself
by aftereffects that accompany the propagation of waves governed by non-Huygens’
equations. In this case, there are no sharp aft fronts, and once the perturbation has
reached a given observation point it will never cease but only decay in amplitude.

A key constraint that distinguishes between the diffusionless and diffusive prop-
agation is that lacunae may exist only if the number of space dimensions is odd. In
particular, the propagation of waves governed by the d’Alembert equation on the
plane (R2, as opposed to R

3) is already characterized by aftereffects.
Another important consideration is that studying the wave phenomena in the

time domain is essential for the analysis and interpretation of the Huygens’ principle.
Indeed, a standard frequency-domain model is the Helmholtz equation

(1.5) Δϕ̂ + k2ϕ̂ = f̂ ,

which is obtained from the d’Alembert equation by applying the Fourier transform in
time. In (1.5), k2 = ω2/c2, and ϕ̂ denotes the complex amplitude of the time-harmonic
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wave at the frequency ω (i.e., the ω Fourier coefficient). Solutions of the Helmholtz
equation (1.5) are known to be analytic in the areas of homogeneity; therefore, they
may not turn into zero only on a subdomain.

A review of the facts and publications in the literature pertaining to the Huygens’
principle can be found in [3]; see also [10, 11]. The question of describing the hyper-
bolic differential equations and systems that admit the diffusionless propagation of
waves was first formulated by Hadamard [12, 13, 14]. He did not know any other
examples besides the classical d’Alembert equation. The notion of lacunae was intro-
duced and studied by Petrowsky in [23]; see also [7, Chapter VI]. He obtained general
conditions for the coefficients of hyperbolic equations/systems that guaranteed the
presence of lacunae. Subsequent work in this direction was done by Atiyah, Bott, and
Gȧrding in [1, 2]. However, no other constructive examples of lacunae in the solutions
have been found besides solutions of the wave equation and its equivalents. In fact,
Matthisson [20] has shown that in the standard 3 + 1-dimensional Minkowski space-
time the only scalar hyperbolic equation that satisfies the Huygens’ principle is the
wave equation. From the standpoint of applications, this result provides one of the
most convenient and useful criteria. Namely, the equation may be Huygens’ only if it
is equivalent to the d’Alembert equation. We will employ this criterion for the anal-
ysis in the current paper. In this regard, we also emphasize that the aforementioned
equivalence does not have to be global; a given equation may only locally reduce to the
d’Alembert equation. An interesting illustration of this fact is provided by Lax and
Phillips in [19]—they analyze the waves that propagate on an n-dimensional sphere,
where n is odd, and prove that the propagation is diffusionless. The first examples of
nontrivial scalar equations (i.e., nonequivalent to the d’Alembert equation) that sat-
isfy the Huygens’ principle were built by Stellmacher (see [28, 16, 29]) in the spaces
R

n for odd n ≥ 5. His examples have the form c−2ϕtt − Δϕ + H(x , t)ϕ = 0, where
the function H(x , t) is specially chosen to guarantee the diffusionless propagation, in
which case it is called the Huygens’ potential [3]. There are also examples of non-
trivial diffusionless (i.e., Huygens’) systems (as opposed to scalar equations) in the
standard Minkowski 3 + 1 space-time [26, 3, 10], as well as examples of nontrivial
scalar Huygens’ equations in a 3 + 1-dimensional space-time but equipped with an
alternative metric (the so-called plane wave metric); see [3, 10, 9].

1.2. Applications of lacunae. Lacunae of a given differential equation or sys-
tem can be efficiently exploited for designing advanced numerical integration tech-
niques. Lacunae-based methods have been developed previously for solving the scalar
wave equation [25, 24], as well as for the problems of computational acoustics [31]
and computational electromagnetism [32, 33, 34]. For the simplest possible setup
that involves the radiation of waves by a known source, these methods guarantee that
the grid convergence of a given discrete approximation will be uniform in time. For a
more general setting that involves a sophisticated or potentially unknown mechanism
of wave generation confined to a bounded region, lacunae-based methods facilitate
construction of highly accurate unsteady artificial boundary conditions (ABCs) with
only fixed and limited extent of temporal nonlocality in time. Note that overcom-
ing the nonlocality of the exact unsteady ABCs in time has long been regarded as a
challenging numerical issue [30]. From this perspective it is important to emphasize
that the bound on temporal nonlocality obtained through the use of lacunae does not
come at the expense of any approximation and/or simplification of the model; it is
rather an implication of the fundamental properties of the corresponding solutions.

In addition to having the aforementioned computational benefits, lacunae can
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also be instrumental in performing a number of tasks other than numerical ones. For
example, explicit knowledge of their shape can help in planning of electromagnetic
measurements and subsequent interpretation of the results.

In the current paper, we are not going to concentrate on numerical issues, except
in section 3.5. Instead, we will focus on the phenomenon of lacunae itself. In partic-
ular, we will see that in the context of electromagnetism, only the simplest models
that involve the propagation of waves in vacuum or in dielectrics with static response
admit lacunae in the classical sense of the word. Many other traditional low-frequency
models, such as different types of dielectrics, metals, semiconductors, magnetohydro-
dynamic media (MHD), turn out to be diffusive. However, for the important case of
the propagation of high-frequency electromagnetic waves in dilute plasma, lacunae can
still be identified in the solutions of the Maxwell equations in some approximate sense.
Moreover, one can show that the quality, or “depth,” of these weak lacunae is con-
trolled by the ratio of the Langmuir frequency, which is a key parameter that char-
acterizes temporal responses of the plasma to the primary carrying frequency of the
incident wave.

2. Traditional electromagnetic models.

2.1. The Maxwell system of equations. Lacunae in vacuum. The evolu-
tion of electromagnetic field in vacuum is governed by the classical Maxwell equations

(2.1)

1

c

∂B

∂t
+ curlE = 0 , divB = 0,

1

c

∂E

∂t
− curlB = −4π

c
jext, divE = 4πρext.

In system (2.1), E and B are intensities of the electric and magnetic field, respectively,
c is the speed of light, jext is the density of the extraneous current, and ρext is the
density of the extraneous electric charge [17]. A necessary solvability condition for
system (2.1) is continuity of the charges and currents:

(2.2)
∂ρext

∂t
+ divjext = 0.

Equation (2.2) is obtained by taking divergence of the second unsteady equation
of (2.1) and then substituting the second steady-state equation of (2.1). From the
standpoint of physics, continuity (2.2) implies the conservation of electric charge. The
rate of change of the total charge contained in any given region of space is equal to
the flux of the charge, i.e., the total current, through the boundary of this region.

By differentiating each unsteady equation of (2.1) with respect to time, taking
curl of the other unsteady equation, substituting curlcurl[ · ] = graddiv[ · ]−Δ[ · ], and
employing the corresponding steady-state equation of (2.1), we arrive at the following
individual equations for the field intensities B and E :

(2.3)

1

c2
∂2B

∂t2
− ΔB =

4π

c
curljext,

1

c2
∂2E

∂t2
− ΔE =−4π

[
1

c2
∂jext

∂t
+ gradρext

]
.

Equations (2.3) are vector d’Alembert equations with the propagation speed c. Each
equation of (2.3) is Huygens’ in R

3, and hence system (2.1) is also Huygens’. If the
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charges ρext and currents jext are compactly supported, then the solution of (2.1)
will have a lacuna of the same structure as determined by the Kirchhoff integral
(1.3). Hence, the three-dimensional propagation of electromagnetic waves in vacuum
is diffusionless.

Equations (2.1) will also remain a valid model for describing the electromagnetic
field in various materials, but only on the microscopic level. The macroscopic equa-
tions are obtained by averaging; see [18]. In doing so, the impinging electromagnetic
field may give rise to the induced charges and currents (see section 2.2), which, in turn,
may affect the fields themselves. This range of phenomena is described by introduc-
ing the electric induction (or displacement) D and the magnetic field H , whereas the
“old” quantity B is referred to as the magnetic induction. The macroscopic Maxwell
equations in the medium then become

(2.4)

1

c

∂B

∂t
+ curlE = 0 , divB = 0,

1

c

∂D

∂t
− curlH = −4π

c
jext, divD = 4πρext.

Note that once B is referred to as the induction, and H as the magnetic field, sys-
tem (2.4) looks mathematically more symmetric. However, as far as the physics is
concerned, the true intensity of the magnetic field1 is B rather than H . As for the
right-hand sides’ jext and ρext of system (2.4), they may be interpreted differently for
different types of media and may sometimes be treated only as formal mathematical
source terms.

System (2.4) is underdetermined unless additional relations are specified between
the electric quantities E and D and the magnetic quantities H and B . These relations
are determined by the medium, across which the electromagnetic waves propagate.
They are called the responses. The responses may vary drastically for different types
of media and different regimes of propagation. The simplest response is static.

2.2. Dielectric media with static response. Lacunae. A dielectric medium
may not support a constant (i.e., steady-state) electric current. Responses of a
dielectric medium can be characterized in terms of the electric polarization P , which
is the induced electric dipole moment per unit volume, and magnetization M , which
is the induced magnetic dipole moment per unit volume. Then, by definition,

(2.5) D = E + 4πP and B = H + 4πM .

In an isotropic dielectric with static response, the electric induction D is assumed
directly proportional to the electric field E , and the magnetic induction B is assumed
directly proportional to the magnetic field H :

(2.6) D = εE and B = μH ,

where the dielectric permittivity ε = const and the magnetic permeability μ = const.
In vacuum, we have ε = μ = 1, so that (2.4), (2.6) transform back to (2.1). In
dielectric media other than vacuum, the assumptions of ε = const and μ = const
may hold only for static incident fields. They can be used in the case of unsteady
fields as well, but only as approximations and provided that the incident frequencies

1A quantitative characteristic of the field that determines how it affects the moving charged
particles.
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are low,2 i.e., considerably lower than the typical frequencies of the molecular or
electronic oscillations that are responsible for the onset of electric polarization and/or
magnetization of the medium.

Under the assumption of a static response (2.6), the Maxwell equations (2.4)
reduce to

(2.7)

μ

c

∂H

∂t
+ curlE = 0 , divH = 0,

ε

c

∂E

∂t
− curlH = −4π

c
jext, divE =

4π

ε
ρext.

Then, a procedure identical to the one used when deriving equations (2.3) from (2.1)
yields

(2.8)

εμ

c2
∂2H

∂t2
− ΔH =

4π

c
curljext,

εμ

c2
∂2E

∂t2
− ΔE = −4π

[
μ

c2
∂jext

∂t
+

1

ε
gradρext

]
.

Thus, equations (2.8) that individually govern the fields H and E in R
3 are Huygens’.

