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Abstract

A straightforward application of the previously designed lacunae-based numerical methods to unsteady electro-

magnetic problems would encounter certain difficulties, as it may violate the continuity of the charges and currents,

which is a necessary solvability condition for the Maxwell equations. In the paper, we prove existence of the special

auxiliary charges and currents that satisfy the continuity equations identically. We also show that using such charges

and currents as a part of the numerical procedure provides a clear and unobstructed venue toward implementation of

the lacunae-based methods in electromagnetics.
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1. Introduction

Lacunae-based methods have been built earlier for the scalar wave equation [1,2] and for the system of

acoustics [3]. They enable non-deteriorating long-term integration of the corresponding equations driven by

continuously operating compact sources, and, in a more complex environment, facilitate construction of
highly accurate global artificial boundary conditions (ABCs)with only limited extent of temporal nonlocality.

To set the lacunae-based ABCs at the outer boundary of a finite computational domain, one first splits

the original infinite-domain problem into the interior and auxiliary sub-problems. The interior problem is

posed on the aforementioned bounded computational region, whereas the auxiliary problem is still posed
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on the entire space. The two problems are connected to one another in such a way that the source terms of

the auxiliary problem depend on the interior solution right inside the boundary, and the solution of the

auxiliary problem right outside the boundary provides the required closure for the interior formulation, i.e.,
the ABCs. The key objective and key advantage of employing this decomposition is that in a number of

interesting cases the auxiliary problem can be formulated so that its solutions would have lacunae. In other

words, the auxiliary problem would satisfy the Huygens� principle, which characterizes certain hyperbolic

PDEs in odd-dimension spaces. The presence of lacunae can be translated into an efficient non-deterio-

rating numerical algorithm for integrating the auxiliary problem, which, in turn, yields the ABCs whose

restricted nonlocality in time does not come at the expense of introducing any approximations and/or

simplifications to the original model, but rather reflects the fundamental properties of the corresponding

solutions.
As, however, shown in Section 3 of the paper, a key obstacle for implementation of the lacunae-based

methods in electromagnetics happens to be the necessary requirement of continuity for the charges and

currents that drive the Maxwell equations. More precisely, using the lacunae-based integration in its ori-

ginal form [1–3] may violate the continuity, thus rendering the corresponding auxiliary problem unsolvable.

In the paper, we prove existence of a special class of auxiliary currents and charges that satisfy the con-

tinuity requirement identically (solenoidal currents and zero charges). We also prove that employing the

solenoidal auxiliary currents in the numerical procedure helps eliminate the foregoing hurdle and does

allow for the use of lacunae-based algorithms in electromagnetics. This is the central theoretical conclusion
of the paper, which is also corroborated in Section 5 by a series of numerical demonstrations. The com-

putations of Section 5 are conducted for the cylindrically symmetric case, which helps us keep their overall

cost low, while still preserving the vital three-dimensional effects. Besides, cylindrical symmetry leads to a

rather simple algorithm for obtaining the solenoidal currents. Implementation of a more general algorithm

will be reported in the forthcoming publication [4].
2. Maxwells equations and solenoidal currents

The propagation of electromagnetic waves in vacuum is governed by the Maxwell system of equations:

1

c
oH

ot
þ curlE ¼ � 4p

c
jm; divH ¼ 4pqm;

1

c
oE

ot
� curlH ¼ � 4p

c
j; divE ¼ 4pq:

ð1Þ

In system (1), E is the electric field, H is the magnetic field, c is the speed of light, and the normalization is

chosen so that both the permittivity and permeability of vacuum are equal to one: e0 ¼ l0 ¼ 1. System (1) is
driven by the extraneous electric charges q ¼ qðx; tÞ and currents j ¼ jðx; tÞ, as well as by the magnetic

charges qm ¼ qmðx; tÞ and currents jm ¼ jmðx; tÞ. Note that whereas the electric quantities q and j have a

precise physical meaning, see, e.g. [5], the magnetic quantities qm and jm in (1) should be interpreted as no

more than mathematical artifacts. They are nonexistent in nature and we introduce them in (1) because they

will appear in the context of subsequent intermediate derivations; they, however, will never be a part of any

final result.

A very important property of system (1) is the necessary solvability condition that its right-hand sides

(RHSs) must satisfy. By taking divergence of each unsteady equation of (1) and substituting the corre-
sponding steady-state equation we obtain

oq
ot

þ div j ¼ 0; ð2aÞ
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oqm

ot
þ div jm ¼ 0: ð2bÞ

Eq. (2a) is known as the continuity equation for the electric charges and currents [5]; similarly, Eq. (2b)

implies continuity of the artificial magnetic charges and currents. Unless the RHSs of system (1) satisfy

relations (2a) and (2b), the Maxwell equations cannot be solved. We will now see what special types of

sources may drive the Maxwell system.

The following setup, which is typical for many applications, will be in the center of our subsequent

discussion. Assume that there is some possibly complex phenomenon/process confined to a bounded do-
main S � R3 that manifests itself by the radiation of electromagnetic waves in the far field. As in our

previous work [1–3], the domain S is supposed to have a fixed shape, but may move in space according to a

prescribed law, so that we will generally have S ¼ SðtÞ, t > 0. With no substantial loss of generality, we will

restrict ourselves to the case of purely translational motions, which may, though, be unsteady

u ¼ uðtÞ; U ¼ UðtÞ ¼
Z t

0

uðsÞ ds ð3Þ

here u and U are the vectors of velocity and displacement, respectively, which are the same for every point

of SðtÞ. On R3 n SðtÞ the propagation of waves is assumed to be governed by the homogeneous counterpart

of the Maxwell system (1). The ultimate objective is to be able to actually solve the problem only on SðtÞ,
while truncating all of its exterior and replacing it with special artificial boundary conditions (ABCs) at the
external boundary oSðtÞ.

A key observation that one can make toward fulfilling this objective is to realize that the same wave

propagation solution on R3 n SðtÞ as generated by a given radiation mechanism inside SðtÞ can also be

produced by specially chosen divergence-free currents concentrated only on SðtÞ.

Theorem 1 (Solenoidal currents). Let the vector fields E ¼ Eðx; tÞ andH ¼ Hðx; tÞ be smooth and satisfy the

homogeneous counterpart to Maxwell’s system (1) on the unbounded region of space–time R3 n SðtÞ � ½0;þ1Þ,
where S ¼ SðtÞ � R3 is a finite domain with smooth boundary, oSðtÞ 2 C1. Let also Eðx; 0Þ ¼ Hðx; 0Þ ¼ 0,

x 2 R3 n Sð0Þ. Then, 9~j ¼ ~jðx; tÞ and ~jm ¼ ~jmðx; tÞ:
• 8tP 0 fsupp ~jðx; tÞ \ R3g � SðtÞ and fsupp ~jmðx; tÞ \ R3g � SðtÞ, i.e., the currents are compactly sup-

ported in space for any given moment of time;

• ~jðx; tÞ and ~jmðx; tÞ are smooth vector fields, and div~j ¼ 0 and div~jm ¼ 0;
• The solution of system (1) on R3 driven by the currents ~j and ~jm and charges ~q ¼ ~qm ¼ 0 coincides on

R3 n SðtÞ with the original E and H .

Note that the homogeneous initial conditions for E andH on R3 n Sð0Þ present no loss of generality; they

only imply that by the time t ¼ 0 no waves have propagated from the domain Sð0Þ outward yet. The RHSs ~j
and ~jm that exist according to Theorem 1 will hereafter be referred to as auxiliary sources.

Proof. To obtain the desired solenoidal currents on SðtÞ, we will first need to represent the quantities Hðx; tÞ
and Eðx; tÞ on R3 n SðtÞ as curls of some auxiliary vector fields. Representations of this type are usually

constructed in a special convenient form of double curls, as done, for example, when proving the Helmholtz

theorem on R3, see [6, Section 1.5]. For every t > 0, let us consider the vector Poisson equation

DW ¼ �H ; x 2 R3 n SðtÞ: ð4Þ

As the wave propagation speed c is finite, the function Hðx; tÞ will be compactly supported in space for any
moment of time t > 0. Therefore, we can require that the solution W ¼ Wðx; tÞ of Eq. (4) vanishes at

infinity: 8t > 0; Wðx; tÞ ! 0 as jxj ! þ1. Next, recasting Eq. (4) in the equivalent form:



S.V. Tsynkov / Journal of Computational Physics 199 (2004) 126–149 129
�curl curlW þ grad divW ¼ �H , and taking divergence of its both sides we obtain that divW is a har-

monic function on R3 n SðtÞ

8t > 0 : D½divWðx; tÞ� ¼ 0 for x 2 R3 n SðtÞ ð5Þ

as divH ¼ 0 on R3 n SðtÞ. Note that if Eq. (4) and, consequently, (5), were considered on the entire space

R3, then the Liouville theorem would automatically imply that divW � 0. However, on a domain smaller

than the entire space there are many more bounded solutions of (5), and to ensure that the field W be

nevertheless divergence-free on R3 n SðtÞ, we require that

divW joSðtÞ ¼ 0: ð6Þ

Relation (6) only provides one scalar boundary condition for the vector Poisson equation (4). It still

guarantees though that any solution of problem (4), (6) will be solenoidal because Eq. (5) subject to the

boundary condition (6) may only have a trivial solution divW ¼ 0 on R3 n SðtÞ. Therefore, Eq. (4) reduces
to

curl curlW ¼ H ; t > 0; x 2 R3 n SðtÞ ð7Þ

while for t ¼ 0 it is natural to set Wðx; 0Þ ¼ 0, x 2 R3 n Sð0Þ, as Hðx; 0Þ ¼ 0. Our subsequent analysis will

make explicit use of the double curl representation for the field H that Eq. (7) offers.

