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Abstract

We analyze the problem of suppressing the unwanted component of a time-harmonic acoustic field (no
predetermined region of interest. The suppression is rendered by active means, i.e., by introducing the additio
acoustic sources called controls that generate the appropriate anti-sound. Previously, we have obtaine
solutions for active controls in both continuous and discrete formulation of the problem. We have also o
optimal solutions that minimize the overall absolute acoustic source strength of active control sources, w
equivalent to minimization in the sense ofL1.

By contrast, in the current paper we formulate and studyoptimization problems that involve quadratic functio
of merit. Specifically, we minimize theL2 norm of the control sources, and we consider both the unconstr
and constrained minimization. The unconstrainedL2 minimization is an easy problem to address numerically.
the other hand, the constrained approach allows one to analyze sophisticated geometries. In a special ca
compare our finite-difference optimal solutions to the continuous optimal solutions obtained previously
semi-analytic technique. We also show that the optima obtained in the sense ofL2 differ drastically from those
obtained in the sense ofL1.
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382 J. Lončarić, S.V. Tsynkov / Applied Numerical Mathematics 52 (2005) 381–400

Keywords: Noise cancellation; Active control sources; Volumetric and surface controls; General solution; Monopoles and
dipoles; Radiation of waves; Complex-valued quantities;L2-minimization; Overdetermined systems; Least squares;

s. Let
-

ua-

g and
of the
l-
sarily
tion of

atter of
, “
equa-

ons;
on

:

ponents.
Unconstrained minimization; Constrained minimization

1. Introduction

In the simplest possible formulation, the problem of active control of sound is posed as follow
Ω ⊂ R

n be a given domain (bounded or unbounded), andΓ be its boundary:Γ = ∂Ω , where the dimen
sion of the spacen is either 2 or 3. Both onΩ = Ω ∪ Γ and on its complementΩ1 = R

n\Ω we consider
the time-harmonic acoustic fieldu = u(x), x ∈ R

n, governed by the nonhomogeneous Helmholtz eq
tion:

Lu ≡ �u + k2u = f. (1)

Eq. (1) is subject to the Sommerfeld radiation boundary conditions:

u(x) = O
(|x|(1−n)/2), ∂u(x)

∂|x| + iku(x) = o
(|x|(1−n)/2), as|x| → ∞, (2)

which specify the direction of wave propagation at infinity, and distinguish between the incomin
outgoing waves by prescribing the outgoing direction only; they guarantee the unique solvability
Helmholtz equation (1) for any compactly supported right-hand sidef = f (x). Note that as we are dea
ing with the traveling waves (radiation of sound toward infinity), all the resulting solutions neces
have to be complex-valued, otherwise it is impossible to account for the key phenomenon of varia
phase with the change of spatial location. We should also mention that the choice of the sign “+” or “ −”
in the second expression of (2) that actually selects the direction of propagation is basically a m
convention; it only has to correlate with the definition of the direct/inverse Fourier transform (again+”
or “−” in the exponent) adopted for transforming the unsteady wave equation into the Helmholtz
tion (1). In the literature, the “−” sign is often used for the Sommerfeld radiation boundary conditi
we would rather keep the sign “+” in formula (2) to make it consistent with our previous publications
the subject of active noise control [6,14,4,5].

The source termsf = f (x) in Eq. (1) can be located on bothΩ and its complementΩ1 = R
n\Ω ; to

emphasize the distinction, we denote

f = f + + f −, suppf + ⊂ Ω, suppf − ⊂ Ω1. (3)

Accordingly, the overall acoustic fieldu = u(x) can be represented as a sum of the two components

u = u+ + u−, (4)

whereu+ is driven by the interior sourcesf +, andu− is driven by the exterior sourcesf − w.r.t. Ω :

Lu+ = f +, (5a)

Lu− = f −. (5b)

Note, bothu+ = u+(x) andu− = u−(x) are defined on the entireRn, the superscripts “+” and “−” refer
to the sources that drive each of the field components rather than to the domains of these com
The setup described above is schematically shown in Fig. 1 for the case of a bounded domainΩ .
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Fig. 1. Geometric setup.

Hereafter, we will call the componentu+ of (4), (5a)sound, or “friendly” part of the total acoustic
field; the componentu− of (4), (5b) will accordingly be callednoise, or “adverse” part of the tota
acoustic field. In the formulation that we are presenting,Ω will be a predetermined region of space to
protected from noise. This means that we would like to eliminate the noise component ofu(x) insideΩ ,
while leaving the sound component there unaltered. In the mathematical framework that we have a
the componentu− of the total acoustic field, i.e., the response to the adverse sourcesf − (see (3)–(5)),
will have to be canceled out onΩ , whereas the componentu+, i.e., the response to the friendly sourc
f +, will have to be left unaffected onΩ . A physically more involved but conceptually easy to underst
example that can be given to illustrate the foregoing idea, is that inside the passenger compar
an aircraft we would like to eliminate the noise coming from the propulsion system located outs
fuselage, while not interfering with the ability of the passengers to listen to the inflight entertai
programs or simply converse.

The concept ofactive noise control implies that the componentu− is to be suppressed onΩ by
introducing additional sources of soundg = g(x) exterior with respect toΩ , suppg ⊂ Ω1, so that the
total acoustic field̃u = ũ(x) be now governed by the equation (cf. formulae (1), (3)):

Lũ = f + + f − + g, (6)

and coincide with only the friendly componentu+ on the domainΩ :

ũ|x∈Ω = u+|x∈Ω. (7)

The new sourcesg = g(x) of (6), see Fig. 1, will hereafter be referred to as thecontrol sources or
simply controls. An obvious solution for these control sources isg = −f −. This solution, however, i
clearly sub-optimal because on one hand, it requires an explicit and detailed knowledge of the s
and location of the sourcesf −, which is, in fact, superfluous, see [6]. On the other hand, its implem
tation in many cases, like in the previously mentioned example with an airplane, may not be fe
Fortunately, there are other solutions of the foregoing noise control problem (see Section 2, as
our previous work [6,4,5] for details), and some of them may be preferable from both the theoretic
practical standpoint.

To conclude the introduction, let us only mention that the area of active control of sound has
history of development, both as a chapter of theoretical acoustics, and in the perspective of many
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applications. It is impossible to adequately overview this extensive area in the framework of a focused
research publication. As such, we simply refer the reader to the monographs [8,2,1] that, among other
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things, contain a detailed survey of the literature. Potential applications for the active techniques o
control range from the aircraft industry to manufacturing industry to ground and air transportation
military to consumer products and other fields, including even such highly specialized and narrow a
acoustic measurements in the wind tunnels. It is generally known that active techniques are more
for lower frequencies, and they are usually expected to complement passive strategies (sound in
barriers, etc.) that are more efficient for higher frequencies, because the rate of sound dissipatio
the viscosity of the medium and heat transfer is proportional to the square of the frequency [3].

