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Abstract

In [J. Comput. Phys. 171 (2001) 632–677] we developed a fourth-order numerical method for solving the nonlinear

Helmholtz equation which governs the propagation of time-harmonic laser beams in media with a Kerr-type nonlinear-

ity. A key element of the algorithm was a new nonlocal two-way artificial boundary condition (ABC), set in the direc-

tion of beam propagation. This two-way ABC provided for reflectionless propagation of the outgoing waves while also

fully transmitting the given incoming beam at the boundaries of the computational domain. Altogether, the algorithm

of [J. Comput. Phys. 171 (2001) 632–677] has allowed for a direct simulation of nonlinear self-focusing without neglect-

ing nonparaxial effects and backscattering. To the best of our knowledge, this capacity has never been achieved previ-

ously in nonlinear optics.

In the current paper, we propose an improved version of the algorithm. The principal innovation is that instead of

using the Dirichlet boundary conditions in the direction orthogonal to that of the laser beam propagation, we now

introduce Sommerfeld-type local radiation boundary conditions, which are constructed directly in the discrete frame-

work. Numerically, implementation of the Sommerfeld conditions requires evaluation of eigenvalues and eigenvectors

for a non-Hermitian matrix. Subsequently, the separation of variables, which is a key building block of the aforemen-

tioned nonlocal ABC, is implemented through an expansion with respect to the nonorthogonal basis of the eigenvec-

tors. Numerical simulations show that the new algorithm offers a considerable improvement in its numerical

performance, as well as in the range of physical phenomena that it is capable of simulating.
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1. Introduction

1.1. Background

The objective of this paper is to introduce, implement, and test a new and improved numerical algorithm

for studying nonlinear self-focusing of time-harmonic electromagnetic waves. The phenomenon of self-

focusing takes place in optical propagation through many ‘‘conventional’’ media, such as water, silica,

or air, provided that the intensity of the impinging electromagnetic wave is sufficiently high. The physical

mechanism that leads to self-focusing is known as the Kerr effect. At the microscopic level, the Kerr effect

may originate from electrostriction, nonresonant electrons, or from molecular orientation. At the macro-
scopic level the Kerr effect is manifested through an increase in the index of refraction, which is propor-

tional to the intensity of the electric field jEj2. Since light rays bend toward regions with higher index of

refraction, an impinging laser beam would become narrower as it propagates, a phenomenon known as

self-focusing. For more information on self-focusing, see, e.g., [1–3].

Since nonlinear self focusing leads to nonuniformities in the refraction index, a part of the incoming

beam gets reflected backwards, a phenomena known as nonlinear backscattering. At present, very little

is known about it, except for the general belief that it is ‘‘small.’’ Since, however, small-magnitude mech-

anisms can have a large effect in nonlinear self-focusing in bulk medium [3], one needs to be able to accu-
rately quantify the magnitude of backscattering and study how it may affect the beam propagation. From

the standpoint of applications in modern science and engineering, the capability to quantitatively analyze

and predict the phenomena of nonlinear self-focusing and backscattering is extremely important for a large

number of problems. Those range from remote atmosphere sensing (when an earth-based powerful laser

sends pulses to the sky [4], and the backscattered radiation accounts for the detected signal), to laser surgery

(propagation of laser beams in tissues), to transmitting information along optical fibers. There are other

possible applications, e.g., all-optical switching in electrical/electronic circuits, that involve interactions

(collisions) between co-propagating or counter-propagating beams. It is well known that within the frame-
work of a simpler model based on the nonlinear Schrödinger equation, these beams have the form of spatial

solitary waves (solitons), and that collisions between solitons are elastic (i.e., involve no power losses).

However, whether such collisions remain elastic in more comprehensive models, such as the nonlinear

Helmholtz question, is currently an open problem.
1.2. The nonlinear Helmholtz equation

The simplest theoretical (and experimental) setup for the propagation of electromagnetic waves in Kerr
media is shown in Fig. 1. An incoming laser beam with known characteristics impinges normally on the

planar interface z = 0 between the linear and nonlinear medium. The time-harmonic electric field

E = E(x,z) is assumed to be linearly polarized and is governed by the scalar nonlinear Helmholtz equation

(NLH):
ðozz þ D?ÞE þ k2E ¼ 0;

k2 ¼ k20ð1þ �jEj2rÞ; r > 0; x 2 RD�1; z P 0;
ð1Þ
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Fig. 1. Schematic for the propagation of waves in Kerr media.
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where k0 is the linear wavenumber, � = 2n2/n0, n0 is the linear index of refraction, n2 is the Kerr coefficient,

and D? ¼ ox1x1 þ � � � þ oxD�1xD�1
is the D � 1 dimensional transverse Laplacian (the diffraction term). The

value of r is equal to one for the physical Kerr effect. However, for reasons that will become apparent

is Section 1.5, other values of r are also considered in this study. Note also that in all the physical problems

mentioned earlier, the nonlinearity in (1) is typically weak, i.e., �jE (inc,left)(x)j2r � 1, where E (inc,left) is the

impinging wave, see Fig. 1. The reason for this is that the physical value of the Kerr index n2 is so small,

that even for high-power lasers the nonlinear change in the index of refraction is usually small compared
with the linear index of refraction, i.e., n2jEj2 � n0.

The nonlinear medium occupies the half-space z P 0. Consequently, the NLH (1) should be supple-

mented with boundary conditions at z = 0 and at z = +1. Although global existence of its solutions is cur-

rently an open problem, there are various indications that, at least in some cases, the NLH is solvable (see

Section 1.5). In fact, one of our primary long term goals in this study is to address the solvability issue with

the help of our numerical methodology. Assuming that the solution does exist globally, for large propaga-

tion distances (i.e., as z ! þ1) it can either diffract, in which case the propagation becomes linear, or it can

maintain its shape through a balance of the focusing nonlinearity and diffraction (i.e., converge to a soli-
ton). In either case, as z ! þ1;E will have no left-propagating components, i.e., E will only be composed

of the right-traveling waves. Since the actual numerical simulation is carried out on a truncated domain

0 6 z 6 zmax, the desired behavior of the solution as z ! þ1 has to be captured by a far-field artificial

boundary condition (ABC) at the artificial boundary z = zmax. This boundary condition should guarantee

the reflectionless propagation of all the waves traveling toward z = +1 through the interface z = zmax.

Often, boundary conditions designed to ensure the transparency of the outer boundary to the outgoing

waves are referred to as radiation boundary conditions [5].

The situation at the interface z = 0 is more complicated, as the total field there, E(x,0), is composed of a
given incoming component E (inc,left)(x) and the unknown backscattered (i.e., outgoing) component

E (scat)(x,0), i.e.,
Eðx; 0Þ ¼ Eðinc;leftÞðxÞ þ EðscatÞðx; 0Þ. ð2Þ

As such, the boundary condition at z = 0 has to provide for the reflectionless propagation of any outgo-

ing (left-traveling) wave through this interface, and at the same time has to be able to correctly prescribe the

incoming (right-traveling) field. A two-way ABC that possesses the required capabilities has been first

implemented in [6].

In addition to the foregoing simplest setup, we can also use our algorithm to solve more elaborate

problems. For example, instead of assuming that the nonlinear Kerr medium occupies the entire
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semi-space z P 0 and as such, that it can only be excited by waves coming from the left, we can consider

the Kerr medium to be confined to the ‘‘slab’’ 0 6 z 6 zmax, as is frequently the case in experiments.

Then, the excitation can be provided by waves impinging on both interfaces z = 0 and z = zmax. As such,

from the standpoint of setting the two-way ABCs these interfaces become equal – either has to be trans-

parent for its corresponding outgoing waves while simultaneously being able to fully transmit the
corresponding incoming field. The latter setup will be instrumental for simulations of coherent coun-

ter-propagating beams.

1.3. Transverse boundary conditions

Any of the foregoing formulations requires setting boundary conditions in the transverse direction(s)

xj, j = 1, . . . ,D � 1. Although in some cases the domain filled by the Kerr medium extends all the way

to infinity in the transverse direction(s), for the purpose of practical computing, we truncate this domain
at an external artificial boundary oX� Rþ and set the boundary conditions for all (x,z) such that

x 2 oX � RD�1 and z P 0. In our previous work [6–8], we assumed that the electric field vanished at

this lateral artificial boundary: E(x,z)jx 2 oX,z P 0 = 0. While the approach in [6–8] enabled us, apparently

for the first time ever, to solve the NLH as a genuine boundary value problem, there have still been

indications that it could be improved. Indeed, the Dirichlet boundary conditions, while being easy to

implement, possess the non-physical property of reflecting the waves back from the lateral boundaries

into the computational domain. Even though the solution with the Dirichlet transverse boundary con-

ditions can be expected to approximate well the original infinite-domain solution in the domain of phys-
ical interest, namely in the central region of the computational domain,2 we still had to position the

lateral boundaries sufficiently far away from the center so that to alleviate the undesirable reflections,

see [6–8]. In addition, the Dirichlet boundary conditions have been found to sometimes produce spuri-

ous numerical resonances that prevented the algorithm of [6] from converging. Therefore, in the current

paper we replace the Dirichlet boundary condition with a local Sommerfeld-type radiation boundary

condition. Implementation of these Sommerfeld radiation boundary conditions at the transverse bound-

aries of the computational domain is the key algorithm improvement that we present in the current

study, compared with [6]. As we shall see, the present methodology facilitates major gains in perfor-
mance, allowing us to reduce the transverse width of the computational domain considerably. Moreover,

it completely removes the aforementioned resonance problem.

1.4. Paraxial approximation and the nonlinear Schrödinger equation

Let r0 be the initial radius of the impinging laser beam. We first introduce the dimensionless quantities
~x; ~z, and A:
2 Mo

domai

on bou
~x ¼ x

r0
; ~z ¼ z

2LDF

; E ¼ eik0zð�r20k
2
0Þ

�1=2rAðx; zÞ; ð3Þ
where LDF ¼ k0r20 is the diffraction length. Then, by dropping the tildes we obtain from (1):
iAz þ D?Aþ jAj2rA ¼ �4f 2Azz; ð4Þ
where f = 1/r0k0 � 1 is the small nonparaxiality parameter.
re precisely, as the location of the lateral boundaries approaches infinity, the corresponding solutions converge to the infinite-

n solution on any region compactly supported in the transverse direction, see [9] for more detail on the concept of convergence

nded sub-domains.
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The standard derivation of the nonlinear Schrödinger equation (NLS) is based on the assumption that

the envelope A varies slowly. Then, one can neglect the right-hand side of (4) (i.e., apply the paraxial

approximation) and obtain the NLS:
iAz þ D?Aþ jAj2rA ¼ 0. ð5Þ
The NLS (5) is an evolution equation in which the variable z plays the role of ‘‘time.’’ Hence, it only needs

to be supplemented by the initial condition at z = 0:
Aðx; 0Þ ¼ ð�r20k20Þ
1=2rEðinc;leftÞðxÞ.
Subsequently, the NLS (5) is to be integrated by a ‘‘time’’-marching algorithm for z > 0. We note that

almost all self-focusing studies available in the Literature have used NLS-based models, rather than the

NLH, the main reason being that the NLH is much a ‘‘tougher’’ object for analysis and for simulations.

However, the NLH provides a more comprehensive physical model for self-focusing. In particular, it takes
into account the effect of nonlinear backscattering, which the NLS model disregards. Indeed, once (5) has

been integrated, the overall solution, according to (3), is the slowly varying amplitude A times the forward

propagating oscillatory component eik0z.

The capability to account for the effects of nonparaxiality and backscattering makes the NLH model (1)

more in-depth compared to the simpler NLS model (5). It is precisely the role of these two important effects

in nonlinear wave propagation that the numerical methodology developed in this paper would enable us to

focus on. In the overall perspective, however, the scalar NLH (1) itself does not represent the most general

setup either. A yet more comprehensive model would be the vector NLH that also accounts for the vectorial
nature of the electric field while still taking care of the phenomena of nonparaxiality and backscattering.

Note that the vectorial effects, nonparaxiality, and backscattering are all of the same order of magnitude;

see [10] for more detail.

1.5. Solitons and collapse

It is well known that solutions of the NLS (5) exist globally when r(D � 1) < 2, the subcritical NLS, but

can become singular (collapse) at finite propagation distances, when either r(D � 1) > 2, the supercritical
NLS, or when r(D � 1) = 2, the critical NLS [2]. As shown by Weinstein [11], a necessary condition for

singularity formation in the critical NLS is that the input beam power (i.e., kAð�; 0Þk22) exceeds the critical

power Nc. The value of Nc is equal to the power of the ground-state solitary wave solution of the NLS; this

value can be calculated explicitly for D = 2 and numerically for D > 2.

In our subsequent numerical simulations in Section 4 we will focus on two cases. The first one is D = 2

and r = 2 (quintic nonlinearity), for which the NLS (5) is critical. Although the actual physical setting for

the critical NLS is D = 3 and r = 1, which corresponds to propagation of waves in a bulk Kerr medium, one

can expect the role of nonparaxiality and backscattering to be quite similar for both cases. This expectation
should, in particular, pertain to the question, which has been open for many years, of whether the more

comprehensive NLH model for nonlinear self-focusing eliminates the singular behavior that characterizes

collapsing solutions of the critical NLS. Unfortunately, the fundamental issue of solvability of the NLH

and regularity of its solutions still remains largely unaddressed. There have been indications that solutions

to the NLH may exist even when the corresponding NLS solutions become singular, based on both numer-

ical study of ‘‘modified’’ NLS equations [12–14], and on asymptotic analysis [15], but these studies did not

take the backscattering effects into account. An additional argument in this direction is provided in our re-

cent work [8], where we have used the numerical algorithm of [6], that does account for backscattering, to
show the existence of initial conditions for which the solutions of the linearly damped NLS become singu-

lar, whereas the corresponding solutions of the linearly-damped NLH exist globally. In a very recent work
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[16], Sever employed a Palais-Smale type argument and has shown that the NLH is solvable in the sense of

H1 and that the solution is not unique. His argument, however, only applies to self-adjoint operators,

which, as we will see, is not the case in many physics-motivated situations. We therefore expect that the

original numerical methodology of [6], its extension proposed in the current paper, as well as possible sub-

sequent improvements, may eventually help us answer the outstanding question of global existence in the
critical NLH.