As such, so is system (2.7). The corresponding wave speed c/
√
εμ is slower than the

speed of light c.
Unfortunately, the propagation in vacuum or in dielectrics with static response is

practically the only case of electromagnetic propagation with no aftereffects. In sec-
tions 2.3, 2.4, and 2.5, we will see that many conventional electrodynamic models
appear diffusive even before the onset of dispersion, i.e., for low frequencies, when
static relations between D , B and E , H can still be employed for unsteady fields.
The propagation remains diffusive in the case of higher incident frequencies as well.3

Note also that the description of the responses in terms of the polarization P
and magnetization M (see (2.5)) naturally brings along the definition of the induced
charge ρind and the induced current jind:

(2.9) ρind = −divP , jind =
∂P

∂t
+ c curlM .

Substitution of (2.5) and (2.9) into the Maxwell equations (2.4) yields

(2.10)

1

c

∂B

∂t
+ curlE = 0 , divB = 0,

1

c

∂E

∂t
− curlB = −4π

c
(jext + jind), divE = 4π(ρext + ρind).

System (2.10) is identical to (2.1), except that on its right-hand side we have the
full current j = jext + jind and the full charge ρ = ρext + ρind instead of only the
extraneous quantities. This is an alternative way of representing the electromagnetic
field inside a material—by looking at the actual intensities B and E only, but driven
by the induced sources added to the original extraneous sources.4

2The notion of incident frequency is to be interpreted broadly here as frequency of any external
excitation to the field inside the material, whether it be the frequency of the actual impinging wave
or the frequency of the extraneous sources.

3Incident frequencies on the order of, or higher than, the characteristic microscopic frequencies
for a given medium.

4Extraneous sources may or may not be present in every particular case.
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2.3. Ohm conductivity in metals. In contradistinction to dielectrics, con-
ducting materials can support a constant electric current. The steady-state model of
a conductor can be obtained by dropping the displacement current ∂D

∂t = ε∂E
∂t from

the second unsteady Maxwell equation (2.4) or (2.7), which yields

(2.11) curlH =
4π

c
jc.

The quantity jc on the right-hand side of (2.11) is called the conductivity current. In
the pure static case it is assumed given, and then (2.11) is solved along with divB = 0
to determine the magnetic field. Note that according to formula (2.11) the conduc-
tivity current is solenoidal, divjc = 0, which is a manifestation of the conservation of
charge in this case.

The foregoing static model for conducting materials such as metals can also be
applied to the analysis of slowly varying electromagnetic fields. In this case, however,
the conductivity current jc shall no longer be treated as given. It rather becomes an
unsteady current induced by the electric field that, in turn, is due to the variation
in the magnetic field. Then, one also needs to add the first unsteady equation of the
Maxwell system (2.4) or (2.7) to (2.11) and divB = 0. In doing so, the displacement
current may still remain omitted from (2.11). The justification for not including it
into the unsteady analysis is outlined in section 2.4, where a more comprehensive
model is considered that includes semiconductors.

The key relation that one still needs in order to complete the unsteady model
is a connection between the conductivity current and the electric field. Often, this
connection is provided by the same classical Ohm law of electrostatics that establishes
the direct proportionality between jc and the electric intensity E :

(2.12) jc = σE .

The quantity σ in formula (2.12) is the electric conductivity; in the isotropic case
it is a scalar. The conductivity σ can be assumed constant, and accordingly, static
relations (2.11), (2.12) can be used for the unsteady fields in metals, under conditions
similar to those discussed in section 2.2. Namely, the frequency of the incident field
must be much lower than the characteristic frequencies of the microscopic mechanism
of conductivity, which is due to the collisions between the conductivity electrons and
atoms of the crystal lattice. Therefore, the incident frequency must be much lower
than the collision frequency O(ve/δ), where ve is the electron thermal speed and δ is
the mean free path.

By combining the first two equations of (2.4) with relations (2.11) and (2.12), we
obtain the following system of equations that governs the unsteady electromagnetic
field in metals:

(2.13)

1

c

∂B

∂t
+ curlE =0 , divB = 0,

curlH =
4π

c
σE ,

where we again assume that B = μH with μ = const. From system (2.13) we easily
obtain

1

c

∂B

∂t
+ curl

c

4πσ
curlH = 0 ,
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which, along with divB = μdivH = 0, yields the following parabolic equation for the
magnetic field H :

(2.14)
∂H

∂t
− c2

4πσμ
ΔH = 0 .

Once (2.14) is solved, the electric field E is determined by the magnetic field through
the last equation of (2.13). Equation (2.14) is not equivalent to the d’Alembert
equation. Hence, according to the Matthisson criterion [20], it is not Huygens’, and
there may be no lacunae in its solutions.

We should also notice that (2.14) is homogeneous and therefore may only be driven
by the initial and/or boundary conditions, whereas previously we have analyzed
lacunae in the solutions due to the compactly supported right-hand sides. Thus,
let us see how a source term for (2.14) can be generated.

Let us introduce a nonphysical artificial current ja that will be included on the
right-hand side of (2.11) and as such will be affecting the magnetic field H ,

(2.15) curlH =
4π

c
jc +

4π

c
ja,

but will not itself be driven by the induced electric field E through the Ohm law (2.12).
Then, we use (2.15) instead of (2.11) and obtain a modified form of system (2.13):

(2.16)

1

c

∂B

∂t
+ curlE =0 , divB = 0,

curlH =
4π

c
σE +

4π

c
ja.

The conservation of charge in the case is expressed as the total current being solenoidal:
div(jc + ja) = 0. For simplicity, and with no substantial loss of generality (see
Theorem 1 in [34]), we can also assume that the artificial current ja itself is divergence-
free, divja = 0. In this case, the electric field will remain solenoidal as in system (2.13):
divE = 0. From (2.16) we obtain the inhomogeneous counterpart of (2.14):

(2.17)
∂H

∂t
− c2

4πσμ
ΔH =

1

σ
curlja.

Solutions of (2.17) do not have lacunae even if ja is compactly supported. We can
therefore conclude that the propagation of electromagnetic waves in the media with
Ohm conductivity is diffusive.

2.4. Semiconductors. Let us now look more thoroughly into how one shall
actually treat the displacement current for conducting materials. Keeping the unsteady
term 1

c
∂D
∂t = ε

c
∂E
∂t , i.e., considering

(2.18) curlH =
4π

c
σE − ε

c

∂E

∂t

instead of (2.11), (2.12), can make sense only under the special circumstances when
the second term on the right-hand side of (2.18) is of the same order of magnitude as
the first term, or at least not negligibly small compared to the first term. If the field is
time-harmonic, then the ratio of these two terms is O

(
εω
4πσ

)
. In metals, we typically

have ω
σ � 1 for the entire range of frequencies, for which the conductivity σ can still

be considered constant [18]. Therefore, (2.18) in metals indeed reduces to (2.13).
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In semiconductors, however, because of the low concentration of conductivity
electrons, the value of σ could be very small, so that for all those frequencies, for
which σ and ε can still be regarded as constants, we may already have εω

4πσ = O(1).
Then, the Maxwell equations become (cf. formulae (2.13) and (2.7))

(2.19)

μ

c

∂H

∂t
+ curlE = 0 , divH = 0,

ε

c

∂E

∂t
+

4π

c
σE − curlH = 0 , divE = 0.

By differentiating the second unsteady equation of (2.19) with respect to t, taking
curl of the first unsteady equation, and then substituting divE = 0, we arrive at the
telegrapher’s equation for the electric field:

(2.20)
εμ

c2
∂2E

∂t2
+

4πμσ

c2
∂E

∂t
− ΔE = 0 .

A right-hand side for (2.20) can be built similarly to how it was done in section 2.3 for
(2.14). Namely, if we were to formally add the artificial source terms − 4π

c ja and 4π
ε ρa

to the second pair of the Maxwell equations (2.19), then we would have obtained the
following equation instead of (2.20):

(2.21)
εμ

c2
∂2E

∂t2
+

4πμσ

c2
∂E

∂t
− ΔE = −4π

[
μ

c2
∂ja
∂t

+
1

ε
gradρa

]
.

The operator on the left-hand side of (2.21) is not equivalent to the d’Alembert
operator. Therefore, the Huygens’ principle will not hold, and there will be no lacunae.
Note also that the larger the ratio εω

4πσ , the more of a standard dielectric behavior will
be displayed by the medium governed by (2.18).

2.5. Magnetohydrodynamics. The case of a conducting medium in motion
is not very different from the stationary conducting medium analyzed in section 2.3.
Instead of the Ohm law (2.12) we now have

(2.22) jc = σ

(
E +

1

c
u ×B

)
,

where u denotes the velocity of the conducting fluid. The second term on the right-
hand side of (2.22) is the so-called Lorentz correction that helps obtain the electric
field in the frame of reference that moves with the velocity u , provided that |u | � c;
see [17]. Accordingly, instead of system (2.13) we obtain

1

c

∂B

∂t
+ curlE = 0 , divB = 0,

curlH =
4π

c
σ

(
E +

1

c
u ×B

)
,

and instead of (2.14) we have

(2.23)
∂H

∂t
− curl(u ×H ) − c2

4πσμ
ΔH = 0 .

As before, (2.23) is to be solved under the condition that the magnetic field is
solenoidal: divH = 0.
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Unlike in section 2.3, in magnetohydrodynamics the electromagnetic equations
are not independent. They are coupled to the equations of the fluid flow through
the quantity u in (2.23). Moreover, the ponderomotive force 1

c jc × H is added to
the right-hand side of the momentum equation of the fluid, and the Joule heat j 2

c /σ
is added to the right-hand side of the energy equation of the fluid. Therefore, we
cannot directly apply the Matthisson criterion to (2.23); this can only be done if we
consider the velocity field u as given. Then, the answer is still negative—(2.23) is not
Huygens’.

Of particular interest may be the case of very large (theoretically, infinite) con-
ductivities σ, when the dissipative term ∼ ΔH can be dropped from (2.23). Let us
then consider the equations of inviscid compressible flow coupled with (2.23) for the

magnetic field with no magnetic viscosity, c2

4πσμ = 0:

(2.24)

d�

dt
+ �divu = 0,

�
du

dt
+ gradp=

1

4π
curlH ×H ,

∂H

∂t
= curl(u ×H ).

In system (2.24), �, p, and T are the density, pressure, and temperature of the fluid,
respectively, and d

dt = ∂
∂t + (u · grad). It is easy to show (see, e.g., [27, Vol. 1])

that infinite conductivity also implies the adiabatic nature of the flow, because the
Joule heat 1

σ j 2
c must be disregarded. Then, instead of the energy equation, system

(2.24) can be supplemented by the Poisson adiabatic relation between the pressure
and density of a thermodynamically ideal fluid: p = const · �γ , where γ =

cp
cv

is the
ratio of specific heats.