Let us also note that in the current paper we focus on the case of the standard constant-co
Helmholtz equation (1), which governs the acoustic field throughout the entire spaceR

n. This allows
us to make the forthcoming analysis most straightforward. However, one can also consider othe
complex, cases that involve variable coefficients, different types of far-field behavior, discontin
in the material properties, and maybe even nonlinearities in the governing equations over some
Approaches to obtaining solutions for active controls in these cases are based on the theory of ge
Calderon’s potentials and boundary projections, and can be found in our previous paper [6] an
monograph by Ryaben’kii [12, Part VIII].

The material in the rest of the paper is organized as follows. In Section 2, we introduce and
general solutions for controls in the continuous and discrete framework. Section 3 is devoted
formulation and solution of the quadratic optimization problems for the control sources (uncons
and constrainedL2 optimization). For reference purposes we also briefly mention our previous resu
the optimization in the sense ofL1. Finally, Section 4 summarizes our current findings and also con
some general discussion.

2. General solutions for control sources

2.1. Continuous formulation of the problem

A general solution for the volumetric continuous control sourcesg = g(x) is given by the following
formula (Ω1 = R

n\Ω):

g(x) = −Lw|x∈Ω1, (8)

wherew = w(x), x ∈ Ω1, is a special auxiliary function-parameter that parameterizes the fam
controls (8). The functionw(x) must satisfy the Sommerfeld boundary conditions (2) at infinity,
at the interfaceΓ , the functionw and its normal derivative have to coincide with the correspond
quantities that pertain to the total acoustic fieldu given by formula (4):

w|Γ = u|Γ ,
∂w

∂n

∣∣∣
Γ
= ∂u

∂n

∣∣∣
Γ
. (9)

Other than that, the functionw(x) used in (8) is arbitrary, and consequently formula (8) defines a l
family of control sources, which provides ample room for optimization. The justification for formul
as the general solution for controls can be found in [6]. In [4], we also emphasize that the control

g(x) =
∫

g(y)δ(x − y)dy = g ∗ δ,



J. Lončarić, S.V. Tsynkov / Applied Numerical Mathematics 52 (2005) 381–400 385

given by (8) are actuallyvolumetric control sources of the monopole type with regular (locally absolutely
integrable) densityg ∈ L

(loc)
(Rn).
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The control sources (8) possess several important properties that are discussed in detail in [

we only summarize that they do not require any knowledge of the actual exterior sources of nof −
and are built based solely on the measurable quantitiesu|Γ and ∂u

∂n |Γ . Besides, while these measurab
input data pertain to the overall acoustic field, the controls appear insensitive to the interior soundu+ and
specifically target the exterior noiseu− onΩ .

Along with the volumetric controls (8), one can also considersurface controls, i.e., the control source
that are concentrated only on the interfaceΓ . A general solution for the surface controls is given by

g(surf) = −
[
∂w

∂n
− ∂u

∂n

]
Γ

δ(Γ ) − ∂

∂n

([w − u]Γ δ(Γ )
)
, (10)

where the auxiliary function-parameterw = w(x) now has to satisfy the Helmholtz equationLw = 0 for
x ∈ Ω1 and the Sommerfeld boundary conditions (2), but it no longer has to satisfy boundary con
(9). The corresponding discontinuities at the interfaceΓ drive the surface control sources. The fi
term on the right-hand side of (10) represents the density of a single-layer potential, which is a l
monopoles on the interfaceΓ , and the second term on the right-hand side of (10) represents the d
of a double-layer potential, which is a layer of dipoles on the interfaceΓ . A detailed justification of
formula (10) as general solution for surface controls can be found in [14], see also [4]. The funda
properties of the surface controls (10) are the same as those of the volumetric controls (8).

In the family of surface controls (10) we identify two important particular cases. First, the cance
of u−(x), x ∈ Ω , can be achieved by using surface monopoles only, i.e., by employing only a single
potential as the annihilating signal (anti-sound). To do that, we need to findw(x), x ∈ Ω1, such that there
may be no discontinuity onΓ betweenu(x) andw(x), i.e., in the function itself, and the discontinui
may only “reside” in the normal derivative (see formula (10)). Thisw(x) will obviously be a solution of
the following external Dirichlet problem:

Lw = 0, x ∈ Ω1, w|Γ = u|Γ , (11)

subject to the appropriate Sommerfeld boundary conditions (2). Problem (11) is uniquely solva
Ω1 = R

n\Ω . Second, one can employ only the double-layer potential, i.e., use only surface dip
the control sources. The correspondingw(x), x ∈ Ω1, should then solve the external Neumann proble

Lw = 0, x ∈ Ω1,
∂w

∂n

∣∣∣
Γ

= ∂u

∂n

∣∣∣
Γ
,

again, subject to the appropriate Sommerfeld conditions at infinity (2).
Altogether, we have introduced two different types of active controls on the surface and on

type—monopoles—in the volume. This is not accidental. In [4], we show that surface monopol
dipoles provide different types of excitation to the surrounding sound-conducting medium, whic
rants their separate consideration. At the same time, any volumetric distribution of dipoles can b
into an equivalent volumetric distribution of monopoles, which effectively renders the volumetric d
superfluous, see [4].

Let us also note that in practice it may often be convenient to use the so-calledartificial boundary
conditions (ABCs),see the review [13], as a part of the definition of the auxiliary functionw(x). Assume
that there is a larger domain that fully containsΩ and require, in addition, thatLw = 0 outside this
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larger domain. This requirement implies that the resulting volumetric controls will be compactly sup-
ported betweenΓ and the outer boundary of the aforementioned larger region, see formula (8). From the
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standpoint of computing this is the only feasible way to obtain a finite discretization (see Section 2
[4], we have obtained the ABCs for the homogeneous Helmholtz equation outside a sphere of rR

in 3D using the separation of variables in spherical coordinates and the appropriate mode select

dŵlm

dρ

∣∣∣
ρ=R

=
d

dρ
[ρ−1/2H

(2)

l+1/2(kρ)]
ρ−1/2H

(2)
l+1/2(kρ)

ŵlm(ρ)|ρ=R. (12)

In formula (12),ρ is the spherical radius,̂wlm are the Fourier coefficients ofw(x) with respect to spherica
functionsY m

l , l = 0,1,2, . . . , m = 0,±1, . . . ,±l, andH
(2)

l+1/2 are Hankel’s functions of the second kin
equalities (12) have to be enforced for alll andm. Similarly, for the homogeneous Helmholtz equat
outside a disk of radiusR in 2D, the ABCs from [4] read:

dŵl

dρ

∣∣∣
ρ=R

=
d

dρ
H

(2)
l (kρ)

H
(2)
l (kρ)

ŵl(ρ)|ρ=R, (13)

whereρ is the polar radius, and̂wl are the Fourier coefficients ofw(x) with respect to the comple
exponentse−ilθ , l = 0,±1,±2, . . .; again, equalities (13) have to be enforced for alll.