Moreover, we will also need to make sure that the auxiliary field W ¼ Wðx; tÞ be a smooth function of

all its arguments, including time, even though it is obtained independently for every t > 0. Clearly, the

regularity in time can only be achieved if one can remove the ambiguity in W , which still exists for every

t > 0 because having only one boundary condition (6) is not sufficient for determining W uniquely. To see
what additional boundary conditions at oSðtÞmay be appropriate for Eq. (4) in this perspective, we will first

briefly remind of some basic facts pertaining to the volume and surface potentials of the vector Laplacian,

while referring the reader to [6, Chapter 13;7, Chapter 3] for detail. The fundamental solution (i.e., free

space Green�s function) of the operator rbrb � D of (4) 2 is actually a symmetric rank 2 tensor field

E ¼ EðxÞ that solves the following Poisson equation on R3:

DE ¼ gdðxÞ; ð8Þ

where g is the metric tensor for the coordinates chosen, and dðxÞ is the conventional scalar d-function. As in

the Cartesian coordinates the operator in (8) decouples into a set of six conventional scalar Laplacians (six
rather than nine, because g is symmetric: gab ¼ gba), we immediately conclude that

EðxÞ ¼ � 1

4p
gðxÞ
jxj : ð9Þ

Relation (8) implies that if Eq. (4) was to be solved on the entire space R3 rather than R3 n SðtÞ, then
its solution would simply be W ¼ �E �H , where the convolution is assumed to be performed with

respect to both the coordinates and the tensor indexes, i.e., W a ¼ �
R R R

R3 E
a
bðx� yÞHbðyÞ dy. Indeed,

DW ¼ �DðE �HÞ ¼ �ðDEÞ �H ¼ �ðgdÞ �H ¼ �H .

Next, we recall the second Green�s formula for the vector quantityW and tensor quantity E, which reads

(see [6, Section 13.1])
2 Here, rb denotes covariant, and rb denotes contravariant differentiation; unless explicitly specified otherwise, a standard tensor

summation with respect to repeated upper and lower indexes is assumed hereafter.
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Z Z Z
R3nSðtÞ

Eðx
�

� yÞ � DWðy; tÞ � DyEðx� yÞ �Wðy; tÞ
�
dy

¼
Z Z

oSðtÞ
E
�

� curlW þ EdivW �W � curlyE�WdivyE
�
� m dSy; ð10Þ

where m is the unit normal to oSðtÞ. The differential operators div and curl applied in formula (10) to the

symmetric tensor E are defined in a conventional way: divEa ¼ rbE
ab and curlEab ¼ eacfrcE

b
f , where e

acf is

the Levi–Civita tensor. Due to the definition of the fundamental solution, see (8), the second term on the
left-hand side of Eq. (10) is equal to �Wðx; tÞ and we therefore obtain the representation of a vector field as

a sum of the volume potential and two surface potentials

Wðx; tÞ ¼
Z Z Z

R3nSðtÞ
Eðx� yÞ � DWðy; tÞ dy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

volume

þ
Z Z

oSðtÞ
�E� curlW � EdivW|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

single layer

2
64 þW � curlyEþWdivyE|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

double layer

3
75 � m dSy: ð11Þ

Formula (11) indicates that in addition to the scalar boundary condition (6), one may require, for
example, that either the tangential component of curlW be zero at the boundary (because

½E� curlW � � m ¼ �E � ½m � curlW �)
m � curlW joSðtÞ ¼ 0 ð12Þ

or the tangential component of the vector W itself be zero at the boundary

m �W joSðtÞ ¼ 0 ð13Þ

(because ½W � curlE� � m ¼ curlE � ½m �W �). Each of the boundary conditions (12) or (13) obviously pro-

vides two more scalar constraints for the field W at the surface oSðtÞ.
The juxtaposition of boundary conditions (6) and (12) provides a full set of Neumann�s boundary

conditions for the vector field W at oSðtÞ. The juxtaposition of boundary conditions (6) and (13) is a

combined Neumann–Dirichlet type boundary condition. Inhomogeneous boundary conditions are also

possible, as well as those of the mixed (Robin) type, see [6, Section 13.1].

We, however, are only interested in obtaining a smooth auxiliary field W ¼ Wðx; tÞ that would satisfy

(4) and (6) but may otherwise be arbitrary. From this standpoint, either of the foregoing choices of

boundary conditions will be acceptable. For the combined Neumann–Dirichlet case (6), (13), for example,

we can define the Green�s function G as follows:

Gðx; y; tÞ ¼ Eðx� yÞ þ Fðx; y; tÞ; ð14aÞ
where E is the fundamental solution given by (9) and F is a symmetric rank 2 tensor field that satisfies the

reciprocity condition

Fðx; y; tÞ ¼ Fðy; x; tÞ; x; y 2 R3 n SðtÞ ð14bÞ

and the Laplace equation

DxFðx; y; tÞ ¼ 0; x; y 2 R3 n SðtÞ: ð14cÞ

The overall Green�s function (14a) should also satisfy the boundary conditions

divxGjx2oSðtÞ ¼ 0; m �Gjx2oSðtÞ ¼ 0: ð14dÞ
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Note, because of the symmetry of all the tensors involved, boundary conditions (14d) provide exactly six

independent scalar relations at oSðtÞ for the six independent components of F. The first three are obviously

given by divG
a ¼ rbG

ba ¼ 0 () rbF
ba ¼ �rbE

ba for a ¼ 1; 2; 3; and equalities ðm �GÞab ¼ eacfmcG
b
f ¼ 0

() eacfmcF
b
f ¼ �eacfmcE

b
f yield another three. Indeed, assume (with no loss of generality) that the vector m

has only one non-zero component mc for some fixed c. Then, taking into account that a component of the

Levi–Civita tensor may only differ from zero if none of its three indexes is repeated, we conclude that we

must have Fb
f ¼ �Eb

f for b 6¼¼ c and f 6¼¼ c, which, along with the symmetry, constitutes three inde-

pendent scalar relations.

It is also clear that all the unsteadiness in the Green�s function (14a) comes only from the boundary

conditions (14d) that are set on a moving surface. As, however, these boundary conditions are homoge-

neous by themselves and do not contain any explicit time dependence, it is easy to conclude that the
Green�s function (14a) at time t is, in fact, a mere translation of the corresponding Green�s function at time

t ¼ 0:

Gðx; y; tÞ ¼ Gðx�UðtÞ; y�UðtÞ; 0Þ

¼ Eðx� yÞ þ F0ðx�UðtÞ; y�UðtÞÞ ¼defG0ðx�UðtÞ; y�UðtÞÞ; ð15Þ

where UðtÞ is the displacement given by (3).

Having selected the boundary conditions for Eq. (4), and having obtained the corresponding Green�s
function, we substitute the tensor field Fðx; y; tÞ ¼ F0ðx�UðtÞ; y�UðtÞÞ of (14a), (15) into formula (10)

instead of the fundamental solution E and use the reciprocity condition (14b) along with the property (14c),

which altogether yields:

0 ¼
Z Z Z

R3nSðtÞ
F0ðx�UðtÞ; y�UðtÞÞ � DWðy; tÞ dy

þ
Z Z

oSðtÞ

�
� F� curlW � FdivW þW � curlyFþWdivyF

�
� m dSy: ð16Þ

Next, by adding Eqs. (11) and (16) and using conditions (14d) we obtain

Wðx; tÞ ¼
Z Z Z

R3nSðtÞ
G

0ðx�UðtÞ; y�UðtÞÞ � DWðy; tÞ dy

þ
Z Z

oSðtÞ

�
�G � m divW þ curlyG � ðm �WÞ

�
dSy: ð17Þ

Finally, we substitute the homogeneous boundary values from (6) and (13) into the surface integrals on the

right-hand side of (17), then substitute Hðy; tÞ ¼ �DWðy; tÞ into the corresponding volume integral, and

obtain

Wðx; tÞ ¼ �
Z Z Z

R3nSðtÞ
G

0ðx�UðtÞ; y�UðtÞÞ �Hðy; tÞ dy: ð18Þ

Formula (18) is the Green�s function representation of the solution Wðx; tÞ to the boundary-value problem

