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Abstract

We analyze the problem of suppressing the unwanted component of a time-harmonic acoustic field (noise) on a
predetermined region of interest. The suppression is reddgy active means, i.e., by introducing the additional
acoustic sources called controls that generate the appropriate anti-sound. Previously, we have obtained genere
solutions for active controls in both continuous and discrete formulation of the problem. We have also obtained
optimal solutions that minimize the overall absolute acoustic source strength of active control sources, which is
equivalent to minimization in the sense bf.

By contrast, in the current paper we formulate and sotymization problems that involve quadratic functions
of merit. Specifically, we minimize thé, norm of the control sources, and we consider both the unconstrained
and constrained minimization. The unconstrai@edninimization is an easy problem to address numerically. On
the other hand, the constrained approach allows one to analyze sophisticated geometries. In a special case, we cz
compare our finite-difference optimal solutions to the continuous optimal solutions obtained previously using a
semi-analytic technique. We also show that the optima obtained in the sehseddfer drastically from those
obtained in the sense @f;.
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1. Introduction

In the simplest possible formulation, the problem of active control of sound is posed as follows. Let
£2 c R" be a given domain (bounded or unbounded), Bk its boundaryl” = 352, where the dimen-
sion of the space is either 2 or 3. Both o2 = £2 U I" and on its complemen®; = R”\ 2 we consider
the time-harmonic acoustic field= u(x), x € R", governed by the honhomogeneous Helmholtz equa-
tion:

Lu=Au+k?u= f. (1)
Eqg. (1) is subject to the Sommerfeld radiation boundary conditions:
du(X
u(x) = O(|x|T"72), Z;llil) + iku(x) = o(|x|*™/?), as|x| — oo, (2)

which specify the direction of wave propagation at infinity, and distinguish between the incoming and
outgoing waves by prescribing the outgoing direction only; they guarantee the unique solvability of the
Helmholtz equation (1) for any compactly supported right-hand gide f (x). Note that as we are deal-
ing with the traveling waves (radiation of sound toward infinity), all the resulting solutions necessarily
have to be complex-valued, otherwise it is impossible to account for the key phenomenon of variation of
phase with the change of spatial location. We should also mention that the choice of the sagrf "
in the second expression of (2) that actually selects the direction of propagation is basically a matter of
convention; it only has to correlate with the definition of the direct/inverse Fourier transform (agdin, “
or “—"in the exponent) adopted for transforming the unsteady wave equation into the Helmholtz equa-
tion (1). In the literature, the=" sign is often used for the Sommerfeld radiation boundary conditions;
we would rather keep the sigr-" in formula (2) to make it consistent with our previous publications on
the subject of active noise control [6,14,4,5].

The source termg = £ (x) in Eq. (1) can be located on bot® and its complemen®2; = R"\ 2; to
emphasize the distinction, we denote

f=f"+f", suppf"C$, suppf” C £ 3)
Accordingly, the overall acoustic field= u(x) can be represented as a sum of the two components:

u=u"+u", )
whereu™ is driven by the interior sourcest, andu~ is driven by the exterior sources™ w.r.t. 2:

Lut = [T, (5a)

Lu==f". (5b)

Note, bothu™ = u*(x) andu™ = u~(x) are defined on the entif®”, the superscripts+” and “—" refer
to the sources that drive each of the field components rather than to the domains of these components
The setup described above is schematically shown in Fig. 1 for the case of a bounded fomain
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Fig. 1. Geometric setup.

Hereafter, we will call the component" of (4), (5a)sound, or “friendly” part of the total acoustic
field; the component:— of (4), (5b) will accordingly be calledhoise, or “adverse” part of the total
acoustic field. In the formulation that we are present®gyill be a predetermined region of space to be
protected from noise. This means that we would like to eliminate the noise compongRrj afside $2,
while leaving the sound component there unaltered. In the mathematical framework that we have adopted,
the component— of the total acoustic field, i.e., the response to the adverse sofircésee (3)—(5)),
will have to be canceled out a2, whereas the component , i.e., the response to the friendly sources
1, will have to be left unaffected of2. A physically more involved but conceptually easy to understand
example that can be given to illustrate the foregoing idea, is that inside the passenger compartment of
an aircraft we would like to eliminate the noise coming from the propulsion system located outside the
fuselage, while not interfering with the ability of the passengers to listen to the inflight entertainment
programs or simply converse.

The concept ofactive noise control implies that the component™ is to be suppressed o2 by
introducing additional sources of sougd= g(x) exterior with respect t@2, suppg C £21, so that the
total acoustic field: = i1 (x) be now governed by the equation (cf. formulae (1), (3)):

Li=f"+f" +s. (6)
and coincide with only the friendly component on the domain?2:
Ulyen = u+|xe(2- (7)

The new sourceg = g(x) of (6), see Fig. 1, will hereafter be referred to as thetrol sources or
simply controls. An obvious solution for these control sourcesis- — f~. This solution, however, is
clearly sub-optimal because on one hand, it requires an explicit and detailed knowledge of the structure
and location of the sources™, which is, in fact, superfluous, see [6]. On the other hand, its implemen-
tation in many cases, like in the previously mentioned example with an airplane, may not be feasible.
Fortunately, there are other solutions of the foregoing noise control problem (see Section 2, as well as
our previous work [6,4,5] for details), and some of them may be preferable from both the theoretical and
practical standpoint.

To conclude the introduction, let us only mention that the area of active control of sound has a rich
history of development, both as a chapter of theoretical acoustics, and in the perspective of many different
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applications. It is impossible to adequately overview this extensive area in the framework of a focused
research publication. As such, we simply refer the reader to the monographs [8,2,1] that, among other
things, contain a detailed survey of the literature. Potential applications for the active techniques of noise
control range from the aircraft industry to manufacturing industry to ground and air transportation to the
military to consumer products and other fields, including even such highly specialized and narrow areas as
acoustic measurements in the wind tunnels. It is generally known that active techniques are more efficient
for lower frequencies, and they are usually expected to complement passive strategies (sound insulation
barriers, etc.) that are more efficient for higher frequencies, because the rate of sound dissipation due tc
the viscosity of the medium and heat transfer is proportional to the square of the frequency [3].