The second case that we will consider is D = 2 and r = 1 (cubic nonlinearity), which physically corre-

sponds to nonlinear propagation in a planar waveguide (i.e., there is only one transverse dimension). In

this subcritical case solutions to the NLS do not collapse. Instead, the laser beam can propagate in the Kerr

medium over very long distances without changing its profile – the type of behavior often referred to as

spatial soliton. In the past, solitons have primarily been studied as solutions to the NLS. Although it is gen-

erally expected that in the subcritical case the NLH will have similarly looking solutions, until now it was

not actually possible to study the effect of nonparaxiality and backscattering on solitons. Even more so, the
NLH appears particularly well suited for simulating interactions between counter-propagating solitons.

Indeed, in the NLH framework the counter-propagating case can be naturally formulated as a boundary-

value problem on the slab 0 6 z 6 zmax, see Fig. 1, whereas in the NLS framework the two counter-

propagating solitons will imply two opposite directions of marching.3

1.6. Brief contents of the paper

In Section 2, we use a continuous formulation to describe the algorithm for solving the NLH (1). The
nonlinearity in Eq. (1) is addressed iteratively, so that only the standard constant-coefficient Helmholtz

operator needs to be repeatedly inverted in the course of the iterations. This inversion is done using the

separation of variables; the latter is rendered by expansion with respect to the eigenfunctions of the trans-

verse Laplacian subject to the Sommerfeld boundary conditions at the lateral artificial boundaries. Besides

its simplicity, the key reason for solving the linear constant coefficient Helmholtz equation via the separa-

tion of variables is that this approach facilitates setting the highly accurate nonlocal two-way ABCs at the

boundaries z = 0 and z = zmax. The key distinction between the method proposed hereafter and the previ-

ously developed technique of [6], is that in [6] the boundary condition at the lateral artificial boundary was
zero Dirichlet and we could therefore use the conventional trigonometric Fourier expansion in the trans-

verse direction. In contradistinction to that, hereafter we employ the Sommerfeld radiation boundary con-

ditions in the transverse direction that lead to a non-Hermitian operator with nonorthogonal set of

eigenfunctions. Some analytic aspects of this unconventional approach are derived. In particular, it is

shown that the introduction of transverse radiation results in linear ‘‘damping’’ in the direction of

propagation.

In Section 3, we describe the fourth-order discrete formulation of the algorithm: The finite-difference

scheme that we use, the discrete local Sommerfeld boundary conditions at the lateral artificial boundaries,
and the discrete nonlocal ABCs at z = 0 and z = zmax. Also in this section, we discuss the expansion with

respect to the nonorthogonal discrete eigenfunctions in the transverse direction.

In Section 4, we present computational results obtained with the new NLH solver for the critical NLH

(collapsing solutions) and for the subcritical NLH (soliton propagation and counter-propagating solitons).

The foremost observation to be made is that the introduction of the transverse Sommerfeld radiation

boundary conditions offers major gains in numerical performance compared with the original methodology

of [6]; these gains stem primarily from the possibility to substantially reduce the transverse size of the
3 Counter-propagating beams have been simulated using two coupled NLS equations [17], but this approach involves some

approximations which are not needed within the NLH framework.
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computational domain, see Section 4.1. In addition, the new approach allows us to improve the overall sta-

bility and robustness of the numerical algorithm.

Section 5 concludes the presentation with a discussion.
2. Algorithm – continuous formulation

For clarity of presentation, we first outline the algorithm using a continuous formulation. We consider

from now on the case D = 2 that corresponds to propagation in a planar waveguide. Therefore, Eq. (1)

becomes
ðozz þ oxxÞEðx; zÞ þ k2E ¼ 0;

k2 ¼ k20ð1þ �jEj2rÞ; r > 0; x 2 R; z P 0.
ð6Þ
Compared with the case D = 3, the two-dimensional setup offers a considerable reduction of the compu-

tational effort while preserving all the essential physical and numerical effects. For simplicity and with no

substantial loss of generality, for all our numerical experiments we will choose the rectangular computa-
tional domain {�xmax 6 x 6 xmax,0 6 z 6 zmax}. At the ‘‘upstream’’ and ‘‘downstream’’ boundaries

z = 0 and z = zmax we will set the nonlocal two-way ABCs. At the transverse boundaries x = ±xmax we will

set local radiation boundary conditions of the Sommerfeld type.

2.1. Iteration scheme

We solve the NLH (6) iteratively by freezing the nonlinearity and reducing the NLH to a linear variable-

coefficient equation on every iteration
DEðjÞ þ k20ð1þ �jEðj�1Þj2rÞEðjÞ ¼ 0; j ¼ 1; 2; . . . ; ð7Þ

where D = ozz + oxx. The initial guess is typically chosen as E(0) ” 0. The sequence (7) will be referred to as

the outer iteration loop or the nonlinear iteration loop. Then, for every j the corresponding linear equation (7)
is also solved iteratively as
DEðj;kÞ þ k20E
ðj;kÞ ¼ �k20� E

ðj�1;KÞ�� ��2rEðj;k�1Þ; k ¼ 1; 2; . . . ;K; ð8Þ
where E(j,0) = E(j� 1,K). We will refer to sequence (8) as to the inner iteration loop. It is clear that finding

E(j,k) for every k in (8) amounts to solving the standard constant-coefficient inhomogeneous Helmholtz

equation:
DE þ k20E ¼ Uðx; zÞ; ð9Þ

with E = E(j,k)(x,z) and Uðx; zÞ � �k20�jEðj�1;KÞðx; zÞj2rEðj;k�1Þðx; zÞ.

Eq. (9) is solved repeatedly [for updated U(x,z)] on the rectangular computational domain via the sep-

aration of variables. In so doing, the boundary conditions in either the longitudinal direction z or the trans-

verse direction x are specified for the linear constant-coefficient equation (9), rather than for the original

nonlinear equation (6), see Section 2.2. The reason is that the key role of the boundary conditions is to

distinguish between the waves propagating in different directions, see Section 1.2, and this is done most
naturally in the linear framework. Once the iterations converge, the resulting solution is assumed to inherit

the desired wave radiation properties that are built into the methodology for solving Eq. (9). We also note

that no rigorous convergence theory is available for the nested iterations (7) and (8). The inner loop (8) can

formally be interpreted as a fixed point scheme, see [6], but altogether the convergence of this iteration can

only be judged experimentally in the discrete framework.



190 G. Fibich, S. Tsynkov / Journal of Computational Physics 210 (2005) 183–224
2.2. Separation of variables and boundary conditions

The Sommerfeld radiation boundary conditions in the transverse direction x are set based on factoriza-

tion of the one-dimensional second-order Helmholtz operator into the product of two first-order factors:
oxx þ k20I ¼ ðox þ ik0IÞðox � ik0IÞ; ð10Þ
where i ¼
ffiffiffiffiffiffiffi
�1

p
, I is the operator identity, and k0 ¼

ffiffiffiffiffi
k20

q
> 0. While the equation ðoxx þ k20IÞE ¼ 0 admits

two linearly independent solutions, eik0x and e�ik0x, each of the first-order factors on the right-hand side of

(10) selects only one solution from the foregoing pair. Therefore, the boundary conditions
Ex � ik0Ejx¼xmax
¼ 0 and Ex þ ik0Ejx¼�xmax

¼ 0 ð11Þ
correspond to propagation of waves only upward or only downward, respectively, see Fig. 1. In other

words, they guarantee that the upper artificial boundary x = xmax be completely transparent for the plane

waves eik0x traveling with normal incidence in the positive x direction, and the lower artificial boundary

x = �xmax be completely transparent for the plane waves e�ik0x traveling with normal incidence in the neg-

ative x direction.
Let us now introduce the following eigenvalue problem on [�xmax,xmax] for the transverse Laplacian

D^ ” oxx, subject to the radiation boundary conditions (11):
wxx ¼ kw; wx � ik0wjx¼xmax
¼ 0; wx þ ik0wjx¼�xmax

¼ 0. ð12Þ
It is easy to show that the eigenfunctions w = w(l)(x) of (12) are given by w ¼
coshð

ffiffiffi
k

p
xÞ and w ¼ sinhð

ffiffiffi
k

p
xÞ, and that the eigenvalues k = k(l) can be obtained by solving the transcen-

dental equation:
e2
ffiffi
k

p
xmax ¼ �

ffiffiffi
k

p
þ ik0ffiffiffi

k
p

� ik0
; ð13Þ
where the plus and minus signs correspond to w ¼ coshð
ffiffiffi
k

p
xÞ and to w ¼ sinhð

ffiffiffi
k

p
xÞ, respectively.

Eq. (12) is not a classical Sturm–Liouville problem, because the operator oxx subject to boundary con-

ditions (11) is not self-adjoint. As such, one should not expect its eigenvalues to be real. Indeed,
Proposition 1. Let k be an eigenvalue of (12). Then, Im(k) > 0.

Proof. Let
ffiffiffi
k

p
¼ aþ ib, where a; b 2 R. Taking the absolute value of each side of Eq. (13) yields
e4axmax ¼ a2 þ ðk0 þ bÞ2

a2 þ ðk0 � bÞ2
.

If a = 0, then the left-hand-side term above is equal to one, hence b = 0. Therefore, the eigenfunctions are

equal to a constant, which has to be zero because of the boundary conditions (11). Therefore, a 6¼ 0.
If a > 0, then the left-hand-side term above is greater than one, hence b > 0. Similarly, if a < 0 then b < 0.

Therefore, Im(k) = 2ab > 0. h

Furthermore, since the boundary-value problem (12) is not self-adjoint, its eigenfunctions {w(l)(x)}
are, generally speaking, nonorthogonal. Therefore, one cannot separate the variables in Eq. (9) using

standard Fourier expansion of its solution in terms of the eigenfunctions of (12). It, however, turns

out that one can still build the expansion Eðx; zÞ ¼
P

lÊlðzÞwðlÞðxÞ with the help of the following ‘‘real

orthogonality’’ property of the eigenfunctions {w(l)(x)} (see, e.g., [18] for further detail) summarized in

Propositions 2 and 3:



G. Fibich, S. Tsynkov / Journal of Computational Physics 210 (2005) 183–224 191
Proposition 2. Let w(m) and w(n) be the eigenvectors of (12) with corresponding eigenvalues km 6¼ kn. Then,
Z xmax

�xmax

wðmÞðxÞwðnÞðxÞdx ¼ 0. ð14Þ
Proof. Since wðmÞ ¼ k�1
m wðmÞ

xx ,
Z xmax

�xmax

wðmÞwðnÞ dx ¼ k�1
m

Z xmax

�xmax

wðmÞ
xx wðnÞ dx ¼ k�1

m wðmÞ
x wðnÞjxmax

�xmax
�
Z xmax

�xmax

wðmÞ
x wðnÞ

x dx
� �

¼ k�1
m ik0w

ðmÞwðnÞjxmax

�xmax
�
Z xmax

�xmax

wðmÞ
x wðnÞ

x dx
� �

.

Similarly,
Z xmax

�xmax

wðmÞwðnÞdx ¼ k�1
n ik0w

ðmÞwðnÞjxmax

�xmax
�
Z xmax

�xmax

wðmÞ
x wðnÞ

x dx
� �

.

Therefore, the result follows. h

Proposition 3. Let w be an eigenfunction of (12). Then,
Z xmax

�xmax

w2ðxÞdx 6¼ 0.
Proof. Let w ¼ coshð
ffiffiffi
k

p
xÞ. Then, using (13),
Z xmax

�xmax

cosh2ð
ffiffiffi
k

p
xÞdx ¼ 1

2

Z xmax

�xmax

½1þ coshð2
ffiffiffi
k

p
xÞ�dx ¼ 1

2
xþ sinhð2

ffiffiffi
k

p
xÞ

2
ffiffiffi
k

p
" #xmax

�xmax

¼ xmax þ
sinhð2

ffiffiffi
k

p
xmaxÞ

2
ffiffiffi
k

p

¼ xmax þ
expð2

ffiffiffi
k

p
xmaxÞ � expð�2

ffiffiffi
k

p
xmaxÞ

4
ffiffiffi
k

p ¼ xmax þ

ffiffi
k

p
þik0ffiffi
k

p
�ik0

�
ffiffi
k

p
�ik0ffiffi
k

p
þik0

4
ffiffiffi
k

p ¼ xmax þ
4

ffiffi
k

p
ik0

kþk2
0

4
ffiffiffi
k

p

¼ xmax þ
ik0

kþ k20
¼ xmaxðReðkÞ þ k20Þ þ iðxmaxImðkÞ þ k0Þ

kþ k20
.

Since Im(k) > 0, see Proposition 1, the imaginary part of the numerator is nonzero, and the result follows.