2.2. Discrete formulation of the problem

The continuous analysis tools employed for obtaining the control sources of the previous Sec
are obviously deficient from the standpoint of applications. Indeed, any practical design of a noise
system can only be composed of a finite number of elements (sensors for measuring the field and
for creating the appropriate excitation, i.e., anti-sound). Therefore, it is natural to discretize the p
on the grid and obtain the control sources in the discrete framework so that the locations of the
and actuators can be associated with the grid nodes. For details regarding the discrete formu
the problem we refer the reader to the monograph [12, Part VIII], as well as to the papers [16
brief account can also be found in [14,4], and below we summarize the results. Note that our d
analysis is not limited to any specific type of the grid. In particular, no grid fitting to either the s
of the protected regionΩ or that of the external artificial boundary, is generally required. However
the purpose of illustrating the concepts discussed hereafter, we will use a two-dimensional exam
involves a polar grid. The use of the polar grid greatly facilitates setting the discrete ABCs atthe circular
outer boundary of radiusR. Moreover, the same two-dimensional polar example is analyzed la
Section 3 in the context ofL2 optimization.

Let us denote the aforementioned polar gridN; it spans bothΩ andΩ1. Of course, the grid does no
extend all the way to infinity, it is rather truncated by the external artificial boundary in the shap
large circle of radiusR. This, in particular, implies that the discrete control sources that we obtain
always be compactly supported. Assume that the grid hasJ cells in the radial direction with the node
ρj = j�ρ, j = 0, . . . , J , so thatρ0 = 0 andρJ = R; andL cells in the circumferential direction with th
nodesθs = s�θ , s = 0, . . . ,L, so thatθ0 = 0 andθL = 2π . For simplicity, it is convenient to think tha
the grid sizes�ρ = R/J and�θ = 2π/L are constant; in applications, however, the grid in the ra
direction may be stretched.
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Let now u(h) be the acoustic field on the grid, andL(h) be a finite-difference approximation of the
differential operatorL of (1). To accurately define the approximation, we will need to introduce another
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grid M along with the previously definedN. On the gridM, we will consider the residuals ofL(h)u(h),
and subsequently the right-hand sides to the corresponding discrete inhomogeneous equation
use the notationsn andm for the individual nodes of the gridsN andM, respectively, and the notatio
Nm for the stencil of the discrete operatorL(h) centered at a given nodem ∈ M, so that

L(h)u(h)|m =
∑
n∈Nm

amnu
(h)
n , (14)

whereanm are the coefficients associated with particular nodes of the stencil. Generally, there are
itations to the type of the discrete operator that one can use. We only require that the difference o
L(h) of (14) approximate the differential operatorL of (1) with the accuracy sufficient for a particul
application. For the specific example that we are analyzing, we will consider a conventional secon
central-difference approximation, so that{m = (s, j)} = M ⊂ N = {n = (s, j)}. Then, formula (14) be
comes:

L(h)u(h)|s,j ≡ 1

ρj

1

�ρ

(
ρj+1/2

u
(h)
s,j+1 − u

(h)
s,j

�ρ
− ρj−1/2

u
(h)
s,j − u

(h)
s,j−1

�ρ

)

+ 1

ρ2
j

u
(h)
s+1,j − 2u

(h)
s,j + u

(h)
s−1,j

�θ2
+ k2u

(h)
s,j . (15)

Next, we introduce subsets of the gridsM andN, which will allow us to accurately distinguish betwe
the interior and exterior domains, sources, and solutions on the discrete level:

M
+ = M ∩ Ω, M

− = M\M
+ = M ∩ Ω1,

N
+ =

⋃
m∈M+

Nm, N
− =

⋃
m∈M−

Nm,

γ = N
+ ∩ N

−, γ + = N
− ∩ Ω, γ − = N

+ ∩ Ω1. (16)

Note that whereas the residuals’ gridM is partitioned intoM+ andM
− directly, the subgridsN+ andN

−
are rather obtained by applying the stencilNm to all the nodes ofM+ andM

−, respectively. As such,N+
andN

− do overlap. Their overlap is denoted byγ = γ + ∪ γ −, see (16), and is calledthe grid boundary;
it is a fringe of nodes that is located near the continuous boundaryΓ and in some sense straddles it. F
the polar second-order LaplacianL(h) (15), the grid boundaryγ will be a two-layer fringe of grid node
aroundΓ , as shown schematically in Fig. 2.

The discrete noise control problem is formulated similarly to the continuous one, see Section
f (h)+

m , m ∈ M
+, andf (h)−

m , m ∈ M
−, be the interior and exterior discrete acoustic sources, respect

Let u(h)+
n , n ∈ N, andu(h)−

n , n ∈ N, be the corresponding solutions, i.e.,L(h)u(h)+ = f (h)+ andL(h)u(h)− =
f (h)−. Using the same terminology as before, we will callu(h)+ the discrete sound andu(h)− the discrete
noise. The overall discrete acoustic fieldu(h) is the sum of its sound and noise components,u(h) =
u(h)+ + u(h)− on N, and it obviously satisfies the equationL(h)u(h) = f (h) ≡ f (h)+ + f (h)−. The goal
is to obtain the discrete control sourcesg(h) = g(h)

m so that the solutioñu(h) of the equationL(h)ũ(h) =
f (h)+ + f (h)− + g(h) be equal to only the sound componentu(h)+ on the sub-gridN+.
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Fig. 2. Schematic geometry of the domains, the stencil, and the grid boundaryγ = γ + ∪ γ − in polar coordinates: Hollow
bullets denoteγ +, filled bullets—γ −.

A general solution for the discrete control sourcesg(h) = g(h)
m that eliminate the unwanted noiseu(h)−

on N
+ is given by the following formula (cf. (8)):

g(h)
m = −L(h)w(h)|m∈M−, (17)

wherew(h) = w(h)
n , n ∈ N

−, is a discrete auxiliary function-parameter. The requirements that it
satisfy are, again, rather “loose”, and can be considered natural discrete analogues of the corre
continuous requirements for the function-parameterw(x). Namely, at the grid boundaryγ the function
w(h) has to coincide with the overall acoustic fieldu(h) to be controlled:

w(h)
n |n∈γ = u(h)

n |n∈γ . (18)

For practical designs, the boundary datau(h)
n |n∈γ shall be interpreted as measurable quantities that pro

input for the control system. In other words, we can think of a microphone at every node ofγ that measure
the characteristics of the actual acoustic field and generate the input signalu(h)

n |n∈γ .
The other requirement of the functionw(h), besides the interface boundary conditions (18), is th

must satisfy the appropriate discrete ABCs at the external artificial boundaryρ = R, see Fig. 2. The
role of the discrete ABCs is the same as that of the continuousABCs—to provide a replacement for th
Sommerfeld radiation boundary conditions. The discrete two-dimensional ABCs were obtained in [4] by
using the direct and inverse discrete Fourier transforms,l = −L/2+ 1, . . . ,L/2, s = 0, . . . ,L − 1:

ŵl = 1

L

L−1∑
s=0

wse
−ils�θ , ws =

L/2∑
l=−L/2+1

ŵle
ils�θ, (19)
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and then approximating boundary conditions (13) forl = −L/2+ 1, . . . ,L/2 with the second order of
accuracy:

). Re-
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entials,
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rence
the

roximate
n of the

ontrol

bset,
ŵl,J − ŵl,J−1

�ρ
− βl

ŵl,J + ŵl,J−1

2
= 0,

βl =
d

dρ
H (2)

αl
(kρ)

H
(2)
αl (kρ)

∣∣∣∣
ρ=R

, α2
l = 4

�θ2
sin2 l�θ

2
. (20)

Note,−α2
l of (20) are eigenvalues of the circumferential component of the discrete Laplacian (15

lations (20) for alll = −L/2+ 1, . . . ,L/2 can also be recast into the matrix form:

w·,J = F−1 diag

{
−

(
1

�ρ
+ βl

)(
1

�ρ
− βl

)−1}
F w·,J−1 ≡ T w·,J−1, (21)

whereF andF−1 are matrices of the direct and inverse discrete Fourier transforms of (19), andw·,J and
w·,J−1 areL-dimensional vectors of componentsw

(h)
s,J andw

(h)

s,J−1, respectively,s = 0,1, . . . ,L − 1.
Other than (18) and (21), there are no constraints onw(h). As such, it parameterizes a large variety

discrete control sources, see (17), that will provide the search space for optimization in Section 3
It is also important to understand in what sense this discrete cancellation of noise models the

uous cancellation described in Section 2. According to the theory of generalized Calderon’s pot
see [12], the discrete anti-soundv(h) = v(h)

n , n ∈ N
+, i.e., the solution toL(h)v(h) = g(h) with g(h) given

by (17), will, under certain natural conditions, approximate the continuous anti-soundv = v(x), x ∈ Ω ,
i.e., the solution toLv = g with g given by (8). The aforementioned conditions first include the con
tency and stability of the finite-difference scheme for the Helmholtz equation. In addition, the d
boundary datau(h)

n |n∈γ of (18) have to approximate the continuous boundary data(u, ∂u
∂n)|Γ of (9) in some

special sense, [12]. Then, the rate of convergence of the discrete anti-sound to the continuous one
spect toh will be the same as prescribed by the finite-difference scheme itself. For the central-diffe
operator (15), this rate is O(h2). In other words, when designing an active control system following
finite-difference approach, one can expect to have the actual noise cancellation in the same app
sense as the solution of the finite-difference equation approximates the corresponding solutio
original differential equation.

Finally, similarly to the continuous case we can identify some particular types of the discrete c
sources. First, let us define another subset of the gridM (more precisely, ofM−):

M
−
int =

{
m ∈ M

− | Nm ∩ γ + = ∅}
.

Basically,M−
int is the interior subset ofM−, such that when the center of the stencil sweeps this su

the stencil itself does not touchγ +, see Fig. 2. In other words,M
−
int is a subset ofM− such that⋃

m∈M
−
int

Nm = N
−\γ +.

Next, we introducew(h) = w(h)
n , n ∈ N

−, for (17) as follows:

w(h)
n |n∈γ + = u(h)

n |n∈γ +, (22a)

and

w(h)
n |n∈γ − = u(h)

n |n∈γ −, L(h)w(h) = 0 onM
−
int. (22b)
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As before, we also assume thatw(h) satisfies the discreteABCs (21). Definition (22a) means that on the
interior part of the grid boundaryγ + we simply setw(h) equal to the givenu(h): w(h)|n∈γ + = u(h)|n∈γ + .
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Definition (22b) is actually a discrete exterior boundary-value problem of the Dirichlet type. In
everywhere on and “outside” the exterior part of the grid boundaryγ −, i.e., onN

−\γ +, the grid function
w(h) is obtained as a solution of the homogeneous equationL(h)w(h) = 0 (enforced at the nodesM−

int)
supplemented by the Dirichlet boundary data onγ −: w(h)

n |n∈γ − = u(h)
n |n∈γ − . Note, relation (22a) and th

first relation (22b) together are obviously equivalent to (18). Therefore, the functionw(h) defined via
(22a), (22b) falls into the general class ofw(h)’s used for obtaining the discrete control sources (17).

Problem (22b) can clearly be considered a finite-difference counterpart to the continuous D
problem (11). Therefore, its is natural to call the control sourcesg(h) ≡ g

(h,surf)
monopoleobtained by formulae

(17), (22a), (22b)the discrete surface monopoles. Indeed, because of the definition ofw(h) given by (22a)
and (22b), theseg(h,surf)

monopolemay, generally speaking, differ from zero only on the grid setM
−\M

−
int, which

is a single “curvilinear” layer of nodes of gridM that follows the geometry ofΓ . Accordingly, the outpu
of these controls can be called the discrete single-layer potential. Note, the discrete surface mo
and single-layer potentials, as well as the discrete surface dipoles and double-layer potentials, h
first introduced and analyzed in [14].

3. Optimization of the control sources

Once the general solution for controls is available, in either continuous (8) or discrete (17) formu
the next step is to determine what particular element of this large family of functions will be optima
specific setting. There is a multitude of possible criteria for optimality that one can use. In many pr
problems the cancellation of noise is only approximate and as such, the key criterion for optim
(or sometimes, the key constraint) is the quality of this cancellation, i.e., the extent of noise reduc
contradistinction to that, in this paper we are considering ideal, or exact, cancellation, i.e., every pa
control field from either the continuous (8) or discrete (17) family completely eliminates the unw
noise on the domain of interest. Consequently, the criteria for optimality that we can employ w
include the level of the residual noise as a part of the corresponding function of merit, and should
depend only on the control sources themselves.