Let us linearize equations (2.24) at the background of an ambient conducting fluid
immersed into a constant magnetic field, i.e., at the background of a constant solution:
� = �0, p = p0, u = u0 = 0 , and H = H0. Let � = �0 + �̃, p = p0 + p̃, u = ũ ,
and H = H0 + H̃ , where all the quantities with the tilde are small perturbations.
Retaining only the first order terms with respect to these perturbations, we obtain

∂�̃

∂t
+ �0divũ = 0,

�0
∂ũ

∂t
+ gradp̃=

1

4π
curlH̃ ×H0,

∂H̃

∂t
= curl(ũ ×H0),

p̃=
γp0

�0
�̃.

Then, introducing the displacement vector x as ∂x
∂t = ũ , we can derive the following

equation (see [15]):

(2.25)
∂2x

∂t2
= c2sgraddivx + c2Agrad⊥divx⊥ + c2A

∂2x⊥
∂z2

,

where cs =
√
γp0/�0 is the conventional speed of sound, cA = |H0|/

√
4π�0 is the

Alfvén speed, and x⊥ and grad⊥ are the components of x and the gradient, respectively,
orthogonal to the magnetic field H0.
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For a particular class of transverse displacements, x = x⊥ and divx⊥ = 0, we
obtain from (2.25)

(2.26)
∂2x⊥
∂t2

= c2A
∂2x⊥
∂z2

.

This is a one-dimensional d’Alembert equation that describes the propagation of the
so-called Alfvén waves along the magnetic field with the speed cA. Even though
the number of space dimensions in (2.26) is odd, the one-dimensional case is special.
Solutions to (2.26) may display the Huygens’ behavior only if the equation is driven
by some particular classes of initial data, whereas for the general RHS there is wave
diffusion.

If the component of x along the magnetic field H0 is not zero, i.e., x3 = 0, then
(2.25) yields

(2.27)
∂2x3

∂t2
= c2s

∂2x3

∂z2
+ c2s

∂

∂z
divx⊥.

For divx⊥ = 0, (2.27) governs the propagation of the so-called ion sound along the
magnetic field with the speed cs. As in the previous case of the Alfvén waves, the
propagation of ion sound is diffusive.

To supplement (2.27), a second equation can be derived from (2.25) that would
govern divx⊥:

(2.28)

∂2divx⊥
∂t2

= c2sdivgrad⊥ divx︸︷︷︸
divx⊥+

∂x3
∂z

+ c2A

[
divgrad⊥divx⊥ +

∂2divx⊥
∂z2

]
︸ ︷︷ ︸

Δdivx⊥

= c2sdivgrad⊥divx⊥ + c2sdivgrad⊥
∂x3

∂z
+ c2AΔdivx⊥.

Equations (2.27) and (2.28) form a system with the unknowns x3 and divx⊥. These
equations decouple only when cs � cA. In this case, the terms ∼ c2s on the right-hand
side of (2.28) can be disregarded, which yields

(2.29)
∂2divx⊥

∂t2
= c2AΔdivx⊥.

Equation (2.29) governs the so-called magnetoacoustic waves that propagate with the
Alfvén speed cA. It is a true three-dimensional d’Alembert equation and as such,
is Huygens’. The assumption of the speed of sound cs being much slower than the
Alfvén speed cA holds when the thermodynamic pressure p0 is much lower than the
quantity H 2

0 /8π, which can be interpreted as pressure of the magnetic field [15].
Hence, lacunae can potentially exist in the solutions for the transverse quantity

divx⊥. However, divx⊥ is then substituted into (2.27) to find the longitudinal dis-
placement x3 in magnetoacoustic waves, and the spatially one-dimensional solution
for x3 will, generally speaking, be diffusive. Altogether, the propagation of waves
governed by (2.29), (2.27) will be only partially diffusionless.

2.6. Summary on low-frequency models. Having analyzed a number of con-
ventional low-frequency electromagnetic models, we conclude that for most of them
the propagation of waves is diffusive; i.e., the Huygens’ principle does not hold. The
driving frequency in these models is assumed lower than the characteristic microscopic
frequencies of the medium, so that the material coefficients can be taken as constants
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(permittivity, permeability, and conductivity). The mechanism that destroys the
lacunae in all these cases is typically of a dissipative nature, related to the electric
conductivity. An exception, for which the Huygens’ principle holds, is pure dielectric
materials with static response. Another partial exception is magnetoacoustic waves
in the medium with infinite conductivity.

When the incident (driving) frequency becomes higher, the material coefficients
can no longer be assumed constant. Instead, they become frequency-dependent, and
while relations (2.6) can still keep their form, all the quantities involved have to be con-
sidered in the frequency domain rather than in the time domain. In other words, rela-
tions (2.6) transform into the corresponding relations between the Fourier coefficients
of the fields and of material “constants,” while in the physical space the medium
responses typically appear nonlocal in time (given by convolution-type integrals);
see [18]. It is also known that the discrepancy between H and B becomes unimpor-
tant/negligible even for relatively low frequencies. Hence, for higher frequencies only
the discrepancy between D and E matters.

Hereafter, we will depart from the low-frequency framework and analyze the prop-
agation of high-frequency electromagnetic waves in the dilute ionospheric plasma. We
will see that in this case the key mechanism that can destroy the lacunae is of a dis-
persive nature. We will also see that under certain assumptions lacunae can still be
identified in this dispersive medium, but in an approximate sense.

3. High-frequency electromagnetic waves in dilute plasma.

3.1. Characteristics of the medium. Our ultimate goal will be to work out an
approximate interpretation of the Huygens’ principle as it applies to the propagation
of electromagnetic waves through the Earth’s ionosphere. The ionosphere is a layer
of dilute plasma (weakly ionized rarefied gas which is electrically neutral as a whole)
surrounding the Earth at heights roughly between 60 km and 400 km from the surface.
The primary source of ionization in the ionosphere is solar radiation. The negatively
charged particles in the ionosphere are electrons with the charge of e = −4.803 ·10−10

Gaussian units and the mass of me = 9.1 ·10−28g, and the positively charged particles
are ions that are much heavier: mi/me � 2.93·104. The ionosphere is, in fact, layered,
and its local parameters strongly depend on the altitude; this dependence for key
characteristics, such as the concentrations of charged particles, may be nonmonotonic.
The parameters of the ionosphere also change between day and night and winter and
summer, and depend on the level of solar activity; more detail can be found, e.g.,
in [8, 6]. In our subsequent considerations, we will be quoting the parameters typical
for the so-called F-layer (that starts at about 130 km above the Earth’s surface) during
the periods of low solar activity. The concentrations of the negatively and positively
charged particles are equal, and we will mostly use the electron concentration: ne ≈
106cm−3. Note that the concentration of neutral atoms and molecules in the F-layer
could be as high as nm = 1010cm−3. A typical value of the electron temperature in
the F-layer is Te ≈ 2000K; the ions are a few times colder.

Several key quantities that depend on the foregoing parameters characterize the
properties of the ionospheric plasma. The plasma electron frequency, also known

as the Langmuir frequency, is defined as ωpe =
√

4πe2ne

me
; it provides a fundamental

temporal scale. For the specific parameters of the plasma given above we obtain
ωpe ≈ 5.64 · 107rad/s ≈ 9 MHz; in the literature, one can find the range of values for
the Langmuir frequency in the ionosphere between 3 MHz and 15 MHz. The thermal
speed of the electrons, ve =

√
3κTe/2me ≈ 3 · 107 cm/s, provides a characteristic
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velocity, where κ = 1.38 · 10−16erg/K is the Boltzmann constant; the speed ve is
roughly three orders of magnitude slower than the speed of light in vacuum, c = 3·1010

cm/s. The speed of the waves that propagate through the plasma will subsequently
need to be compared to the characteristic velocity ve. The Debye shielding length,

d =
√

κTe

8πe2ne
≈ 0.22 cm, provides a characteristic spatial scale for the shielding of a

point charge immersed into the plasma by other charges; shielding effectively results in
multiplication of the classical Coulomb electrostatic potential by the rapidly decaying
function e−r/d.

Another important parameter yet to be included in the consideration is the mag-
netic field of the Earth, B0, |B0| ≈ 0.3G. It brings along another characteristic

frequency known as the electron cyclotron frequency, Ωe = e|B0|
c·me

≈ 0.8 MHz, which is
about an order of magnitude lower than the Langmuir frequency. The presence of B0

implies anisotropy of the plasma and transforms it into a gyrotropic medium; see [18].
The propagation of electromagnetic waves through such a medium is accompanied
by interesting effects, e.g., the Faraday rotation. In the literature, these effects are
typically studied in the frequency domain (see [18, Chapter XI]); for our analysis we
will use the time domain (see section 3.6).

3.2. Cold plasma. In the Maxwell system of equations (2.10), assume that
no extraneous charges or currents are present; then take curl of the first unsteady
equation and by substitution eliminate the magnetic field from the second unsteady
equation, having differentiated it with respect to time. This yields

(3.1)
∂2E

∂t2
+ c2curlcurlE = −4π

∂jind

∂t
.

Equation (3.1) is the key governing equation for the electric field. However, it still
requires that the time derivative of the induced current on the right-hand side be spec-
ified. To do so, we will use the approximation known as cold plasma (see, e.g., [8, 21]);
the meaning of the term will be explained later.

To obtain the current, let us write Newton’s second law of motion for the electrons:

(3.2) me
du

dt
+ meνeffu = −eE − e

c
u ×B .

As the ions are much heavier than the electrons, their motion is not taken into account.
In (3.2), u denotes the velocity of the electrons due to the applied electromagnetic
field (as opposed to the thermal velocity). Equation (3.2) is nonrelativistic because
κT/mec

2 ≈ 3.37 · 10−7 � 1. The quantity νeff in (3.2) is the effective frequency
of collisions between the electrons and other particles (both charged and neutral).
Note that the acceleration term in (3.2) is important in the case of high frequencies,
whereas in the low-frequency case it is often omitted. Omitting the acceleration term
results in (3.2) being transformed into the (generalized) Ohm law; see [15]. In the
high-frequency case we can instead drop the collision term meνeffu on the left-hand
side of (3.2). This term is responsible for the mechanism of Ohm conductivity in
the plasma and is dropped because typical collision frequencies νeff in the ionosphere
are low. A thorough analysis of collisions in dilute plasma requires the calculation of
cross-sections using the apparatus of quantum mechanics; it goes beyond the scope
of this paper, and we refer the reader to [8]. Here we only mention that for the
collisions of electrons with either positive ions or neutral molecules in the F-layer we
have νeff ∼ 102s−1 � ωpe, and as we are predominantly interested in high incident
frequencies, ω � ωpe, we can indeed disregard the collisions term in (3.2).
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In the isotropic case, when the constant magnetic field B0 is not taken into
account, the Lorentz term on the right-hand side of (3.2) can also be neglected. The
reason is that unlike, for example, the case of MHD (section 2.5), when plasma is
immersed into the magnetic field and the electric field is induced, here we are assuming
that both the electric field and the magnetic field have roughly the same magnitude in
the impinging wave. Then, the term − e

cu×B becomes a small relativistic correction,
because |u | � c. The latter relation always holds, because even when the plasma
is not at thermal equilibrium, i.e., when the velocity distribution function is not
Maxwellian, the speed of systematic motion |u | is still much slower than the average
particle speed

√
2K/mee (K is the kinetic energy), which, in turn, is much slower

than the speed of light. Altogether, (3.2) then reduces to

(3.3) me
du

dt
= −eE .