Let us also note that in the current paper we focus on the case of the standard constant-coefficient
Helmholtz equation (1), which governs the acoustic field throughout the entire Bjadenis allows
us to make the forthcoming analysis most straightforward. However, one can also consider other, more
complex, cases that involve variable coefficients, different types of far-field behavior, discontinuities
in the material properties, and maybe even nonlinearities in the governing equations over some regions.
Approaches to obtaining solutions for active controls in these cases are based on the theory of generalizec
Calderon’s potentials and boundary projections, and can be found in our previous paper [6] and in the
monograph by Ryaben’kii [12, Part VIII].

The material in the rest of the paper is organized as follows. In Section 2, we introduce and discuss
general solutions for controls in the continuous and discrete framework. Section 3 is devoted to the
formulation and solution of the quadratic optimization problems for the control sources (unconstrained
and constrained., optimization). For reference purposes we also briefly mention our previous results on
the optimization in the sense @f,. Finally, Section 4 summarizes our current findings and also contains
some general discussion.

2. General solutionsfor control sources
2.1. Continuous formulation of the problem

A general solution for the volumetric continuous control sourgesg(x) is given by the following
formula (2, = R"\2):

g(x)z_Lw|X€.Qla (8)
wherew = w(X), X € §21, is a special auxiliary function-parameter that parameterizes the family of
controls (8). The functionv(x) must satisfy the Sommerfeld boundary conditions (2) at infinity, and
at the interfacel”, the functionw and its normal derivative have to coincide with the corresponding
guantities that pertain to the total acoustic fieldiven by formula (4):

ow ou
wlr=ulr, %‘F=% - 9

Other than that, the functiom (x) used in (8) is arbitrary, and consequently formula (8) defines a large
family of control sources, which provides ample room for optimization. The justification for formula (8)
as the general solution for controls can be found in [6]. In [4], we also emphasize that the controls

g(X) =/g(Y)5(X—Y) dy =g =4,
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given by (8) are actuallyolumetric control sources of the monopole type with regular (locally absolutely
integrable) density € L{°(R").

The control sources (8) possess several important properties that are discussed in detail in [6]. Here
we only summarize that they do not require any knowledge of the actual exterior sources of hoise
and are built based solely on the measurable quanﬂti;esandg—’rﬂp. Besides, while these measurable
input data pertain to the overall acoustic field, the controls appear insensitive to the interionScanml
specifically target the exterior noise on 2.

Along with the volumetric controls (8), one can also consaleface contrals, i.e., the control sources
that are concentrated only on the interfdceA general solution for the surface controls is given by

surh | 0w Ou 0
g = [an an}ra(m oo ([ —ulrs (), (10)
where the auxiliary function-parameter= w(x) now has to satisfy the Helmholtz equatibm = O for

X € §£21 and the Sommerfeld boundary conditions (2), but it no longer has to satisfy boundary conditions
(9). The corresponding discontinuities at the interfd¢alrive the surface control sources. The first
term on the right-hand side of (10) represents the density of a single-layer potential, which is a layer of
monopoles on the interfacg, and the second term on the right-hand side of (10) represents the density
of a double-layer potential, which is a layer of dipoles on the interflcéd detailed justification of
formula (10) as general solution for surface controls can be found in [14], see also [4]. The fundamental
properties of the surface controls (10) are the same as those of the volumetric controls (8).

In the family of surface controls (10) we identify two important particular cases. First, the cancellation
of u~ (X), X € £2, can be achieved by using surface monopoles only, i.e., by employing only a single-layer
potential as the annihilating signal (anti-sound). To do that, we need tafixid x € £21, such that there
may be no discontinuity o™ betweenu(x) andw(X), i.e., in the function itself, and the discontinuity
may only “reside” in the normal derivative (see formula (10)). Thix) will obviously be a solution of
the following external Dirichlet problem:

Lw=0, Xey, wlr=ulr, (11)

subject to the appropriate Sommerfeld boundary conditions (2). Problem (11) is uniquely solvable on
21 =R"\ 2. Second, one can employ only the double-layer potential, i.e., use only surface dipoles as
the control sources. The correspondingx), X € 21, should then solve the external Neumann problem:

Jw du

anlr — anlr’

again, subject to the appropriate Sommerfeld conditions at infinity (2).

Altogether, we have introduced two different types of active controls on the surface and only one
type—monopoles—in the volume. This is not accidental. In [4], we show that surface monopoles and
dipoles provide different types of excitation to the surrounding sound-conducting medium, which war-
rants their separate consideration. At the same time, any volumetric distribution of dipoles can be recast
into an equivalent volumetric distribution of monopoles, which effectively renders the volumetric dipoles
superfluous, see [4].

Let us also note that in practice it may often be convenient to use the so-adiiéclal boundary
conditions (ABCs), see the review [13], as a part of the definition of the auxiliary functigr). Assume
that there is a larger domain that fully contaifisand require, in addition, thdtw = O outside this

Lw=0, X € §21,
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larger domain. This requirement implies that the resulting volumetric controls will be compactly sup-
ported betweer™ and the outer boundary of the aforementioned larger region, see formula (8). From the
standpoint of computing this is the only feasible way to obtain a finite discretization (see Section 2.2). In
[4], we have obtained the ABCs for the homogeneous Helmholtz equation outside a sphere oRradius
in 3D using the separation of variables in spherical coordinates and the appropriate mode selection:

~ — 2
dwy,, _ %[,0 1/2H1<+)1/2(kp)]
do L=k p=12H, ,(kp)

Wi (P) | p=r- 12)

In formula (12),p is the spherical radiugy;,, are the Fourier coefficients af(x) with respect to spherical
functionsY/”,1=0,1,2,..., m=0,£1,..., %I, andHlf)l/2 are Hankel's functions of the second kind;
equalities (12) have to be enforced for indm. Similarly, for the homogeneous Helmholtz equation
outside a disk of radiug in 2D, the ABCs from [4] read:

~ d 7

dw, a M (kp)
—_— =—w —R» 13
o l=k ~ H® (ko) 1(P)|p=r (13)

where p is the polar radius, and;, are the Fourier coefficients af(x) with respect to the complex
exponentg ¢ | =0, 41, +£2, ...; again, equalities (13) have to be enforced fol all