(4), (6), (13). It will help us establish the required smoothness of Wðx; tÞ with respect to all its arguments,

provided that the source term Hðx; tÞ is also smooth. In so doing, it is clear that only the regularity in time

may require a special comment, whereas the regularity of Wðx; tÞ in space would follow from the standard

elliptic considerations.
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The region of integration R3 n SðtÞ in formula (18) is obviously not stationary. Therefore, for future

convenience, let us introduce a new vector field

Ĥðy; tÞ ¼defHðyþUðtÞ; tÞ ð19Þ

which would allow us to recast formula (18) so that the integration be now performed over a fixed domain

R3 n Sð0Þ

Wðx; tÞ ¼ �
Z Z Z

R3nSðtÞ
G

0ðx�UðtÞ; y�UðtÞÞ � Ĥðy�UðtÞ; tÞ dy

¼ �
Z Z Z

R3nSð0Þ
G

0ðx�UðtÞ; y0Þ � Ĥðy0; tÞ dy0: ð20Þ

Differentiating (20) with respect to time, we obtain

oWðx; tÞ
ot

¼
Z Z Z

R3nSð0Þ
uðtÞ � gradxG

0ðx
h

�UðtÞ; y0Þ
i
� Ĥðy0; tÞ dy0

�
Z Z Z

R3nSð0Þ
G

0ðx�UðtÞ; y0Þ � oĤðy0; tÞ
ot

dy0: ð21Þ

The first term on the right-hand side of (21) is equal to �uðtÞ � gradWðx; tÞ and is continuous. The second

term contains the partial derivative of Ĥ with respect to time, which, according to (19), shall be expressed as
oĤðy0 ;tÞ

ot ¼ uðtÞ � gradHðy0 þUðtÞ; tÞ þ oHðy0þUðtÞ;tÞ
ot ; it is, as such, continuous, provided that the corresponding

derivatives of H are continuous. Existence and continuity of the higher-order derivatives of Wðx; tÞ w.r.t.
time can be established similarly, by further differentiating (21). They will obviously hinge on the regularity

of Hðy; tÞ and on that of the law of motion (3).

Altogether, we have been able to construct a smooth auxiliary vector field W ¼ Wðx; tÞ on R3 n SðtÞ for
all t > 0, such that the given magnetic field H ¼ Hðx; tÞ, divH ¼ 0, is represented in the double curl form

(7). Quite similarly, considering the problem

DV ¼ �E; x 2 R3 n SðtÞ; ð22aÞ
divV joSðtÞ ¼ 0; ð22bÞ
m � V joSðtÞ ¼ 0; ð22cÞ

we arrive at the following representation for the electric field [cf. (7)]:

curl curlV ¼ E; t > 0; x 2 R3 n SðtÞ; ð23Þ

where, again, Vðx; 0Þ ¼ 0, x 2 R3 n Sð0Þ, because Eðx; 0Þ ¼ 0.

For the last phase of the proof, we will use an extension argument of Whitney�s type that applies to

functions defined on closed sets, see [8, Chapter VI]. Let e > 0 and introduce a smaller sub-domain

Se ¼ SeðtÞ ¼def fx 2 SðtÞjdistðx; oSðtÞÞ > eg. Hereafter, we will call SðtÞ n SeðtÞ the transition region, see Fig. 1.

The previously built auxiliary vector field W ¼ Wðx; tÞ can be extended inwards from its four-dimensional

space–time domain R3 n SðtÞ, t > 0 [SðtÞ is assumed an open set, therefore, R3 n SðtÞ is a closed set] to this

transition region for t > 0; the extension ~W ¼ ~Wðx; tÞ will be defined on a larger domain R3 n SeðtÞ, t > 0,
and will still coincide with W on R3 n SðtÞ, t > 0. For t ¼ 0, obviously, ~Wðx; 0Þ ¼ 0, x 2 R3 n Seð0Þ.
Moreover, since the boundary is assumed smooth, oSðtÞ 2 C1, the extension ~Wðx; tÞ can be obtained so
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that it would have as many continuous derivatives (w.r.t. all its arguments) on R3 n SeðtÞ, t > 0, as Wðx; tÞ
has on R3 n SðtÞ, t > 0; these derivatives of ~W will be uniformly bounded [i.e., independently of ðx; tÞ] in
terms of the corresponding derivatives ofW. Of course, an extension ~V that would have the same properties

can be built for the auxiliary field V of (22a)–(22c). Clearly, none of these extensions is unique. We,

however, only need their existence.

Let now l ¼ lðx; tÞ be a smooth scalar multiplier function:

8t > 0 : lðx; tÞ ¼
0; x 2 SeðtÞ;
1; x 2 R3 n SðtÞ;
2 ð0; 1Þ; x 2 SðtÞ n SeðtÞ

8<
: ð24Þ

and apply it to ~V and ~W , i.e., obtain l ~V and l ~W . Even though we did not require that ~Vðx; tÞ and ~Wðx; tÞ
be defined further inwards beyond the transition region SðtÞ n SeðtÞ, one can obviously consider the func-

tions l ~V and l ~W on the entire space R3 for any t > 0, because l ¼ 0 for x 2 SeðtÞ anyway. On R3 n SðtÞ,
these functions coincide with V and W , respectively; and on SðtÞ n SeðtÞ, they undergo a smooth transition

from their far-field values [i.e., values on R3 n SðtÞ] to zero. For t ¼ 0, l ~V ¼ l ~W ¼ 0, x 2 R3. Next, define

~E ¼ curl curl ðl ~VÞ; ~H ¼ curl curl ðl ~WÞ; t > 0; x 2 R3: ð25Þ

The modified quantities ~E and ~H of (25) coincide with the original quantities E and H, respectively, in the

far field, i.e., on R3 n SðtÞ, t > 0; they are both equal to zero on SeðtÞ because of (24); and on SðtÞ n SeðtÞ,
t > 0, they, again, undergo a smooth transition from their far-field values to zero. For t ¼ 0, we obtain
~Eðx; 0Þ ¼ ~Hðx; 0Þ ¼ 0, x 2 R3, which is an extension of the homogeneous far-field initial conditions into

Sð0Þ.
The key reason for obtaining extensions for the electric and magnetic fields in the specific double curl

form (25) is that while being smooth across the entire space, the new fields ~E and ~H obviously satisfy

div ~E ¼ div ~H � 0; t > 0; x 2 R3: ð26Þ

Then, the required auxiliary RHSs ~j, ~jm, ~q, and ~qm are constructed by substituting the modified fields ~E and
~H of (25) into the left-hand sides of Eq. (1) on the entire space R3. In so doing, relations (26) immediately
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imply that the resulting auxiliary charges will be trivial: ~q ¼ ~qm ¼ 0, while the corresponding auxiliary

currents will appear solenoidal, div~j ¼ div~jm ¼ 0. The latter can be shown directly by taking divergence of

each unsteady equation (1) and using equalities (26) again.
The RHSs ~j and ~jm obtained this way will be sufficiently smooth everywhere, because of the smoothness

of Whitney�s extensions, and that of the multiplier l of (24). Moreover, they may only differ from zero on

SðtÞ n SeðtÞ, because on SeðtÞ~E ¼ ~H ¼ 0, and on R3 n SðtÞ ~E ¼ E, ~H ¼ H , for which the homogeneous

Maxwell equations hold. In other words, 8t > 0 : fsupp~jðx; tÞ \ R3g � SðtÞ n SeðtÞ and fsupp~jmðx; tÞ\
R3g � SðtÞ n SeðtÞ, which is an even stronger statement than originally formulated in the theorem.

Solution of the Maxwell system (1) driven by the auxiliary sources ~j, ~jm, ~q ¼ 0, and ~qm ¼ 0, with ho-

mogeneous initial conditions, is equal to ~Eðx; tÞ, ~Hðx; tÞ for x 2 R3 and tP 0 due to the uniqueness.

Consequently, it coincides with Eðx; tÞ, Hðx; tÞ on R3 n SðtÞ � ½0;þ1Þ, as required. �

Corollary 2 (A basis for numerics). The quantities ~j, ~jm, ~q, and ~qm of Theorem 1 satisfy Eqs. (2a) and (2b)

identically 8tP 0 and x 2 R3.

Corollary 3. To obtain the solenoidal currents ~j ¼ ~jðx; tÞ and ~jm ¼ ~jmðx; tÞ that exist according to Theorem 1,

it is, in fact, sufficient to know the fields H ¼ HSðx; tÞ and E ¼ ESðx; tÞ only at the boundary oSðtÞ for t > 0.