Next, by expressing the induced current as jind = −eneu , we transform (3.3) into

(3.4)
∂jind

∂t
= −ene

∂u

∂t
=

e2ne

me
E .

In doing so we note that the foregoing expression jind = −eneu corresponds to a
simplified framework, whereas, strictly speaking, we should have written jind = −e∫

vf(v)dv , where f(v) is the probability distribution function for electron velocities.
In this paper, however, we employ the elementary approach rather than the full-
fledged kinetic considerations.

We would also like to emphasize that the relation (3.4) between the induced
current and the electric field is local in space, because (3.3) is an ordinary differential
equation. In the frequency domain, when all the variables are interpreted as Fourier
components, we immediately have

jind(ω) =
ωpe

4π

1

iω
E(ω),

and since ∂D
∂t = ∂E

∂t + 4π ∂P
∂t = ∂E

∂t + 4πjind (assuming μ = 1; see (2.5), (2.9)), we
obtain

(3.5) D(ω) = E(ω) −
ω2

pe

ω2
E(ω)

def
= εE(ω) ⇒ ε = 1 −

ω2
pe

ω2
.

In other words, the electric permittivity ε depends only on the incident frequency
ω and does not depend on the wavenumber k . This is equivalent to neglecting the
phenomenon of spatial dispersion in the plasma. It can indeed be neglected if a � λ,
where a is a characteristic length and λ is the wavelength in the plasma. For the
characteristic length we are taking the distance traveled by the electron during one
period of fast oscillation, a = 2πve/ω, and λ = 2πvph/ω = 2π/k, where k = |k | and
vph is the phase speed of the waves. Hence, we need to require that the phase speed
be much faster than the thermal speed of the electrons:

(3.6) vph =
ω

k
� ve =

√
3κT

2me
,

which is also equivalent to requiring that kd � ω/ωpe, where d is the Debye shielding
length. The meaning of the term cold plasma can be explained with the help of
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relation (3.6). Namely, the temperature should be sufficiently low so that the thermal
speed is much slower that the phase speed of the waves.

Finally, by substituting expression (3.4) into the right-hand side of (3.1), we
obtain

(3.7)
∂2E

∂t2
+ c2curlcurlE + ω2

peE = 0 .

Equation (3.7) is a self-contained governing equation for the electric field E . It no
longer includes any other unknown quantities that need to be determined through
additional considerations. Equation (3.7) admits different types of propagating waves
that we are going to analyze.

3.3. Longitudinal and transverse waves. According to the Helmholtz theorem
(see [22, section 1.5]), any vector field has a unique representation as a sum of its
irrotational (longitudinal) and solenoidal (transverse) components. In other words,
we can write

(3.8) E = E� + E⊥, where curlE� = 0 and divE⊥ = 0.

Note that calling the curl-free and divergence-free parts of the field by their alter-
native names—the longitudinal and transverse components, respectively—has a clear
physical interpretation. Namely, in the frequency domain a plane wave propagating
in an isotropic medium has the form E ∼ eiωt+ik ·r , where r is the radius vector.
Then, clearly, curlE ∼ k × E and divE ∼ k · E . As such, curlE� = 0 would mean
that k × E� = 0 , or in other words, that E� is parallel to the wave vector k , which
justifies its name of the longitudinal component. Similarly, divE⊥ = 0 would imply
that k · E⊥ = 0, or in other words, that E⊥ is perpendicular to the wave vector k ,
which justifies its name of the transverse component.

Let us consider the longitudinal waves first. In this case, (3.7) reduces to

(3.9)
∂2E�

∂t2
+ ω2

peE� = 0 .

Equation (3.9) governs the so-called Langmuir waves in plasma. As there is no spatial
differentiation in (3.9), the Langmuir waves can basically be interpreted as high-
frequency oscillations of the entire volume of plasma. The dispersion relation for
the Langmuir waves is straightforward: ω2 = ω2

pe, which means that the oscillations

always occur with one and the same frequency ωpe =
√

4πe2ne

me
. Accordingly, the

group velocity of these waves is zero: vgr
def
= ∂ω

∂k = 0, which means that no energy
transport is associated with the Langmuir waves.

On the other hand, propagation of the Langmuir waves is accompanied by pertur-
bations of the local electric neutrality of the plasma. Indeed, according to the second
steady-state Maxwell equation (2.10), when there are no extraneous charges we have

ρind =
1

4π
divE =

1

4π
divE�,

and, consequently, the density of the induced charge ρind undergoes oscillations with
the frequency ωpe, because it is governed by the same differential equation as (3.9):

∂2ρind

∂t2
+ ω2

peρind = 0.
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Let us reemphasize that the foregoing considerations are valid only when the
phase velocity of the waves is large; see (3.6). By substituting ω = ωpe we obtain
vph = ωpe/k � ωped = ve, which means kd � 1, or in other words, the wavelength
must be much greater than the Debye shielding length: λ � d. If this constraint does
not hold, i.e., if kd ∼ 1, then vph ∼ ve, and the assumption of cold plasma breaks
down. In this case, the dispersion relation of the plasma can be obtained only by
solving the kinetic equation. As shown, e.g., in [21, Chapter 13], the Langmuir waves
become dispersive for slower phase speeds: ω2 = ω2

pe + 3k2v2
e . Going even further

down in the phase speed, i.e., allowing for vph � ve, would necessitate taking the
ions’ motion into account; this leads to the ion sound that has been briefly discussed
in section 2.5.

Having provided this very concise account of longitudinal oscillations, we will next
turn to the primary subject of our discussion, the transverse high-frequency waves.

3.4. Transverse waves. To study the evolution of the transverse component
E⊥ of the electric field, we first notice that divE⊥ = 0 implies curlcurlE⊥ = −ΔE⊥,
and, consequently, (3.7) transforms into the well-known Klein–Gordon equation

(3.10)
∂2E⊥
∂t2

− c2ΔE⊥ + ω2
peE⊥ = 0 .

The dispersion relation for the Klein–Gordon equation (3.10) is easy to obtain. It
reads

(3.11) ω2 = ω2
pe + c2k2,

which, in particular, means that similarly to the previous longitudinal case (see
section 3.3), only high-frequency transverse waves can propagate in the plasma gov-
erned by (3.10). The range of allowable frequencies that corresponds to (3.11) is
defined as ω > ωpe.

From relation (3.11), one can easily obtain the phase speed and the group speeds
of the waves:

vph = c
(
1 + ω2

pe/c
2k2

) 1
2 > c,(3.12)

vgr = c
(
1 + ω2

pe/c
2k2

)− 1
2 < c.(3.13)

Unlike in the longitudinal case of section 3.3, the propagation of transverse waves
preserves the local electric neutrality of the plasma, because divE⊥ = 0. Moreover, it
is possible to show (see [21, Chapter 13]), that even if one employs kinetic consider-
ations for the analysis of transverse waves with a slow phase speed, ω/k � ve, there
will, in fact, be no such waves. In other words, there are no thermal transverse modes
analogous to the thermal longitudinal modes.

The dispersion properties of high-frequency transverse waves are of particular
interest. Let us first assume that

ωpe

ck = ve

ckd � 1, which implies that kd � ve

c ≈ 10−3,
or in other words, that the waves are short: λ � 103d, with the wavelength much
shorter than a thousand times the Debye shielding length. These waves exhibit
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a weakly dispersive behavior, as substitution of
ωpe

ck � 1 into (3.12) and (3.13)
immediately yields

vph ≈ c

(
1 +

ω2
pe

2c2k2

)
,(3.14)

vgr ≈ c

(
1 −

ω2
pe

2c2k2

)
.(3.15)

We indeed see that both the phase speed vph of (3.14) and the group speed vgr of
(3.15) are close to the speed of light c, with the former being slightly faster than c and
the latter being slightly slower than c. The frequency in this case, according to (3.11),
is approximately equal to the speed of light times the wavenumber (ω ≈ ck � ωpe),
and is also much higher than the Langmuir frequency. Note that the ultimate case
of vph = vgr = c, ω = ck, would correspond to the propagation of waves with no
dispersion in the framework of a pure d’Alembert equation rather than the Klein–
Gordon equation.

In contradistinction to the short waves, the long transverse waves governed by
(3.10) are similar to the longitudinal waves. Indeed, let

ωpe

ck � 1; it means that λ �
103d and also that ω � ωpe, i.e., that the waves propagate with the frequencies close to
the lowest possible frequency ωpe. In this case, vph ≈ ωpe/k, and vgr = c· ck

ωpe
� c; i.e.,

the expression for the phase velocity is basically the same as that in the longitudinal
case (see section 3.3), while the group velocity is small (in the pure longitudinal case
it is equal to zero). This behavior is not surprising because the longer the wave, the
less of a spatial variation per unit length it undergoes, and, consequently, the more
the corresponding oscillations should resemble the oscillations of the entire plasma
volume as a whole, which are characteristic of the longitudinal case.

In general, we should mention that the foregoing dispersion properties, while not
completely unparalled, are, perhaps, still less typical than the inverse situation, when
the long waves, rather than the short waves, exhibit a weakly dispersive behavior;
see [15]. Our primary goal, however, is to see what can be said about the lacunae and
the Huygens’ principle for the waves governed by (3.10). From the previous considera-
tions we conclude that it is for the short waves, which are only weakly dispersive, that
one can possibly observe some sort of “lacunae” in the solutions of (3.10). Indeed,
in this case the propagation speeds (3.12) and (3.13) (see also (3.14) and (3.15)) are
close to the nondispersive propagation velocity c, and therefore one may expect to
see relatively few aftereffects behind what would have been the sharp aft fronts in
the genuine Huygens’ case. To provide a somewhat more accurate yet still qualitative
argument, let us consider the waves propagating from an instantaneous point source
located at the origin. Given the distance to the source r and the moment of time t,
one can easily see that only those waves that have the group velocity vgr = r/t can
reach the location r precisely at the moment t. Using expression (3.13) for the group
velocity, we obtain a formula for k as it depends on r and t:

(3.16) k =
ωpe

c

(
c2t2

r2
− 1

)− 1
2

.

We see that the wavenumbers are defined only inside the light cone r ≤ ct. Formula
(3.16) also indicates that for a given moment of time t, the larger the r, the larger the k.
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In other words, the closer the value of r to ct, the shorter the wave that reaches this
location at time t, and ultimately, for the purely nondispersive propagation r = ct
the wavelength λ = 2π/k defined by (3.16) becomes equal to zero.