2.2. Discrete formulation of the problem

The continuous analysis tools employed for obtaining the control sources of the previous Section 2.1
are obviously deficient from the standpoint of applications. Indeed, any practical design of a noise control
system can only be composed of a finite number of elements (sensors for measuring the field and actuator:
for creating the appropriate excitation, i.e., anti-sound). Therefore, it is natural to discretize the problem
on the grid and obtain the control sources in the discrete framework so that the locations of the sensors
and actuators can be associated with the grid nodes. For details regarding the discrete formulation of
the problem we refer the reader to the monograph [12, Part VIII], as well as to the papers [16,17]; a
brief account can also be found in [14,4], and below we summarize the results. Note that our discrete
analysis is not limited to any specific type of the grid. In particular, no grid fitting to either the shape
of the protected regio® or that of the external artificial boundary, is generally required. However, for
the purpose of illustrating the concepts discussed hereafter, we will use a two-dimensional example that
involves a polar grid. The use of the polar grid gheéacilitates setting the dicrete ABCs athe circular
outer boundary of radiu®. Moreover, the same two-dimensional polar example is analyzed later in
Section 3 in the context df, optimization.

Let us denote the aforementioned polar g¥idit spans both2 and $2,. Of course, the grid does not
extend all the way to infinity, it is rather truncated by the external artificial boundary in the shape of a
large circle of radiusR. This, in particular, implies that the discrete control sources that we obtain will
always be compactly supported. Assume that the grid/heslls in the radial direction with the nodes
pj=jAp,j=0,...,J,sothatpg =0 andp; = R; andL cells in the circumferential direction with the
nodesd, =sAf0, s =0,..., L, so thatdg = 0 andd; = 2x. For simplicity, it is convenient to think that
the grid sizesAp = R/J and A6 = 2x /L are constant; in applications, however, the grid in the radial
direction may be stretched.
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Let now «™ be the acoustic field on the grid, ahd” be a finite-difference approximation of the
differential operatoL of (1). To accurately define the approximation, we will need to introduce another
grid M along with the previously definel. On the gridM, we will consider the residuals &fu ™,
and subsequently the right-hand sides to the corresponding discrete inhomogeneous equation. We will
use the notations andm for the individual nodes of the gridS andM, respectively, and the notation
N,, for the stencil of the discrete operatof® centered at a given node € M, so that

L®Pu®, =" apul®, (14)

neN,

wherea,,, are the coefficients associated with particular nodes of the stencil. Generally, there are no lim-
itations to the type of the discrete operator that one can use. We only require that the difference operator
L™ of (14) approximate the differential operatbrof (1) with the accuracy sufficient for a particular
application. For the specific example that we are analyzing, we will consider a conventional second-order
central-difference approximation, so tHat = (s, j)} =M Cc N={n = (s, j)}. Then, formula (14) be-
comes:

) ) (h) (h)
Ly, =22 (p i S us,j_l)
VA A P
p;i Ap Ap B
(h) (h) (h)
Lugy; —2uy;+ucy, EN0) (15)
i e

Next, we introduce subsets of the gridsandN, which will allow us to accurately distinguish between
the interior and exterior domains, sources, and solutions on the discrete level:

Mt =Mn £2, M~ =M\M"=Mn £,
Nt=[JNaw N = [JNa,
meM+ meM~
y=NtNN-, yT=N"NgQ, y  =NtNQ. (16)

Note that whereas the residuals’ ghiflis partitioned intdVi™ andM ™ directly, the subgrid®&* andN~
are rather obtained by applying the stem\j) to all the nodes oM™ andM~, respectively. As suchiy+
andN~ do overlap. Their overlap is denoted py=y* Uy ~, see (16), and is calletie grid boundary;

it is a fringe of nodes that is located near the continuous bountaagd in some sense straddles it. For
the polar second-order Laplaciai” (15), the grid boundary will be a two-layer fringe of grid nodes
around!”, as shown schematically in Fig. 2.

The discrete noise control problem is formulated similarly to the continuous one, see Section 1. Let
I+ m e M*, and £~, m € M, be the interior and exterior discrete acoustic sources, respectively.
Letu*,n e N,andu™~, n € N, be the corresponding solutions, ileu ™+ = W+ andL Wy "= =
f™=_ Using the same terminology as before, we will eaft* the discrete sound and”~ the discrete
noise. The overall discrete acoustic field’ is the sum of its sound and noise component¥, =
u™t 4+ ™= on N, and it obviously satisfies the equatib’u® = M = f+ 4 fM= The goal
is to obtain the discrete control sourcgd = ¢ so that the solutiom™ of the equatiorL i =
fO+ 4 f= 4 oM pe equal to only the sound componafit* on the sub-gridN+.
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Fig. 2. Schematic geometry of the domains, the stencil, and the grid boupdary* Uy~ in polar coordinates: Hollow
bullets denote/*, filled bullets—y —.

A general solution for the discrete control sourgéd = g™ that eliminate the unwanted noisé’~
on Nt is given by the following formula (cf. (8)):

) — _| gy 17)

m

wherew™ = w® n € N7, is a discrete auxiliary function-parameter. The requirements that it must
satisfy are, again, rather “loose”, and can be considered natural discrete analogues of the corresponding
continuous requirements for the function-parameit€x). Namely, at the grid boundany the function

w® has to coincide with the overall acoustic fiedd’ to be controlled:

h h
W lney =" lney - (18)

For practical designs, the boundary dafd|,c, shall be interpreted as measurable quantities that provide
input for the control system. In other words, we can think of a microphone at every npdbatfmeasure
the characteristics of the actual acoustic field and generate the inputsjghal, .

The other requirement of the functian®, besides the interface boundary conditions (18), is that it
must satisfy the appropriate dis@eABCs at the eternal artificial boundary = R, see Fig. 2. The
role of the discret ABCs is the same as that et continuousABCs—to provide a replacement for the
Sommerfeld radiation boundary catidns. The discrete two-dimermsial ABCs wee obtained in [4] by
using the direct and inverse discrete Fourier transfofms-L/2+1,...,L/2,s=0,...,L — 1:

L—1 L/2

1 ‘ .