Proof. The electric and magnetic fields on R3 n SðtÞ, t > 0, are governed by the homogeneous Maxwell

equations. Taking curl of one unsteady equation from the homogeneous counterpart of system (1), dif-

ferentiating the remaining unsteady equation with respect to time, substituting into one another, and using
the identity curl curl½� � �� ¼ �D½� � �� þ grad div½� � �� along with the corresponding steady-state equation, we

arrive at the following individual equations for the fields:

1

c2
o2H

ot2
� DH ¼ 0;

1

c2
o2E

ot2
� DE ¼ 0: ð27Þ

In other words, every solution to the homogeneous Maxwell equations on R3 n SðtÞ, t > 0, is also a solution

to the homogeneous vector wave Eq. (27). Eqs. (27) need to be supplemented by the homogeneous initial
conditions Hðx; 0Þ ¼ Eðx; 0Þ ¼ 0, x 2 Rn n Sð0Þ (cf. Theorem 1) and by the Dirichlet conditions

8t > 0 : Hðx; tÞjx2SðtÞ ¼ HSðx; tÞ; Eðx; tÞjx2SðtÞ ¼ ESðx; tÞ ð28Þ

at the lateral boundary oSðtÞ. Under the natural assumption that the maximum speed of motion in (3) is

always smaller than the characteristic speed, maxt juðtÞj < c, we conclude that problems (27) and (28) are
uniquely solvable and consequently, the fields H ¼ Hðx; tÞ and E ¼ Eðx; tÞ can be unambiguously recon-

structed on R3 n SðtÞ, t > 0, from their boundary data HSðx; tÞ and ESðx; tÞ, respectively. Then, Theorem 1

yields the required ~j and ~jm. �

A few essential comments are now in order. First and foremost, smoothness of the Whitney extensions ~V
and ~W , as well as that of the multiplier l of (24), is of key importance. Otherwise, differentiation in (25), as

well as differentiation of ~E and ~H when substituted into the left-hand sides of the Maxwell system (1), may

generate singularities along the interface oSðtÞ.
Besides, recall that the electromagnetic field is determined by its vector and scalar potentials that usually

satisfy a particular gauge. Under the Coulomb gauge the scalar potential is identically equal to zero. On the

region where no sources are present, such as R3 n SðtÞ, one can additionally require that the vector potential
A be solenoidal, see [5, Chapters III and VI], which yields

H ¼ curlA; E ¼ � 1

c
oA

ot
; divA ¼ 0: ð29Þ
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By looking at the first and third equations of (29) we conclude that if we new the particular auxiliary field

WA ¼ WAðx; tÞ that generates the true physical vector potential: A ¼ Aðx; tÞ ¼ curlWAðx; tÞ, then we could

have used it when constructing the solenoidal auxiliary currents in the concluding part of the proof of
Theorem 1. In so doing, we would have defined the modified magnetic field as before: ~H ¼ curl curlðl ~WAÞ,
cf. formulae (25). As concerns the modified electric field, we would have rather defined it in accordance with

(29): ~E ¼ �1
c
o
otcurlðl ~WAÞ, thus bypassing the entire part of the derivation that involves the second auxiliary

quantity V ¼ Vðx; tÞ, see (22a)–(22c). An easy verification shows that this approach would still yield the

solenoidal auxiliary currents and zero auxiliary charges on SðtÞ n SeðtÞ, see Fig. 1. Moreover, in this case the

magnetic currents would be identically equal to zero: ~jmðx; tÞ � 0, which corresponds to the genuine

physics, and which should clearly be expected when using the Coulomb gauge (29).

In general, however, the vector potential A of (29) and the field curlW of (7) are not the same; they may
differ by the gradient of a harmonic function uðx; tÞ, Du ¼ 0. When proving Theorem 1, we have employed

boundary conditions (6) and (13) to specify W ¼ Wðx; tÞ on R3 n SðtÞ uniquely. Even though many other

boundary conditions can be set at oSðtÞ that would lead to a unique solution of the Poisson equation (4),

selection of those that would guarantee curlW ¼ A is by no means an obvious task. In general, this is a key

difficulty in using the actual physical vector potential A of (29) as a vehicle for obtaining the solenoidal

auxiliary currents. On the other hand, the proof of Theorem 1 that involves independent extensions for H
and E (via ~W and ~V) provides a substantially more straightforward venue toward divergence-free ~j and ~jm,
even though it does produce a non-trivial ~jmðx; tÞ. This, in particular, demonstrates the importance of al-
lowing for the non-physical magnetic currents (and charges) on the RHS of (1) ahead of time.

We should emphasize, though, that there may still be special situations when the vector potential A of

(29) can be exploited. One of those is the so-called transverse magnetic mode with cylindrical symmetry. It

is analyzed in Section 5 of the paper, in which a simplified argument is developed that substitutes for the

proof of Theorem 1. The computations of Section 5 clearly demonstrate that the use of the solenoidal

auxiliary currents completely eliminates all the obstacles in implementation of the lacunae-based ABCs for

the Maxwell equations. This observation experimentally corroborates the central role of Theorem 1 as a

theoretical result that guarantees existence of the critical algorithm components.
On the other hand, we also need to mention that in general the proof of Theorem 1 itself does not

provide a constructive procedure for obtaining the solenoidal auxiliary currents, because it requires solving

additional boundary-value problems (4), (6), (13) and (22a)–(22c). Theorem 1 shall rather be regarded as a

fundamental existence statement, whereas in a practical computational setting solution of problems (4), (6),

(13) and (22a)–(22c) must be replaced by a more efficient alternative. As has been mentioned, one such

alternative, which only works for a particular formulation, is based on the use of the vector potential A, see
Section 5. A substantially more general alternative of this type has also been developed; it is based on

obtaining the extended auxiliary fields ~W and ~V in the form of special Taylor expansions, which only
employ the boundary data for H and E, as prescribed by Corollary 3. The corresponding algorithm does

not require solving any additional PDEs; at the same time it is not restricted to only particular cases either.

This Taylor-based approach will be reported on in our future paper [4].

From the general theoretical standpoint, Theorem 1 introduces a conclusive formulation and es-

tablishes solvability of a class of time-dependent inverse problems for electromagnetic fields. It will

therefore be instrumental to assess the meaning and significance of this result in the framework of the

inverse scattering theory. An inverse scattering problem per se usually consists of reconstructing the

shape of the scatterer once the scattered electromagnetic field is known (or at least some data about
this field are available). Neither in the time domain, nor in the frequency domain (see, e.g. [9,10]) is

its solution unique. A conceptually more close formulation is known as the inverse source problem

that can also be studied in the time domain, as well as in the frequency domain. It consists of re-

constructing the sources of the electromagnetic field (currents and charges on the right-hand side of

the governing equations) once the field itself is known. Solution to this problem is not unique either,
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see, e.g. [10] for the frequency domain analysis. In the time domain, the inverse source formulation

[11] requires finding the currents and charges that operated in the past and that generate the field

specified at the present moment of time. Even though this problem has multiple solutions, Moses [11]
and Moses and Prosser [12] have shown that it still allows one to identify special uniqueness classes

for the inverse sources that satisfy the appropriately chosen additional conditions. In contradistinction

to these classical problems, in the genuinely unsteady formulation of Theorem 1, we use the infor-

mation about the field not at some given moment of time, but on the entire interval of interest. On

the other hand, the auxiliary sources that we want to reconstruct must satisfy rather strict constraints;

namely, the currents must be smooth, have compact support, and be solenoidal. Nonetheless, as proof

of Theorem 1 indicates, this problem has many solutions as well [various choices for W and V in the

first place, many different ways of obtaining the extensions ~W and ~V , and many choices for the
multiplier l of (24)]. Perhaps the closest formulation analyzed previously in the literature is that by

Devaney and Wolf [13]. In this work, the authors introduce and study the notion of the so-called

non-radiating currents in the frequency domain. The latter are compactly supported currents that are

supposed to generate no field outside a predetermined region of space. Theorem IV of paper [13]

states that any such current distribution can be obtained by applying essentially the vector Helmholtz

operator to the auxiliary (electric) field that vanishes outside the aforementioned region. As such,

Theorem 1 can be thought of as an extension of the latter result to the time domain case with both

fields E and H present, when the currents are supposed to generate a particular radiation pattern
instead of simply being non-radiating, and are also supposed to satisfy some additional conditions (be

solenoidal).
3. The auxiliary problem and its integration using lacunae

Let the Maxwell system (1) be driven by the solenoidal currents and zero charges that exist ac-

cording to Theorem 1. Once considered on the entire space R3 subject to the homogeneous initial
conditions, this system will be referred to as the auxiliary problem. The auxiliary problem is, of

course, not completely independent. In the following Section 4 it will appear as a part of decom-

position of the original problem needed for setting the ABCs on oSðtÞ. In the meantime, though, we

will assume that the source terms ~jðx; tÞ and ~jmðx; tÞ are simply given for x 2 SðtÞ n SeðtÞ and t > 0,

and describe the solution methodology for the auxiliary problem. This methodology will be based on

the special property of the Maxwell equations known as the presence of lacunae in their solutions. We

will see that it enables a very efficient long-term numerical integration procedure. However, it is not

attainable routinely unless the continuity equations for the RHSs (2a) and (2b) are satisfied identically
– the property guaranteed by Corollary 2 provided that the conditions of Theorem 1 hold.