Let us now fix some large wavenumber k1 � ωpe

c and consider a wave packet
propagating from the origin with the range of wavenumbers k ≥ k1. By noticing that
the group velocity vgr of (3.13) is a monotone increasing function of k, we conclude
that the range of group velocities for this packet will be

c
(
1 + ω2

pe/c
2k2

1

)− 1
2 ≤ vgr < c.

Therefore, at every given moment of time t we can easily estimate how wide this
packet is going to be. The width of the packet can be thought of as the spatial extent
of the “tail” behind the aft front r = ct:

(3.17) δtail = (c− min
k

vgr)t = c

⎡
⎣1 −

(
1 +

ω2
pe

c2k2
1

)− 1
2

⎤
⎦ t ≈ ct ·

ω2
pe

2c2k2
1

.

We see that the tail expands linearly with time and shrinks quadratically as the
minimum borderline wavenumber k1 for the packet increases. We also note that the
short waves, as they are defined above, k � ωpe

c , propagate with high frequencies
ω ≈ ck � ωpe. Therefore, we can equivalently reformulate our general expectation
in terms of the frequency rather than the wavelength. Namely, we hope that lacunae
could be approximately observed in the solutions of (3.10) for high frequencies ω �
ωpe, whereas the overall range of frequencies allowed by the dispersion relation (3.11)
is ω > ωpe. Using the dispersion relation (3.11), we can also recast estimate (3.17)
for the width of the aftereffects region (the tail) as

(3.18) δtail ≈ ct ·
ω2

pe

2ω2
1

,

where ω2
1 = ω2

pe + c2k2
1 is the minimum borderline frequency for the packet we are

considering: ω ≥ ω1 � ωpe. We also note that the ratio of the Langmuir frequency
over the driving frequency of the waves that appears in formula (3.18) is going to play
a key role in our subsequent analysis.

Let us emphasize, however, that the entire discussion based on the dispersion
relation (3.11) is basically conducted in the frequency domain. On the other hand,
we have seen in section 1.1 that the frequency domain is inadequate for the analysis
of lacunae and the Huygens’ principle. A time-domain analysis is needed in order to
see how the Huygens’ principle can be interpreted for the weakly dispersive transverse
waves governed by (3.10).

Consider a three-dimensional Cauchy problem for the inhomogeneous Klein–
Gordon equation (cf. (1.1)):

(3.19)

∂2ϕ

∂t2
− c2Δϕ + ω2

peϕ = f(x , t), ϕ(x , 0) = ϕt(x , 0) = 0,

R
3 � x = (x1, x2, x3).

Compared to the vector equation (3.10), the differential equation in (3.19) is scalar
and may govern, e.g., one Cartesian component of the total field. The right-hand side
f(x , t) may be due to the extraneous current.
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The Klein–Gordon equation is obviously not equivalent to the d’Alembert equa-
tion, and therefore, according to the Matthisson criterion [20], its solutions must be
diffusive and may have no lacunae in the classical sense of the word. The discrepancy
between the two equations is accounted for by the term ω2

peϕ in (3.10). This term is
responsible for the onset of dispersion that ruins the lacunae. We still hope, though,
that the behavior of solutions to (3.10) will be close to Huygens’ when the dispersion
is weak. Therefore, while it is clear that the term ω2

peϕ in the Klein–Gordon equation
may not be completely disregarded, we would nonetheless like to see when it can be
legitimately classified as “small.” Note that it is not as straightforward as simply call-
ing the coefficient ω2

pe small, because this coefficient is is not dimensionless. As such,
we would rather need to identify special classes of solutions ϕ = ϕ(x, t), for which the
entire term ω2

peϕ can be deemed small. The previous frequency-domain considerations
suggest that this may be the case when a high driving frequency ω � ωpe is brought
into the time-domain analysis.

The fundamental solution for the Klein–Gordon operator can be obtained in the
closed form (see [4]):

(3.20) E(x , t) =
Θ(t)

2πc
δ
(
β2

)
︸ ︷︷ ︸

E1(x ,t)

−
ω2

pe

4πc3
Θ(t)Θ

(
β2

) J1(y)

y︸ ︷︷ ︸
E2(x ,t)

,

where β2 = c2t2 − |x |2, y =
ωpe

c β, J1( · ) is the Bessel function, and Θ( · ) denotes the
Heaviside function, as before. The first term E1(x , t) on the right-hand side of formula
(3.20) is the same as the fundamental solution of the d’Alembert operator; see (1.2).
The second term E2(x , t) can be interpreted as a correction due to the presence of
ω2

peϕ in (3.19). Accordingly, solution ϕ = ϕ(x , t) of the Cauchy problem (3.19) is
given by the convolution

(3.21) ϕ = E ∗ f = E1 ∗ f − E2 ∗ f = ϕ1 − ϕ2,

where the first term ϕ1 = E1∗f on the right-hand side of (3.21) is the Kirchhoff integral
(cf. formula (1.3)), while the second term ϕ2 = E2∗f is basically what “contaminates”
the lacuna. We are going to study the properties of exactly this contaminating term
for a particular choice of f .

Namely, we will consider the following point excitation for problem (3.19):

(3.22) f(x , t) =

{
M · δ(x ) · sin(ωt) ≡ δ(x )f̃(t), 0 ≤ t ≤ T,

0, t < 0 and t > T,

where M > 0 and T > 0 are two parameters and ω denotes the driving frequency.
We will assume that the source (3.22) undergoes sufficiently many oscillations with
frequency ω during the interval 0 ≤ t ≤ T . At the same time, this interval still remains
finite, which allows us to preserve the time-dependent nature of the problem rather
than have it transformed into the frequency domain. Choosing the right-hand side
f(x , t) of (3.19) in the form (3.22) enables us to perform a sufficiently straightforward
analysis on one hand, and, on the other hand, it still allows us to illustrate the key
phenomena of interest.
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According to the definition of the fundamental solution (see (3.20)), we have

(3.23)

ϕ2 =
ω2

pe

4πc3

∫ t

0

∫∫∫
|x−ξ|≤c|t−τ |

f(ξ, τ)J1

(
ωpe

√
(t− τ)2 − |x − ξ|2/c2

)
ωpe

√
(t− τ)2 − |x − ξ|2/c2

dξdτ

=
ω2

pe

4πc3

∫ T1

0

f̃(τ)J1

(
ωpe

√
(t− τ)2 − |x |2/c2

)
ωpe

√
(t− τ)2 − |x |2/c2

dτ =
ω2

pe

4πc3

∫ T1

0

f̃(τ)J1(y)

y
dτ,

where T1 = min{(t − |x |/c), T}, y = y(τ, t,x ) = ωpe

√
(t− τ)2 − |x |2/c2, and f̃(τ)

denotes the temporal dependence of the source term (3.22): f̃(τ) = M sin(ωτ). We
will analyze the cases of small and large arguments y of the Bessel function J1 in

formula (3.24). Let us first note that if y is small, or more precisely, if 0 ≤ y ≤ μ
(2)
1 ,

where μ
(2)
1 is the first positive root of the Bessel function J2(y), then the function

G(y)
def
=

J1(y)

y

is a monotone decreasing function of the argument y. Indeed, we have

G′(y) =
d

dy

[
J1(y)

y

]
= −J2(y)

y
≤ 0 if y ∈ [0, μ

(2)
1 ].

The inequality 0 ≤ y ≤ μ
(2)
1 implies a constraint on the maximum value of t. In the

worst-case scenario—τ = 0 and |x | = 0—this constraint reads

(3.24) t ≤ μ
(2)
1 /ωpe ≡ T0,

and from here on we will require that the most conservative sufficient condition (3.24)
hold in order to guarantee that the value of y be sufficiently small.

We also notice that the function y = y(τ, · ) is a monotone decreasing function
of its argument τ on the interval 0 ≤ τ ≤ T1. Consequently, the composite function
G̃(τ) = G(y(τ, · )) is a monotone increasing function of τ . We can then apply the
Bonnet theorem (second mean value theorem) (see [35]), to the last integral from
(3.24) and obtain

(3.25) ϕ2 =
ω2

pe

4πc3

[
G̃(0)

∫ η

0

f̃(τ)dτ + G̃(T1)

∫ T1

η

f̃(τ)dτ

]
,

where η is some point of the interval [0, T1].
We note that the contaminating part ϕ2 of the solution will eventually need to

be compared against its regular part ϕ1, which, according to (1.3), is given by

(3.26) ϕ1(x , t) =
1

4πc2
f̃(t− |x |/c)

|x | ,

where, again, f̃(t) = M sin(ωt) for t ∈ [0, T ]; see (3.22). The function ϕ1 of (3.26)
represents a genuine d’Alembert wave packet due to the source (3.22); it may differ
from zero only on the region c(t − T ) ≤ |x | ≤ ct. For |x | > ct we have ϕ1(x , t) = 0
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because the propagation speed is finite, and for |x | < c(t − T ) we have ϕ1(x , t) = 0
because this is a lacuna of the wave equation.

Similarly, for |x | > ct we also have ϕ2(x , t) = 0. However, otherwise ϕ2(x , t) = 0
either in the wave packet area c(t−T ) ≤ |x | ≤ ct or in the lacuna area |x | < c(t−T ).
The wave packet area corresponds to T1 = (t − |x |/c) ≤ T ; then y(T1, · ) = 0,
and, consequently, G̃(T1) = G(0) = 1/2 in formula (3.25). In contradistinction to
that, the area that would have been a lacuna in the nondispersive case corresponds
to T1 = T < t − |x |/c, which means y(T1, · ) = y(T, · ) > 0 and G̃(T1) < 1/2.
Altogether, the constants in formula (3.25) can be estimated as follows (recall that

μ
(2)
1 ≈ 5.13562230):

(3.27) −6.61397437 · 10−2 = G(μ
(2)
1 ) ≤ G̃(0) < G̃(T1) ≤ G(0) =

1

2
.

By evaluating the integrals in (3.25), we obtain

(3.28)
ϕ2 =

ωpeM

4πc3
ωpe

ω

[
G̃(0) (1 − cos(ωη)) + G̃(T1) (cos(ωη) − cos(ωT1))

]
=

ωpeM

4πc3
ωpe

ω

[
G̃(0) + (G̃(T1) − G̃(0)) cos(ωη) − G̃(T1) cos(ωT1)

]
,

and according to estimates (3.27), the absolute value of the quantity in rectangular

brackets in formula (3.28) may never exceed 3/2 −G(μ
(2)
1 ).

Let us now compare the dispersionless solution ϕ1 of (3.26) with the dispersion-
induced correction ϕ2 of (3.28). Note that ϕ1 is defined only inside the wave packet
area, c(t − T ) ≤ |x | ≤ ct, including the aft front |x | = c(t − T ). We can then recast
formula (3.26) as

(3.29) ϕ1(x , t) =
M

4πc3
sin(ωT1)

t− T1

and thus obtain

(3.30)

sup
|x |≤ct

|ϕ2(x , t)|

sup
c(t−T )≤|x |≤ct

|ϕ1(x , t)|
=

(
3
2 −G(μ

(2)
1 )

)
ωpe(t− T1)

ωpe

ω
.

