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Abstract

We propose a methodology for calculating the solution of an initial-value problem for the three-dimensional
wave equation over arbitrarily long time intervals. The solution is driven by moving sources that are compactly
supported in space for any particular moment of time; the extent of the support is assumed bounded for all
times. By a simple change of variables the aforementioned formulation obviously translates into the problem of
propagation of waves across a medium in motion, which has multiple applications in unsteady aerodynamics,
advective acoustics, and other areas.

The algorithm constructed in the paper can employ any appropriate (i.e., consistent and stable) explicit finite-
difference scheme for the wave equation. This scheme is used as a core computational technique and modifie
so that to allow for a non-deteriorating calculation of the solution for as long as necessary. Provided that the
original underlying scheme converges in some sense, i.e., in suitable norms with a particular rate, we prove the
grid convergence of the new algorithm in the same sense uniformly in time on arbitrarily long intervals. Thus, the
new algorithm obviously does not accumulate error in the course of time; besides, it requires only a fixed non-
growing amount of computer resources (memory and processor time) per one time step; these amounts are linea
with respect to the grid dimension and thus optimal. The algorithm is inherently three-dimensional; it relies on the
presence of lacunae in the solutions of the wave equation in odd-dimension spaces.

The methodology presented in the paper is, in fact, a building block for constructing the nonlocal highly accurate
unsteady artificial boundary conditions to be used for the numerical simulation of waves propagating with finite
speed over unbounded domain2001 IMACS. Published by Elsevier Science B.V. All rights reserved.

“ This work was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046,
and by Director’s Discretionary Fund, while the first and second authors were in residence at ICASE, NASA Langley Research
Center, Hampton, VA, USA.

* Corresponding author. Current address: Department of Mathematics, North Carolina State University, Box 8205, Raleigh,
NC 27695, USA. Phone: (1-919)515-1877, Fax: (1-919)515-3798, URL: www.math.ncsusesiuikov.

E-mail addresstsynkov@math.ncsu.edu (S.V. Tsynkov).

0168-9274/01/$ — see front matter 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
PIl: S0168-9274(01)00038-1



188 V.S. Ryaben’kii et al. / Applied Numerical Mathematics 38 (2001) 187-222

Keywords:Wave equation; Lacunae; Finite-difference approximation; Explicit numerical integration; Arbitrarily
long time intervals; Non-accumulation of error; Temporally uniform grid convergence; Fixed expenses per time
step

1. Introduction
1.1. Formulation of the problem
We will be solving numerically a Cauchy (initial-value) problem for the three-dimensional wave
equationx = (xg, x2, X3):
82§0 2(82¢ 82§0 82§0
C
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The quantityc in the differential equation (1) denotes the speed of wave propagation, e.g., the speed of
sound. We will be interested in calculating the solutioa- ¢ (x, ) of problem (1), (2) only for those
values of the spatial argumentthat belong to the ball = S(¢) of fixed diameted centered at a varying

locationxo(t) = [y uo(t') dt’:
S(t) = {x | |x — xo()| <d/2}. 3)

Hereuo = uo(¢) is the velocity of the center f(z), which we assume a given smooth function of time.
We also assume that the motionif) is “subsonic”:

luogl <k <c. (4)

A particular case of stationary source obviously correspondg @ = 0 and consequently(z) = 0.

We also note that any domain of fixed diametaran, in fact, be considered. The spherical shapgof

is chosen for simplicity, and the discretization in subsequent sections is independent on this shape.
Regarding the right-hand sid&(x, ¢) of Eq. (1), we always consider it a sufficiently smooth function

with respect to all its arguments ®? x (—oo, +00) and also

suppf (x, 1) = {(x1, x2, x3,1) | x € (1), 1 > O}. 5)

(This, in particular, implies thaf (x, 1) and a number of its derivativesf/d¢, 3% f/dt2, ..., turn into

zero fort = 0.) We emphasize that although we assume that the sources are concentréited and

the solution is also computed only 6itz), this does not mean that the domain, on which the solution is
computed, is limited to the region where the sources may be non-zero. This only means that both domains
are bounded, and that the domain of the right-hand side is contained inside the domain of the solution
S(¢) (but does not necessarily have to fill all of it).