~ —ilsA® PRITIN:

w; = 7 E wee 27 wy = E we' 2, (29)
s=0 I=—L/2+1
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and then approximating boundary conditions (13)I/fer —L/2+ 1, ..., L/2 with the second order of
accuracy:

Wiy —Wij-1 8 Wiy + w1

Ap : 2 0
d 72
3, He (kp) 4 . IANO
1:% s 0(12= —ZS|nZ—. (20)
Hy? (kp) |o=r Af 2

Note, —a? of (20) are eigenvalues of the circumferential component of the discrete Laplacian (15). Re-
lations (20) forall = —-L/2+1,..., L/2 can also be recast into the matrix form:

_ 1 1 -
W. ;= F‘ldlag{— (— + ,Bl) (— — ,Bl) }FW.J_l =TwW. j_1, (21)
Ap Ap
whereF andF~1 are matrices of the direct and inverse discrete Fourier transforms of (19)v.arahd
w. ;_1 are L-dimensional vectors of components’) andw")_,, respectivelys =0, 1,..., L — 1.

Other than (18) and (21), there are no constrainte@h As such, it parameterizes a large variety of
discrete control sources, see (17), that will provide the search space for optimization in Section 3.

It is also important to understand in what sense this discrete cancellation of noise models the contin-
uous cancellation described in Section 2. According to the theory of generalized Calderon’s potentials,
see [12], the discrete anti-sount’ = v", n € N*, i.e., the solution td. Wv® = g™ with ¢ given
by (17), will, under certain natural conditions, approximate the continuous anti-sosgnalx), X € £2,

i.e., the solution td_v = g with g given by (8). The aforementioned conditions first include the consis-
tency and stability of the finite-difference scheme for the Helmholtz equation. In addition, the discrete
boundary data("|,., of (18) have to approximate the continuous boundary dﬁt%)h" of (9) in some

special sense, [12]. Then, the rate of convergence of the discrete anti-sound to the continuous one with re
spect tor will be the same as prescribed by the finite-difference scheme itself. For the central-difference
operator (15), this rate is @?). In other words, when designing an active control system following the
finite-difference approach, one can expect to have the actual noise cancellation in the same approximate
sense as the solution of the finite-difference equation approximates the corresponding solution of the
original differential equation.

Finally, similarly to the continuous case we can identify some particular types of the discrete control
sources. First, let us define another subset of theMr{gnore precisely, oM ™):

My ={meM |N,ny* =0}
Basically, M, is the interior subset a¥l~, such that when the center of the stencil sweeps this subset,

the stencil itself does not tough', see Fig. 2. In other word3/[; , is a subset oM~ such that
U Nu=N"\y*
meM
Next, we introducar™ = w™, n € N~, for (17) as follows:
w;gh)lnefr = u;(1h)|ney+’ (22a)
and

h h h h —
w;g )lney* = u,(1 )lney*’ L( )w( ) = 0 oant.

(22b)
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As before, we also assume that” satisfies the discret®BCs (21). Definition (22a) means that on the

interior part of the grid boundary ™ we simply setw™ equal to the givem™: w|,c,+ = u™|,c,+.

Definition (22b) is actually a discrete exterior boundary-value problem of the Dirichlet type. Indeed,

everywhere on and “outside” the exterior part of the grid boungaryi.e., onN~\y *, the grid function

w™ is obtained as a solution of the homogeneous equatibhw™ = 0 (enforced at the noded. )

supplemented by the Dirichlet boundary datayon w®|,e,- = u"|,,-. Note, relation (22a) and the

first relation (22b) together are obviously equivalent to (18). Therefore, the funetiondefined via

(22a), (22b) falls into the general classwf?’s used for obtaining the discrete control sources (17).
Problem (22b) can clearly be considered a finite-difference counterpart to the continuous Dirichlet

problem (11). Therefore, its is natural to call the control sougc&s= grﬂ:‘;]‘ggoleobtained by formulae

(17), (22a), (22bjhe discrete surface monopoles. Indeed, because of the definitiomof” given by (22a)
and (22b), thesgﬂg,f]‘ggolemay, generally speaking, differ from zero only on the gridget\M;_, which
is a single “curvilinear” layer of nodes of grid that follows the geometry af'. Accordingly, the output

of these controls can be called the discrete single-layer potential. Note, the discrete surface monopoles
and single-layer potentials, as well as the discrete surface dipoles and double-layer potentials, have beel

first introduced and analyzed in [14].

3. Optimization of the control sources

Once the general solution for controls is available, in either continuous (8) or discrete (17) formulation,
the next step is to determine what particular element of this large family of functions will be optimal for a
specific setting. There is a multitude of possible criteria for optimality that one can use. In many practical
problems the cancellation of noise is only approximate and as such, the key criterion for optimization
(or sometimes, the key constraint) is the quality of this cancellation, i.e., the extent of noise reduction. In
contradistinction to that, in this paper we are considering ideal, or exact, cancellation, i.e., every particular
control field from either the continuous (8) or discrete (17) family completely eliminates the unwanted
noise on the domain of interest. Consequently, the criteria for optimality that we can employ will not
include the level of the residual noise as a part of the corresponding function of merit, and should rather
depend only on the control sources themselves.

In the current paper we focus primarily on theadratic optimization criteria. We have looked into
the most natural criterion of this type, namely, thenorm of the control sources(x) of (8) or g/ of
(17), see Section 3.2. The advantage of minimizing the controls in the sehse of

/ | 200 | dx — min (23)
suppg

lgll2=

is thatthe minimum can be easily computed, see Section 3.2. The search space for minimization (23)
includes all the appropriate auxiliary functiongx), on whichg(x) depends. The disadvantage of using

this criterion is that the quantityg ||, does not have a clear physical interpretation, as, for exampléthe

norm ofg (see Section 3.1 and [4]) or the power required by the control system (see [5]) do. Nonetheless,
motivated primarily by the ease of the numerical approach to minimization, we do provide in Section 3.2
a comprehensive set of computed optimal solutions for active controls in the sense of the least squares
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(i.e., Ly). We also compare these discrete results with the “semi-analytidptimal solutions obtained
for simple circular shapes using the spectral methodology developed in our work [6].
The discretd., minimization problem for the control sourcg®’ of (17) can be formulated as follows:

61, =[5 vl min
meM~—

whereV,, accounts for the grid cell area. This problem can also be recast using matrices. The finite-
difference operatoL. ™ can be interpreted as a matrix with columns andV rows, whereN is the
number of nodeg = (s, j) of the gridN~ such thato; < R, i.e., j < J, andM is the number of nodes

m = (s, j) of the grid M~ such thatp; < R, i.e., j < J — 1. Letw be the vector ofN components

", neN-andj < J, arranged so that
1, 24

wherew, containsw{" for whichn € y, w.; andw. ;_; correspond to the outermost and second to last
circles of the polar grid, respectively, as in formula (21), agdcontains all the remaining components
of w “in-between”y and the outer boundary. In accordance with (24), the mhatfixcan be decomposed
into four sub-matrices:

L™ =[A,B,C,D] (25)

that all have the same number of rods andA has as many columns as there are nodes(iwe denote
this numbely |), while C andD each had. columns, and hasN — |y| — 2L columns.
With the help of formulae (24) and (25) the discrete minimization problem can now be formulated as:

IV (Aw,, +Bwo + Cw. ;_1 + Dw. )|, — min, (26)

wh = w

W= [W]/a WOa W~,J71’ W-,J

whereV is anM x M diagonal matrix with the entries given by the corresponding cell avgag he
vectorw in (26) is, in fact, subject to a number of equality-type constraints that come from the interface
conditions (18) and ABCs (21). More precisely, the first sub-veetoin (24) is known and fixed because
of (18) and we can rewrite (18) a8, = u,, whereu, is given. The last sub-vectav. ; in (24) is a
function ofw. ;_; according to (21). Therefore, we can conclude that awjyandw. ;_; contain free
variables that provide the search space for optimization, and as such recast (26) as
min ||V(Bwo + (C+DT)W.,_1 +Aw, ) |, =min|Ez—f|>, (27)

Wo,W. j-1 z
whereE = V[B,C +DT]isanM x (N — |y|— L) given matrix,z = [wo, W. ;_1]" isan(N — |y | — L)-
dimensional vector of unknowns, afig= —VAw, is anM-dimensional known vector of the right-hand
side.

3.1. Results of optimization in the sense of L,

Before actually solving problem (27) let us briefly outline here our recent results [4] on finding the
optimal controls is the sense bf. These results will serve as a good “reference point” for comparison
in the context of the current paper. Minimization problem in the sendg :of

llglli= / |g()| dx — min,
suppg



392 J. Lon€aric, SV. Tsynkov / Applied Numerical Mathematics 52 (2005) 381-400

</
==
<>
-'Z.;/ <
==/
=
=+

>
/7~
[ ——FH l 1
| W W v I A7
"—,‘:.;..LI_L___._‘:%?,..
TS
s

-47

@)

Fig. 3. Magnitude of the control sources f@r= {x e R? | |x| < 1}, k= 0.5, f~ = 8(X — X1), X1 = (5,0); grid dimension

32 x 7: (a) L1 optimal solution; (b) Surface monopolg%ﬁggole

is formulated analogously to that in the sensé gfsee (23), and also has a matrix representation similar
to (27) except that the norrh- ||, shall be replaced by - ||;. From the standpoint of physics, tlg
minimization is equivalent to minimizinghe overall absolute acoustic source strength of the control
sourcesg(x), see [8,7]. The transparent physical meaning of the cost fungtidnis, undoubtedly, an
advantage. On the other hand, because of the complex-valued quantities involved, the computation of
min || g||1 reduces to solving a nonlinear and nonsmooth problem of constrained optimization over a large
set of cones, see [4]. It presents a substantial challenge even for the most sophisticated state-of-the-ar
approaches to numerical optimization based on the interior point methods [15,9]. For computing the
optima in [4] we have used the software package SeDuMi by J.F. Sturm.

The key computational findin% of [4] is that thig optimal solution always coincides with the discrete
layer of surface monopolegﬂ‘éifpoleobtained by applying formula (17) to the auxiliary functiar?
defined by (22a), (22b). Fig. 3 reproduces the results of one particular computation from [4]. Motivated
by the consistent numerical observations, we have also been able to prove in [4] that in 1D the surface
monopoles indeed provide a global minimum for the control sources in the sehgdarfboth the dis-
crete and continuous formulation of the problem. In multi-D, this result is still a conjecture, even though
we do believe that a combination of the two-dimensional numerical evidence and a one-dimensional rig-
orous proof, see [4], cannot be a mere coincidence. To accurately formulate this conjecture from [4], we
first remind that according to (10) the continuous surface monopole controls are given by

(surh () _[a& - a_”] 8(I") =v(X)|xer - 8(I), (28)
gmonopole( an an | r r

wherewp(X) is a solution to the exterior Dirichlet problem (11). Then,

Conjecture 3.1. Let a complex-valued functiom = w(x) be defined on2; = R"\£2, and let it be
sufficiently smooth so that the operatorof (1) can be applied tav(x) on its entire domain in the

2 http:/ffewcal.kub.nl/sturm/software/sedumi.html.
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classical sense, and the reduib be locally absolutely integrable,w e L(1'°°) (R™). Let, in addition,w (x)
satisfy the interface conditions (9), where= u(x) is a given field to be controlled, and the appropriate
Sommerfeld radiation boundary conditions at infinity (2). Then, the greatest lower bound fég the
norms of all the control sourcegx) obtained with such auxiliary functions(x) using formula (8), is
given by theL; norm onI" of the magnitude of surface monopoles (28):

ir(mj)/|g(x)|dx:/|v(x)|ds.
21 r

In other words, we have ipfy lg(X)[l1,e, = llvll1, 7. Note that in the discrete case theoptimal solution

(h,surf) . . .
monopolePEIONGS to the same class of functions as all other discrete volumetric carfffad®, whereas

the continuous optimum (28) of the contraigx) € L{°® happens to be a singular layer.
3.2. Discrete optimization in the sense of L,

The L, minimization problem for the volumetric control sources is solved hereafter completely on the
discrete level. In other words, for every particular setup we are finding the minimum (27) or, equivalently,
computing a complex-valued weak solution of the overdetermined system of linear equztierfsin
the sense of the least squares. The resulting optima do not reduce to any clearly identifiable special cases
like the layer of surface monopoles that appeared previously in the contéxt dhey are not assigned
any particular physical meaning either; and we present them below in order to demonstrate ihat the
optima are distinctly different from th&, optima obtained in [4], and that they can be easily computed
numerically, including some cases that involve rather sophisticated geometry. In the simple €ase of
being a disk, we also conduct a grid convergence study in order to validate the results of the discrete
minimization against the spectrally accurate reference solutions obtained in [6].