In formula (3.29), we can always consider ωpe(t − T1) < μ
(2)
1 because of inequality

(3.24). As such,

(3.31)
sup |ϕ2|
sup |ϕ1|

= O
(ωpe

ω

)
.

Estimate (3.31) is important as it quantifies the previously outlined “tentative” con-
sideration that the higher the driving frequency, the more of a lacuna one might be
able to observe in the corresponding solution. It is because of this particular estimate
(see (3.31)) that we can call the region |x | < c(t − T ) for t ≤ T0 a weak lacuna and
also refer to the quantity on the left-hand side of (3.31) as its “depth.” Indeed, the
region |x | < c(t− T ) corresponds to the genuine lacuna of the d’Alembert equation.
In the dispersive case, there is still a residual field inside this region, but its magnitude
relative to the magnitude of the field in the packet (the depth of a weak lacuna) is
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small and, quantitatively, is proportional to the ratio of the Langmuir frequency over
the driving frequency of the waves.

Next, we will consider the opposite case—that of the large argument y of the
Bessel function J1 in formula (3.24). Our goal will be to justify a relation similar to
(3.31) for long propagation times.

Let y � 1. Then, we will use the asymptotic form of the Bessel function J1(y),

(3.32) J1(y) =

√
2

πy
cos

(
y − 3π

4

)
+ O

(
y−

3
2

)
,

which means that by disregarding the higher order terms O(y−
5
2 ) in the integral (3.24)

we can recast it as

(3.33) ϕ2 ≈
ω2

pe

4πc3

√
2

π

∫ T1

0

f̃(τ)y−
3
2 cos

(
y − 3π

4

)
dτ.

We would like to estimate the magnitude of ϕ2(x , t) of (3.33) for |x | < c(t− T ), i.e.,
inside the region that would have been a lacuna in the nondispersive case. This means
that the upper integration limit in formula (3.33) can be taken as T1 = T .

Let us first analyze the expression for y = y(τ, t,x ) = ωpe

√
(t− τ)2 − |x |2/c2 that

enters into formulae (3.32) and (3.33) and see under what conditions it can indeed be
regarded as large. Obviously, as τ ∈ [0, T ], then minτ y(τ, t,x ) = y(T, t,x ), and it
will be sufficient to see when y(T, t,x ) is large. To begin with, we notice that for a
given moment of time t, the quantity y(T, t,x ) cannot be large all across the lacuna,
because on the aft front |x | = c(t − T ) we have y(T, t, c(t − T )) = 0. Consequently,
to be able to legitimately use the asymptotics (3.32) we will need to step inside the
lacuna.

Then we introduce the distance δ between a given point inside the lacuna and
the aft front at the moment of time, t. For |x | = c(t − T ) − δ we have y =
ωpe

c

√
2c(t− T )δ − δ2. We can therefore conclude that if we consider δ as a function

of time, δ = δ(t), and require that

lim
t→∞

[2c(t− T ) · δ(t) − δ2(t)] = ∞,

then the quantity y = y(T, t,x ) will increase with no bound when t −→ ∞ and
|x | ≤ c(t− T )− δ(t). Clearly, in so doing the “gap width” δ itself may even decrease
as t increases, but only more slowly than (t − T )−1. On the other hand, δ may also
be a constant or an increasing function of the argument t; in the latter case it may
not increase faster than linearly because the lacuna itself expands only linearly with
respect to time.

To summarize, we can claim that

lim
t→∞

y(T, t,x ) = ∞

uniformly for all x such that |x | ≤ c(t− T ) − δ(t), provided that

(3.34)
const

(t− T )ζ(t)
≤ δ(t) ≤ (c− c1)(t− T ),

where c1 < c and ζ(t) is an auxiliary function such that ζ(t) = o(1) as t −→ ∞.
Clearly, the most conservative strategy for choosing the gap width, δ = (c−c1)(t−T ),
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where c1 < c, will guarantee the fastest growth of y in a narrower cone |x | < c1(t−T ):

(3.35)
∀x : |x | ≤ c1(t− T ), c1 < c & ∀τ ∈ [0, T ] :

y(τ, t,x ) ≥ y(T, t,x ) ≥ ωpe

√
1 − c21/c

2(t− T ).

Estimate (3.35) will allow us to use the asymptotic formulae (3.32) and (3.33) for
sufficiently large times t.

Next, we notice that y−
3
2 is a monotone decreasing function of y for y > 0, and

as y = y(τ, t,x ) is, in turn, a monotone decreasing function of τ for τ ∈ [0, T ], it

follows that y−
3
2 is a monotone increasing function of τ . Consequently, we can apply

the Bonnet theorem again, this time to the integral (3.33), and obtain (recall that
T1 = T for the interior of the lacuna)

(3.36)

ϕ2 ≈
ω2

pe

4πc3

√
2

π

[
(y(0, t,x ))−

3
2

∫ η

0

f̃(τ) cos

(
y(τ, t,x ) − 3π

4

)
dτ

+ (y(T, t,x ))−
3
2

∫ T

η

f̃(τ) cos

(
y(τ, t,x ) − 3π

4

)
dτ

]
,

where η ∈ [0, T ]. Let us now substitute f̃(τ) = M sin(ωτ) into (3.36):

ϕ2≈
Mω2

pe

8πc3

√
2

π

[
(y(0, t,x ))−

3
2

∫ η

0

{
sin

(
ωτ + y(τ, t,x ) − 3π

4

)

− sin

(
ωτ − y(τ, t,x ) +

3π

4

)}
dτ

+(y(T, t,x ))−
3
2

∫ T

η

{
sin

(
ωτ + y(τ, t,x ) − 3π

4

)

− sin

(
ωτ − y(τ, t,x ) +

3π

4

)}
dτ

]
.

The argument
(
ωτ ± y(τ, t,x ) ∓ 3π

4

)
of the sine functions above can be approximated

as follows. Denote ν = T − τ , 0 ≤ ν ≤ T , and recast y in the form

(3.37) y(τ, t,x ) = ωpe

√
(t− T )2 − |x |2/c2

√
1 +

2(t− T )ν + ν2

(t− T )2 − |x |2/c2 .

Notice that if

2(t− T )ν

(t− T )2 − |x |2
c2

=
2ν

(t− T )
(
1 − |x |2

(t−T )2c2

) � 1,

then also

ν2

(t− T )2 − |x |2
c2

=
ν2

(t− T )2
(
1 − |x |2

(t−T )2c2

)

=

⎡
⎣ ν

(t− T )
(
1 − |x |2

(t−T )2c2

)
⎤
⎦2 (

1 − |x |2
(t− T )2c2

)
� 1.
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Consequently, if the linear term with respect to ν under the second square root in
formula (3.37) is indeed small, then the quadratic term can be disregarded, which
yields

y(τ, t,x ) ≈ y(T, t,x ) +
ω2

pe(t− T )ν

y(T, t,x )
= y(T, t,x ) +

ω2
pe(t− T )T

y(T, t,x )︸ ︷︷ ︸
does not depend on τ

−
ω2

pe(t− T )τ

y(T, t,x )
.

Therefore, we can write

ϕ2≈
Mω2

pe

8πc3

√
2

π

[
(y(0, t,x ))−

3
2

∫ η

0

{
sin ((ω + γωpe)τ − α)

− sin ((ω + γωpe)τ − α)
}
dτ

+ (y(T, t,x ))−
3
2

∫ T

η

{
sin ((ω − γωpe)τ + α)

− sin ((ω + γωpe)τ − α)
}
dτ

]
,

where γ =
ωpe(t−T )
y(T,t,x) and α = y(T, t,x ) +

ω2
pe(t−T )T

y(T,t,x) − 3π
4 . The integrals can now be

explicitly evaluated:

ϕ2≈
Mω2

pe

8πc3

√
2

π

[
(y(0, t,x ))−

3
2

{
cosα− cos((ω − γωpe)η + α)

ω − γωpe

− cosα− cos((ω + γωpe)η − α)

ω + γωpe

}

+ (y(T, t,x ))−
3
2

{
cos((ω − γωpe)η + α) − cos((ω − γωpe)T + α)

ω − γωpe

−cos((ω + γωpe)η − α) − cos((ω + γωpe)T − α)

ω + γωpe

}]
,

and using (3.35) we obtain

|ϕ2(x , t)| ≤
Mω2

pe

4πc3

√
2

π

[
(y(0, t,x ))−

3
2 + (y(T, t,x ))−

3
2

]

·
{

1

ω − γωpe
+

1

ω + γωpe

}

≤
Mω2

pe

πc3

√
2

π
ω
− 3

2
pe (t− T )−

3
2 (1 − c21/c

2)−
3
4

ω

ω2 − γ2ω2
pe

.

We also note that, according to (3.35), the quantity γ is bounded: γ =
ωpe(t−T )
y(T,t,x) ≤

1√
1−c21/c

2
. Then, assuming that ω � ωpe, we drop the quadratic term O(

γ2ω2
pe

ω2 )

and get

(3.38) |ϕ2(x , t)| ≤
M

πc3

√
2

π
ω
− 1

2
pe (t− T )−

3
2 (1 − c21/c

2)−
3
4
ωpe

ω
.
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Estimate (3.38) for the correction ϕ2 is valid inside the lacuna of the wave equation
in a narrower cone |x | < c(t − T ) − δ(t) = c1(t − T ). As before, the magnitude of
the correction ϕ2 now needs to be compared against the magnitude of the solution ϕ1

inside the wave packet. For the purpose of comparison, we will consider ϕ1 given by
(3.26) on the boundary of the lacuna, i.e., exactly at the aft front |x | = c(t− T ):

ϕ1(x , t) =
M

4πc3
sin(ωT )

t− T
.

Using estimate (3.38), we can therefore write (cf. formula (3.31))

(3.39)
sup |ϕ2|
sup |ϕ1|

= O
(
ω
− 1

2
pe (t− T )−

1
2
ωpe

ω

)
.

From estimate (3.39) we see not only that for long propagation times the depth of a
weak lacuna is controlled by the ratio

ωpe

ω (similar to the case of short times) but that
it also decays with the rate proportional to the inverse square root of time. We need
to remember, however, that whereas in the previous estimate (3.31) we could use the
maximum of the residual field ϕ2 all across the lacuna |x | < c(t − T ), in estimate
(3.39) it can be taken only across a narrower cone |x | < c(t− T ) − δ(t) = c1(t− T );
see formula (3.35).