In other words, we study the radiation of waves by a source, which is compactly supported in space for
all times. The solution is of interest for us also on a compact domain, which fully contains this source and
follows its motion if there is motion. This is a simplified model for many interesting physical phenomena
that are more complex in their nature. A particular example related to calculation of the acoustic field
around a maneuvering aircraft is provided in Appendix. The foregoing simplified model also appears very
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useful when constructing the unsteady artificial boundary conditions (ABCs) for a variety of problems.
A brief discussion on the subject of ABCs can be found in the Appendix as well.
Assume now that we need to solve the Cauchy problem (1), (RFdor the time interval < ¢ < Tiinal.
A classical estimate for the solution (see, e.g., [2,12]) réads
Tina) . 1) ©
2 e
and provided thaf € C?[t > 0] we also havep € C?[r > 0]. Let us now remember that the right-hand

side f (x, t) is sufficiently smooth with respect to all its arguments. Then, we can differentiate equation
(1) as long as this right-hand side permits; in so doing we arrive at

92 / glel 9B , (ol 3F alel 9p
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wherea = (a1, a2, a3) is a multiindex, |e| = a1 + o + ag, 9x* = dx7'dx3%0x3°, and B is a regular
“scalar” index. Again, Eq. (7) is valid in the classical sense for all those and only those specific values of
« and g, for which the right-hand side of (7) belongs@3[r > 0]. This guarantees that the solution is
also inC?[t > 0] and thus the left-hand side of the equation exists. Clearly, Eq. (7) is the wave equation
for the derivative(3'*'/9x*)(3# /3t#)p(x, t) of the original solutionp(x, r), and the solution of (7) is
driven by the corresponding derivativ@®'/dx*)(8# /3t?) f (x, t) of the original right-hand sid¢ (x, 7).
Regarding initial conditions for the derivativé!*!/0x%)(8# /3t#)p(x, t), if we additionally assume (see
above) that for a particulags we have(d’//9t/) f(x,t),—.0=0, j=0,1,...,8 — 1 (for the purpose of
constructing the numerical algorithms, this restriction can, in fact, be alleviated, see Section 5), then we
immediately see thad!® /dx%) (37 /0t%)p(x, t) will satisfy the same homogeneous initial conditions (2).
Therefore, similarly to estimate (6), we have

‘ glel §b Tf%al glel g8

—px, 1] < — f(x,t
aze 37V ® 0| <5 fn
1.2. Core numerical technique

lo@e, Dlle <

. 8
ox“ 31‘/3 C ( )

In this paper, we construct an efficient numerical algorithm for solving the foregoing Cauchy
problem (1), (2). This algorithm can employ any convergent finite-difference scheme for the wave
equation as a core computational technique. The original computational procedure of this core scheme
is modified in a special way so that to guarantee the grid convergence of the solution (with the same
original rate) uniformly in time for arbitrarily long intervals.

Let us introduce a uniform Cartesian grid with the size all spatial directions, and time steggrids
of other types can be considered as well):

(X1my s X2mps X3mgs Img) = (M1h, moh, mgh, mat), my,mp,m3=0,£1,+£2,..., my=0,1,2,....
In every grid noden = (m1, mo, ms, my), EQ. (1) is replaced by the finite-difference equation

Z AmnPn = fm, 9

neN,

1The norm| - llc in Eg. (6) is a conventional maximum (supremum) norm, which coincides with §h@orm for continuous
functions.
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where N,, is the scheme’s stencil that pertains to the nedef,, is a discrete approximation of the
right-hand sidef (x, r), which, for simplicity, is always considered a node value:

fm = f(xa t)I(x,l)=(m1h,m2h,m3h,m4r)a

amn are the coefficients of the scheme, ands the discrete solutiony, = ¢y, 1,151, » Which is defined
on the same griduq,n,n3=0,+1,+2,..., 14, =0,1,2, 3,.... Regarding the stenciv,, we will
always assume that for a givem = (mq, mo, m3, my) it is a collection of grid nodes located on time
levelsmy— J1, ma—J1+1,...,ma,...,ma~+ Jo— 1 mas+ Jo:

N, = N/

my,m2,m3,ma+j°

(10)

J==J1,.., 2

wherenN,, .. ».m.+; @re all nodes of the stencil that belong to the particular time lemet- j only.
Altogether, the stenciV,, given by (10) contains/; + J, + 1= J + 1 time levels. Regarding the
coefficientsa,,, we will additionally require that for a given “central” node = (m1, my, ms, ms) only

one coefficient on the uppermost time level of the stencil be equal to one and all others be equal to zero

(i.e., that there be only one node on the uppermost time level of the stencil):

P 1, for (ny, np, n3) = (m1, ma, ma), ng=mg+ Jo,
m 0, for (ny,ny, n3) # (my, mo, m3), ng=ma+ Jo.