In the current paper we focus primarily on thequadratic optimization criteria. We have looked into
the most natural criterion of this type, namely, theL2 norm of the control sourcesg(x) of (8) or g(h)

m of
(17), see Section 3.2. The advantage of minimizing the controls in the sense ofL2:

‖g‖2 ≡
√√√√ ∫

suppg

∣∣g(x)
∣∣2 dx → min (23)

is that the minimum can be easily computed, see Section 3.2. The search space for minimization
includes all the appropriate auxiliary functionsw(x), on whichg(x) depends. The disadvantage of us
this criterion is that the quantity‖g‖2 does not have a clear physical interpretation, as, for example, thL1

norm ofg (see Section 3.1 and [4]) or the power required by the control system (see [5]) do. Nonet
motivated primarily by the ease of the numerical approach to minimization, we do provide in Sect
a comprehensive set of computed optimal solutions for active controls in the sense of the least
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(i.e.,L2). We also compare these discrete results with the “semi-analytic”L2 optimal solutions obtained
for simple circular shapes using the spectral methodology developed in our work [6].
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The discreteL2 minimization problem for the control sourcesg(h) of (17) can be formulated as follow∥∥g(h)
∥∥

2 ≡
√ ∑

m∈M−
Vm

∣∣g(h)
m

∣∣2 → min,

whereVm accounts for the grid cell area. This problem can also be recast using matrices. The
difference operatorL(h) can be interpreted as a matrix withN columns andM rows, whereN is the
number of nodesn ≡ (s, j) of the gridN

− such thatρj � R, i.e.,j � J , andM is the number of node
m ≡ (s, j) of the grid M

− such thatρj < R, i.e., j � J − 1. Let w be the vector ofN components
w(h)

n ≡ w
(h)
s,j , n ∈ N

− andj � J , arranged so that

w = [wγ ,w0,w·,J−1,w·,J ]T, (24)

wherewγ containsw(h)
n for which n ∈ γ , w·,J andw·,J−1 correspond to the outermost and second to

circles of the polar grid, respectively, as in formula (21), andw0 contains all the remaining componen
of w “in-between”γ and the outer boundary. In accordance with (24), the matrixL(h) can be decompose
into four sub-matrices:

L(h) = [A,B,C,D] (25)

that all have the same number of rowsM , andA has as many columns as there are nodes inγ (we denote
this number|γ |), while C andD each hasL columns, andB hasN − |γ | − 2L columns.

With the help of formulae (24) and (25) the discrete minimization problem can now be formulat∥∥V(Awγ + Bw0 + Cw·,J−1 + Dw·,J )
∥∥

2 → min, (26)

whereV is anM × M diagonal matrix with the entries given by the corresponding cell areasVm. The
vectorw in (26) is, in fact, subject to a number of equality-type constraints that come from the int
conditions (18) and ABCs (21). More precisely, the first sub-vectorwγ in (24) is known and fixed becaus
of (18) and we can rewrite (18) aswγ = uγ , whereuγ is given. The last sub-vectorw·,J in (24) is a
function of w·,J−1 according to (21). Therefore, we can conclude that onlyw0 andw·,J−1 contain free
variables that provide the search space for optimization, and as such recast (26) as

min
w0,w·,J−1

∥∥V
(
Bw0 + (C + DT)w·,J−1 + Awγ

)∥∥
2 ≡ min

z
‖Ez − f‖2, (27)

whereE = V[B,C + DT] is anM × (N − |γ |− L) given matrix,z = [w0,w·,J−1]T is an(N − |γ | −L)-
dimensional vector of unknowns, andf = −VAwγ is anM-dimensional known vector of the right-han
side.

3.1. Results of optimization in the sense of L1

Before actually solving problem (27) let us briefly outline here our recent results [4] on findin
optimal controls is the sense ofL1. These results will serve as a good “reference point” for compar
in the context of the current paper. Minimization problem in the sense ofL1:

‖g‖1 ≡
∫

suppg

∣∣g(x)
∣∣dx → min,



392 J. Lončarić, S.V. Tsynkov / Applied Numerical Mathematics 52 (2005) 381–400

ilar

tation of
a large
of-the-art
the

te

tivated
surface

hough
nal rig-
[4], we
(a) (b)

Fig. 3. Magnitude of the control sources forΩ = {x ∈ R
2 | |x| < 1}, k = 0.5, f − = δ(x − x1), x1 = (5,0); grid dimension

32× 7: (a)L1 optimal solution; (b) Surface monopolesg
(h,surf)
monopole.

is formulated analogously to that in the sense ofL2, see (23), and also has a matrix representation sim
to (27) except that the norm‖ · ‖2 shall be replaced by‖ · ‖1. From the standpoint of physics, theL1

minimization is equivalent to minimizingthe overall absolute acoustic source strength of the control
sourcesg(x), see [8,7]. The transparent physical meaning of the cost function‖g‖1 is, undoubtedly, an
advantage. On the other hand, because of the complex-valued quantities involved, the compu
min‖g‖1 reduces to solving a nonlinear and nonsmooth problem of constrained optimization over
set of cones, see [4]. It presents a substantial challenge even for the most sophisticated state-
approaches to numerical optimization based on the interior point methods [15,9]. For computingL1

optima in [4] we have used the software package SeDuMi by J.F. Sturm.2

The key computational finding of [4] is that theL1 optimal solution always coincides with the discre
layer of surface monopolesg(h,surf)

monopoleobtained by applying formula (17) to the auxiliary functionw(h)

defined by (22a), (22b). Fig. 3 reproduces the results of one particular computation from [4]. Mo
by the consistent numerical observations, we have also been able to prove in [4] that in 1D the
monopoles indeed provide a global minimum for the control sources in the sense ofL1 for both the dis-
crete and continuous formulation of the problem. In multi-D, this result is still a conjecture, even t
we do believe that a combination of the two-dimensional numerical evidence and a one-dimensio
orous proof, see [4], cannot be a mere coincidence. To accurately formulate this conjecture from
first remind that according to (10) the continuous surface monopole controls are given by

g
(surf)
monopole(x) = −

[
∂wD

∂n
− ∂u

∂n

]
Γ

δ(Γ ) ≡ ν(x)|x∈Γ · δ(Γ ), (28)

wherewD(x) is a solution to the exterior Dirichlet problem (11). Then,

Conjecture 3.1. Let a complex-valued functionw = w(x) be defined onΩ1 = R
n\Ω , and let it be

sufficiently smooth so that the operatorL of (1) can be applied tow(x) on its entire domain in the

2 http://fewcal.kub.nl/sturm/software/sedumi.html.
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classical sense, and the resultLw be locally absolutely integrable,Lw ∈ L
(loc)
1 (Rn). Let, in addition,w(x)

satisfy the interface conditions (9), whereu = u(x) is a given field to be controlled, and the appropriate
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Sommerfeld radiation boundary conditions at infinity (2). Then, the greatest lower bound for tL1

norms of all the control sourcesg(x) obtained with such auxiliary functionsw(x) using formula (8), is
given by theL1 norm onΓ of the magnitude of surface monopoles (28):

inf
w(x)

∫
Ω1

∣∣g(x)
∣∣dx =

∫
Γ

∣∣ν(x)
∣∣ds.

In other words, we have infw(x) ‖g(x)‖1,Ω1 = ‖ν‖1,Γ . Note that in the discrete case theL1 optimal solution
g

(h,surf)
monopolebelongs to the same class of functions as all other discrete volumetric controlsg(h)

m do, whereas

the continuous optimum (28) of the controlsg(x) ∈ L
(loc)
1 happens to be a singular layer.