Let us additionally note that if we were to allow regions wider than the cone
|x | < c1(t−T ) when analyzing the rate of growth of y, i.e., if we were to take the gap
width δ(t) increasing more slowly than (c − c1)(t − T ) (see formula (3.34)), then we
would still obtain the key quantification of the depth of the weak lacuna by means

of
ωpe

ω , but we could lose the additional decay ∼ ω
− 1

2
pe (t− T )−

1
2 for long propagation

times. For example, let δ(t) = A(t− T )
1
3 , where A is an appropriate constant needed

to take into account that t is time and δ is distance. Then, for large times t we would
obviously have δ2(t) � 2c(t − T )δ(t) and, consequently, y =

ωpe

c

√
2c(t− T )δ − δ2 ≈

ωpe

c

√
2cA(t− T )

2
3 . In other words, instead of (3.35) we obtain

(3.40)
∀x : |x | ≤ c(t− T ) −A(t− T )

1
3 & ∀τ ∈ [0, T ] :

y(τ, t,x ) ≥ y(T, t,x ) � ωpe

c

√
2cA(t− T )

2
3 .

Accordingly, estimate (3.38) gets replaced by

(3.41) |ϕ2(x , t)| ≤
M

2πc3

√
2

π
ω
− 1

2
pe (t− T )−1

(
2A

c

)− 3
4 ωpe

ω
,

and instead of (3.39) we obtain a simpler relation (cf. formula (3.31)):

(3.42)
sup |ϕ2|
sup |ϕ1|

= O
(ωpe

ω

)
.

Clearly, estimate (3.39) guarantees a deeper lacuna for large times t than estimate

(3.42) does. However, estimate (3.42) is valid on the region |x | < c(t−T )−A(t−T )
1
3 ,

which is wider than the cone |x | < c1(t− T ), c1 < c, on which estimate (3.39) holds.
We should reemphasize, however, that both estimates (3.31) and (3.39) (as well as

(3.42)) are only asymptotic results, for the small and large values, respectively, of the
argument y of the Bessel function J1 in formula (3.24). To corroborate and further
expand the scope of these results, we will evaluate the convolution (3.24) numerically.
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Table 3.1

The depth of the weak lacuna for different moments of time.

ωpe

ω
1
10

1
20

1
40

1
80

t = 0.8 1.16 · 10−3 4.57 · 10−4 1.95 · 10−4 1.01 · 10−4

t = 4 7.64 · 10−2 3.96 · 10−2 2.0 · 10−2 1.04 · 10−2

t = 10 3.87 · 10−1 1.98 · 10−1 1.04 · 10−1 5.43 · 10−2

t = 20 1.04 · 100 4.88 · 10−1 2.47 · 10−1 1.35 · 10−1

This is done using the Simpson rule on a very fine grid of the argument τ in order to
guarantee that the level of the truncation error is far below the magnitude of either ϕ1

or ϕ2. To provide a most transparent interpretation of the numerical results, we also

adopt a slightly different notion of the depth of a weak lacuna, namely, max |ϕlacuna|
max |ϕpacket| ,

where ϕlacuna = ϕ2 and ϕpacket = ϕ1+ϕ2. This new definition immediately provides a
quantitative measure of how big the residual field inside the lacuna is compared to the
total field inside the wave packet. For computations, we select ωpe = 1, T = 2π/10,
and in Table 3.1 present the depth of the weak lacuna for different values of ωpe/ω
and different moments of time t.

From Table 3.1, one can clearly see that for all moments of time—small, interme-
diate (not covered by the asymptotics), and large—the depth of the weak lacuna is
indeed proportional to the quantity ωpe/ω. However, the maximum of the contami-
nating field ϕ2 is taken in Table 3.1 across the entire lacuna |x | < c(t−T ). Therefore,
as expected, we do not observe any decay of the depth as the time increases; we rather
observe the increase. In fact, this increase is due to the “tail” of the residual field
that decays toward the center of the lacuna, as shown in Figure 3.1.

On the other hand, if we were to take a region narrower than the cone |x | < c(t−T )
to evaluate the depth of the weak lacuna, then we would be able to actually see its
decrease in time, as prescribed previously by the asymptotic estimates. In Table 3.2,
we present the same quantity as in Table 3.1, except that max |ϕlacuna| = max |ϕ2|
is evaluated on a narrower cone |x | < c1(t − T ), where c1 = 0.75c; see formula
(3.35). The time range in Table 3.2 covers only intermediate to large intervals. From
Table 3.2, one can clearly see not only that the depth of the weak lacuna is inversely
proportional to ωpe/ω for every particular moment of time, but that it also decays
roughly as the inverse square root of time for every particular value of ωpe/ω; see
formula (3.39).

An intermediate conclusion that we can draw, based on the combined use of
asymptotic arguments and numerical quadratures, is that for high-frequency trans-
verse electromagnetic waves that propagate in a dilute isotropic plasma (with par-
ticular pointwise excitation) one can still observe lacunae in the solutions but only
in an approximate sense. The depth of these approximate, or weak, lacunae is
proportional to the ratio of the Langmuir frequency of the plasma over the primary
carrier frequency of the waves.

3.5. Numerical tests. In this section, we report on some results enabled by
exploiting the weak lacunae in the computational context. As of yet, these results do
not amount to a systematic numerical study. They rather provide a proof-of-concept
illustration, whereas a broader and more coherent account of numerical simulations
will be reported later.
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Fig. 3.1. Solution of the Klein–Gordon equation inside the lacuna and inside the wave packet.

Table 3.2

The depth of a weak lacuna for c1 = 0.75c and different moments of time.

ωpe

ω
1
10

1
20

1
40

1
80

t = 4 4.80 · 10−2 2.48 · 10−2 1.26 · 10−2 6.52 · 10−3

t = 10 3.64 · 10−2 1.81 · 10−2 9.47 · 10−3 4.93 · 10−3

t = 20 3.14 · 10−2 1.33 · 10−2 6.56 · 10−3 3.56 · 10−3

We apply the lacunae-based algorithm of [24] to the Klein–Gordon equation
(3.19). The algorithm of [24] was originally developed for the d’Alembert equation.
It yields nonlocal ABCs that enable the computation of an unsteady wave field on a
given finite region of interest. The rest of the space beyond this finite computational
region is truncated, and the ABCs provide the required closure at the external arti-
ficial boundary so that the outgoing waves can propagate without any nonphysical
reflections. Our objective hereafter is to demonstrate that the weak lacunae of sec-
tion 3.4 can sometimes substitute for the actual lacunae in the numerical framework.

Lacunae-based ABCs for the genuine diffusionless case are constructed in two
stages. Below we provide only a very brief description of the method and refer the
reader to [24, 25] for details. A key initial assumption is that the overall infinite-
domain problem has a unique solution and that (at least) outside of the aforementioned



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

WEAK LACUNAE IN PLASMA 1575

finite region of interest this solution is governed by a linear homogeneous equation,
such as the d’Alembert equation. At the first stage, the original problem is decom-
posed into two subproblems that depend on one another. The interior subproblem is
formulated on the bounded computational domain. It inherits all the structure and
properties of the original problem on this domain. As the computational domain is
obtained by truncation, the interior subproblem obviously requires a closure, i.e., the
ABCs, at the outer boundary. The ABCs are to be provided by the solution of the
exterior subproblem. The latter, in turn, is formulated on the entire space and is
driven by the special auxiliary sources that depend on the solution of the interior
problem. The governing equation for the the exterior subproblem on the entire space
is the same linear homogeneous equation that governs the solution of the original
problem outside the region of interest.

At the second stage, the two problems are integrated concurrently. In doing so,
the algorithm for integrating the exterior problem is built around the presence of
lacunae. The continuously operating auxiliary sources are partitioned in time into
finite fragments. The solution due to each fragment has a lacuna, and the entire
domain of interest falls inside this lacuna after a predetermined interval of time.
Once this happens, the computation for this particular fragment does not need to be
continued any further. Moreover, no wave can travel more than a certain fixed distance
away from the source during this interval of time, which implies that the computations
can always be conducted on a bounded auxiliary domain of a fixed nonincreasing size.
This is the mechanism of transition from an infinite-domain formulation to a finite-
domain one. Altogether, one can show that at any given moment of time only a finite
fixed number of fragments contribute to the solution of the exterior problem, and
each contribution needs to be computed only over a fixed time interval. This yields
the exact unsteady ABCs with only fixed and limited extent of nonlocality in time.
The performance of these ABCs does not deteriorate when integrating over long time
intervals [24].

Replacing genuine lacunae by weak lacunae in the framework of the ABC al-
gorithm basically means that the interior problem is still integrated in its entirety,
whereas the dispersive effects for the exterior problem, i.e., for the boundary condi-
tions, are artificially “cut short.” Indeed, for each element of the source partition
the solution to the exterior problem is computed only until the region of interest falls
inside the lacuna. The effect of the corresponding mismatch on the overall numerical
performance will be throughly studied in the future. In the meantime, we simply
provide some computational examples.

We are solving a model problem of radiation of waves by a known source. The
exact solution for this problem is available; it is obtained by reverse engineering, i.e.,
by picking a function, substituting it under the differential operator, and deriving the
right-hand side. For actual computations, we choose the Yee scheme [36], which is a
well-known staggered central-difference scheme that has second order accuracy. We
also set ωpe/ω = 1/100 and select other parameters (grids, geometry, etc.) as in [24].
Namely, the computations are conducted on a uniform grid in the cylindrical coordi-
nates. The methodology does not require that the grid be fitted to the shape of the
domain of interest, and we choose the latter spherical. Note that the parameter c1 (see
formulae (3.34) and (3.35)), is not specified explicitly as input for the computational
procedure, but other parameters are specified so as to effectively make it c1/c ≈ 0.9.

In Figure 3.2, we present the results of the grid convergence study (binary logarithm
of the maximum norm of the error as a function of time) for two different values of
the diameter of the sphere. The grid dimensions shown in Figure 3.2 pertain to the
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Fig. 3.2. Numerical performance of the ABCs based on weak lacunae.

auxiliary domain of cylindrical coordinates that has radius π and length 2π. The
propagation speed is taken equal to one, and the computations are conducted over
the time interval equivalent to 20 times the time required for the waves to travel
across the sphere. At least for the particular setup selected, the plots in Figure 3.2
experimentally corroborate the design convergence rate of the scheme (second order)
equipped with the ABCs based on the weak lacunae.

3.6. Anisotropic case. As has been mentioned, the primary source of anisotropy
in the ionospheric plasma is the magnetic field of the Earth. It may play an impor-
tant role for the propagation of electromagnetic waves. In particular, it may affect
the structure and depth of the weak lacunae. In this section, we outline an approach
to analyzing the weak lacunae in the presence of a constant external magnetic field.

Let B0 = const be the magnetic field of the Earth. Then, the Lorentz term is to
be kept on the right-hand side of (3.2), and instead of (3.3) we obtain

(3.43) me
du

dt
= −eE − e

c
u ×B0.

We now need to find the first time derivative of the induced current that provides the
excitation for the electric field on the right-hand side of the governing equation (3.1).
Substituting jind = −eneu into (3.43), we obtain

(3.44) j ′ind =
ω2

pe

4π
E − Ωejind × B0

|B0|
.