The proof for w ¼ sinhð
ffiffiffi
k

p
xÞ is similar. h

Note that as the eigenfunctions w(m) and w(n) are complex, expression (14) does not yield a genuine inner
product. However, Propositions 2 and 3 still indicate that the eigenfunctions of (12) can be rescaled so that
Z xmax

�xmax

wðmÞðxÞwðnÞðxÞdx ¼ dmn.
Therefore, for all z 2 [0,zmax], solution to the linear Helmholtz equation (9) can, in principle, be obtained
by expanding E and U on [�xmax, xmax] in terms of the rescaled eigenfunctions w(l)(x) of (12), i.e.,
Eðx; zÞ ¼
X
l

ÊlðzÞwðlÞðxÞ; Uðx; zÞ ¼
X
l

ÛlðzÞwðlÞðxÞ; ð15Þ
where
ÊlðzÞ ¼
Z xmax

�xmax

Eðx; zÞwðlÞðxÞdx; ÛlðzÞ ¼
Z xmax

�xmax

Uðx; zÞwðlÞðxÞdx. ð16Þ
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Naturally, these expansions only make sense provided that the series (15) and (16) converge. The most com-

prehensive justification for convergence would be based on completeness of the system of eigenfunctions

{w(l)(x)}. We, however, do not know whether this system is complete, and a full treatment of this important

issue is certainly beyond the scope of the present paper. Let us only note that the question of completeness

for systems of nonorthogonal eigenfunctions that do enjoy the real orthogonality property (14) has been
studied in the literature. For example, Ching et al. provide a physics-based argument toward completeness

for a similar but not identical to ours non-self-adjoint setting that involves a potential well with a discon-

tinuity at the boundary [19]. A rigorous mathematical approach to completeness for the systems of eigen-

functions of non-Hermitian operators has been developed by Agranovich et al. [18,20]. A key consideration

there is that the non-Hermitian operators that arise in the context of diffraction of time-harmonic waves can

be interpreted as small perturbations of self-adjoint operators. As far as we are concerned, however, in or-

der to justify the approach of our current paper we may not even have to require completeness of the system

of eigenfunctions {w(l)(x)}; it is sufficient to require that the series (15) and (16) converge for the solutions of
interest.

Therefore, for our practical purposes, we will hereafter be assuming the aforementioned convergence.

Then, substituting representation (15) into Eq. (9) and taking the ‘‘real inner product’’ (14) with w(l) we

obtain the following set of ordinary differential equations with respect to the unknown quantities ÊlðzÞ:
d2Êl

dz2
þ ðk20 þ kðlÞÞÊl ¼ Ûl. ð17Þ
Since Proposition 1 shows that Im(k(l)) > 0, we conclude from Eq. (17) that introduction of the Som-

merfeld radiation boundary conditions at the lateral boundaries results in the addition of a positive lin-

ear ‘‘damping’’ in the z direction. This conclusion has an intuitive explanation, since as the beam

propagates in the z direction, the transverse radiation at ±xmax will obviously cause a power drain away

from the interval [�xmax,xmax]. As shown in [8], introduction of linear damping has a regularizing effect
on the NLH (which, e.g., has allowed us to solve the linearly damped NLH for initial conditions that

led to singularity formation in the corresponding linearly damped NLS). However, unlike in [8], where

linear damping was essentially motivated by the physical process of absorption of waves by the medium

through which they propagate, the ‘‘damping’’ in (17) has nothing to do with actual physical absorp-

tion or with power losses. This ‘‘damping’’ in the z direction is rather a manifestation of the power

radiation at ±xmax. Another important difference is that unlike the case of physical damping, the mag-

nitude of ‘‘damping’’ in (17) is determined by the transverse eigenvalue k(l), i.e., it changes with the

mode number l.
To complete the current illustrative section, we yet have to describe a key component of the algorithm –

nonlocal ABCs at the boundaries z = 0 and z = zmax. Each Eq. (17) is to be considered on the interval

[0,zmax] and is to be supplemented by the boundary conditions at the endpoints z = 0 and z = zmax. Assum-

ing that supp ÛlðzÞ 	 ½0; zmax�, i.e., that if extended beyond the interval [0,zmax] the solution ÊlðzÞ would be

governed by the homogeneous counterpart of Eq. (17), we employ the same considerations as those that led

to the Sommerfeld conditions (11) and obtain:
dÊl

dz
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ kðlÞ

q
Êljz¼0 ¼ 0 and

dÊl

dz
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ kðlÞ

q
Êljz¼zmax

¼ 0. ð18Þ
The boundary conditions (18) guarantee that all outgoing waves will leave the domain [0,zmax] with no

reflection. Indeed, the left-traveling waves e�i
ffiffiffiffiffiffiffiffiffiffi
k2
0
þkðlÞ

p
z will propagate freely through the endpoint z = 0,

and the right-traveling waves ei
ffiffiffiffiffiffiffiffiffiffi
k2
0
þkðlÞ

p
z will propagate freely through the endpoint z = zmax.

Having obtained the ABCs (18) that allow for reflectionless propagation of all the outgoing waves, we
now need to take into account the given incoming wave as well, see formula (2) and Fig. 1. The incoming
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field Eðinc;leftÞðxÞ ¼
P

lÊ
ðinc;leftÞ
l wðlÞðxÞ that impinges on the interface z = 0 from the left gives rise to a solution

of the homogeneous constant-coefficient linear Helmholtz equation of the form
Eðx; zÞ ¼
X
l

Ê
ðinc;leftÞ
l ei

ffiffiffiffiffiffiffiffiffiffi
k2
0
þkðlÞ

p
zwðlÞðxÞ. ð19Þ
After the separation of variables, each individual component Êl ¼ Ê
ðinc;leftÞ
l ei

ffiffiffiffiffiffiffiffiffiffi
k2
0
þkðlÞ

p
z can be substituted

into the first relation of (18). Since this component satisfies dÊl
dz ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ kðlÞ

q
Êl for any z, the aforemen-

tioned substitution yields the two-way boundary condition at z = 0:
dÊl

dz
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ kðlÞ

q
Êljz¼0 ¼ 2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ kðlÞ

q
Ê
ðinc;leftÞ
l . ð20aÞ
Symmetrically, if there is also incoming radiation at the right interface z ¼ zmax : Eðinc;rightÞðxÞ ¼P
lÊ

ðinc;rightÞ
l wðlÞðxÞ, then a similar procedure leads to the two-way boundary condition at z = zmax as well:
dÊl

dz
� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ kðlÞ

q
Êljz¼zmax

¼ �2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ kðlÞ

q
Ê
ðinc;rightÞ
l . ð20bÞ
Note that while being able to correctly prescribe the given incoming wave(s), boundary conditions

(20) still retain the full radiation capability of boundary conditions (18). Indeed, any solution of type
(2) identically satisfies boundary condition (20a). A similar property will obviously hold for boundary

condition (20b) as well. The capability of properly handling the waves propagating through a given

interface in both directions has prompted us in [6] to call boundary conditions (20) the two-way

ABCs. In contradistinction to that, relations of type (18) that only guarantee the radiation of waves

in one particular direction, are often referred to in the literature as the one-way Helmholtz equations

[5,6].

Let us also emphasize that as the two-way ABCs (20) are obtained in the transformed space individually

for every mode l, they would become nonlocal if transformed back to the original space. Further discussion
on nonlocality of the boundary conditions can be found in Section 5.
3. Algorithm – finite-difference formulation

We now describe the finite-difference implementation of the algorithm. The NLH (6) is approximated on

the uniform two-dimensional Cartesian grid with mesh sizes hx = xmax/M and hz = zmax/N, so that:
xm ¼ m � hx; m ¼ �M ; . . . ; 0; . . . ;M ;

zn ¼ n � hz; n ¼ 0; . . . ;N .
ð21Þ
3.1. Fourth order scheme

The discrete implementation of the algorithm is carried out with the fourth order of accuracy. As we
shall see, the construction of the algorithm and its analysis are more complex for our fourth-order discret-

ization than they would have been for a second order discretization. Nevertheless, this was a price worth

paying, since higher-order approximations offer the possibility to take fewer points per wavelength. In addi-

tion, higher order offers the capability to better resolve the small-scale phenomenon of backscattering at the

background of the larger forward-propagating wave.
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For our algorithm, we have chosen the standard central-difference fourth-order scheme on the grid (21):
�Em�2;n þ 16Em�1;n � 30Em;n þ 16Emþ1;n � Emþ2;n

12h2x
þ�Em;n�2 þ 16Em;n�1 � 30Em;n þ 16Em;nþ1 � Em;nþ2

12h2z

þ k20 1þ �jEm;nj2r
� �

Em;n ¼ 0. ð22Þ
Scheme (22) is written on the stencil that extends five grid nodes wide in each coordinate direction. There-

fore, scheme (22) can only be written for the interior nodes of the grid (21) that are at least two nodes away

from the boundary. Alternatively, two ghost nodes can be added to grid (21) from each side in each direc-

tion. In either case, the finite-difference equations to be solved near the boundaries of the computational

domain will differ from the interior equation (22), and these special near-boundary equations shall be inter-

preted as discrete boundary conditions for the scheme (22).

To keep all the notations straightforward, let us introduce the ghost nodes (xm,zn) for m = ±(M + 1) and
±(M + 2), and n = �2,�1,N + 1, and N + 2. From here on, we will assume that the special near-boundary

treatment shall apply to these ghost nodes, while the finite-difference equations (22) can keep their form on

the entire grid (21). It is important to emphasize that system (22) itself is a system of fourth order finite-

difference equations, and therefore it requires more boundary conditions than the original second order dif-

ferential equation does, even though the former approximates the latter. More precisely, we will see that

scheme (22) will require two boundary conditions at each boundary, whereas the original differential equa-

tion requires only one, see Section 2.2.

As indicated in Section 2, the boundary conditions are to be set for the linear constant coefficient equa-
tion solved repeatedly on the inner loop of the nested iteration scheme. Therefore, for the nonlinear finite-

difference system (22) we introduce an iterative solver fully analogous to the one outlined in Section 2.1 for

the continuous case (cf. formula (8)):
�Eðj;kÞ
m�2;n þ 16Eðj;kÞ

m�1;n � 30Eðj;kÞ
m;n þ 16Eðj;kÞ

mþ1;n � Eðj;kÞ
mþ2;n

12h2x
þ
�Eðj;kÞ

m;n�2 þ 16Eðj;kÞ
m;n�1 � 30Eðj;kÞ

m;n þ 16Eðj;kÞ
m;nþ1 � Eðj;kÞ

m;nþ2

12h2z
þ k20E

ðj;kÞ
m;n ¼ �k20�jEðj�1;KÞ

m;n j2rEðj;k�1Þ
m;n ; ð23Þ
where j = 1,2,. . .; k = 1,2, . . . ,K; Eð0;0Þ
m;n ¼ 0; and Eðr;0Þ

m;n ¼ Eðj�1;KÞ
m;n . Next, denoting Em;n ¼ Eðj;kÞ

m;n and Um;n ¼
�k20�jEðj�1;KÞ

m;n j2rEðj;k�1Þ
m;n , we arrive at the fourth-order central-difference approximation to the linear constant

coefficient Helmholtz equation (9):
�Em�2;n þ 16Em�1;n � 30Em;n þ 16Emþ1;n � Emþ2;n

12h2x
þ�Em;n�2 þ 16Em;n�1 � 30Em;n þ 16Em;nþ1 � Em;nþ2

12h2z
þ k20Em;n ¼ Um;n. ð24Þ
System (24) is to be supplemented by the boundary conditions and solved repeatedly in the course of the

iteration (23) for updated Um,n.

3.2. Transverse boundary conditions

To set the discrete Sommerfeld radiationboundary conditions atm = ±M, we first need to identify thewaves

that propagate upward and downward in the corresponding discrete framework. To do that, let us consider the

one-dimensional discrete homogeneous Helmholtz equation (for clarity, we suppress here the subscript n)
�Em�2 þ 16Em�1 � 30Em þ 16Emþ1 � Emþ2

12h2x
þ k20Em ¼ 0. ð25Þ
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Eq. (25) has a four-dimensional fundamental set of solutions: fqm1 ; q�m
1 ; qm2 ; q

�m
2 g, where q1, 1/q1, q2, and 1/q2

are the four roots of the algebraic characteristic equation that corresponds to the discretization (25):
�1þ 16qþ ð12a2x � 30Þq2 þ 16q3 � q4 ¼ 0. ð26Þ

The parameter
ax ¼ hxk0 ð27Þ

is a measure of how well the waves are resolved by the transverse grid. Therefore, in what follows we can
assume that
0 < ax � 1.
To find the roots of Eq. (26), we rewrite it as
�1þ 16qþ ð12a2x � 30Þq2 þ 16q3 � q4 ¼ �ðq� q1Þðq� q�1
1 Þðq� q2Þðq� q�1

2 Þ
¼ �ðq2 � d1qþ 1Þðq2 � d2qþ 1Þ
¼ �1þ ðd1 þ d2Þq� ð2þ d1 þ d2Þq2 þ ðd1 þ d2Þq3 � q4

¼ 0; ð28Þ
where
d1 ¼ q1 þ q�1
1 and d2 ¼ q2 þ q�1

2 . ð29Þ

Therefore,
d1 þ d2 ¼ 16 and � 2� d1d2 ¼ 12a2x � 30; ð30Þ

which implies
d1 ¼ 8� 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2x=3

q
and d2 ¼ 8þ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2x=3

q
; ð31Þ
and finally we have:
q1 ¼
d1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
1 � 4

q
2

; q�1
1 ¼

d1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
1 � 4

q
2

; q2 ¼
d2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
2 � 4

q
2

; q�1
2 ¼

d2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
2 � 4

q
2

. ð32Þ
In [6] we have shown that when ax � 1 (i.e., when the wavenumber k0 is well resolved on the transverse

grid), the roots q1 and q�1
1 have unit magnitudes, jq1j ¼ jq�1

1 j ¼ 1, and the solutions qm1 and q�m
1 approxi-

mate the genuine traveling waves eik0x and e�ik0x, respectively, with the fourth order of accuracy:
qm1 ¼ eik0hxm þO a4x
� �

; q�m
1 ¼ e�ik0hxm þO a4x

� �
.