We will first analyze the general case, with no special reference to the solenoidal currents. The same

argument as employed when proving Corollary 3, only applied to the full inhomogeneous system (1), yields

the inhomogeneous vector wave equations for the fields H ¼ Hðx; tÞ and E ¼ Eðx; tÞ:

1

c2
o2H

ot2
� DH ¼ �4p

1

c2
ojm
ot

�
� 1

c
curl j þ gradqm

�
;

1

c2
o2E

ot2
� DE ¼ �4p

1

c2
oj

ot

�
þ 1

c
curl jm þ gradq

�
:

ð30Þ

If the currents and charges in system (1) were compactly supported in space and time on some domain
Q � R3 � ½0;þ1Þ, then the RHSs in Eq. (30) would be compactly supported on the same domain Q as well,

and the solutions E ¼ Eðx; tÞ and H ¼ Hðx; tÞ would have lacunae [14]:
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E ¼ H � 0 8ðx; tÞ 2
\

ðn;sÞ2Q
fðx; tÞjjx� nj < cðt � sÞ; t > sg: ð31Þ

Lacuna of the solution (31) is obtained as the intersection of all characteristic cones (light cones) of a given

wave equation (30) once the vertex of the cone sweeps the support of the corresponding right-hand side.

From the standpoint of physics, lacuna is the part of space–time, on which the waves generated by a

compactly supported source have already passed, and the solution has become zero again. The phenom-

enon of lacunae is inherently three-dimensional. The surface of the lacuna represents the trajectory of aft

(trailing) fronts of the waves. The existence of sharp aft fronts in odd-dimension spaces is known as the
Huygens� principle, as opposed to the so-called wave diffusion, which takes place in even-dimension spaces,

see, e.g. [15,16].

Let us note that the question of classifying those hyperbolic equations and systems that admit the

diffusionless propagation of waves has first been formulated in the literature by Hadamard [17–19]. He

himself did not know any other examples besides the classical wave (d�Alembert) equation. The notion

of lacunae was introduced and studied by Petrowsky in work [14], see also [16, Chapter VI]. He, in

particular, has obtained general conditions for the coefficients of hyperbolic equations that guaranteed

existence of lacunae. Subsequently, the ideas of Petrowsky have been further developed by Atiyah et al.
[20,21]. However, since work [14] no other constructive examples of either scalar equations or systems

have been found that would have lacunae in their solutions, except the wave equation and its equiv-

alents. More precisely, Matthisson [22] has shown that in the standard (3þ 1)-dimensional space–time

with the Minkowski metric the only scalar hyperbolic equation that satisfies the Huygens� principle is

the wave equation. Later, Stellmacher [23–25] has built examples of nontrivial (i.e., irreducible to the

wave equation) diffusionless equations, but only in the spaces Rn for odd nP 5. There are also ex-

amples of nontrivial diffusionless (i.e., Huygens�) systems (as opposed to scalar equations) in the

standard Minkowski 3þ 1 space–time [26–28], and examples of nontrivial scalar Huygens� equations in
a (3þ 1)-dimensional space–time but equipped with an alternative (the so-called plane wave) metric, see

[27–29].

The presence of lacunae suggests a very natural way of integrating system (1) driven by compactly

supported sources. Let Q ¼ fðx; tÞjx 2 SðtÞ; t0 < t < t1g, and assume that we need to know the solution on a

larger (but still finite) domain SdðtÞ, see Fig. 1. It is easy to show [1–3] that by the time

t2 ¼ t0 þ
d þ 2dþ ðt1 � t0Þðcþ kÞ

c� k
� t0 þ Tint ð32Þ

the domain SdðtÞ will completely fall into the lacuna (31) and will remain inside the lacuna continuously

thereafter, i.e., 8tP t2. In formula (32), d ¼def diamSðtÞ so that d þ 2d ¼ diamSdðtÞ, and k ¼ maxt juðtÞj, k < c,
is the maximum speed of motion for the domain SðtÞ, see formula (3). Consequently, we can employ any

appropriate numerical method (say, a consistent and stable finite-difference scheme) to integrate system (1)

on the finite interval Tint. After the time Tint elapses since the the inception of the sources t0, we can simply

say that the solution on the domain of interest SdðtÞ becomes identically equal to zero and remains zero

8tP t2. Therefore, the integration does not need to be continued any further; otherwise, it could only lead

to the accumulation of numerical error with time.

The foregoing case may, of course, present only a limited practical interest. The case of central im-

portance will be that of continuously operating sources, i.e., when the RHSs to system (1) never cease to
operate for 0 < t < þ1 while still being supported on the bounded domain SðtÞ for every t > 0. Then, we

introduce a smooth partition of unity on the semi-infinite interval tP 0:

8tP 0 :
X1
i¼0

Hðt � rTiÞ ¼ 1; suppHðtÞ � ½�T =2; T=2�; ð33Þ
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where T > 0 and ð1=2Þ6 r < 1 are parameters, andH ¼ HðtÞ is a smooth even function. The idea is to have

the RHSs of system (1) partitioned accordingly

jðiÞðx; tÞ ¼ jðx; tÞHðt � rTiÞ; qðiÞðx; tÞ ¼ qðx; tÞHðt � rTiÞ;
jðiÞm ðx; tÞ ¼ jmðx; tÞHðt � rTiÞ; qðiÞ

m ðx; tÞ ¼ qmðx; tÞHðt � rTiÞ
ð34Þ

so that for each i ¼ 0; 1; 2; . . . the RHSs (34) be compactly supported on

Qi ¼ fðx; tÞjx 2 SðtÞ; ðri� 1=2ÞT 6 t6 ðriþ 1=2T Þg:

Then, each system (1) driven by the RHS (34) for a particular i can be integrated independently using

lacunae, starting from tðiÞ0 ¼def ðri� 1=2ÞT till tðiÞ2 ¼def tðiÞ0 þ Tint ¼ t
ðiÞ
0 þ dþ2dþT

c�k
, after which its solution becomes

identically zero on the domain of interest SdðtÞ. The overall solution can subsequently be obtained by linear

superposition. An approach of this type has been successfully implemented in the past for the scalar wave

equation [1,2], and for the acoustics system of equations [3]. It provides for the grid convergence that is

uniform in time, and also facilitates construction of efficient ABCs.
Unfortunately, a straightforward implementation of this approach to the Maxwell equations may en-

counter substantial difficulties. Even though the original RHSs of system (1) satisfy Eqs. (2a) and (2b), this

may no longer be true for the partitioned RHSs (34). Therefore, the individual Maxwell systems driven by

the RHSs (34) for i ¼ 0; 1; 2; . . . may appear unsolvable.

On the other hand, the auxiliary problem defined in the beginning of this section has been specially

designed so that to admit the lacunae-based integration. Indeed, the auxiliary sources given by Theorem 1

satisfy the continuity equations (2a) and (2b) identically, see Corollary 2. If these sources are partitioned

according to formulae (34), then for each i ¼ 0; 1; 2; . . . we will again have ~qðiÞ ¼ ~qðiÞ
m ¼ 0 and

div~jðiÞ ¼ div~jðiÞm ¼ 0, which means that the individual auxiliary sources will independently satisfy the con-

tinuity equations (2a) and (2b) for every i. Consequently, we may expect that each individual Maxwell

system will be uniquely solvable, and that it will be possible to obtain its solution H ðiÞ, EðiÞ on SdðtÞ with the

help of lacunae, i.e., actually compute it on the interval ½tðiÞ0 ; tðiÞ2 � ¼ ½tðiÞ0 ; tðiÞ0 þ Tint� and set to zero for all

t > tðiÞ2 .

It is also possible to show [1–3] that when reconstructing the overall solution by summing up the in-

dividual contributions for each i ¼ 0; 1; 2; . . .

Hðx; tÞ ¼
X
i

H ðiÞðx; tÞ; Eðx; tÞ ¼
X
i

EðiÞðx; tÞ ð35Þ

the resulting sums will, in fact, contain only a finite fixed number of terms that will not increase as the time

elapses. The reason is that for any given moment of time, no fragment of the RHS (34) that corresponds to

later times can contribute to the solution due to the conventional causality. Besides, no fragment from

sufficiently far behind in time can contribute to the solution either, because the domain of interest will be

inside the lacuna, i.e., all the waves for a given retarded source will have left SdðtÞ. In addition, each non-

trivial term that is present in the sums (35) only needs to be computed on the finite interval Tint that also
does not increase as the time elapses. As demonstrated in [1–3], these considerations translate into the

temporally uniform grid convergence for any consistent and stable finite-difference scheme. In other words,

the accuracy of the numerical solution will not deteriorate with time, i.e., there will be no long-term error

buildup.