Equation (3.44) is a first order ordinary differential equation with respect to the
unknown current jind, which is a function of time. It needs to be solved along with
(3.1). It is clear that in doing so the dependence of j ′ind on E will be given by a
convolution, which means that the responses of the anisotropic medium (3.43) will,
generally speaking, be nonlocal in time. Later in the section we will see, however,
that under certain assumptions the effect of anisotropy can still be regarded as small.

We begin with providing an elementary frequency-domain analysis. The use of
the variable P (polarization), where jind = ∂P

∂t , will be more convenient on some
occasions, because it has the same dimension as the field E . In the frequency domain,
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(3.44) can be transformed into

(3.45) ω2P(ω) + iωΩeP(ω) × B0

|B0|
= −

ω2
pe

4π
E(ω).

Assuming with no loss of generality that the magnetic field B0 is aligned with the
Cartesian coordinate z, we solve (3.45) with respect to P(ω) and obtain

(3.46)

P(ω) = −
ω2

pe

4πω2
E(ω)+

ω2
pe

4πω2

iωΩe

ω2 − Ω2
e

E(ω) × B0

|B0|

−
ω2

pe

4πω2

Ω2
e

ω2 − Ω2
e

⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦E(ω).

Note that the first term on the right-hand side of (3.46) is exactly the same as we
obtained in the isotropic case; see formula (3.5). The second and third terms on
the right-hand side of (3.46) are due to the presence of the magnetic field B0. These
terms, which are proportional to the first and second power of the cyclotron frequency
Ωe, respectively, are known to be responsible for the effects of gyrotropy and Faraday
rotation that accompany the propagation of electromagnetic waves in the anisotropic
plasma; see [18, 21].

The case of particular interest for us is that of the high-frequency propagation.
If ω � ωpe, then also ω � Ωe, because according to section 3.1, Ωe is about an order
of magnitude lower than ωpe for the typical range of parameters that characterize the
ionospheric plasma. Consequently, instead of (3.46) we can write

(3.47) P(ω) ≈ −
ω2
pe

4πω2
E(ω) +

ω2
pe

4πω2

iΩe

ω
E(ω) × B0

|B0|
.

Note that B0/|B0| on the right-hand side of (3.47) is a dimensionless unit vector
in the direction of the magnetic field B0. Then, by comparing the two terms on
the right-hand side of (3.47) and by recalling that the effect of the first term on
lacunae back in the time domain is O(

ωpe

ω ) (see estimates (3.31) and (3.39)), we can
qualitatively conjecture that the additional effect of anisotropy on lacunae is likely to

be O(
ωpe

ω ·
√

Ωe

ω ). It is expected to be much smaller than the O(
ωpe

ω ) attributed to
the “primary” dispersion, because the extra factor contained in the second term on
the right-hand side of (3.47) is Ωe/ω � 1.

To conduct the analysis in the time domain, we employ the Laplace transform
instead of the Fourier transform and, assuming homogeneous initial conditions for the
polarization, obtain (cf. formula (3.45))

(3.48) s2P(s) + sΩeP(s) × B0

|B0|
=

ω2
pe

4π
E(s).

The primary quantity of interest for us is s2P , because j ′ind = P ′′, and we find

s2P(s) =
ω2

pe

4π
E(s) +

ω2
pe

4π

⎡
⎢⎢⎣
− Ω2

e

s2+Ω2
e

− Ωes
s2+Ω2

e
0

Ωes
s2+Ω2

e
− Ω2

e

s2+Ω2
e

0

0 0 0

⎤
⎥⎥⎦E(s).
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Consequently,

(j′ind)x = P ′′
x =

ω2
pe

4π
Ex +

ω2
peΩe

4π
[− sin(Ωet) ∗ Ex(t) − cos(Ωet) ∗ Ey(t)] ,

(j′ind)y = P ′′
y =

ω2
pe

4π
Ey +

ω2
peΩe

4π
[cos(Ωet) ∗ Ex(t) − sin(Ωet) ∗ Ey(t)] ,

(j′ind)z = P ′′
z =

ω2
pe

4π
Ez.

From the previous expressions we see that electromagnetic responses of the aniso-
tropic plasma involve off-diagonal terms, i.e., relate different components of the field
and current vectors (as opposed to only respective components). Therefore, we will
employ diagonalization by means of the transformation T :

T =

⎡
⎣i −i 0

1 1 0
0 0 1

⎤
⎦ , T −1 =

⎡
⎢⎣−i/2 1/2 0

i/2 1/2 0

0 0 1

⎤
⎥⎦ .

Let E = T G and P = T Q . Then, (3.48) transforms into

(3.49) s2Q(s) =
ω2

pe

4π
G(s) +

ω2
pe

4π

Ωe

s2 + Ω2
e

⎡
⎣−Ωe + is 0 0

0 −Ωe − is 0
0 0 0

⎤
⎦G(s).

If we also define jind = T q , then sq(s) = s2Q(s), and from (3.49) we find

q′x(t) =
ω2

pe

4π
Gx(t) + i

ω2
peΩe

4π

[
eiΩet ∗Gx(t)

]
,

q′y(t) =
ω2

pe

4π
Gy(t) − i

ω2
peΩe

4π

[
e−iΩet ∗Gy(t)

]
,(3.50)

q′z(t) =
ω2

pe

4π
Gz(t).

To quantify the effect of anisotropy, we will need to analyze the convolutions on
the right-hand side of the first two equations (3.50):

e±iΩet ∗Gx, y(t) =

∫ t

0

e±iΩe(t−v)Gx, y(v)dv = e±iΩet

∫ t

0

e∓iΩevGx, y(v)dv.

Consider, for example, the component Gx and introduce the following ansatz: Gx(v) =
eiωtG̃x(v), where G̃x(v) is assumed to be a slowly varying function. Then, we integrate
by parts twice and obtain∫ t

0

e−iΩevGx(v)dv =
1

i(ω − Ωe)

[
Gx(t)e−iΩet −

∫ t

0

ei(ω−Ωe)vG̃′
x(v)dv

]

=
1

i(ω − Ωe)
Gx(t)e−iΩet +

G̃′
x(t)ei(ω−Ωe)t − G̃′

x(0)

(ω − Ωe)2

− 1

(ω − Ωe)2

∫ t

0

ei(ω−Ωe)vG̃′′
x(v)dv.
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Consequently,

∂qx
∂t

=
ω2

pe

4π
Gx(t) +

ω2
pe

4π

Ωe

ω − Ωe
Gx(t)

+ eiΩet
ω2

pe

4π

Ωe

ω − Ωe

G̃′
x(t)ei(ω−Ωe)t − G̃′

x(0)

ω − Ωe
(3.51)

− eiΩet
ω2

pe

4π

Ωe

ω − Ωe

1

ω − Ωe

∫ t

0

ei(ω−Ωe)vG̃′′
x(v)dv.

Slow variation of G̃x(v) means that it is slow on the scale of the high-frequency
oscillation ω, and in many cases this slowness is a natural assumption about the field.
Under this assumption, the third and fourth terms on the right-hand side of equality
(3.51) can be neglected. Indeed, the third term is small compared to the second one
because

max |G′
x|

ω − Ωe
� max |Gx|.

As for the fourth term on the right-hand side of (3.51), using the Riemann–Lebesgue
lemma we can write∫ t

0

ei(ω−Ωe)vG̃′′
x(v)dv = o (max |G′′

x|) as ω → ∞.

Therefore, for high carrier frequencies it is also small compared to the second term.
Consequently,

(3.52)
∂qx
∂t

≈
ω2

pe

4π

(
1 +

Ωe

ω − Ωe

)
Gx(t),

and a similar expression can be obtained for q′y. Hence, when the field is represented
as the product of a rapidly oscillating carrier times a slowly varying envelope, the
nonlocal responses due to the anisotropy can be approximated by local expressions of
the type (3.52).

Finally, let us revisit the governing equation for the field (3.1). We note that
when plasma becomes anisotropic, the notion of longitudinal and transverse waves
often changes its meaning, and in the literature one would typically consider the waves
that propagate along the magnetic field and those that propagate perpendicular to
the magnetic field; see, e.g., [8]. Of course, other propagation angles are also possible,
and, in general, the split into the longitudinal and transverse components is not
always straightforward. We will, however, still consider the transverse field E⊥ in the
previous sense of the word, i.e., the one that satisfies divE⊥ = 0. Let also E⊥ = T G;
then from (3.1) we obtain

∂T G

∂t
− c2Δ(T G) + 4π

∂T q

∂t
= 0 .

Since T is a constant matrix, and the vector Laplacian in the Cartesian coordinates
applies independently to individual components, we can use formulae (3.50), (3.52)
and write

∂G

∂t
− c2ΔG + ω2

pe

⎡
⎢⎣1 + Ωe

ω−Ωe
0 0

0 1 + Ωe

ω−Ωe
0

0 0 1

⎤
⎥⎦G = 0 .
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This is a vector equation, which is equivalent to three scalar Klein–Gordon equations.
For the first two components the dispersive term is ∼ ω2

pe(1 + Ωe

ω−Ωe
) as opposed to

simply ∼ ω2
pe, which was the case in section 3.4. We therefore conclude that the

additional effect of anisotropy on weak lacunae of electromagnetic waves in the dilute

ionospheric plasma can be approximately measured as O(
ωpe

ω

√
Ωe

ω−Ωe
).

4. Discussion. Classical lacunae can be observed in the solutions of the Maxwell
equations only when the electromagnetic waves propagate in vacuum or in dielectric
media with static response. Otherwise, the propagation is accompanied by aftereffects,
and there are no sharp aft fronts and no lacunae in the solutions. For low incident
frequencies, the mechanism that destroys the lacunae can largely be attributed to
dissipation due to the Ohm conductivity. For high incident frequencies, when the
material coefficients can no longer be considered constant, the diffusion of waves is
basically caused by the physical dispersion. However, for the propagation of transverse
electromagnetic waves in dilute plasma, when the incident frequency is much higher
than the Langmuir frequency, lacunae can still be identified in the corresponding
solutions of the Maxwell equations, although in an approximate sense. The depth of
these weak lacunae, i.e., the magnitude of the residual field relative to the magnitude
of the field in the primary wave packet, is proportional to the ratio of the Langmuir
frequency over the primary carrying frequency of the waves. In the anisotropic case,
when the plasma is immersed into the external magnetic field, there is an additional
small factor, approximately equal to the square root of the ratio of the cyclotron
frequency over the carrier frequency, that affects the depth of the weak lacunae.

An interesting subject for future study could be analysis of the case when
anisotropic responses should remain nonlocal in time, as well as a more careful anal-
ysis of the conductivity mechanisms in the ionosphere. On the numerical side, the
future direction is the ABC algorithm based on the weak lacunae.
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[2] M. F. Atiyah, R. Bott, and L. Gȧrding, Lacunas for hyperbolic differential operators with
constant coefficients. II, Acta Math., 131 (1973), pp. 145–206.
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