Regarding the second pair of roots, q2 and q�1
2 , it was shown in [6] that jq2j < 1 and jq�1

2 j > 1. Accord-

ingly, solutions qm2 and q�m
2 are always evanescent. These solutions are numerical artifacts, as they do not

exist in the continuous context, see Section 2.2, and only appear because the discretization is fourth order,

whereas the original differential equation is second order. Still, the presence of a second evanescent pair of

waves requires special treatment at the boundary and necessitates setting an additional pair of the bound-

ary conditions.

Consistently with the idea of Section 2.2, to guarantee the reflectionless propagation of the discrete

outgoing waves through the lateral artificial boundaries, we need to require that the boundary at m = M

be transparent for the waves qm1 traveling upward, and the boundary at m = �M be transparent for the

waves q�m
1 traveling downward. This requirement constitutes the Sommerfeld radiation principle in the

fourth order discrete framework, and it cannot be either altered or relaxed in any way. As, however,
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concerns the second, evanescent, pair of waves, qm2 and q�m
2 , more flexibility can be exercised toward

their near-boundary treatment. Indeed, these waves are non-physical and as such, we only need to en-

sure stability of the resulting overall discretization once the corresponding second pair of the boundary

conditions has been chosen.

The most natural way to treat the evanescent waves would be to require that the boundary m = M be
transparent for the waves qm2 that decay upward, and the boundary m = �M be transparent for the waves

q�m
2 that decay downward. We have employed a similar strategy in [6] for constructing the nonlocal ABCs,

see also Section 3.7. Then, the overall solution near and beyond the boundary m = M has to be a linear

combination of these and only these two solutions from the fundamental set:
Em ¼ c1qm1 þ c2qm2 . ð33Þ
Eq. (33) enforced for m P M � 1 (which is a formal definition of what ‘‘near and beyond’’ the boundary
m = M means) translates into:
Rank

EM�1 EM EMþ1 EMþ2

1 q1 q21 q31
1 q2 q22 q32

2
64

3
75 ¼ 2. ð34Þ
Recasting (34) via the appropriate determinants, we arrive at the following form of the discrete one-way

Helmholtz equation:
EMþ1 ¼ ðq1 þ q2ÞEM � q1q2EM�1; ð35aÞ
EMþ2 ¼ ½ðq1 þ q2Þ

2 � q1q2�EM � ðq1 þ q2Þq1q2EM�1; ð35bÞ
that expresses the values of the solution at the ghost nodes M + 1 and M + 2 through its values on the inte-

rior grid.

Similarly, requiring that for m 6 �M + 1:
Em ¼ c�1q�m
1 þ c�2q�m

2 ; ð36Þ
we have:
Rank

E�M�2 E�M�1 E�M E�Mþ1

1 q�1
1 q�2

1 q�3
1

1 q�1
2 q�2

2 q�3
2

2
64

3
75 ¼ 2; ð37Þ
and eventually obtain:
E�M�1 ¼ ðq1 þ q2ÞE�M � q1q2E�Mþ1; ð38aÞ
E�M�2 ¼ ½ðq1 þ q2Þ

2 � q1q2�E�M � ðq1 þ q2Þq1q2E�Mþ1. ð38bÞ
It will be convenient to rewrite the one-way discrete Helmholtz equations (35) and (38) using universal

notations:
EMþ1 ¼ C1EM þ C2EM�1; E�M�1 ¼ C1E�M þ C2E�Mþ1;

EMþ2 ¼ C3EM þ C4EM�1; E�M�2 ¼ C3E�M þ C4E�Mþ1;
ð39Þ
where M + 1, M + 2, �M � 1, and �M�2 are the ghost nodes, and
C1 ¼ q1 þ q2; C3 ¼ ðq1 þ q2Þ
2 � q1q2;

C2 ¼ �q1q2; C4 ¼ �ðq1 þ q2Þq1q2.
ð40Þ
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Besides (35), (38), or equivalently (39), (40), there are many alternative approaches to treating the eva-

nescent waves qm2 and q�m
2 near the boundaries m = ±M.4 In fact, the component c2qm2 in formula (33) can

be replaced with almost any linear combination of qm2 and q�m
2 , and the same is true regarding the compo-

nent c�2q�m
2 in formula (36), as long as the chosen linear combinations are linearly independent. In so

doing, stability will be guaranteed, except in some special degenerate cases, see [21].
In Section 3.5, we will formulate and analyze a discrete eigenvalue problem analogous to (12). To

facilitate that analysis, let us now choose an alternative treatment of the evanescent waves, or in other

words, select the constants C1, C2, C3, and C4, so that boundary conditions (39) would reduce to a

particularly convenient symmetric form in the limiting case ax = 0. While keeping the same radiation

conditions for qm1 at m = M and for q�m
1 at m = �M, let us require altogether for mP M � 1 (cf. for-

mula (33)):
4 We
Em ¼ c1qm1 þ c2 qm2 þ q2Mþ1
2 q�m

2

� �
; ð41Þ
and for m 6 �M + 1 (cf. formula (36)):
Em ¼ c�1q�m
1 þ c�2ðq2Mþ1

2 qm2 þ q�m
2 Þ. ð42Þ
Then, taking the common factor qM�1
2 outside of the brackets in formula (41), we, instead of (34), obtain:
Rank

EM�1 EM EMþ1 EMþ2

1 q1 q21 q31
1þ q32 q2 þ q22 q22 þ q2 q32 þ 1

2
64

3
75 ¼ 2. ð43Þ
Similarly, instead of (37) we have:
Rank

E�M�2 E�M�1 E�M E�Mþ1

q31 q21 q1 1

q32 þ 1 q22 þ q2 q2 þ q22 1þ q32

2
64

3
75 ¼ 2. ð44Þ
Recasting (43) and (44) via determinants as before, we obtain the alternative one-way discrete Helmholtz

equations in the same general form (39), except that instead of (40), the coefficients become:
C1 ¼
q2 þ q22 � q21ð1þ q32Þ
q2 þ q22 � q1ð1þ q32Þ

; C3 ¼
ð1þ q32Þð1� q31Þ

q2 þ q22 � q1ð1þ q32Þ
;

C2 ¼ � ðq2 þ q22Þðq1 � q21Þ
q2 þ q22 � q1ð1þ q32Þ

; C4 ¼ � q1ð1þ q32Þ � q31ðq2 þ q22Þ
q2 þ q22 � q1ð1þ q32Þ

.

ð45Þ
We re-emphasize that both boundary conditions (39), (40) and (39), (45) share the same fundamental
property – they render the reflectionless radiation of the physical waves qm1 and q�m

1 . The only difference

between these boundary conditions is in how they address the evanescent modes qm2 and q�m
2 . Moreover,

both (39), (40) and (39), (45) yield an overall stable discretization (see Section 3.3). As such, one should

not expect any major differences in the numerical performance of the algorithm equipped with either

type of the boundary conditions (which we have indeed confirmed numerically). However, whereas

the boundary conditions (39), (40) are most intuitive, the boundary conditions (39), (45) will be shown

to possess additional symmetries which become useful when proving properties of the transverse eigen-

vectors in Section 3.5.
recall that the Sommerfeld radiation principle leaves no flexibility in treating the physical waves qm1 and q�m
1 .
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3.3. Stability of the discrete approximation

A necessary condition for numerical stability of the overall discrete approximation is linear indepen-

dence of the boundary conditions that we have chosen.

Proposition 4. Boundary conditions (39), (40) or (39), (45) are linearly independent.

Proof. Linear independence of boundary conditions (39), (40) is apparent, as due to (33) and (36) the

homogeneous system (25) supplemented by (35) and (38) may only have a trivial solution Em = 0 for

m = �M, . . . ,M. Linear independence of boundary conditions (39), (45) is a little more subtle.Let

Em ¼ c01q
m
1 þ c0�1q

�m
1 þ c02q

m
2 þ c0�2q

�m
2 be a solution to Eq.(25) for m = �M, . . . ,M, which also satisfies

(41) for M � 1 6 m 6 M + 2 and satisfies (42) for �M � 2 6 m 6 �M + 1.Then, we immediately obtain

c01 ¼ 0 because this component is eliminated by (42), and c0�1 ¼ 0 because this component is eliminated

by (41).For the other pair of waves we have c02 ¼ c2 ¼ c�2q2Mþ1
2 and c0�2 ¼ c2q2Mþ1

2 ¼ c�2, which is clearly
not possible unless either q2 = 1 or 2M + 1 = 0.As none of the latter holds, we conclude that altogether

c01 ¼ c0�1 ¼ c02 ¼ c0�2 ¼ 0, i.e., that Eq.(25) supplemented by boundary conditions(39), (45) may only have

a trivial solution. h

Sufficient conditions for stability are somewhat more delicate, see [21]. Since reproducing the complete

analysis of [21] is outside the scope of this paper, we will only outline its key elements and then summarize

the results relevant to our specific systems (25), (39), (40) and (25), (39), (45). Let us focus on the evanescent

waves that are treated differently by (39), (40) and by (39), (45). Requiring that the only evanescent com-

ponent propagating upward be qm2 , see formula (33), implies that the ‘‘remaining part’’ of the two-dimen-

sional linear subspace spanfqm2 ; q�m
2 g in the four-dimensional fundamental space of solutions has to vanish

at the upper transverse boundary. Of course, there is no way of saying unambiguously what this remaining

part is, because anything linearly independent with qm2 will be appropriate. We therefore need to see what
the boundary condition at the opposite endpoint prescribes, and from formula (36) we conclude that the

foregoing remaining part of spanfqm2 ; q�m
2 g has to be taken as c�2q�m

2 , which is exactly what�s allowed at

the lower transverse boundary. In other words, the one-way Helmholtz equation (35) can be interpreted,

in particular, as a zero Dirichlet boundary condition for the component q�m
2 at m = M, i.e.,

c�2q�m
2 jm¼M ¼ 0. Assume now that we have committed an error of magnitude e in this Dirichlet boundary

condition, i.e., c�2q�m
2 jm¼M ¼ �. This error will be carried inward (i.e., downward) by the wave

c�2q�m
2 ¼ �qM�m

2 , and by the time it reaches the opposite endpoint m = �M, it will have the magnitude

jeq2M2 j � e, because jq2j < 1. In other words, the error once committed at an endpoint in the homogeneous
problem may not increase throughout the domain.

Analogously, requiring that the evanescent contribution to the solution near and beyond the boundary

m = M be qm2 þ q2Mþ1
2 q�m

2 , see formula (41), means that the remaining part of spanfqm2 ; q�m
2 g, again, has to

vanish. In this case, the aforementioned remaining part should be identified with c�2ðq2Mþ1
2 qm2 þ q�m

2 Þ
according to (42). The corresponding homogeneous Dirichlet boundary condition should obviously read

c�2ðq2Mþ1
2 qm2 þ q�m

2 Þjm¼M ¼ 0, see formula (42), and if we commit an error of the overall magnitude e, then
we have c�2ðq2Mþ1

2 qm2 þ q�m
2 Þjm¼M ¼ e, and consequently, c�2 ¼ eqM2 ðq4Mþ1

2 þ 1Þ�1
. Thus, the component of

the error that may grow downward, i.e., toward the interior of the computational domain, will be
c�2q2Mþ1

2 qm2 ¼ eq3Mþ1
2 ðq4Mþ1

2 þ 1Þ�1qm2 and clearly, 8m ¼ �M ; . . . ;M : jc�2q2Mþ1
2 qm2 j < ejqM2 j � e.

To complete the stability analysis, one will need to apply similar considerations to the propagating

modes qm1 and q�m
1 , and also study the inhomogeneous problem and analyze how the perturbations of its

right-hand side specified on the interval m = �M, . . . ,M may affect the solution. Altogether, based on this

analysis (see [21]), we can conclude that either of the two systems (25), (39), (40) and (25), (39), (45) is

weakly stable. The term ‘‘weakly’’ means here that the constant in the stability inequality will not be

completely grid independent, as required by the classical definition, but may rather grow at a slow polyno-
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mial rate with the increase of the grid dimension (or equivalently, decrease of the grid size). The source of

this growth is, in fact, the growth of the perturbations of the right-hand side; it is accounted for by the pres-

ence of the unit magnitude ‘‘propagating’’ roots q1 and q�1
1 of the characteristic equation (26). Numerical

results of Section 4 corroborate, however, that the foregoing slow growth does not present any substantial

difficulties for implementation.

3.4. Discrete eigenvalue problem

Let us now formulate a discrete eigenvalue problem analogous to (12). For that purpose, we first

introduce a (2M + 1) · (2M + 1) transverse discretization matrix A that would contain the fourth order

central difference approximation of oxx at the interior nodes, see (24) or (25), and would also incorpo-

rate the boundary conditions (39). By eliminating the ghost variables E�M� 2, E�M� 1, EM+1, and

EM+2, we obtain:
A ¼ 1

12h2x

�30þ C5 16þ C6 �1 0 0 0 � � �
16� C1 �30� C2 16 �1 0 0 � � �

�1 16 �30 16 �1 0 � � �
..
. . .

. . .
. . .

. . .
. . .

. ..
.