Moreover, for any given i ¼ 0; 1; 2; . . . no wave can travel in space further away than the distance cTint
from the boundary of the domain SðtðiÞ0 Þ during the time interval Tint. Therefore, we will have H

ðiÞðx; tÞ ¼ 0

and EðiÞðx; tÞ ¼ 0 for dist ½x; SðtðiÞ0 Þ� > cTint and tðiÞ0 6 t6 tðiÞ2 . As such, instead of the free unobstructed space

outside SðtÞ we may consider outer boundaries with arbitrary (reflecting) properties for solving each of the
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individual Maxwell systems for i ¼ 0; 1; 2; . . . As long as none of these boundaries is located closer than cTint
to SðtðiÞ0 Þ, the solution H ðiÞ, EðiÞ inside SdðtÞ is not going to feel their presence for tðiÞ0 6 t6 tðiÞ2 . Furthermore,

instead of requiring that no wave may reach an outer boundary before t ¼ tðiÞ2 we can introduce an even
weaker requirement that no reflected wave may come back and reach SdðtÞ before t ¼ tðiÞ2 . The latter con-

sideration easily translates into the estimate for the minimal distance between SdðtÞ and the allowed location

of any outer boundary, see [1,2]: Zmin ¼ cþk
2
Tint. In other words, to obtain the correct solution of the aux-

iliary problem on the domain of interest SdðtÞ for all tP 0 using representation (35), each individual so-

lution H ðiÞ, EðiÞ may only need to be computed on a bounded auxiliary domain of the maximum size

Z ¼ diam SdðtÞ þ 2Zmin ¼ d þ 2dþ ðcþ kÞTint: ð36Þ
4. Artificial boundary conditions for the Maxwell equations

The original formulation of the problem as outlined in Section 2 involves some possibly complex phe-

nomena/processes confined to a bounded region SðtÞ that manifest themselves by the radiation of elec-

tromagnetic waves in the far field, i.e., in R3 n SðtÞ. The far-field solution is governed by the homogeneous

Maxwell equations. The overall problem is assumed uniquely solvable. By definition, the ABCs should

(equivalently) replace the entire exterior homogeneous part of the problem and thus enable actually solving

it only on the interior domain SðtÞ. The literature on the subject of ABCs is broad, and we refer the reader

to the review papers [30–32]. The ABCs� approach proposed in this paper fits into the general theoretical

framework of [33].
The first step is to decompose the original problem into the interior and auxiliary sub-problems. The

interior problem is posed on SðtÞ and inherits all the phenomena and processes that are going on inside this

domain. Its formulation, of course, will not be complete unless supplemented by a closure at the boundary

oSðtÞ. The role of the ABCs is precisely to provide this closure, so that in the ideal case the solution

computed on SðtÞ using the ABCs coincide with the corresponding fragment of the original infinite-domain

solution. Using the language of wave physics, one can say that the ABCs on oSðtÞ should simulate the

vacuum that extends to infinity and that the bounded domain SðtÞ is immersed in, so that all the waves

generated inside SðtÞ and traveling toward the boundary oSðtÞ can propagate right through and leave this
domain completely, without producing any spurious non-physical effects.

The auxiliary problem for the Maxwell equations was formulated in Section 3. It is posed on the entire

space R3, it is linear and has constant coefficients everywhere, and it is driven by the solenoidal currents and

zero charges that exist on SðtÞ n SeðtÞ according to Theorem 1. The key idea of setting the ABCs is to use the

solution of the auxiliary problem right outside SðtÞ to provide the closure, i.e., the missing boundary data,

for the interior problem on SðtÞ. The auxiliary problem, in its own turn, is not fully specified either, because

according to Corollary 3 the boundary traces of both fields are needed in order to obtain its source terms.

In the framework of setting the ABCs, these traces will be taken from the solution to the interior problem,
thereby making the two sub-problems interconnected: The auxiliary sources are constructed based on the

interior solution, and the closure for the interior formulation is provided by the solution to the auxiliary

problem.

This entire agenda will be implemented directly on the discrete level, thus completely eliminating the two

common stages in constructing the ABCs – first obtaining the continuous boundary conditions, and then

building their discrete approximation, see [31]. The feasibility of this agenda basically hinges on two es-

sential considerations. The first one has to do with the replacement of non-constructive steps in the proof of

Theorem 1 and Corollary 3 by more manageable alternatives. In this paper, it will only be done for a
particular cylindrically symmetric setting so that to enable conducting the proof-of-concept computations,
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see Section 5; while a more general setup will be addressed later [4]. The second one has to do with the

solution of the auxiliary problem. The key point is that even though it is formally posed on an unbounded

region (the entire space R3), the auxiliary problem still lends itself to the actual numerical solution with the
help of lacunae, as described in Section 3. In so doing, the computational domain only needs to have a finite

size Z of (36), the numerical error does not build up even for long integration times, and the computer

expenses per unit time interval remain fixed and non-growing, see [1–3].

The lacunae-based solution algorithm described in Section 3 can even be simplified. In general, for each

component i ¼ 0; 1; 2; . . . of the partitioned sources, the corresponding individual Maxwell system is sup-

posed to be solved on its own auxiliary domain of size Z, see (36), centered around SðtðiÞ0 Þ. Instead, we can
consider one and the same universal periodic setup with the period Z in each direction. The motion of SðtÞ
will then have to be interpreted as motion on a three-dimensional toroidal surface. Due to the periodicity,
for any location of SðtðiÞ0 Þ on this toroidal surface, there will be exactly Zmin surrounding space in each

direction, see formula (36), so that the waves that leave SðtÞ will not be able to re-enter SdðtÞ before the time

Tint elapses. Therefore, the solution reconstructed on SdðtÞ will be the same as the one obtained by the

algorithm of Section 3 (see [1] for a detailed argument along these lines).

Assume now that there is a space–time grid N� T on the auxiliary domain of size Z, see (36), on

which a discrete approximation to the auxiliary problem is built. The spatial grid N consists of the nodes

n, whereas the temporal grid T is composed of the time levels l ¼ 0; 1; 2; . . .. The grid N does not have to

offer any special features to accommodate the shape of the domain SðtÞ; it is most convenient to use a
uniform Cartesian grid. This grid will be needed for computing the ABCs. Note that the interior problem

solved inside SðtÞ does not have to be approximated on the same grid. For example, in our work on

global ABCs for external flow problems [34], we have used a curvilinear grid inside the computational

domain, this grid was fitted to the given aerodynamic shape (say, a wing), whereas the ABCs were

computed on the auxiliary Cartesian grid. In electromagnetics, the interior grid may also be curvilinear,

to reflect, for example, the shape of a given scatterer. In such a case, some data exchange between the

interior and auxiliary grids is obviously required; it is typically rendered through interpolations. In the

current paper, however, we will restrict ourselves to the simplest case when the interior problem is in-
tegrated on the same grid N.

Let Nl, l ¼ 0; 1; 2; . . . ; be the time levels of the grid N� T, and Sl
n be the (mþ 1)-level stencil of an

explicit scheme associated with the node ðn; lÞ 2 N� T:

Sl
n \ fN� Tg � fNl [Nl�1 [ � � � [Nl�mg and Sl

n \Nl ¼ ðn; lÞ:

Introduce the following grid subsets (h is the spatial grid size):

Nl
þ ¼ fðn; lÞ 2 Nl \ SðtlÞg;

Nþ ¼ N0
þ [N1

þ [N2
þ [ � � � ;

~Nþ ¼ [
ðn;lÞ2Nþ

S
l
n;

c ¼ ~Nþ nNþ;

ð37Þ

Nþ of (37) is the interior sub-grid. The set c ¼ c0 [ c1 [ c2 [ � � � is called the grid boundary; it is a narrow

fringe of grid nodes that follows the geometry of oSðtÞ. We will require that the domain SdðtÞ, see Fig. 1, be
chosen so that 8tl : ~Nl

þ � SdðtlÞ. The parameter d can therefore be taken small, about a few grid sizes

depending on the structure of the specific S
l
n.

We will now describe one time step of the combined interior/auxiliary time-marching algorithm that
involves setting the discrete ABCs at oSðtÞ.
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Algorithm 4 (ABCs). Let the solution be known on ~Nþ up to the level l.
(A) Perform one interior time step and obtain the solution on Nlþ1

þ ;

(B) use the interior solution on SðtÞ n SeðtÞ for time levels up to tlþ1 and obtain the auxiliary solenoidal cur-

rents ~j and ~jm that exist by Theorem 1;
(C) perform one auxiliary time step and supply the solution on clþ1.