In other words, we require that the scheme (9) be explicit and normalized.
As the scheme (9) is@ + 1)-level explicit scheme, starting up the computation requires that the first
J time levels on the grid be initialized. We symbolically write it as follows:

ng=Jo—1 0

"|n4:—]1 — ¥n (

=0). (11)

In so doing, the first actually computed time level will he= J,. As we will show later (in the end
of the consistency discussion belowhe datag? in (11) can always be chosen homogeneapfs= 0.
Egs. (11) obviously approximate initial conditions (2). For the schemes that employ finite differences of
sufficiently high order in time, Egs. (11) also represent the additional initial conditions required by the
scheme only and not by the original continuous formulation.

As a simple example, we introduce a standard central-difference scheme that approximates prob-
lem (1), (2) on smooth solutions with the second order of accuracy. The stencil of this scheme consists
of the following nine grid nodesf = J, = 1):

{(mah, mah, msh, [ms+1]7)} = Nosmpmamartr J =1
(m1h, moh, msh, myt),
N, = ([m1 £ 11k, moh, msh, myt), _ N,'nl e =0, (12)
(m1h, [mo £ 2]h, msh, mat), e
(m1h, moh, [m3 £ 1]h, myt)
{(mah, mah, mzh, (ma—1t)} =Ny ema1s J=—1
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The coefficients,,, of the discrete operator and the valygsof the discrete right-hand side in (9) are
defined as follows:

1, if n = (my,mo, mg,my+ 1), n=(my, my, mg,mg— 1),
—r2, if n=(my1E£1 mo ms, my),
Amn = § —r?, if n=(mq,ms+1, ma, ma), (13)
—r2, if n=(mq,ms,mat1,my),
—2+4+6r%, ifn= (mq1, mo, m3, my),

fin = T2f (m1h, moh, msh, mat), (14)
wherer is the Courant number
vt (15)
r=—< ——=.
h = cJ3

Estimate (15) follows from the standard stability considerations of von Neumann type. Initial
conditions (2) are replaced by the conditions

Onyngnang =0, na=-—10. (16)

Again, the scheme (12), (13), (14), (16), was introduced as an example only. As has been mentioned,
any scheme that possesses the properties of stability and consistency on smooth solutions (see below
including high-order schemes, can be used for building the algorithm of the type described hereafter.

Consistency. We require that the finite-difference scheme that we use for calculating the approximate
solution to problem (1), (2) possess the standard properties necessary for computation. Namely, we firs
require that the finite-difference equation (9) be consistent, i.e., approximate the differential equation (1)
on smooth solutiong (x, ):

(h)

— 0,
c

> amne(nih, noh, nsh,nat) — fu

neNy

SU# > amng(nih, noh, ngh, nat) — fu| =

m neN,,

h,7— 0.
More precisely, we build the scheme (9) so that

(h) le| 98
Z Amn@(n1h, noh, nzh, nat) — fi, . < Znga ;W(p(x’t)Hchlatﬁ’ 17)
neNy o, f
where estimate (17) is obtained using standard Taylor expansion technique for calculating the truncation
error in finite-difference approximations. The set of indexemdg in the sum on the right-hand side of
inequality (17) corresponds to a particular collection of finite differences in the discrete operator of (9).
We emphasize that the solutigrix, r) is always assumed sufficiently smooth so that to guarantee the
estimate of typ€17) for the particular choice of the schemieor example, for the central difference
scheme (9), (12), (13), (14), (16) we have
() 3

<2

c i=1

84g0
ax;

84<p

W T2. (18)

C

> ama@(nah, noh, nsh, nat) — fu

neN,

h2+‘

C
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Inequality (18) means that the aforementioned central-difference scheme approximates differential
equation (1) with the second order of accuracy on the solutigrst) with bounded fourth derivatives.

As has been just mentioned, consistency (17) is guaranteed for sufficiently smooth sahgtions
In the end of Section 1.1 we have shown ttie requirement of smoothness {atx, ¢) translates into a
similar requirement for the right-hand sidg(x, ¢). Using estimate (8) and assuming for generality that
r=1t/h" =const ¢ = 1 in formula (15)), we rewrite the consistency inequality (17) as follows:

@ Tf%al 8‘04 8/3
Z Amn (n1h, noh, nzh, nat) — f < > ZH& a_ﬁf(x’t) h\dltﬁ
nEN;, C «.p X% ot c
< Ki(Tinal, f)R™MH70), (19)

Inequality (19) holds provided that alb'*!/9x*) (3 /3t#) f (x, t) required on the right-hand side are
twice differentiable;K; is a constant that depends, generally speakindjgmand f, but not on/. In
particular, for the foregoing central-difference scheme we can rewrite (18)as% (h = const):

Q) 2 3 4 4
T 94 f 94 f
Z Amn@(n1h, noh, n3h, nat) — fi < f;al Z a4 2 ‘ a4 ‘L’2
neNy C i=1 axi Cc 9t llc
< K1(Tinai, /)12 (20)

provided thav* f/dx}, [ = 1, 2, 3, andd* £ /9t* areC?-smooth;K in (20) is, again, a constant that may
depend orf;ny and f, but not on the grid sizé.