� � � 0 �1 16 �30 16 �1

� � � 0 0 �1 16 �30� C2 16� C1

� � � 0 0 0 �1 16þ C6 �30þ C5

2
666666666664

3
777777777775
; ð46aÞ
where
C5 ¼ 16C1 � C3; C6 ¼ 16C2 � C4. ð46bÞ

The discrete counterpart of the eigenvalue problem (12) can now be formulated as follows:
Aw ¼ kw. ð47Þ

In order to be able to separate the variables in the finite-difference system (24) using the eigenvectors of

A, we need to make sure that these eigenvectors form a basis. To do that, we will use the results of the forth-

coming Propositions 5 and 6 to prove in Proposition 7 that the (2M + 1) · (2M + 1) matrix A of (46) has

(2M + 1) distinct eigenvalues. This implies that A has (2M + 1) linearly-independent eigenvectors. Then we

will prove in Proposition 10 that these eigenvectors can be rescaled so that they posses the real orthogonal-

ity property, that allows us to arrive at formula (53) for the inverse of the matrix of the eigenvectors; the

latter is needed for the actual implementation of the separation of variables.

Let us recall that the roots of the characteristic equation (26), and consequently, the entries of the matrix
A of (46), are functions of ax. In particular, it is easy to see that in the fine grid/long waves limit ax ! 0þ,

we have q1 ! 1. For q1 = 1 formulae (45) imply that C1 = C4 = 1 and C2 = C3 = 0. As such, boundary con-

ditions (39), (45) for ax = 0 reduce to
EMþ1 ¼ EM ; E�M�1 ¼ E�M ;

EMþ2 ¼ EM�1; E�M�2 ¼ E�Mþ1.
ð48Þ
Equalities (48) imply symmetry with respect to the points ±(M + 1/2), which can also be interpreted as a

fourth order approximation of the homogeneous Neumann boundary conditions. Note that boundary con-

ditions (39), (40) do not reduce to the form as simple as (48) for ax = 0. This was the primary reason for

introducing the new version (39), (45), rather than using the more intuitive version (39), (40). Moreover,

when definition (45) is employed, the matrix A of (46) acquires a particularly convenient form for ax = 0:
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Að0Þ ¼ 1

12h2x

�14 15 �1 0 0 0 � � �
15 �30 16 �1 0 0 � � �
�1 16 �30 16 �1 0 � � �
..
. . .

. . .
. . .

. . .
. . .

. ..
.

� � � 0 �1 16 �30 16 �1

� � � 0 0 �1 16 �30 15

� � � 0 0 0 �1 15 �14

2
666666666664

3
777777777775
; ð49Þ
so that the corresponding eigenvalue problem (47) can be solved analytically. This, again, would not have

been the case if we used definition (40) instead of (45).

Proposition 5. The eigenvalues k(l)(0) and eigenvectors wðlÞð0Þ ¼ ½wðlÞ
�Mð0Þ; . . . ;w

ðlÞ
0 ð0Þ; . . . ;wðlÞ

M ð0Þ�T of the

matrix A(0) of (49) are given by
kðlÞð0Þ ¼ � 16

3h2x
sin2 1

2

lp
2M þ 1

� �
þ 1

3h2x
sin2 lp

2M þ 1

� �
; ð50aÞ

wðlÞ
m ð0Þ ¼ bl cos l

pm
2M þ 1

þ p
2

� �	 

; ð50bÞ
where l = 0,1, . . . , 2M; b0 ¼ 1ffiffiffiffiffiffiffiffiffi
2Mþ1

p ; and bl ¼
ffiffiffiffiffiffiffiffiffi

2
2Mþ1

q
for l > 0.

The eigenvectors w(l)(0) of (50b) are orthonormal, and the eigenvalues k(l)(0) of (50a) are distinct.

Proof. Orthonormality of the eigenvectors (50b):
PM

m¼�Mw
ðlÞ
m ð0ÞwðkÞ

m ð0Þ ¼ dlk, as well as specific expressions
for the eigenvalues (50a) and the normalization constants bl in (50b), can be obtained with an argument

almost identical to the one employed in [6, Section 5], and we will not reproduce it here (also see [22]

for the general perspective on discrete Fourier series). We only need to show that the eigenvalues k(l)(0)
of (50a) are distinct. This is easy to see because (50a) implies
kðlÞð0Þ ¼ � 4

3h2x
sin2 1

2

lp
2M þ 1

� �
4� cos2

1

2

lp
2M þ 1

� �	 


¼ � 4

3h2x
sin2 1

2

lp
2M þ 1

� �
3þ sin2 1

2

lp
2M þ 1

� �	 

;

and as the argument of the sine function is always on the interval [0,p/2), the quantities k(l)(0) are mono-

tonically decreasing in l. h

Proposition 6. The eigenvalues k(l) = k(l)(ax) of the matrix A of (46), with fCjg4j¼1 given by (45), are differen-
tiable functions of ax at ax = 0.

Proof. According to Proposition 5, when ax = 0 the eigenvalues k(l)(0) of A(0) of (49) are distinct. These

eigenvalues are roots of the characteristic polynomial of the matrix that can be written as a product of

monomials because of the aforementioned distinctness: PA(k) = a(k � k(0)(0)). . .(k � k(2M)(0)). Then, for
any given l = 0, . . . , 2M we obviously have: oPA

ok jax¼0;k¼kðlÞð0Þ 6¼ 0; and the desired result follows from the

implicit function theorem. h

Proposition 7. Let ax � 1. Then, the (2M + 1) · (2M + 1) matrix A of (46), with fCjg4j¼1 given by (45), has

2M + 1 distinct eigenvalues k(l) = k(l)(ax).
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Proof. According to Proposition 6, we can write for l = 0, 1, . . . ,2M,
kðlÞðaxÞ ¼ kðlÞð0Þ þ dkðlÞ

dax

�����
ax¼0

ax þOða2xÞ. ð51Þ
For the matrix A(0) of (49), its eigenvalues k(l)(0) are given by (50a) and are distinct. Then, according to

(51), k(l)(ax) are distinct for small ax as well. h

Proposition 7 clearly implies that the matrix A of (46), (45) has 2M + 1 linearly independent eigenvec-

tors. Our next goal is to show that this basis of eigenvectors has the real orthogonality property (Proposi-

tion 10).

Proposition 8. The matrix A of (46), where fCjg4j¼1 are given either by (40) or by (45), is symmetric, i.e.,

AT = A.

Proof. It is sufficient to show that �C1 = C6 or equivalently, �C1 = 16C2�C4. When fCjg4j¼1 are given by

(40), what we need to prove is q1 + q2 = �(q1 + q2)q1q2 + 16q1q2. Following (29) and (30), we can write:
16 ¼ d1 þ d2 ¼ q1 þ q�1
1 þ q2 þ q�1

2 ¼ q1 þ q2 þ
q1 þ q2
q1q2

¼ ðq1 þ q2Þ 1þ 1

q1q2

� �
¼ ðq1 þ q2Þ

1þ q1q2
q1q2

.

Consequently, we indeed have 16q1q2 = (q1 + q2)(1 + q1q2).

When fCjg4j¼1 are given by (45), we obtain
C1 � C4 þ 16C2 ¼ ðq2 þ q22Þð1� q31 � 16ðq1 � q21ÞÞ þ ð1þ q32Þðq1 � q21Þ
¼ ð1� q1Þ½ðq2 þ q22Þð1þ q1 þ q21 � 16q1Þ þ q1ð1þ q32Þ�
¼ ð1� q1Þ½ðq2 þ q22Þð1� d1q1 þ q21 � ð16� d1Þq1Þ þ q1ð1þ q2 þ q22 þ q32Þ�
¼ ð1� q1Þq1½�d2q2 � d2q22 þ 1þ q2 þ q22 þ q32�
¼ ð1� q1Þq1½ð1� d2q2 þ q22Þ þ ðq2 � d2q22 þ q32Þ� ¼ 0;
where we have, again, used (30), and have also taken into account that according to (28):

1� d1q1 þ q21 ¼ 0 and 1� d2q2 þ q22 ¼ 0. h

Proposition 9. Let / and w be eigenvectors of the matrix A of (46) with the corresponding eigenvalues k/ and

kw. If k/ 6¼ kw, then, /
Tw = 0.

Proof. Using the definition of eigenvectors and eigenvalues (47), and the symmetry of A established in

Proposition 8, we have:
k//
Tw ¼ ðA/ÞTw ¼ /TATw ¼ /TAw ¼ kw/

Tw.
Consequently, (k/�kw)/
Tw = 0, which does imply the ‘‘discrete real orthogonality’’ /Tw = 0 as long as

k/ 6¼ kw. h

Remark. Proposition 9 is the discrete analogue of Proposition 2.

Since the eigenvectors of A are, generally speaking, complex, the operation /Tw is not a genuine inner

product of the two vectors. Hence, it is not obvious whether any nontrivial eigenvector w would satisfy

wTw 6¼ 0. However, for ax � 1 a continuation argument can be employed similar to the one used when

proving Propositions 6 and 7. Indeed, when ax = 0 the matrix A(0) is real symmetric, with real eigenvalues

and real orthonormal eigenvectors. For the latter, the foregoing operation /Tw does provide a genuine dot
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product. Then, by continuity, for any l = 0, . . . , 2M and ax � 1: wðlÞTðaxÞwðlÞðaxÞ �
PM

m¼�M�
wðlÞ

m ðaxÞwðlÞ
m ðaxÞ 6¼ 0, because

PM
m¼�Mw

ðlÞ
m ð0ÞwðlÞ

m ð0Þ ¼ 1. A juxtaposition of this argument with the result of

Proposition 9 yields the following

Proposition 10. Let ax � 1. Then, the eigenvectors w(l), l = 0, . . . , 2M, of the matrix A of (46), where fCjg4j¼1

are given by (45), can be normalized so that ð~wðlÞÞT~wðmÞ ¼ dlm.

Indeed, we only need to choose the normalization constants as l(l) = w(l)Tw(l), and then normalize:
~w
ðlÞ

:¼ wðlÞ=
ffiffiffiffiffiffiffi
lðlÞ

p
.

Previously, with the Dirichlet boundary conditions set at the transverse boundaries, we have used the

discrete Fourier transform to separate the variables in system (24). In the Sommerfeld case we rather need

to use the transformation by means of the eigenvectors of A. This transformation will be a discrete ana-
logue of (15) and (16). Moreover, as formula (53) will show, its inverse is numerically straightforward

and inexpensive.

Let us introduce a square matrix of order 2M + 1 that would have the original non-normalized eigen-

vectors w(l) as its columns:
W ¼ ½wð0Þ; . . . ;wð2MÞ�. ð52Þ
Therefore,
AW ¼ WK; K ¼

kð0Þ 0 0 0

0 kð1Þ 0 0

. .
.

0 � � � 0 kð2MÞ

2
66664

3
77775.
From Proposition 10 it follows that ~W
T ~W ¼ I and
WTW ¼

lð0Þ 0 0 0

0 lð1Þ 0 0

. .
.

0 � � � 0 lð2MÞ

2
66664

3
77775.
Then, one can easily see that
W�1 ¼ WTW
� ��1

WT ¼

1=lð0Þ 0 0 0

0 1=lð1Þ 0 0

. .
.

0 � � � 0 1=lð2MÞ

2
66664

3
77775WT. ð53Þ
The easy formula (53) is used in the computations of Section 4 to invert the matrix of eigenvectors W.
3.5. Separation of variables

We now use the transformation matrices W of (52) and W�1 of (53) to separate the variables in the dis-

crete system (24).
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Let us define the 2M + 1-dimensional vectors En and Un for n = 0, . . . ,N:
En ¼ E�M ;n; . . . ;E0;n; . . . ;EM ;n½ �T;
Un ¼ U�M ;n; . . . ;U0;n; . . . ;UM ;n½ �T.
Then, system (24) subject to the transverse radiation boundary conditions (39), (45) can be recast as
follows:
AEn þ
�En�2 þ 16En�1 � 30En þ 16Enþ1 � Enþ2

12h2z
þ k20En ¼ Un. ð54Þ
In analogy with (15) and (16), let En ¼ WÊn () Ên ¼ W�1En and Un ¼ WÛn () Ûn ¼ W�1Un. In so

doing, system (54) transforms into:
KÊn þ
�Ên�2 þ 16Ên�1 � 30Ên þ 16Ênþ1 � Ênþ2

12h2z
þ k20Ên ¼ Ûn. ð55Þ
The variables in (55) have separated, as the diagonal structure of the matrix K enables a natural decompo-

sition of system (55) into a set of 2M + 1 separate one-dimensional systems that would govern individual

components of Ên ¼ ½Ê0;n; . . . ; Ê2M ;n�T:
�Êl;n�2 þ 16Êl;n�1 � 30Êl;n þ 16Êl;nþ1 � Êl;nþ2

12h2z
þ ðk20 þ kðlÞÞÊl;n ¼ Ûl;n; l ¼ 0; . . . ; 2M ; ð56Þ
here Ûl;n, l = 0, . . . , 2M, are components of the vector Ûn.

Each system (56) needs to be solved independently of the others, after which the solution in the original

space can be reconstructed as En ¼ WÊn for every n = 0, . . . ,N. For any l = 0, . . . , 2M, the corresponding

system (56) is still subdefinite unless supplemented by the boundary conditions at n = 0 and n = N. We

describe these discrete two-way ABCs in Section 3.7.

3.6. Perturbation analysis

In Section 2, we have shown that the introduction of the Sommerfeld transverse radiation boundary con-

ditions can be interpreted as linear ‘‘damping’’ in the z direction. We now derive an equivalent result at the

discrete level.

We first prove the following auxiliary statement:

Proposition 11. Let k = k(ax) be an eigenvalue of the matrix A of (46), where fCjg4j¼1 are given by either (40)

or by (45). Then,
dk
dax

����
ax¼0

¼ im;
where m 2 R.