3.2. Discrete optimization in the sense of L2

TheL2 minimization problem for the volumetric control sources is solved hereafter completely o
discrete level. In other words, for every particular setup we are finding the minimum (27) or, equiva
computing a complex-valued weak solution of the overdetermined system of linear equationsEz = f in
the sense of the least squares. The resulting optima do not reduce to any clearly identifiable spec
like the layer of surface monopoles that appeared previously in the context ofL1. They are not assigne
any particular physical meaning either; and we present them below in order to demonstrate thaL2

optima are distinctly different from theL1 optima obtained in [4], and that they can be easily compu
numerically, including some cases that involve rather sophisticated geometry. In the simple casΩ

being a disk, we also conduct a grid convergence study in order to validate the results of the discL2

minimization against the spectrally accurate reference solutions obtained in [6].

Proposition 1. The matrix E = V[B,C + DT], see formulae (25), (27), has full column rank.

Proof. The justification of Proposition 1 will be based on a natural solvability assumption for the s
of finite-difference equations that we are using. First, let us introduce more detailed partitions ofw and
L(h) instead of (24) and (25), respectively:

w = [wγ +,wγ −,w0,w·,J−1,w·,J ]T,

L(h) = [A+,A−,B,C,D]. (29)

The matricesA+ and A− of (29) together giveA of (25); wγ + and A+ correspond to the innermo
“half” of the grid boundaryγ +, andwγ − andA− correspond to the outermost “half” of the grid boun
ary γ − (see formula (16) and Fig. 2). Next, consider an auxiliary exterior Dirichlet problem fo
finite-difference equationL(h)z(h) = 0 with the boundary data specified atγ +. As before, the problem
is supposed to be truncated at the external artificial boundaryρ = ρJ by means of the ABC (21). Thi
problem is a discrete counterpart of the continuous exterior Dirichlet problem for the Helmholtz
tion with the boundary data given atΓ and ABCs (13) specified atρ = R. The continuous problem
is uniquely solvable because it is equivalent to the genuine infinite-domain exterior Dirichlet pr
with the Sommerfeld boundary conditions (2) set at infinity. Even though we do not justify it here
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certainly reasonable to assume that the corresponding discrete problem based on the standard central-
difference scheme (15) and ABC (21) is uniquely solvable as well.3 The latter assumption implies that
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the squareM × M matrix [A−,B,C + DT], see formula (29), is nonsingular. Consequently, the ma
G = V[A−,B,C + DT] is also nonsingular, becauseV is anM × M diagonal matrix with nonzero di
agonal entriesVm. Finally, we notice that the matrixE = V[B,C + DT], see formulae (24) and (25),
obtained by removing the first|γ −| columns of the previous matrixG. Therefore, the columns ofE are
linearly independent. �

An obvious key implication of Proposition 1 is that the minimization problem (26), or equival
(27), can be solved in the sense ofL2 (least squares) using a standard QR-based approach, i.e., w
employing the Moore–Penrose type arguments. We use the MATLAB functionLSQLIN for solving
the least squares minimization problems hereafter. This function also allows one to do constraine
mization, the capability that we employ in Section 3.2.2.

3.2.1. Comparison with the reference solution
In our previous work [6] we have developed a methodology of spectral type that allowed us to co

the continuousL2-optimal volumetric controls for a particular geometry, namely, controls supporte
annular domains. These spectral solutions are used in the current paper as reference solution
purpose of validating the finite-difference algorithm.

Let the protected region be a disk of radiusr centered at the origin:Ω = {(ρ, θ) | ρ < r}, and let the
controls be supported on the annulusΩ1 = {(ρ, θ) | r � ρ � R}. We introduce a simple conformal pol
grid, which is uniform in the circumferential direction and stretched in the radial direction so that th
aspect ratio is equal to one:

M = {
(ρj , θs) | ρj = ej�θ , j = 0, . . . , J − 1; θs = s�θ, s = 0, . . . ,L − 1; �θ = 2π/L

}
,

N = {
(ρj , θs) | ρj = ej�θ , j = −1,0, . . . , J ; θs = s�θ, s = 0, . . . ,L − 1; �θ = 2π/L

}
. (30)

We, of course, assume that the area covered by the gridN of (30) is larger thanΩ1, i.e., ρ−1 < r <

R < ρJ . The Helmholtz operator can be easily approximated on the grid (30) with the second o
accuracy using the same five-node stencil as shown in Fig. 2. This approximation involves only
changes compared to the approximation (15) that works on uniform grids, and we refer the reade
paper [10] for detail. The discrete ABCs in the form (20) or (21) do not change, except that�ρ needs to
be replaced by�ρJ = ρJ −ρJ−1. Let us also note that we do not consider the grid (30) inside the do
Ω because we introduce it only for the purpose of obtaining the control sources onΩ1. If, however, we
were to actually compute the output of the controls inside the protected region, we would have
extend the grid (30) all the way intoΩ , which can obviously be done using a variety of strategies
indicated by the previous analysis [6,12,16,17], as long as the discrete controls are constructed a
to formulae (17), (18), their output on the grid insideΩ will identically cancel out the unwanted acous

3 A proof of this fact would involve showing that relations (20) are “sufficiently close” to guaranteeing the precise
selection in the discrete case so that to avoid the resonances. This task is beyond the scope of the current paper. In [1
find general analysis of the 1D discrete solvability and well-posedness.
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componentu(h)−, see Section 2.2. In all the cases analyzed hereafter, we haveρ−1 < r � ρ0, so that
according to (16) the grid subsets are defined as
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M
+ = {

(ρj , θs) | j = −1
}
, M

− = {
(ρj , θs) | 0� j � J − 1

}
,

N
+ = {

(ρj , θs) | j = −1,0
}
, N

− = {
(ρj , θs) | −1� j � J

}
,

γ = {
(ρj , θs) | j = −1,0

}
, γ + = {

(ρj , θs) | j = −1
}
, γ − = {

(ρj , θs) | j = 0
}
, (31)

where alwayss = 0, . . . ,L − 1. In so doing, the dimension of the matrixL(h), see (25), isM × N ≡
(L · J ) × (L · (J + 2)), the dimension ofA, which corresponds to the variables onγ , is M × 2 · L ≡
(L · J ) × 2 · L, the dimension ofB is M × (N − 4L) ≡ (L · J ) × (L · (J − 2)), and the dimension o
eitherC or D is M × L ≡ (L · J ) × L.

We test the convergence of the discrete scheme for the wavenumberk = 1.0 and the excitation (i.e
the acoustic fieldu(h) that drives the control system) taken in the analytic form of a shifted fundam
solution of the Helmholtz operator, as if it were generated by the point sourcef − = δ(x−x1), wherex1 =
(ρ cosθ, ρ sinθ) = (5,0). We reemphasize that our approach does not require the explicit knowled
the exterior sources of noise. We only need this functionu(h) as a sample field to be used as given dat
formula (18).