Let us reiterate that when referring to all those derivatiae/dx%) (97 /0t?) f (x, t) that are required
on the right-hand side of inequality (19), we actually mean that these derivatives, in turn, have to
guarantee via estimate (8) the existence and boundedness of the corresponding terms in the truncatio
error expansion. Thus, the finite-difference equation (9) built of the stencil (10) determines the specific
collection of indexeq (e, 8)} required on the right-hand side of Eq. (19) in the exact same way as it
determines a similar collection on the right-hand side of Eq. (17).

In particular, the maximal formal accuracy in time thaf & 1-level stencil (10) can provide for the
derivatived?p/9t? is O(r’),? and the truncation error expansion in this case will start withtp /917 +2.
The requirement of boundedness for the latter derivative accordingly translates into the requirement
of 872 f/3t’*? being C?-smooth fors > 0. In terms of Section 1.1, we see that= J + 2, and to
guarantee estimate (8) we require ttitf/0t/)|,_o=0for j =0,1,...,8—-1(8 —1=J +1). Then,
we can use the original differential equation (1) and initial conditions (2) and conclude that in this case
(@/¢/dt7)|,—o =0 for at leastj =0, 1, ..., J + 3. Consequently, we can always gdt= 0 on the right-
hand side of11).

Stability. We also require that the finite-difference scheme (9) be stable:

lonlle < Kol fmllc,  nat < Thina- (21)

The constank, in inequality (21) may depend GHfina;, K2 = K2(Tiina), but cannot depend on the grid
size. For the central-difference scheme (9), (12), (13), (14), (16) stability is guaranteed by (15).

2For simplicity, we assume here a “straightforward” finite-difference approximation. Replacing temporal derivatives in the
error expansion with spatial ones via the PDE itself would widen the stencil in space. Compact approximations require extra
smoothness of the right-hand side.
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Convergence. Two inequalities (19) and (21) together imply convergence of the discrete solution
©n = Pnynpnang 10 the continuous solutiop(x, t) of problem (1), (2) onR3 x [0, Tiinall as the grid
size decreases:

) i
| (n1h, noh, ngh, nat) — @y nangll e < KR™ 0 a7 < Thnal, (22)

whereK = K (Tiinai, f) = K1- K is a constant that depends, generally speakingy@pnand f. The rate
of convergence guaranteed by (22) igh®"«+78)): for the aforementioned central-difference scheme
this rate is @h?).

1.3. Typical complications

Speaking formally, estimate (22) allows one to use finite-difference scheme (9) for approximately
calculating the solutiorp(x, ¢t) of problem (1), (2) on arbitrarily long time intervals Q¢ < Tiina-

There are, however, two most substantial obstadist, when calculating the solution using finite-
difference equation (9) the number of grid nodes involved in the computation on each time level increases
approximately agd/h + na)® with the number of levehs. Consequently, whens ~ Tina/t and, for
example,t = rh (r = const is the Courant number), the number of nodes involved is of the same
order of magnitude aTina/h)3. (If T = rh”, wheren > 1, then the latter estimate will be even less
favorable.) Therefore, the associated storage and CPU time requirements grow rapidly as the final time
Tinal INCreases.

Second, estimate (22) guarantees grid convergence of the solution for any given time jGtefyzal]
but this convergence is obviously not uniform in time (for a larggg, K of (22) may also be larger).
Indeed, besides the formal dependencyKefon Tina, See (19), the second componentkbfrom (22),

i.e., the stability constank,, see (21), may also depend @k, (actually, grow withTsng). In other
words, although for any initially prescribe@,; we can achieve a desired accuracy by taking sufficiently
small i, see (22), for a largeTinag We may need to take a smallerahead of time to achieve the same
level of accuracy; and the dependency of thisn T,y may be strong and, in fact, prohibitive.

When calculating the solutiop, using equation (9) on a fixed grid for long times, the aforementioned
phenomenon translates into the accumulation of error by the algorithm; this accumulated error is going to
eventually destroy the solution. From the standpoint of practical computing, the source of the error may,
for example, be interpreted as either numerical dissipation (“drainage” of the energy from the system that
takes place for dissipative schemes) or dispersion (frequency-dependent phase shift on the grid, whict
is unavoidable in multi-dimensional cases) or both. At any rate, this error is going to prevent us from
accurately computing the solution on long time intervals using standard methodology (9).