Clearly, upon completion of part (C) of Algorithm 4 the procedure cyclically repeats itself, i.e., part (A)

can be done on the next time level, because Nlþ1
þ [ clþ1 ¼ ~Nlþ1

þ , see (37). This way, the computation can be
run for as long as necessary, and the closure for the interior problem, i.e., the boundary data on c, will
always be provided from the solution to the auxiliary problem. Part (B) of Algorithm 4 is to be performed

directly on the grid. In the following Section 5, we describe the corresponding implementation for a special

case that requires the use of the vector potential A, see (29), whereas the general case that employs the

solenoidal auxiliary currents constructed using special Taylor expansions will be described in the next paper

[4]. Note that in Algorithm 4, when the solution in part (A) is advanced one time level till lþ 1, the

auxiliary sources in part (B) are also advanced one time level, but they may be ‘‘lagging behind’’ by a fixed

number of levels, depending on the actual scheme and stencil Sl
n used. Finally, the time-marching of the

auxiliary problem required in part (C) of Algorithm 4 is performed using lacunae, see Section 3. As has

been mentioned, this enables integration on the auxiliary domain of a fixed size, and implies only finite non-

growing computer expenses per time step.
5. Numerical demonstrations

In this section, we conduct a series of computations with the key objective of corroborating our central
theoretical finding. In other words, we want to experimentally demonstrate that employing the compactly

supported solenoidal currents of Section 2 in the capacity of the source terms for the auxiliary problem

would completely clear the way toward the use of lacunae-based ABCs for the Maxwell equations. The

computational setup is chosen so that to provide for the easiest, most straightforward, and least expensive

implementation, rather than to demonstrate the full generality of the approach. Namely, we employ cy-

lindrical coordinates ðr; h; zÞ and assume axial symmetry so that all the quantities depend only on r, z, and t,
and o

ohð�Þ � 0. This facilitates the split of system (1) into two independent subsystems such that each governs

three out of the total of six field components. The subsystem that connects Eh, Hr, and Hz is referred to as
transverse-magnetic (TM); it contains three unsteady equations [cf. Eqs. (1)]

1

c
oEh

ot
� oHr

oz

�
� oHz

or

�
¼ � 4p

c
jh;

1

c
oHr

ot
� oEh

oz
¼ � 4p

c
jmr ;

1

c
oHz

ot
þ 1

r
o rEhð Þ
or

¼ � 4p
c
jmz

ð38aÞ

supplemented by the steady-state equation

1

r
o rHrð Þ
or

þ oHz

oz
¼ 4pqm: ð38bÞ

The other steady-state equation of (1), divE ¼ 4pq, does not appear in the TM system because o
ohðEhÞ � 0.

It is rather a part of the other subsystem known as transverse-electric (TE); the latter is not discussed here.

The magnetic currents and charges on the RHSs of Eqs. (38a) and (38b) should always satisfy the

continuity equation [cf. formula (2b)]:
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oqm

ot
þ 1

r
oðrjmrÞ
or

þ ojmz

oz
¼ 0: ð39Þ

In the TM context, there is no continuity equation for the electric currents and charges. The reason is that
the only type of electric sources that appear in the TM mode is the current component jh, for which we

obviously have ojh
oh � 0. The electric continuity equation appears in the TE context.

The TM part of the Coulomb gauge definition (29) is given by

Hr ¼ � oAh

oz
; Hz ¼

1

r
oðrAhÞ
or

; Eh ¼ � 1

c
oAh

ot
;

oAh

oh
� 0 ð40Þ

which means that everything is controlled by only one quantity Ah.

Axial symmetry will allow us to take full advantage of the crucial three-dimensional effects in an es-

sentially two-dimensional computational setting. Besides, construction of the auxiliary sources can be
simplified in this case.

As shown in Section 3, the key to using lacunae for integration of the Maxwell equations lies in

selecting the RHSs of a special structure that removes the restrictions imposed by the continuity

equations. Theorem 1 guarantees existence of these special auxiliary sources – solenoidal currents and

corresponding zero charges, but does not offer a full constructive recipe of how they can actually be

built. In the cylindrically symmetric TM mode, however, the form of Eqs. (38a), (38b) and the

presence of only one continuity equation (39) instead of two suggest that we merely need to guarantee

the solenoidal nature of the magnetic currents ~jm, because
ojh
oh � 0 anyway. Therefore, the extension of

the electric field Eh inwards, i.e., from R3 n SðtÞ to SðtÞ n SeðtÞ, that is to be obtained for the purpose

of building the auxiliary sources following the proof of Theorem 1, has to be smooth but may

otherwise be quite arbitrary. As far as the magnetic auxiliary sources, they still have to be constructed

in a special way, so that to ensure ~qm ¼ 0 and div~jm ¼ 1
r
oðr~jmr Þ

or þ o~jmz
oz � 0, which implies degeneration of

the continuity equation (39), cf. Corollary 2. However, the fact that in the TM mode the electric part

presents no restriction makes the latter task much easier to accomplish.

Indeed, in this case, if we know the vector potential A ¼ Aðx; tÞ (which, like any other quantity in the

model, does not depend on h), we can use it directly rather than look for WAðx; tÞ: A ¼ curlWA (see the
discussion around Eq. (29) that follows the proof of Theorem 1 and Corollary 3). In other words, we can

define the extended magnetic field on R3, t > 0, as simply ~H ¼ curl ðl~AÞ, where ~Aðx; tÞ is the Whitney

extension of the vector potential from R3 n SðtÞ into SðtÞ n SeðtÞ and l is the multiplier of (24). Substitution

of this ~H into the first pair of Maxwell�s equations (1) immediately yields ~qm ¼ 0 and div~jm ¼ 0. For the

electric sources, however, if we did not have the axial symmetry this approach would not, generally

speaking, allow us to make sure that ~q ¼ 0 and div~j ¼ 0, because if we defined the extended electric field as
~E ¼ �1

c
oðl~AÞ
ot , cf. second equality (29), then it would not necessarily be solenoidal. On the other hand, in the

cylindrical TM context this constraint is lifted as the only component of the electric field present, Eh, can be

extended into SðtÞ n SeðtÞ arbitrarily, because o~Eh
oh ¼ 0 always implies o~jh

oh ¼ 0, and the equation div ~E ¼ 4p~q in
this case reduces again to o~Eh

oh ¼ 0, i.e., ~q ¼ 0.

As such, we are going to exploit the vector potential to obtain the solenoidal auxiliary currents

needed for numerical experiments, and we will use the gauge definition (40), which is specific for the

coordinate system used and the type of symmetry present. The gauge (40) indicates that it is sufficient

to build an extension only for Ah. If we smoothly extend Ah from R3 n SðtÞ to SðtÞ n SeðtÞ and get ~Ah,

then the modified magnetic field components can be obtained as

~Hr ¼ � oðl~AhÞ
oz

; ~Hz ¼
1

r
oðrl~AhÞ

or
ð41Þ
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and we will clearly have div ~H ¼ 1
r
oðr ~HrÞ
or þ o ~Hz

oz � 0 so that the continuity equation (39) will degenerate as

required. To our major advantage, in the two-dimensional ðr; zÞ setting (as opposed to a full 3D), the

quantity Ah can be easily reconstructed by contour integration of the magnetic field using the first two
equations of (40). In so doing, the most natural way to build the extension ~Ah and to guarantee its

smoothness across the interface oSðtÞ is to apply the same idea right inside SðtÞ as well, i.e., to simply

reconstruct the vector potential on SðtÞ n SeðtÞ by contour integration of the interior solution ðHr;HzÞ.
Subsequently, the multiplier l is applied to ~Ah, the modified magnetic field is derived according to

(41), and finally the magnetic auxiliary currents are obtained by applying the Maxwell operators. The

situation with the electric auxiliary currents is even more straightforward, as any smooth extension ~Eh,

once it has been multiplied by l and substituted into the corresponding Maxwell equation, yields the

desired ~jh. In particular, the interior electric field itself can be used as ~Eh on SðtÞ n SeðtÞ, which ob-
viously guarantees the smoothness of ~Eh across oSðtÞ.