Proposition 1. The matrix E = V[B, C 4+ DT], see formulae (25), (27), has full column rank.

Proof. The justification of Proposition 1 will be based on a natural solvability assumption for the system
of finite-difference equations that we are using. First, let us introduce more detailed partitiwrendf
L™ instead of (24) and (25), respectively:

W= [Wer’ Wyfa Wo, W~,J71’ W-,J]T’
L™ =[AT A~,B,C,D]. (29)

The matricesA™ and A~ of (29) together giveA of (25); w,+ and A* correspond to the innermost
“half” of the grid boundaryy *, andw,- andA~ correspond to the outermost “half” of the grid bound-
ary y— (see formula (16) and Fig. 2). Next, consider an auxiliary exterior Dirichlet problem for the
finite-difference equatioh. 'z’ = 0 with the boundary data specifiedjat. As before, the problem

is supposed to be truncated at the external artificial boundaryp,; by means of the ABC (21). This
problem is a discrete counterpart of the continuous exterior Dirichlet problem for the Helmholtz equa-
tion with the boundary data given @ and ABCs (13) specified a¢ = R. The continuous problem

is uniquely solvable because it is equivalent to the genuine infinite-domain exterior Dirichlet problem
with the Sommerfeld boundary conditions (2) set at infinity. Even though we do not justify it here, it is
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certainly reasonable to assume that the corresponding discrete problem based on the standard centra
difference scheme (15) and ABC (21) is uniquely solvable as WEfie latter assumption implies that

the squareM x M matrix [A—, B, C + DT], see formula (29), is nonsingular. Consequently, the matrix

G =V[A—,B,C+ DT] is also nonsingular, becaustis anM x M diagonal matrix with nonzero di-
agonal entried/,,. Finally, we notice that the matrik€ = V[B, C 4+ DT], see formulae (24) and (25), is
obtained by removing the firgy | columns of the previous matri®&. Therefore, the columns & are

linearly independent. O

An obvious key implication of Proposition 1 is that the minimization problem (26), or equivalently
(27), can be solved in the senselof (least squares) using a standard QR-based approach, i.e., without
employing the Moore—Penrose type arguments. We use the MATLAB functi®QL| N for solving
the least squares minimization problems hereafter. This function also allows one to do constrained mini-
mization, the capability that we employ in Section 3.2.2.

3.2.1. Comparison with the reference solution

In our previous work [6] we have developed a methodology of spectral type that allowed us to construct
the continuoud.,-optimal volumetric controls for a particular geometry, namely, controls supported on
annular domains. These spectral solutions are used in the current paper as reference solutions for th
purpose of validating the finite-difference algorithm.

Let the protected region be a disk of radiusentered at the origin2 = {(p,0) | p < r}, and let the
controls be supported on the annul@s = {(p, 0) | r < p < R}. We introduce a simple conformal polar
grid, which is uniform in the circumferential direction and stretched in the radial direction so that the cell
aspect ratio is equal to one:

M={(p;.0,) | p;=e/%", j=0,....,0 =1 6, =sA0, s=0,...,L —1; A0 =21/L},
N={(p;.00) | pj=e’*’, j=-1,0,...,7; 6,=5A0, s=0,...,L—1; A0 =27/L}.  (30)

We, of course, assume that the area covered by theNyid (30) is larger than2,, i.e., p_1 <r <

R < p;. The Helmholtz operator can be easily approximated on the grid (30) with the second order of
accuracy using the same five-node stencil as shown in Fig. 2. This approximation involves only minor
changes compared to the approximation (15) that works on uniform grids, and we refer the reader to our
paper [10] for detail. The discrete ABCs in the form (20) or (21) do not change, excep gha¢eds to

be replaced byp; = p; — p,_1. Let us also note that we do not consider the grid (30) inside the domain

£2 because we introduce it only for the purpose of obtaining the control sourcgs.dfy however, we

were to actually compute the output of the controls inside the protected region, we would have had to
extend the grid (30) all the way int@, which can obviously be done using a variety of strategies. As
indicated by the previous analysis [6,12,16,17], as long as the discrete controls are constructed according
to formulae (17), (18), their output on the grid insi@ewill identically cancel out the unwanted acoustic

3 A proof of this fact would involve showing that relations (20) are “sufficiently close” to guaranteeing the precise mode
selection in the discrete case so that to avoid the resonances. This task is beyond the scope of the current paper. In [11], one ca
find general analysis of the 1D discrete solvability and well-posedness.
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component:)~, see Section 2.2. In all the cases analyzed hereafter, wehave r < po, So that
according to (16) the grid subsets are defined as

M* = {(p;.0,) | j = -1}, M~ ={(p;,0,)10< j < J -1},
Nt ={(p;,00)1j=-10}, N ={(p;.0)1-1<,j<J},
y={(p;.0,)1j=-10}, yt={w.001j=-1}, vy ={w;.601j=0}, (31)

where alwayss =0, ..., L — 1. In so doing, the dimension of the mattix”, see (25), isM x N =
(L-J)x (L-(J+2),the dimension ofA, which corresponds to the variables pnis M x 2- L =
(L-J)x2-L,thedimensionoBisM x (N —4L)=(L-J) x (L -(J — 2)), and the dimension of
eitherCorDisM xL=(L-J)x L.

We test the convergence of the discrete scheme for the wavenumbérO and the excitation (i.e.,
the acoustic field:” that drives the control system) taken in the analytic form of a shifted fundamental
solution of the Helmholtz operator, as if it were generated by the point sgurees (x — X1), wherex; =
(pcosy, psinbd) = (5, 0). We reemphasize that our approach does not require the explicit knowledge of
the exterior sources of noise. We only need this functiéhas a sample field to be used as given data in
formula (18).