We employ a sequence of seven grids:L × J = 32× 3, 48× 4, 64× 5, 96× 7, 128× 9, 192× 13,
and 256× 17, so that for all the grids the value ofρJ−1 is the same:ρJ−1 = const≈ 1.481; according to
(30) we also haveρ0 = 1. For the first series of convergence tests we assume that the boundariesρ = r

andρ = R of the regionΩ1, on which the continuous controls are to be supported, are located exa
the conformal midpoint of the first and last cell of the radial gridN of (30), respectively, i.e.,r = e−1/2�θ

and R = e(J−1/2)�θ . The results of these tests are summarized in Table 1, which shows theL2 norm
of the relative error between the optimal continuous and discrete controls: arg[minw(x) ‖gspect(x)‖2] and
arg[minw(h) ‖g(h)‖(h)

2 ].
The data in Table 1 clearly indicate the second order of grid convergence for the discrete o

controlsg(h). It is important to emphasize, though, that the geometry ofΩ1 was chosen grid depende
(boundariesρ = r and ρ = R were located at cell midpoints), which essentially means that for
subsequent grid in Table 1 the optimum was computed on a somewhat different (smaller) doma
quite obvious that in general the optimal solution will depend on the region on which the optimi
is performed, and we cannot expect the optimum computed on a subdomain to coincide with th
sponding fragment of the optimum computed on the entire domain. However, the decrease of t
with the refinement of the grid observed in Table 1 shall still be interpreted as convergence. Inde
we continued refining the grid further, all the domainsΩ1 = {r � ρ � R} themselves would converg
to one and the same annular region with the inner radiusr = ρ0 = 1 (Ω is a unit disk) and outer radiu
R = ρJ−1, which was chosen grid independent.

On the other hand, the quadratic rate of convergence suggested by Table 1 appears a rath
phenomenon determined by the particular choice of the geometry. For other choices, the conv
may be slower. In Table 2, we present the results that correspond to the same inner boundaryr = e−1/2�θ ,

Table 1
Grid convergence for:k = 1, f − = δ(x − x1), x1 = (5,0), r = e−1/2�θ , R = e(J−1/2)�θ

Grid 32× 3 48× 4 64× 5 96× 7 128× 9 192× 13 256× 17

‖Error‖2 0.013722 0.0061417 0.0034693 0.0015491 0.00087349 0.00038921 0.000
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Table 2
RelativeL2 error for:k = 1, f − = δ(x − x1), x1 = (5,0), r = e−1/2�θ , R = e(J−3/4)�θ andR = e(J−1/4)�θ
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Grid 32× 3 48× 4 64× 5 96× 7 128× 9 192× 13 256× 17

J − 3
4 0.10283 0.074135 0.058274 0.040958 0.031618 0.021733 0.01

J − 1
4 0.096894 0.071804 0.057069 0.040476 0.031362 0.021627 0.01

and the outer boundary located at either one quarter point or three quarters point of the outerm
R = e(J−3/4)�θ or R = e(J−1/4)�θ . One can easily see that the convergence in Table 2 is only linear.

At the moment, we do not have a detailed explanation of the grid convergence properties forg(h) that
we have observed, see Tables 1 and 2. It is important to realize, however, that what we evalua
fact, convergence of the residual rather than that of the solution. Indeed, the solution of the optim
problem (26) or (27) per se is a particular grid functionw(h) that delivers minimum to the selected fun
tion of merit, namely, theL2 norm of the residual of the discrete Helmholtz operator applied to thisw(h).
What motivates our primary interest toward the residual is obviously the fact that it yields the distr
active control sourcesg(h), see formula (17). However, even though the optimization formulation tha
have introduced in the beginning of Section 3 is fairly conventional, in the PDEs’ perspective neit
continuous generating functionw(x) nor its discrete counterpartw(h) at the optimum can, to the best
our knowledge, be interpreted as a solution to any traditional boundary-value problem, for which
istence and regularity results are available. As such, in our opinion no standard theoretical appro
analyzing the grid convergence of eitherw(h) or its residual will directly apply here, and we shall rath
regard the foregoing results as experimental findings.

Moreover, let us point out that in the context of noise cancellation on the domainΩ , the issue of
grid convergence of the discrete control sourcesg(h) may, in some sense, be considered as the on
secondary importance. Indeed, the output of the controlsg(h) always eliminates the unwanted noise
Ω [more precisely, on the gridN+, see formula (16)] no matter what particular solution from the gen
class (17), (18) is used. Moreover, this output onN

+ can be interpreted as a discrete Calderon’s poten
which converges to its continuous counterpart with the rate prescribed by the approximation o
the scheme [12], again, irrespective of what particularw(h)

n , n ∈ N
−, andg(h)

m , m ∈ M
−, are taken on

every given grid. As such, one does not need to be overly concerned with the rate of convergenc
discrete optimal control sources as any of those will do the cancellation job equally well anyway.

Let us emphasize that theL2 optimal solutions for active controls differ very substantially from
L1 optimal solutions obtained previously in [4]. This is, of course, natural to expect, because mini
the norms‖g‖2 and‖g‖1 basically means minimizing two quite different (nonlinear) functionals ov
vector space.4 To visualize the corresponding differences, we conduct theL2 minimization for the same
setup,L = 32,J = 7, andk = 0.5, that was earlier analyzed in the sense ofL1, see Fig. 3. The excitatio
was provided by the point sourcef − = δ(x − x1), wherex1 = (5,0). In Fig. 4(a) we show the magnitud
of the L2-optimal active controls on the 32× 7 grid. This solution indeed differs drastically from t
L1-optimal controls shown in Fig. 3. Unlike theL1 optimum, i.e., the layer of surface monopoles, theL2

optimal solution tends to be distributed over the entire annular region on which the controls are sup
obviously favoring the direction toward the noise source. We have also obtained theL2 optimal controls

4 Equivalence of all norms on a finite-dimensional linear space should not lead here to an incorrect assumption that th
should also be the same, because this equivalence only refers to the convergence with respect to different norms.
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Fig. 4. Magnitude of theL2-optimal control sources forΩ = {x ∈ R
2 | |x| < 1}, k = 0.5, f − = δ(x − x1), x1 = (5,0):

(a) L = 32,J = 7; (b)L = 64,J = 13.

for the same case but on the twice as fine grid of dimension 64× 13; they are shown in Fig. 4(b). Th
plots in Fig. 4(a) and (b) look very much alike, as expected.

It is also interesting to observe how the qualitative behavior of the optimal solution changes
the parameters that define the problem vary. A key parameter is the wavenumberk. Previously, we have
analyzed the cases of relatively long waves compared to the size (i.e., diameter) of the protecte
Ω . Let us now takek = π , then there will be exactly one full wavelength across the diameter. We com
this case on the grid 128× 9 so that 1= ρ0 � ρ � ρJ−1 ≈ 1.481. In Fig. 5, we present the distributio
of optimal controlsg(h) for the case of the long waves,k = 0.5 (Fig. 5(a)), and for the case of th
wavelength comparable to the domain size,k = π (Fig. 5(b)). The solution that corresponds to sho
waves is clearly more oscillatory.