In the discrete framework, all the foregoing operations are done on the grid. The first step is

obviously to choose the scheme for the integration of the Maxwell equations (38a). We have em-

ployed a version of the well-known Yee scheme [35] adopted for the cylindrical geometry; it is an

explicit second-order central-difference staggered solver, which is written as follows on the uniform

rectangular ðr; zÞ grid with sizes Dr and Dz and time step Dt:
1

c

Elþ1
hi;j

� El
hi;j

Dt
þ
H

lþ1
2

z
iþ1

2
;j
� H

lþ1
2

z
i�1

2
;j

Dr
�
H

lþ1
2

r
i;jþ1

2

� H
lþ1

2
r
i;j�1

2

Dz
¼ � 4p

c
j
lþ1

2

hi;j
;

1

c

H
lþ1

2
r
i;jþ1

2

� H
l�1

2
r
i;jþ1

2

Dt
�
El
hi;jþ1

� El
hi;j

Dz
¼ � 4p

c
jl
mr i;jþ1

2
;

1

c

H
lþ1

2
z
iþ1

2
;j
� H

l�1
2

z
iþ1

2
;j

Dt
þ 1

riþ1
2

riþ1El
hiþ1;j

� riEl
hi;j

Dr
¼ � 4p

c
jl
mziþ1

2
;j:

ð42Þ
Note that the steady-state equation (38b) will not be needed for the actual time marching because the de-

generate continuity equation (39) implies that divH will always preserve its initial value, which is zero. Also

note that both Eq. (38a) and the scheme (42) are only valid away from the axis of symmetry r ¼ 0. The

special treatment needed at the axis is based on the natural consideration that all the quantities involved

must be continuous and bounded. For the vector components Eh and Hr this requirement, along with the
axial symmetry, implies that both Eh and Hr must be equal to zero at r ¼ 0. The same will obviously be true

for jh and jmr . For the vector component Hz, which is parallel to the axis of symmetry, the same arguments

lead to the conclusion that oHz
or jr¼0 ¼ 0. Next, for r 	 1 we have: Ehðr; �Þ ¼ E0

hð0; �Þr þ oðrÞ and consequently,
1
r
oðrEhÞ
or ¼ 1

r

oðr2E0
h
ð0;�ÞÞ

or þ oð1Þ, which means that 1
r
oðrEhÞ
or jr¼0 ¼ 2oEh

or jr¼0. Therefore, for r ¼ 0 system (38a) transforms

into
Ehð0; z; tÞ ¼ 0;

Hrð0; z; tÞ ¼ 0;

1 oHz þ 2
oEh ¼ � 4p

jmz :

ð43Þ
c ot or c
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Discretization of (43) consistent with (42) reads

El
h0;j

¼ 0;

Hlþ1
2

r
0;jþ1

2

¼ 0;

1

c

H
lþ1

2
z1
2
;j
� H

l�1
2

z1
2
;j

Dt
þ 2

Dr
El
h1;j

¼ � 4p
c
jl
mz

1
2
;j

ð44Þ

provided that the grid line i ¼ 0 coincides with the axis r ¼ 0. Finally, the discrete counterpart of the

Coulomb gauge (40) is given by

Hlþ1
2

r
i;jþ1

2

¼ �
A
lþ1

2

hi;jþ1
� A

lþ1
2

hi;j

Dz
; Hlþ1

2
z
iþ1

2
;j
¼ 1

riþ1
2

riþ1A
lþ1

2

hiþ1;j
� riA

lþ1
2

hi;j

Dr
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El
hi;j

¼ � 1

c

A
lþ1

2

hi;j
� A

l�1
2

hi;j

Dt
:

ð45Þ

Further detail on the specific computational setup that we have used can be found in our report [36]. It

involves a compact source of unsteady electromagnetic radiation engaged in a straightforward motion

(along the z axis). The motion itself is not uniform either and consists of repeated acceleration/deceleration

cycles. There is an analytic reference solution, against which we compare the numerical results obtained on

a sequence of subsequently more fine grids. This allows us to experimentally judge the grid convergence.

The integration in time is conducted till 100 � dc, which is equal to one hundred times the interval required for

the waves to cross the domain SðtÞ of fixed diameter d. The shape of this domain SðtÞ is chosen spherical,

while the grid is rectangular, and no adaptation is required.
The scheme (42), (44) is used for independently marching both the interior solution inside SðtÞ and

the solution of the auxiliary problem. Algorithm 4 renders coupling between the two solutions. On

every time step, the first two equations of (45) are used for reconstructing the discrete vector potential

~A
lþ1

2
hi;j

in the transition region SðtÞ n SeðtÞ, which basically amounts to integrating the discrete interior

solution for the magnetic field along the coordinate lines of the grid. The reconstructed potential is

needed on stage (B) of Algorithm 4. It is first modified by applying l of (24), then the modified fields are

obtained by using the discrete version of (41), which is the same as the first two equations of (45), and finally,

the auxiliary sources are obtained by applying the operators on the left-hand side of (42).

In Fig. 2 we present the computational error for Eh as it depends on time on the three grids that we have

employed. The error was evaluated in the maximum norm on the domain SðtÞ. We see that the algorithm
provides for no long-term error buildup, and also that it displays the design second-order grid convergence.

Error profiles for both magnetic field components Hr and Hz look practically the same and we are not

showing them here.

Let us now discuss how the performance of the lacunae-based ABCs is affected by the key parameter

involved – the width of the transition region SðtÞ n SeðtÞ. This width e obviously reflects on how well the

smooth extensions and smooth multiplier function lðx; tÞ are resolved on the grid, and as such, how smooth

the auxiliary RHSs will effectively be. The latter, in turn, affect the quality of the discrete lacunae, i.e., how

sharp the aft fronts of the waves really are in the discrete framework. Besides having a potential effect on
the error behavior, the width of the transition region also determines how many grid nodes are needed to

support the auxiliary RHSs. Those RHSs basically control the extent of temporal nonlocality of the la-

cunae-based ABCs. The algorithm requires keeping them on the interval of length Tint that immediately

precedes the current moment of time, and as such, the more narrow the transition region is, the less ad-

ditional storage is needed.
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The error curves in Fig. 2 were obtained for the transition region SðtÞ n SeðtÞ being relatively wide, on the

order of 10 grid cell sizes. In so doing, the actual geometric width of SðtÞ n SeðtÞ decreases with the re-

finement of the grid. We are, however, interested to find out what happens when the number of cells in the
transition region also decreases. In Figs. 3–6 we are showing the Eh error profiles for the width of the

transition region being e ¼ 8; 6; 4, and 2 grid cell sizes, respectively.

We observe that with the decrease of e the error deteriorates, which is natural to expect. We also notice,

though, that the deterioration is more visible on the coarser grids, whereas on the finest grid that we have

employed, 256� 512, it is much slower. Qualitatively, this is the same type of behavior as we have seen in

acoustics, see [3]. There is, however, an important difference as well. In acoustics, when e decreases, all the
error profiles start to grow more or less monotonically with time, see [3]. The smaller the e the faster this

growth is, although on the finest grid it is not as fast as on the coarser grids. In contradistinction to that, in
the current electromagnetic context the error profile on the finest grid always remains flat on some initial

time interval, after which it starts to deteriorate. The extent of this initial interval decreases with the de-

crease of e, but even for the narrowest transition region that we have considered, e ¼ 2Dr, it is still quite
substantial, about 30 units, i.e., 30 times the time needed for the waves to cross the domain, see Fig. 6. The

presence of this initial flat portion of the error profile is beneficial as it essentially means that the lacunae-

based ABCs can be used for a certain period of time with no deterioration of performance even when the

auxiliary RHSs involved are not really smooth. We note that having only two grid sizes across SðtÞ n SeðtÞ
does imply that there is no smoothing in the transition region at all. We are rather having a sharp trun-
cation, and effectively substituting an equivalent of the Heaviside function on the grid for the multiplier

lðx; tÞ.
As of yet, we cannot offer a rigorous theoretical explanation of why the algorithm appears more sensitive

to the quality of the discrete lacunae on coarser grids than on the fine grid. To some extent this is coun-

terintuitive because a typical instability would rather manifest itself by a rapid deterioration of the solution
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when the grid is refined. We can only ‘‘speculate’’ that the observed behavior has to do with the actual

magnitude of those discrete ‘‘tails’’ behind the aft fronts of the waves that are due to the ‘‘imperfections’’ in

the auxiliary sources, and that apparently are still smaller on fine grids. Altogether, this phenomenon is
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certainly advantageous for computations with lacunae-based ABCs, because fine grids are needed for high

overall accuracy anyway, and at the same time they will allow to maintain high accuracy of the boundary

treatment for longer periods of time.



148 S.V. Tsynkov / Journal of Computational Physics 199 (2004) 126–149
6. Discussion

We have identified the requirement of continuity of the charges and currents as a key obstacle for ap-
plying the previously proposed lacunae-based methods [1–3] to Maxwell�s equations. We have also been

able to show that there are special auxiliary sources – zero charges and solenoidal currents – that satisfy this

requirement identically and as such, eliminate the corresponding restrictions. This paves the way toward

constructing and testing the algorithm for setting highly accurate global artificial boundary conditions for

the computation of time-dependent electromagnetic waves.

In general, the lacunae-based ABCs are obtained directly for the discrete formulation of the problem and

can complement any consistent and stable finite-difference scheme. In so doing, neither a rational ap-

proximation of non-reflecting kernels [31], nor discretization of the continuous boundary conditions is
required. The extent of temporal nonlocality of these ABCs appears fixed and limited, which is not a result

of any approximation but rather a direct consequence of the fundamental properties of the solution. The

proposed ABCs can handle artificial boundaries of irregular shape on regular grids with no fitting/adap-

tation needed. Besides, they possess a unique capability of being able to handle boundaries of moving

computational domains, including the case of accelerated motion.

In the current paper, we have only built the electromagnetic lacunae-based ABCs for a specially chosen

simple setting that involves cylindrically symmetric TM Maxwell�s equations. We have also been able to

experimentally verify their theoretical design properties on a series of the proof-of-concept computations.
Implementation for a more general setting will follow in the forthcoming paper [4].
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