Proof. Since q1,2 = q1,2(ax) are given by (31) and (32), which, in particular, means that

q1ðaxÞ ¼ 1þ iax þOða2xÞ for ax � 1, we can see that
q1ð0Þ ¼ 1;
dq1
dax

ð0Þ ¼ i; q2ð0Þ ¼ 7�
ffiffiffiffiffi
48

p

 0.07;

dq2
dax

ð0Þ ¼ 0. ð57Þ
Therefore, for either (40) or (45) it follows that
dCj

dax

����
ax¼0

¼ oCj

oq1

dq1
dax

����
ax¼0

¼ i
oCj

oq1

����
q1¼1;q2¼7�

ffiffiffiffi
48

p . ð58Þ
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We thus see that
dCj

dax
jax¼0, where j = 1, . . . , 6, is purely imaginary.

Let w = w(ax) be the eigenvector corresponding to k(ax), rescaled such that wTw = 1. Therefore,
5 Th
0 ¼ d

dax
wTw ¼ 2wT dw

dax
ð59Þ
and
k ¼ wTAw.
Differentiating the last relation with respect to ax, using Eq. (59) and the symmetry of A (Proposition 8)

we obtain
dk
dax

¼ wT dA

dax
wþ dwT

dax
Awþ wTA

dw
dax

¼ wT dA

dax
wþ 2

dwT

dax
Aw ¼ wT dA

dax
wþ 2k

dwT

dax
w ¼ wT dA

dax
w. ð60Þ
Next, by (46) and the symmetry of A,
dA

dax
¼ 1

12h2x

dC5

dax
� dC1

dax
0 0 0 0 � � �

� dC1

dax
� dC2

dax
0 0 0 0 � � �

0 0 0 0 0 0 � � �
..
. . .

. . .
. . .

. . .
. . .

. ..
.

� � � 0 0 0 0 0 0

� � � 0 0 0 0 � dC2

dax
� dC1

dax

� � � 0 0 0 0 � dC1

dax
dC5

dax

2
66666666666664

3
77777777777775
. ð61Þ
When ax = 0, the matrix A(0) is self-adjoint, hence its rescaled eigenvector w(0) is real (see Proposition 5).
Therefore, it follows from (58), (60) and (61) that dk

dax
ð0Þ is purely imaginary. h

Proposition 11 shows that to leading order, the small nonorthogonality parameter ax affects only the
imaginary part of the eigenvalue.5 We now show that as in the continuous case (cf. Proposition 1), the

imaginary part is positive:

Proposition 12. m > 0.

Proof. Using (31), (32), (45), (46b) and (57) we can carry out explicitly the differentiation in (61), which

yields
dA

dax

����
ax¼0


 i

12h2x

14.08 �1.08 0 0 0 0 � � �
�1.08 0.083 0 0 0 0 � � �

0 0 0 0 0 0 � � �
..
. . .

. . .
. . .

. . .
. . .

. ..
.

� � � 0 0 0 0 0 0

� � � 0 0 0 0 0.083 �1.08

� � � 0 0 0 0 �1.08 14.08

2
666666666664

3
777777777775
.

e effect on the real part of the eigenvalue is Oða2xÞ.
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Therefore, from (60),
6 No
imðlÞ ¼ dkðlÞ

dax
ð0Þ 
 i

12h2x
14 wðlÞ

�Mð0Þ
� �2

þ 14 wðlÞ
M ð0Þ

� �2

� 2wðlÞ
�Mð0Þw

ðlÞ
�Mþ1ð0Þ � 2wðlÞ

M ð0ÞwðlÞ
M�1ð0Þ

	 

.

Using (50b),
wðlÞ
�ðM�1Þ

wðlÞ
�M

¼ cosð3hÞ
cos h

; h ¼ p
2

l
2M þ 1

;

where 0 6 h < p/2. Since
14cos2h� 2 cos h cosð3hÞ ¼ 14cos2h� 2 cosð4cos3h� 3 cos hÞ ¼ 20cos2h� 8cos4h > 0;
the result follows. h

3.7. Nonlocal ABCs

The following construction of the ABCs at n = 0 and n = N will, in fact, be very similar to the construc-

tion of the foregoing transverse radiation boundary conditions, see Section 3.2, and will basically be iden-
tical to the construction of the two-way ABCs in [6]. The only difference between the forthcoming

derivation and its counterpart in [6] is of technical nature. Namely, in the current paper we are using

the ghost nodes, see Section 3.1, which we did not do in [6]. We think that the use of the ghost nodes sim-

plifies the presentation. As in Section 2.2, the role of the ABCs is to guarantee the reflectionless propagation

of the discrete outgoing waves through the boundaries n = 0 and n = N, and at the same time, to prescribe

the given incoming radiation.

Having separated the variables in system (24), we obtain a set of one-dimensional finite-difference equa-

tions (56). Each of these equations will be supplemented by 1D boundary conditions at n = 0 and at n = N

in much the same way as done in Section 3.2 for Eq. (25). Thus, let q1, 1/q1, q2 and 1/q2 be the four roots of

the algebraic characteristic equation that corresponds to the homogeneous counterpart of equation l of

(56)6 (cf. Eq. (26)):
�1þ 16qþ ð12a2z � 30Þq2 þ 16q3 � q4 ¼ 0; ð62Þ

where (cf. formula (27))
az ¼ hz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ kðlÞ

q
. ð63Þ
For the homogeneous counterpart of this equation l of (56) we build the discrete one-way Helmholtz

equation at the right endpoint n = N:
Êl;Nþ1 ¼ ðq1 þ q2ÞÊl;N � q1q2Êl;N�1; ð64aÞ
Êl;Nþ2 ¼ ½ðq1 þ q2Þ

2 � q1q2�Êl;N � ðq1 þ q2Þq1q2Êl;N�1; ð64bÞ
and at the left endpoint n = 0:
Êl;�1 ¼ ðq1 þ q2ÞÊl;0 � q1q2Êl;1; ð65aÞ
Êl;�2 ¼ ½ðq1 þ q2Þ

2 � q1q2�Êl;0 � ðq1 þ q2Þq1q2Êl;1. ð65bÞ
te that unlike in Section 3.2, the parameter az of (63) and the roots of Eq. (62) all depend on the transverse mode number l.
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Formulae (64) are analogous to (35), and formulae (65) are analogous to (38). In the capacity of

boundary conditions, Eqs. (64) will facilitate reflectionless propagation of all the waves traveling in

the positive z direction through the boundary z = zmax, i.e., n = N, and Eqs. (65) will facilitate reflection-

less propagation of all the waves traveling in the negative z direction through the boundary z = 0, i.e.,

n = 0.
By construction, the one-way discrete Helmholtz equations (65) and (64) can only be used as radiation

boundary conditions for the homogeneous discrete Helmholtz equation. However, Eq. (56) are inhomoge-

neous. To take into account the inhomogeneity Ûl;n on the right-hand side of (56), we employ the discrete

Green�s function Gn, which is defined as solution to
�Gn�2 þ 16Gn�1 � 30Gn þ 16Gnþ1 � Gnþ2

12h2z
þ ðk20 þ kðlÞÞGn ¼ dn; ð66Þ

dn ¼
1; n ¼ 0;

0; n 6¼ 0;

�

satisfying the radiation principle, i.e., such that (cf. formulae (33) and (36)):
Gn ¼
a1qn1 þ a2qn2; n P 0;

b1q�n
1 þ b2q�n

2 ; n 6 0.

�
ð67Þ
The Green�s function Gn of (66), (67) can be obtained in the closed form, the corresponding expres-

sions for the coefficients a1, a2, b1, and b2 can be found in [6]. This Green�s function is defined for the

entire range �1 < n < 1, and is, in fact, symmetric, i.e., G�n = Gn (or equivalently, a1 = a2 and

b1 = b2).

With the help of the Green�s function Gn of (66), (67), one can write down solution of equation l from
(56) in the form of the discrete convolution:
Êl;n ¼
Xj¼N

j¼0

Ûl;jG
n�j. ð68Þ
The grid function Êl;n of (68) is also defined for �1 < n < 1. It satisfies the inhomogeneous equation l of
(56) on the interval 0 6 n 6 N; and on the intervals of homogeneity it obviously satisfies (again, cf. (33) and

(36)):
Êl;n ¼
c1qn1 þ c2qn2; n P N ;

c�1q�n
1 þ c�2q�n

2 ; n 6 0.

�

Next, substituting expression (68) into (64a) we obtain:
Êl;Nþ1 � ðq1 þ q2ÞÊl;N þ q1q2Êl;N�1 ¼
Xj¼N

j¼0

Ûl;jG
Nþ1�j � ðq1 þ q2Þ

Xj¼N

j¼0

Ûl;jG
N�j þ q1q2

Xj¼N

j¼0

Ûl;jG
N�1�j

¼
Xj¼N

j¼0

Ûl;j G
Nþ1�j � ðq1 þ q2ÞGN�j þ q1q2G

N�1�j
� 


¼ Ûl;N G1 � ðq1 þ q2ÞG0 þ q1q2G
�1

� 

; ð69aÞ
and similarly, substituting it into (64b) we get:
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Êl;Nþ2 � ½ðq1 þ q2Þ
2 � q1q2�Êl;N þ ðq1 þ q2Þq1q2Êl;N�1

¼
Xj¼N

j¼0

Ûl;j GNþ2�j � ½ðq1 þ q2Þ
2 � q1q2�GN�j þ ðq1 þ q2Þq1q2GN�1�j

h i

¼ Ûl;N G2 � ½ðq1 þ q2Þ
2 � q1q2�G0 þ ðq1 þ q2Þq1q2G�1

h i
. ð69bÞ
We note that in formulae (69a) and (69b) all terms except j = N turn into zero because for all j < N the

shifted Green�s function GN� j clearly satisfies the homogeneous relations (64a) and (64b).

An identical argument applied near the left endpoint n = 0 yields instead of (65a) and (65b):
Êl;�1 � ðq1 þ q2ÞÊl;0 þ q1q2Êl;1 ¼ Ûl;0 G�1 � ðq1 þ q2ÞG0 þ q1q2G
1

� 

ð70aÞ
and
Êl;�2 � ½ðq1 þ q2Þ
2 � q1q2�Êl;0 þ ðq1 þ q2Þq1q2Êl;1 ¼ Ûl;0 G�2 � ½ðq1 þ q2Þ

2 � q1q2�G0 þ ðq1 þ q2Þq1q2G1
h i

.

ð70bÞ

It only remains now to take into account the incoming waves. This is done similarly to the continuous

case described in Section 2.2. Using the notations of Section 3.5, we transform the discrete field impinging

from the left: Ê
ðinc; leftÞ ¼ W�1Eðinc; leftÞ, and substitute the resulting individual modes Ê

ðinc; leftÞ
l qn1 into the left-

hand side of the corresponding relations (70), which yields:
Êl;�1 � ðq1 þ q2ÞÊl;0 þ q1q2Êl;1 ¼ Ûl;0 G�1 � ðq1 þ q2ÞG0 þ q1q2G
1

� 

þ Ê

ðinc; leftÞ
l q�1

1 � ðq1 þ q2Þ þ q21q2
� 


ð71aÞ

and
Êl;�2 � ½ðq1 þ q2Þ
2 � q1q2�Êl;0 þ ðq1 þ q2Þq1q2Êl;1 ¼ Ûl;0 G�2 � ½ðq1 þ q2Þ

2 � q1q2�G0 þ ðq1 þ q2Þq1q2G1
h i

þ Ê
ðinc; leftÞ
l q�2

1 � ½ðq1 þ q2Þ
2 � q1q2� þ ðq1 þ q2Þq21q2

h i
.

ð71bÞ
Similarly, at the right endpoint n = N we substitute Ê
ðinc; rightÞ
l q�n

1 and obtain instead of (69):
Êl;Nþ1 � ðq1 þ q2ÞÊl;N þ q1q2Êl;N�1 ¼ Ûl;N G1 � ðq1 þ q2ÞG0 þ q1q2G
�1

� 

þ Ê

ðinc; rightÞ
l q�N

1 q�1
1 � ðq1 þ q2Þ þ q21q2

� 

ð72aÞ
and
Êl;Nþ2 � ½ðq1 þ q2Þ
2 � q1q2�Êl;N þ ðq1 þ q2Þq1q2Êl;N�1

¼ Ûl;N G2 � ½ðq1 þ q2Þ
2 � q1q2�G0 þ ðq1 þ q2Þq1q2G�1

h i
þ Ê

ðinc; rightÞ
l q�N

1 ½q�2
1 � ½ðq1 þ q2Þ

2 � q1q2� þ ðq1 þ q2Þq21q2�. ð72bÞ
Inhomogeneous relations (71) and (72) provide the desired finite-difference two-way ABCs at the left and

right boundaries, respectively. Altogether, to obtain the solution on every iteration, we now need to solve

Eq. (56) for n = 0, . . . ,N and for all l, subject to the boundary conditions (71) that supplement the ghost

nodes n = �2 and n = � 1, and boundary conditions (72) that supplement the ghost nodes n = N + 1 and

n = N + 2.
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The ABCs (71) and (72) are fourth order discrete counterparts of the continuous boundary conditions