3.2.2. Constrained optimization in the sense of L2

The purpose of formulating and solving theL2 optimization problems that involve constraints w
to simulate not simply a more sophisticated geometry but also a more realistic one. For exampl
interpret the previously considered protected region—a unit disk—as a section of the aircraft fu
then we can also introduce portholes, i.e., windows, that shall be interpreted as designated a
which no control sources can be applied. Optimization problem (27) in this case needs to be m
Instead of simply finding a weak solution ofEz = f in the sense of the least squares, we will now h
to impose additional constraints, i.e., require that for those nodes of the gridM

− that happen to be insid
the aforementioned designated areas, the corresponding equations be enforced exactly. This le
problem

min
z

‖Ez − f‖2 subject to Ecz = fc, (32)

whereEc is the sub-matrix ofE (i.e., the appropriate set of rows), andfc is the respective sub-vector off,
that correspond to the constrained nodes.
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Fig. 5. Magnitude of theL2-optimal control sources forΩ = {x ∈ R
2 | |x| < 1}, f − = δ(x − x1), x1 = (5,0), 128× 9 grid:

(a) k = 0.5; (b) k = π .

For simulations, we have introduced two symmetrically located portholes in the fuselage: 5◦ < θ < 30◦
and 150◦ < θ < 175◦. The resulting problem (32) was solved by a standard methodology (proc
LSQLIN from MATLAB) that requires linear independence of the constraints.

The case that we have analyzed in the context of the constrainedL2 optimization, was, again, one o
those that we have studied previously in theL1 framework, see [4], but, of course, with no constrain
For this case, the excitation is provided by a pair of external sources:f − = δ(x − x1) + δ(x − x2), where
x1 = (5,0) andx2 = (1,2), the wavenumberk = 0.9, and the grid has the dimension 48× 9. In Fig. 6(a),
we show the constrainedL2 optimal solution for this grid, and in Fig. 6(b) we show the solution
the twice as fine grid 96× 17. We emphasize the presence of the large spikes in the control effor
to the boundaries of the window on the right, which is natural to expect. We should also point
some apparent discrepancies between the control field on Fig. 6(a) and that on Fig. 6(b) in the
near this window. Qualitatively, these discrepancies are easily explained once we realize that
window, which is defined as a particular range ofθ , does not have to be exactly the same on diffe
grids because of the finite size�θ , and a finer grid simply provides for a “sharper” definition of t
window in the discrete sense. On the other hand, quantitatively we, of course, cannot claim that th
convergence results as we have obtained previously in the case with no constraints, see Secti
will hold in the presence of the constraints as well. Moreover, in the constrained case one should
ally expect less regularity from the corresponding continuous solution than in the previously add
unconstrained cases. Therefore, the results of theL2 constrained minimization should only be regard
as implementation examples of a previously tested numerical algorithm for more elaborate settin

The actual norms of the solutions that we have obtained are presented in Table 3, which also
the L2 norms of surface monopoles optimal in the sense ofL1, see [4]. We see that theL2 norm at
the minimum is considerably larger for the constrained case compared to the unconstrained c
concerns theL2 norm of theL1-optimum, it is three times larger in this case than the unconstra
L2 minimum. We should also mention that the finer the grid, the larger theL2 norm ofg(h,surf)

monopoleis, see
Table 3. This is, in fact, a natural consequence of the scaling adopted in [4]. Indeed, the actual ma
of g

(h,surf)
monopole increases when the grid is refined, because the corresponding continuous limit is a
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Fig. 6. Magnitude of theL2-optimal control sources forΩ = {x ∈ R
2 | |x| < 1}, k = 0.9, excitation:f − = δ(x−x1)+δ(x−x2),

x1 = (5,0), x2 = (1,2), and window constraints: 5◦ < θ < 30◦ and 150◦ < θ < 175◦ : (a) L = 48,J = 9; (b)L = 96,J = 17.

Table 3
Comparison of the computedL2-optimal solutions with surface monopoles

Grid minw(h) ‖g(h)‖(h)
2 Constrained minw(h) ‖g(h)‖(h)

2 ‖g(h,surf)
monopole‖(h)

2

48× 9 0.41855 0.54013 1.2983
96× 17 0.43485 0.56175 1.8315

layer on the interface. The latter is a singular distribution, which is obviously not integrable by
and even less so with square. At the same time, it turns out that the discrete two-dimensionalL1 norm
of surface monopoles‖g(h,surf)

monopole‖1,M− does not change with the change of the grid size. This essen

implies that the magnitude ofg(h,surf)
monopolescales as O(h−1) and as such, theL2 norm ‖g(h,surf)

monopole‖2,M− is
supposed to scale as O(h−1/2). This is corroborated by the data in the last column of Table 3.

4. Discussion

In the paper, we have developed and implemented a computational algorithm for optimizi
sources of active control of sound in the sense of the least squares (L2). For some simple cases, w
have been able to validate our numerical results against spectral solutions. We have also seen thL2

optimal controls are distinctly different from theL1 optimal controls obtained previously. For the ca
of a somewhat more realistic geometry, the corresponding optimization formulation involves cons
of equality type; this formulation can be analyzed as well. We also emphasize that even though th
‖g‖2 is hard to characterize using conventional physical terms (for example, it does not corresp
a physical energy like many otherL2 norms do), from the mathematics perspective it still provide
perfectly legitimate quantitative measure of how “big” the control effortg(x) is. As such, minimization
of ‖g‖2 that we have conducted in this paper is by no means meaningless.
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Generally, there is a multitude of optimization criteria that can be used in the context of active control
of sound. Unlike‖g‖2, some would admit a clear physical interpretation, such as the control source

nctions,
sed—

acoustic
in our
of the
cacy,
ssible
very
ould
ceably
t least
te from

. Appl.

mula-

001)

IAM,

ordi-

matics,

5–532.
.

1–154.
strength, see [4], or power required by the controls, see [5]. On the other hand, some cost fu
such as‖g‖1 or ‖g‖2, would only depend on the controls themselves, whereas others—power-ba
would necessarily involve the interaction between the sources of sound and the surrounding
field. As far as different criteria may be concerned, let us note that neither in this paper nor
previous work on optimization for the active control of sound [4,5] do we favor any specific choice
function of merit. In particular, neither do we prioritize physical relevance over computational effi
nor proceed the other way around. In our opinion, setting priorities of that type is simply not po
while staying within the limits of exact science. What we are rather trying to do is to show that it is
difficult to come up with a universally good optimization criterion, as typically the nice features w
come at the expense of one another; that optimal solutions found for different criteria may noti
differ as well; and that ultimately the choice of the optimization criterion may be determined or a
seriously affected by a number of considerations from “beyond mathematics”. Some may origina
the engineering limitations, others will be just a matter of personal preference.
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