We employ a sequence of seven gridlsx J =32x 3,48x 4, 64x 5, 96x 7, 128x 9, 192x 13,
and 256x 17, so that for all the grids the value pf_; is the samep,_, = const~ 1.481; according to
(30) we also haveyy = 1. For the first series of convergence tests we assume that the boundaries
andp = R of the regions2,, on which the continuous controls are to be supported, are located exactly at
the conformal midpoint of the first and last cell of the radial g¥idf (30), respectively, i.er, = e~1/24¢
and R = ¢V ~Y249 The results of these tests are summarized in Table 1, which shows,therm
of the relative error between the optimal continuous and discrete controlmiagg,) [l gspec(X)1l2] and
argmin,a, [lg™ [15"].

The data in Table 1 clearly indicate the second order of grid convergence for the discrete optimal
controlsg™. It is important to emphasize, though, that the geometrgpfvas chosen grid dependent
(boundarieso = r and p = R were located at cell midpoints), which essentially means that for each
subsequent grid in Table 1 the optimum was computed on a somewhat different (smaller) domain. It is
quite obvious that in general the optimal solution will depend on the region on which the optimization
is performed, and we cannot expect the optimum computed on a subdomain to coincide with the corre-
sponding fragment of the optimum computed on the entire domain. However, the decrease of the error
with the refinement of the grid observed in Table 1 shall still be interpreted as convergence. Indeed, had
we continued refining the grid further, all the domaias = {r < p < R} themselves would converge
to one and the same annular region with the inner raditsog = 1 (£2 is a unit disk) and outer radius
R = p,;_1, which was chosen grid independent.

On the other hand, the quadratic rate of convergence suggested by Table 1 appears a rather fragile
phenomenon determined by the particular choice of the geometry. For other choices, the convergence
may be slower. In Table 2, we present the results that correspond to the same inner bpundakf??,

Table 1
Grid convergence fok =1, f~ =8(X — X1), X1 = (5,0), r = e~ 1/280 R — ((J=1/2A0
Grid 32x 3 48x 4 64x 5 96x 7 128x 9 192x 13 256x 17

|[Error|2 0.013722 0.0061417 0.0034693 0.0015491 0.00087349 0.00038921 0.00021922
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Table 2

RelativeL, error forik =1, f~ =8(X —X1), X1 = (5,0), r = Y280 R = o(J=3/DAb gnd g = £/ ~1/4)A0

Grid 32x 3 48x 4 64x5 96x 7 128x 9 192x 13 256x 17

J — % 0.10283 0.074135 0.058274 0.040958 0.031618 0.021733 0.016562
J — % 0.096894 0.071804 0.057069 0.040476 0.031362 0.021627 0.016504

and the outer boundary located at either one quarter point or three quarters point of the outermost cell:
R =eV=3/949 or R = /=129 One can easily see that the convergence in Table 2 is only linear.

At the moment, we do not have a detailed explanation of the grid convergence propertiés fioat
we have observed, see Tables 1 and 2. It is important to realize, however, that what we evaluate is, in
fact, convergence of the residual rather than that of the solution. Indeed, the solution of the optimization
problem (26) or (27) per se is a particular grid functioff’ that delivers minimum to the selected func-
tion of merit, namely, the., norm of the residual of the discrete Helmholtz operator applied tadtis
What motivates our primary interest toward the residual is obviously the fact that it yields the distributed
active control sources™, see formula (17). However, even though the optimization formulation that we
have introduced in the beginning of Section 3 is fairly conventional, in the PDES’ perspective neither the
continuous generating functian(x) nor its discrete counterpaut™ at the optimum can, to the best of
our knowledge, be interpreted as a solution to any traditional boundary-value problem, for which the ex-
istence and regularity results are available. As such, in our opinion no standard theoretical approaches tc
analyzing the grid convergence of eithef” or its residual will directly apply here, and we shall rather
regard the foregoing results as experimental findings.

Moreover, let us point out that in the context of noise cancellation on the dofhaihe issue of
grid convergence of the discrete control sourgés may, in some sense, be considered as the one of
secondary importance. Indeed, the output of the congélsalways eliminates the unwanted noise on
£2 [more precisely, on the grii*, see formula (16)] no matter what particular solution from the general
class (17), (18) is used. Moreover, this outpufohcan be interpreted as a discrete Calderon’s potential,
which converges to its continuous counterpart with the rate prescribed by the approximation order of
the scheme [12], again, irrespective of what particutdP, n € N-, andg\®, m € M~, are taken on
every given grid. As such, one does not need to be overly concerned with the rate of convergence for the
discrete optimal control sources as any of those will do the cancellation job equally well anyway.

Let us emphasize that thie, optimal solutions for active controls differ very substantially from the
L1 optimal solutions obtained previously in [4]. This is, of course, natural to expect, because minimizing
the norms||g||> and|g]|1 basically means minimizing two quite different (nonlinear) functionals over a
vector spacé.To visualize the corresponding differences, we conductthminimization for the same
setup,L = 32,J =7, andk = 0.5, that was earlier analyzed in the sensé. gfsee Fig. 3. The excitation
was provided by the point sourge = § (X — X1), wherex; = (5, 0). In Fig. 4(a) we show the magnitude
of the L,-optimal active controls on the 32 7 grid. This solution indeed differs drastically from the
L1-optimal controls shown in Fig. 3. Unlike tHe, optimum, i.e., the layer of surface monopoles, ihe
optimal solution tends to be distributed over the entire annular region on which the controls are supported,
obviously favoring the direction toward the noise source. We have also obtainéd tdmimal controls

4 Equivalence of all norms on a finite-dimensional linear space should not lead here to an incorrect assumption that the minima
should also be the same, because this equivalence only refers to the convergence with respect to different norms.
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for the same case but on the twice as fine grid of dimensior 63; they are shown in Fig. 4(b). The
plots in Fig. 4(a) and (b) look very much alike, as expected.

It is also interesting to observe how the qualitative behavior of the optimal solution changes when
the parameters that define the problem vary. A key parameter is the wavenurfseviously, we have
analyzed the cases of relatively long waves compared to the size (i.e., diameter) of the protected region
£2. Letus now také = mr, then there will be exactly one full wavelength across the diameter. We compute
this case on the grid 128 9 so that 1= pg < p < py_1 &~ 1.481. In Fig. 5, we present the distribution
of optimal controlsg® for the case of the long waves,= 0.5 (Fig. 5(a)), and for the case of the
wavelength comparable to the domain size; = (Fig. 5(b)). The solution that corresponds to shorter
waves is clearly more oscillatory.