(20). We emphasize that the right-hand sides in relations (71) and (72) are obtained by local formulae and as

such, are numerically inexpensive. We also emphasize that similarly to boundary conditions (20), the dis-

crete two-way ABCs (71) and (72) are obtained in the transformed space independently for each one-

dimensional system (56), and would therefore become nonlocal if transformed back to the original space
by means of the matrixW. However, we never actually need to explicitly transform the ABCs to the original

physical space, because system (24) is solved on each iteration (23) using the separation of variables (55)

and consequently, the boundary conditions only need to be applied to variables Êl;n in the transformed

space.
3.8. Resonances

If az = 0, two roots q1 and 1/q1 of the characteristic equation (62) merge into one double root q1 = 1/
q1 = 1. Then, the homogeneous one-way discrete Helmholtz equations (65) and (64) become linearly

dependent, which basically ruins the stability, see Section 3.3. For the previously used Dirichlet bound-

ary conditions, all eigenvalues k(l) were real and negative. Therefore, according to formula (63), having

az = 0 was indeed a possibility. An exact equality, of course, could always be avoided by slightly chang-

ing the parameters of the discretization in the transverse direction x, see [6]. However, in our numerical

simulations we have observed a number of cases when instability manifested itself even for the modes

with az close, rather than exactly equal, to zero. Some of those cases are reported in Section 4.2 and

are referred to as resonances. On the other hand, according to Proposition 12, the Sommerfeld bound-
ary conditions guarantee that all eigenvalues k(l) have a non-trivial imaginary part.7 This allows one to

separate az from zero for all l, see formula (63). and indeed, no instabilities of the aforementioned type

have ever been seen in our numerical experiments with the Sommerfeld boundary conditions, see

Section 4.2.
4. Results of computations

In this section, we present computational results obtained with the help of the algorithm of Section 3. In

order to judge whether the iterations (23) converge, we monitor the following three quantities on the outer

loop:

(1) The difference between successive iterations: maxm;njEðjÞ
m;n � Eðj�1Þ

m;n j.
(2) The maximal residual: maxm;njRðjÞ

m;nj, where
7 Mo

directi
RðjÞ
m;n ¼

�EðjÞ
m�2;n þ 16EðjÞ

m�1;n � 30EðjÞ
m;n þ 16EðjÞ

mþ1;n � EðjÞ
mþ2;n

12h2x

þ
�EðjÞ

m;n�2 þ 16EðjÞ
m;n�1 � 30EðjÞ

m;n þ 16EðjÞ
m;nþ1 � EðjÞ

m;nþ2

12h2z
þ k20 1þ � EðjÞ

m;n

��� ���2r	 

EðjÞ
m;n.
(3) The mean residual: 1
MN

P
m

P
njRðjÞ

m;nj.
reover, since Re(az) 
 0 implies that ReðklÞ 
 �k20, this case corresponds to modes propagating nearly-perpendicular to the z

on. Therefore, linear ‘‘damping’’ would be the largest for these modes.



4.1. Critical case

We solve the 2D NLH (6) in the critical case r = 2 with k0 = 8 and with the incident Gaussian input
beam given by
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Eðinc;leftÞðx; 0Þ ¼ e�x2 .
As shown in [6], the fractional critical power of this input beam is equal to
p ¼
ffiffiffiffiffiffi
2�

3p

r
k0.
The highest input power that we could solve for in [6] was � = 0.06, which implies p = 90%, i.e., the power

of the corresponding NLS solution is 90% of the threshold power for collapse Nc.

We now demonstrate that when using the Sommerfeld boundary conditions at the transverse boundary

one obtains a considerably more robust numerical algorithm, compared with the original algorithm with

Dirichlet boundary conditions of [6]. The improved robustness manifests itself in two ways:

(1) Better quality of the solution when both algorithms use the same numerical parameters – domain size

and grid resolution.
(2) Better convergence of iterations (23), i.e., a smaller transverse size of the computational domain is

sufficient for the iterations to converge.

Our starting point for comparison of the two algorithms are the results of computations performed

in [6]. In particular, we have determined in [6] that if the focusing beam in the critical regime is coming

from the left interface z = 0, then the performance of the nonlocal ABCs at the opposite ‘‘downstream’’

boundary zmax improves when this boundary is located not too close to the focusing zone; ideally in the

region where the effect of nonlinearity becomes small. For k0 = 8 and � = 0.06, the value of zmax = 40
has been found sufficiently large, and we fix it for the computations in this paper as well. The transverse

size of the computational domain xmax has been shown to exert a critical influence on both the solution

quality and the convergence of iterations in [6]; most likely because of the effect of wave reflections

from the lateral boundaries equipped with the Dirichlet conditions. Below, we will carefully examine

the influence of xmax in the case of the Sommerfeld transverse boundary conditions. We have also con-

ducted grid convergence studies in [6]. The solution has been shown to be more sensitive to the longi-

tudinal wave resolution k0/hz than to the transverse wave resolution k0/hx, where the wavelength is given

by k0 = 2p/k0, the reason being that the beam dynamics primarily develops in the z direction. Starting
with hz = k0/10 and hx = k0/4 the results become quite acceptable [6], while the values of hz = k0/20 and

hx = k0/8 have been found sufficiently small so that further grid refinement did not provide any notice-

able improvement of the solution quality.

We first solve the critical NLH with the Dirichlet transverse boundary conditions for hz = k0/20 and

hx = k0/8. The minimum transverse size xmax for which the iteration scheme (23) converged was found

to be xmax = 13; for smaller xmax the iterations diverged (this divergence was found to be more rapid on

finer grids, which is a natural phenomenon to expect). Convergence of the residuals was linear, see Fig.

2, with roughly forty outer-loop cycles required to obtain ten orders of magnitude reduction. All three
convergence criteria show a similar convergence rate. The converged solution (magnitude of the electric

field) for xmax = 13 is shown in Figs. 3 and 4. Overall, the solution first undergoes a moderate self-

focusing, and then starts to diffract. One can clearly see that reflections of the diffracting part of the

beam from the lateral boundaries of the computational domain tend to corrupt the solution for larger

z�s.
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Fig. 2. Convergence history plots for the critical NLH subject to the Dirichlet transverse boundary conditions; xmax = 13.
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Fig. 3. Solution of the critical NLH subject to the Dirichlet transverse boundary conditions for xmax = 13: Incoming and outgoing

cross-sections (left) and on-axis amplitude jE(0,z)j (right).

Fig. 4. Solution of the critical NLH subject to the Dirichlet transverse boundary conditions for xmax = 13.
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We now compare the foregoing results with those obtained with the Sommerfeld transverse boundary

conditions, keeping all other parameters unchanged, see Figs. 6 and 7. While the iteration convergence rate

remains roughly the same, see Fig. 5, the quality of the solution has obviously much improved, and the

lateral reflections due to the Dirichlet boundary conditions are significantly reduced.

A grid convergence study for the new Sommerfeld boundary conditions is obviously needed to corrob-

orate the validity of the results. We have recomputed the previous solution for zmax = 40 and xmax = 13 on a
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Fig. 6. Solution of the critical NLH subject to the Sommerfeld transverse boundary conditions for xmax = 13: Incoming and outgoing

cross-sections (left) and on-axis amplitude jE(0,z)j (right).

Fig. 7. Solution of the critical NLH subject to the Sommerfeld transverse boundary conditions for xmax = 13.
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Fig. 5. Convergence history plots for the critical NLH subject to the Sommerfeld transverse boundary conditions; xmax = 13.
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sequence of grids ranging from twice as coarse, (hz,hx) = (k0/10,k0/4), to twice as fine, (hz,hx) = (k0/40,k0/16)
compared with the original grid. Between each two consecutive grids in the sequence, the resolution changes

by a factor of 2. The results are summarized in Table 1, where we present the maximum norms of the dif-

ference between consecutive solutions. Note that the improvement by reducing the grid sizes by a factor of

two is 0.125/0.0102 
 12.25, which is close to the theoretical prediction 24 = 16.



Table 1

Grid convergence study for the Sommerfeld boundary conditions

Grid no. i = 1 i = 2 i = 3

(hz,hx) ðk0
10
; k0
4
Þ ðk0

20
; k0
8
Þ ðk0

40
; k0
16
Þ

iE(grid> i) � E(grid> i� 1)i1 0.125 0.0102
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To further demonstrate the superiority of the new approach, let us now reduce the transverse size of the

computational domain by approximately a factor of 2, to xmax = 7. As we have already mentioned, for sizes

smaller than 13 the iterations with the Dirichlet boundary conditions diverge. In contrast, iterations with

the Sommerfeld boundary conditions still converge for xmax = 7 at the same rate as for xmax = 13, see Fig. 8.

The quality of the Sommerfeld solution on the 40 · 7 domain, see Figs. 9 and 10 is only marginally worse

than that for the 40 · 13 domain, and is roughly comparable with the quality of the 40 · 13 Dirichlet solu-

tion, see Figs. 3 and 4. In fact, the Sommerfeld boundary conditions allow us to reduce the transverse size

of the domain even further and keep the same convergence rate up to at least xmax = 3. However, for such a
small domain the solution itself bears little resemblance to the solution which we are trying to approximate

(which corresponds to the unbounded transverse domain), and so we do not present it here.

Going in the ‘‘opposite direction’’, we started with the Sommerfeld solution for xmax = 13 and tried to

obtain a solution with comparable quality with the Dirichlet boundary conditions. In that case we have

found out that the transverse size of the domain should roughly be twice as large, see Figs. 11–13 which

show the results for the Dirichlet case with xmax = 25.
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Fig. 9. Solution of the critical NLH subject to the Sommerfeld transverse boundary conditions xmax = 7: Incoming and outgoing cross-

sections (left) and on-axis amplitude jE(0,z)j (right).
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Fig. 8. Convergence history plots for the critical NLH subject to the Sommerfeld transverse boundary conditions; xmax = 7.



–10 –5 0 5 10
0

0.5

1

x

|E|

z=0
z

max

0 10 20 30 40

0.5

0.75

1

z

|E|

Fig. 12. Solution of the critical NLH subject to the Dirichlet transverse boundary conditions for xmax = 25: Incoming and outgoing

cross-sections (left) and on-axis amplitude jE(0,z)j (right).

Fig. 10. Solution of the critical NLH subject to the Sommerfeld transverse boundary conditions for xmax = 7.
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Fig. 11. Convergence history plots for the critical NLH subject to the Dirichlet transverse boundary conditions; xmax = 25.
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Finally, in Fig. 14 we show the results that correspond to higher input powers and as such, allow one to

observe stronger self-focusing. These results are obtained with the Sommerfeld transverse boundary condi-

tions: For k0 = 8 on the domain zmax = 60, xmax = 20, hz = k0/20, and hx = k0/8 (Fig. 14(left)), and for

k0 = 30 on the domain zmax = 60, xmax = 15, hz = k0/5, and hx = k0/4 (Fig. 14(right)). In the computation

with p = 99.6% the plot of the solution looks more stretched in the longitudinal direction, because we used



Fig. 13. Solution of the critical NLH subject to the Dirichlet transverse boundary conditions for xmax = 25.

Fig. 14. Solution of the critical NLH subject to the Sommerfeld transverse boundary conditions for k0 = 8 and p = 99% (left), and

k0 = 30 and p = 99.6% (right).
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k0 = 30, which implies a larger diffraction length LDF ¼ k0r20. Also notice that solutions with such high input

powers are very difficult and very expensive to obtain with the Dirichlet transverse boundary conditions.

To summarize, the Sommerfeld boundary conditions allow us to reduce the transverse size of the com-

putational domain by roughly a factor of two without any degradation in either the solution quality or the
convergence rate. This reduction also translates into a reduction of the computational costs. The transla-

tion, however, is not apparent and requires an additional comment. In the case of the Dirichlet boundary

conditions, the diagonalization of system (54) that yields system (55) could be achieved by Fourier trans-

form implemented via FFT, with a slightly super-linear asymptotic cost of O(M lnM) for each

n = 0, . . . ,N. With the Sommerfeld boundary conditions, however, the cost of diagonalization by means

of the matrix W of (52) is quadratic, O(M2) for each n. This may first seem a disadvantage of the new pro-

cedure. We need to realize however, that the physical problems that we consider, namely, propagation of

beams essentially in the z direction, require neither large transverse domain sizes xmax nor large transverse
grid dimensions M, as long as one can guarantee (reasonably) good non-reflecting properties of the lateral

boundaries x = ±xmax. For the moderate values of M that we have actually used, the overall computational

cost is dominated by other parts of the algorithm, primarily, by the sparse linear solver applied to each sys-

tem (56), rather than by the separation of variables. In Table 2, we present typical data of the relative cost



Table 2

Relative cost of the separation of variables

Dirichlet BCs Sommerfeld BCs

Domain size zmax · xmax 40 · 13 40 · 25 40 · 6.5 40 · 13

Grid dimension N ·M 1019 · 132 1019 · 254 1019 · 66 1019 · 132

Percentage of overall runtime 6.45% 9.6% 7.5% 11%

G. Fibich, S. Tsynkov / Journal of Computational Physics 210 (2005) 183–224 215
of the separation of variable as percentage of the total execution time; the data are obtained by profiling the

Matlab code.

Even though, as expected, the relative cost of the separation of variables is higher for the new algo-

rithm, see Table 2, its contribution to the overall cost is insignificant in any case. If, on the other hand,

there is ever need in considering larger transverse dimensions, a faster multiresolution-based procedure

[23] can be employed that combines both the separation of variables and linear solver ‘‘under one

roof.’’

4.2. Subcritical case

We recall that the subcritical NLS (5) for r = 1 admits a well-known soliton solution
A ¼ eiz=2

coshðx=
ffiffiffi
2

p
Þ
.

To see how this soliton would propagate in the framework of the nonparaxial Helmholtz equation, we

solve the two-dimensional NLH (6) with r = 1 and with the incoming beam specified as
Eðinc;leftÞðxÞ ¼ ð�k20Þ
�1=2

coshðx=
ffiffiffi
2

p
Þ
.

To maximize the effect of nonparaxiality and backscattering, we set k0 = 5. As we can say that r0 

ffiffiffi
2

p
,

the diffraction length is LDF ¼ k0r20 
 10. We also set zmax = 70, which corresponds to propagation over 7

diffraction lengths.