3.2.2. Constrained optimization in the sense of L,

The purpose of formulating and solving tlie optimization problems that involve constraints was
to simulate not simply a more sophisticated geometry but also a more realistic one. For example, if we
interpret the previously considered protected region—a unit disk—as a section of the aircraft fuselage,
then we can also introduce portholes, i.e., windows, that shall be interpreted as designated areas, ir
which no control sources can be applied. Optimization problem (27) in this case needs to be modified.
Instead of simply finding a weak solution BZ = f in the sense of the least squares, we will now have
to impose additional constraints, i.e., require that for those nodes of thilgrithat happen to be inside
the aforementioned designated areas, the corresponding equations be enforced exactly. This leads to th
problem

mZin||Ez—f||2 subjectto Ec.z=f, (32)

wherekE. is the sub-matrix ok (i.e., the appropriate set of rows), afads the respective sub-vector if
that correspond to the constrained nodes.
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For simulations, we have introduced two symmetrically located portholes in the fuselagé: & 30°
and 150 < 6 < 175. The resulting problem (32) was solved by a standard methodology (procedure
LSQLI Nfrom MATLAB) that requires linear independence of the constraints.

The case that we have analyzed in the context of the constrainegtimization, was, again, one of
those that we have studied previously in itheframework, see [4], but, of course, with no constraints.
For this case, the excitation is provided by a pair of external souytes: § (X — X1) + §(X — X2), where
X1 = (5,0) andx, = (1, 2), the wavenumbek = 0.9, and the grid has the dimension 4®. In Fig. 6(a),
we show the constrainefl, optimal solution for this grid, and in Fig. 6(b) we show the solution for
the twice as fine grid 9& 17. We emphasize the presence of the large spikes in the control effort next
to the boundaries of the window on the right, which is natural to expect. We should also point out at
some apparent discrepancies between the control field on Fig. 6(a) and that on Fig. 6(b) in the region
near this window. Qualitatively, these discrepancies are easily explained once we realize that a given
window, which is defined as a particular rangedofdoes not have to be exactly the same on different
grids because of the finite size6, and a finer grid simply provides for a “sharper” definition of the
window in the discrete sense. On the other hand, quantitatively we, of course, cannot claim that the same
convergence results as we have obtained previously in the case with no constraints, see Section 3.2.1
will hold in the presence of the constraints as well. Moreover, in the constrained case one should gener-
ally expect less regularity from the corresponding continuous solution than in the previously addressed
unconstrained cases. Therefore, the results of.theonstrained minimization should only be regarded
as implementation examples of a previously tested numerical algorithm for more elaborate settings.

The actual norms of the solutions that we have obtained are presented in Table 3, which also contains
the L, norms of surface monopoles optimal in the sensd. gfsee [4]. We see that the, norm at
the minimum is considerably larger for the constrained case compared to the unconstrained case. As
concerns thel, norm of theL,-optimum, it is three times larger in this case than the unconstrained

L, minimum. We should also mention that the finer the grid, the largeitheorm of g0 is, see

Table 3. This is, in fact, a natural consequence of the scaling adopted in [4]. Indeed, the actual magnitude
of gﬂg;‘ggoleincreases when the grid is refined, because the corresponding continuous limit is a single
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Table 3
Comparison of the computeddh-optimal solutions with surface monopoles

. . h . . h h, h
Grid min, ) ||g(h)||<2 ) Constrained mif g ||g(h)||<2 ) ||gr<milggolé|é )
48x 9 0.41855 0.54013 1.2983
96 x 17 0.43485 0.56175 1.8315

layer on the interface. The latter is a singular distribution, which is obviously not integrable by itself,
and even less so with square. At the same time, it turns out that the discrete two-dimehsiooain

of surface monopoleﬁg(h’surﬁ dl1,m- does not change with the change of the grid size. This essentially

monopol
(h,surf (h,surf

implies that the magnitude Qfynonopole SClES as @1 and as such, thé, norm | gmonopordi2.n- IS

supposed to scale ag/*/?). This is corroborated by the data in the last column of Table 3.

4. Discussion

In the paper, we have developed and implemented a computational algorithm for optimizing the
sources of active control of sound in the sense of the least squasksHor some simple cases, we
have been able to validate our numerical results against spectral solutions. We have also seeh that the
optimal controls are distinctly different from thie; optimal controls obtained previously. For the case
of a somewhat more realistic geometry, the corresponding optimization formulation involves constraints
of equality type; this formulation can be analyzed as well. We also emphasize that even though the norm
llgll2 is hard to characterize using conventional physical terms (for example, it does not correspond to
a physical energy like many othér, norms do), from the mathematics perspective it still provides a
perfectly legitimate quantitative measure of how “big” the control effg) is. As such, minimization
of ||g]l2 that we have conducted in this paper is by no means meaningless.



400 J. Lon€aric, SV. Tsynkov / Applied Numerical Mathematics 52 (2005) 381-400

Generally, there is a multitude of optimization criteria that can be used in the context of active control
of sound. Unlike|lg]l2, some would admit a clear physical interpretation, such as the control source
strength, see [4], or power required by the controls, see [5]. On the other hand, some cost functions,
such as|gll1 or ||gll2, would only depend on the controls themselves, whereas others—power-based—
would necessarily involve the interaction between the sources of sound and the surrounding acoustic
field. As far as different criteria may be concerned, let us note that neither in this paper nor in our
previous work on optimization for the active control of sound [4,5] do we favor any specific choice of the
function of merit. In particular, neither do we prioritize physical relevance over computational efficacy,
nor proceed the other way around. In our opinion, setting priorities of that type is simply not possible
while staying within the limits of exact science. What we are rather trying to do is to show that it is very
difficult to come up with a universally good optimization criterion, as typically the nice features would
come at the expense of one another; that optimal solutions found for different criteria may noticeably
differ as well; and that ultimately the choice of the optimization criterion may be determined or at least
seriously affected by a number of considerations from “beyond mathematics”. Some may originate from
the engineering limitations, others will be just a matter of personal preference.
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