The convergence history plots for the case xmax = 10 can be seen in Fig. 15. For the Dirichlet transverse

boundary conditions, iterations (23) quickly diverged. In contrast, the Sommerfeld boundary conditions

have provided for a robust convergence at a linear rate; with the residuals dropping by about 9 orders

of magnitude after 200 nonlinear cycles.

In order to better understand the aforementioned quick divergence of the iterations (23) for the

Dirichlet boundary conditions, we plot in Fig. 16 the magnitude of the transformed solution Ên ¼
W�1En ¼ ½Ê0;n; . . . Êl;n . . . ; Ê2M ;n� for n = 1 as a function of Re a2z ðlÞ, see (63). In the Dirichlet case,

W�1 is the inverse discrete Fourier transform, Êl;n are Fourier coefficients, and az are real, hence

Re a2z ¼ a2z . In the Sommerfeld case, Êl;n can no longer be referred to as genuine Fourier coefficients,

and the quantities az are always separated from zero because Im k(l) 6¼ 0. Since Re a2z < 0 corresponds

to the evanescent modes for both cases, we can expect most of the energy to remain concentrated in the

region Re a2z > 0. This is, indeed, the case when we use the Sommerfeld transverse boundary conditions,

see Fig. 16. In the case of the Dirichlet boundary conditions, however, we observe a rapid amplification

of the near-zero modes (jazj 
 0). This numerical resonance is a manifestation of the computational
instability due to degeneration of the one-way discrete Helmholtz equations mentioned in Section 3.8

– relations (64) and (65) become truly linearly dependent or ‘‘almost’’ linearly dependent for az = 0

or jazj � 1, respectively. In other words, the near-zero modes become poorly controlled by the
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Fig. 15. Convergence histories for the case of a single soliton.
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boundary conditions – in the ultimate case of the exact equality az = 0 there is no control at all, and
the homogeneous system admits a non-trivial solution.8 In the case of the Sommerfeld transverse

boundary conditions, the modes for which Re a2z 
 0 are the ones for which Re kðlÞ 
 �k20, i.e., they

correspond to the waves that basically propagate in the ±x directions. As predicted by the intuitive

argument following Eq. (17), these waves would experience the largest amount of damping (see Fig.

17), which prohibits the growth of these modes. We thus see that the use of the Sommerfeld transverse

boundary conditions removes the numerical resonance problem that may ‘‘haunt’’ the algorithm with

the Dirichlet transverse boundary conditions.

In Fig. 18, we plot the transverse profiles of the solution at z = 0 and at z = zmax. The discrepancy
between the two is minute, which indicates that the NLH solution basically propagates as a soliton.

The three-dimensional mesh plot of the solution in Fig. 19 corroborates the same observation. To
8 Whether the instability would manifest itself in each particular computation apparently depends on whether the nonlinear

iterations (23) can pump more and more energy into the unstable modes.
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the best of our knowledge, this is the first numerical evidence that nonparaxiality and backscattering

have a negligible effect on the propagation of solitons, even when the soliton width is of the order of

a single wavelength.
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Fig. 19. Single soliton solution to the subcritical NLH.
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In order to see how well our boundary conditions can treat the incoming waves that are not parallel to

the z axis, we solve the subcritical NLH with the incoming beam
Eðinc;leftÞðx; 0Þ ¼ exp �ik0 sin hðx� 5Þð Þð�k20Þ
�1=2

cosh ðx� 5Þ cos h=
ffiffiffi
2

p� � ; h ¼ arctanð1=4Þ;
which corresponds to a solitonic initial condition impinging on the z = 0 interface at an angle h 6¼ 0�. The
numerical parameters are as before, except that we set xmax = 15. As can be seen in Figs. 20–22, the solitonic

propagation is unaffected by the non-normal incidence angle. In particular, there is no indication of spu-

rious numerical reflections from the artificial boundaries, showing that our algorithm is capable of handling

well the waves not aligned with the grid/boundaries.

Another significant advantage of our NLH solver is its natural ability to solve, apparently for the

first time ever, for counter-propagating beams without making any additional assumptions. This is in

contrast with the NLS model that admits propagation in one direction only and as such would require
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numerical marching in two opposite directions when analyzing the counter-propagation case. Note that

although coupled NLS models have been used for counter-propagation, see [17], this approach involves

some approximation of the Kerr nonlinearity induced by two coherent beams. In Figs. 23 and 24, we

show our numerical solution of the subcritical NLH for the case of two counter-propagating incoming

beams:
Eðinc;leftÞðx; 0Þ ¼ Eðinc;rightÞðx; zmaxÞ ¼
exp �ik0 sin hðx� 10Þð Þð�k20Þ

�1=2

cosh cos hðx� 10Þ=
ffiffiffi
2

p� � ;
where h = p/4. The computational domain is xmax = 20, zmax = 20, and the grid sizes are hz = k0/60 and

hx = k0/16. The centers of the two input beams are located at (z = 0, x = 10) and (z = 20, x = 10), the
beams propagate downward at an angle of 45�, interact nonlinearly, and then continue to propagate

as solitons. The periodic oscillations in the interaction region result from the phase differences be-

tween the two counter-propagating beams, they disappear as the beams move further away from each

other.
Fig. 23. Counter-propagation of two solitons at an angle: 3D mesh plot.

Fig. 24. Counter-propagation of two solitons at an angle.
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5. Discussion

In this section, we outline our general motivation behind making a number of key choices in the design

of the foregoing algorithm, present some elements of comparison to other available techniques, and finally

draw our conclusions.

5.1. Sommerfeld boundary conditions

Boundary conditions (11) specify the desired outward direction of the radiation of waves at the lateral

artificial boundaries. As such, they can naturally be called Sommerfeld radiation conditions, even though

the original Sommerfeld conditions are typically set at infinity rather than at a finite boundary [24]. It is well

known [5] that the fundamental limitation of boundary conditions (11) is that they are basically one-dimen-

sional. In other words, any wave traveling toward either of the boundaries x = xmax or x = �xmax with non-
normal incidence will only partially get through while the other part will get reflected back into the domain.

In general, such reflections should be minimized, and ideally, we would, of course, like to have a boundary

that ensures reflectionless propagation for all the outgoing waves. This, however, is only possible if the cor-

responding ABC is nonlocal, see [5]; and in the current paper (see also [6–8]) the nonlocal treatment is re-

served for the artificial boundaries z = 0 and z = zmax. As for the lateral boundaries x = xmax and

x = �xmax, the next best choice after the previously used Dirichlet conditions [6–8], is obviously the local

radiation conditions (11).

Note that a number of different methods have been proposed in the literature, see the review [5],
aimed at better absorbing the outgoing radiation with non-normal incidence. They can be said to

occupy an intermediate position between the fully nonlocal ABCs and the local Sommerfeld conditions

of type (11). In this category, one should first mention higher order local conditions by Bayliss and

Turkel [25–27], as well as those by Higdon [28–33]. The first-order Sommerfeld conditions (11) can then

be interpreted as the first member of the Bayliss–Turkel hierarchical sequence of boundary conditions.

Other members of this sequence have been shown to make the artificial boundary more transparent for

the outgoing waves with non-normal incidence. However, they also involve differentiation of orders

higher than one, cf. formulae (11), which clearly brings along the issue of accurate and stable discrete
approximation. Therefore, in the current paper we have only employed the first-order local radiation

boundary conditions in the transverse direction. Instead of pursuing continuous higher orders, say,

in the sense of [25–27], we rather focus on a very thorough implementation of boundary conditions

(11) in the context of a fourth-order finite-difference approximation, see Section 3. Compared to the

previously used Dirichlet boundary conditions [6], this modification alone already provides for very

substantial computational benefits, as the computations of Section 4 show. At the same time, we admit

that even better results could have possibly been obtained if a continuous higher-order boundary con-

dition were to be implemented as carefully in the discrete context as we have implemented conditions
(11). We plan to study this question in the future.

Another potential alternative to the transverse boundary conditions of type (11) is offered by perfectly

matched layers (PML). A large number of such techniques have been proposed in the literature since the

original work [34,35]; a particular example for time-harmonic waves can be found in [36]. It is generally

acknowledged that PMLs have better absorption characteristics for the outgoing waves than local radiation

boundary conditions do. In the context of the current methodology, however, while it is important to facil-

itate the reflectionless propagation of waves through the lateral boundaries x = ±xmax, it is even more

important to be able to carry out the separation of variables described in Section 2.2, as otherwise the cru-
cial nonlocal two-way ABCs at z = 0 and z = zmax cannot be set. The separation of variables is rendered by

the expansion with respect to the transverse eigenfunctions. However, to the best of our knowledge, nobody

has ever looked into the spectra and eigenfunctions of the Helmholtz operators on the domains that include
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regions of PML (variable coefficients). The corresponding analysis may prove cumbersome, and is certainly

beyond the scope of the current paper. We therefore, again, leave it for a future study.

Another important comment is in order. Boundary conditions (11) are derived in the framework of the

linear equation (9). The reason is that the geometry of the problem (see Fig. 1) suggests that if the lateral

artificial boundaries are located sufficiently far from the central part of the domain where the nonlinear phe-
nomena take place, then the nonlinearity near x = xmax and x = �xmax can merely be disregarded.We realize,

of course, that this argument is only qualitative and does not, for example, allow one to judge ahead of time

how far away those lateral boundaries shall be placed. Still, numerical experiments of Section 4 do show that

they can be located much closer for the Sommerfeld conditions than for the previously used Dirichlet con-

ditions, and that overall the linear boundary conditions (11) (more precisely, discrete boundary conditions

(39)) have performed exceptionally well, which provides a conclusive justification of their legitimacy.

In the Literature, one can find considerations similar to those that lead to the continuous homogeneous

boundary conditions (11) and (18), as well as to the inhomogeneous two-way boundary conditions (20), see,
e.g., [37]. However, the corresponding discrete boundary conditions (39), (64) and (65), as well as (71) and

(72), are unparalleled, as they are obtained by the direct analysis of the waves propagating on the grid in the

context of a fourth-order discretization, as opposed, e.g., to asymmetric one-sided differencing.

5.2. Local versus nonlocal boundary conditions

In spite of their apparent similarity, an important distinction is to be emphasized between boundary con-

ditions (11) and boundary conditions (18). The Sommerfeld conditions (11) can only guarantee the reflec-
tionless propagation for the waves that have normal incidence. As such, in the two-dimensional setting

(x,z) these boundary conditions appear approximate. Conversely, as each equation (17) is genuinely

one-dimensional, the corresponding boundary conditions (18) are exact. Indeed, in the one-dimensional

case there may be no other angle of incidence for the outgoing waves except normal. Of course, this exact-

ness is only enabled by the analysis conducted in the transformed space, i.e., after the second dimension x

has been ‘‘removed’’ by the separation of variables and replaced by the index l. We note that for different l�s

the wavenumbers

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ kðlÞ

q
of the waves propagating in the z direction are also different, as they depend

on the eigenvalue k(l). To maintain exactness of the ABCs in the original two-dimensional space, we need to

transform back from the coefficients ÊlðzÞ to the functions E(x,z). This is a fairly standard approach to

obtaining the ABCs, see the review [5]. In practically all similar cases reported in the literature, it yields

nonlocal pseudodifferential operators instead of the symbols �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ kðlÞ

q
in formulae (18). In general,

the nonlocality of the ABCs is ‘‘the price to pay’’ for their exactness, i.e., for the capability to accurately

handle the entire range of the angles of incidence in the (x,z) setting, which, as one can easily see, is equiv-

alent to accommodating different wavenumbers for different l�s in the transformed space. In the literature,

the nonlocality of the ABCs has often been considered a disadvantage and a potential source of difficulties

at the implementation stage. Contrary to this ‘‘conventional wisdom,’’ it turns out that in many cases non-

local ABCs can be efficiently implemented in the discrete framework [5], which typically results in algo-

rithms with superb performance. In particular, in the current paper we have seen that there was no need
to explicitly transform the ABCs back into the physical space, because they are naturally implemented

in the context of a solver based on the separation of variables, see Section 3.7.
6. Conclusions

Altogether, the Sommerfeld transverse boundary conditions render a considerably more robust compu-

tational procedure, compared to the previously used Dirichlet boundary conditions. On the computational
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domain of the same size, the quality of the solution obtained with the Sommerfeld boundary conditions is

noticeably higher than that for the Dirichlet boundary conditions. Besides, due to the reduced reflections

from the lateral boundaries, the Sommerfeld boundary conditions facilitate convergence of the iteration

scheme (23) on much smaller domains than the Dirichlet boundary conditions can handle.

Moreover, the new algorithm brings along new computational capabilities that could not be attained
previously. In particular, it offers a natural way of solving for counter-propagating solitons (see Section

4.2) in the framework of a single boundary value problem for the NLH with no approximations needed.

For the same setup, the NLS model would require marching two Cauchy problems in the opposite direc-

tions with only approximate treatment of the nonlinear interaction between the two beams.

Recently, it has also been brought to our attention that the properties of the Sommerfeld eigenvectors

established in Section 3, in particular, their linear independence (Proposition 7), as well as the easy way to

invert the transformation W according to formula (53), have been observed experimentally in the context of

building the direct solve preconditioners for large-scale scattering problems, see, e.g., [38,39]. However, to
the best of our knowledge no justification of these properties similar to the one given in Section 3 has ever

been provided, and we therefore expect that our results may appear useful not only for solving the NLH,

but for other applications as well.

Finally, solving the critical NLH for input powers above critical still remains an outstanding difficult

issue. Its analysis may require a major new insight, and will be a subject of our future work.
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