Hereafter, we propose a technique for improving the standard scheme (9); this technique takes
advantage of some special properties of the solution to problem (1), (2). The modified scheme guarantee:
that the error will not accumulate as the numlbegrof the time level increases. Moreover, both the
memory and CPU time required for advancing each time step will remain bounded independegtly of
(andTiina) ONnce the grid sizek andt are fixed.

The number of arithmetic operations required for advancing one time step using the new algorithm is
O(N), whereN is the number of grid nodes in space (i.e., on one time level) inside a sphere of fixed
diameterd; clearly, N = O(h~%). This number does not depend ani.e., does not increase with,
because unlike in the original scheme (9) the computational domain in the new algorithm will not need
to expand in space as the time elapses. Obviously, the numiér © optimal (linear with respect to
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the grid dimension) and cannot be improved by choosing any other algorithm. The required memory
(number of words) in the new algorithm is of the ordegiNO as well.

The methodology that we propose for improving the original scheme (9) so that one can calculate the
solution p(x, 1), x € S(¢), of problem (1), (2) on arbitrarily long time intervals, relies on a particular
property of solutions to the three-dimensional wave equation (1), naimejyroperty of having lacunae.
Alternatively, this property is known as the Huygens’ principle [12], or presence of aft fronts of the
waves, in odd-dimension spaces. The lacunae-based technique is built here for calculating the solution:
driven by moving sources and as such can be considered an extension of the technique develope
previously in [9] for the case of stationary sources. In the future, the long-term lacunae-based integration
methodology will be used to build global artificial boundary conditions (ABCs) for the numerical
simulation of waves propagating with finite speed over infinite domains. The latter framework includes,
in particular, the problems of both ambient and advective acoustics, as well as those of electromagnetic
diffraction and scattering. The issue of ABCs is briefly touched upon in Appendix. In detail, the unsteady
ABCs’ methodology that we have mentioned will be described in the forthcoming publication [10].

A general survey of different ABCs’ methodologies available in the literature can be found in the paper
by Tsynkov [11].

The rest of the current paper is organized as follows. In Section 2, we describe the phenomenon of
lacunae in the solutions of the three-dimensional wave equation. In Section 3, we show how one can
make use of lacunae and modify any appropriate finite-difference scheme for the wave equation so that
to allow for a non-deteriorating numerical integration of Eq. (1) over arbitrarily long time intervals.
Provided that the original scheme is convergent in a particular sense, we demonstrate the same type c
convergence of the modified algorithm uniformly in time. In Section 4 we provide some numerical results
that corroborate the theoretical design properties of the lacunae-based algorithm. Finally, in Section 5 we
briefly discuss possible generalizations of the new methodology.

2. Lacunae of the wave equation
2.1. Definition of lacunae

We return for the moment to the general continuous formulation of the Cauchy problem (1), (2) for
the three-dimensional inhomogeneous wave equation with zero initial data. In this section, we do not
make any specific assumptions regarding the right-hand f&igler) (like compact support) and simply
suppose that it is a sufficiently smooth function with respect to all its arguments anfl(shad = O for
t <0.

For every(x, t), the solutiony = ¢(x, t) of problem (1), (2) can be written in the form of the Kirchhoff
integral:

1 f(sv 4 _Q/C)
o= ] e d 23)

o<ct

whereé = (£1,62.63), 0 = |x — &| = /(x1 — )2 + (x2 — £2)2 + (x3 — £3)%, and & = d&; dé,dgs. The
integration in (23) is performed over the ball of radittscentered aix in the spacet = (&1, &, &£3).
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Formula (23), in fact, implies that the solutigrix, ¢) at the point(x, ¢) depends only on the values of
f (&, 0) on the surface of the characteristic cone (its lower portion) with the vértey:

(1 — &%+ (2 — )%+ (3 — E3)° = 2(t — 0)%, 0 <t, (24a)

and does not depend of(&, 6) when (€, ) belongs to the interior of the cone (24a). In other words,
changing the values of (¢, ) in the interior of the cone (24a) will not affect the solutipix, ¢) at the
point (x, ). To emphasize this circumstance, we will call the domain

(x1— &2+ (2 — &)% + (x3 — &3)% < 2t — 0)?, 0 <t, (24b)

i.e., the interior of the characteristic cone (24§ lacuna of the right-hand sid# Eq. (1) with respect

to the point(x, ¢). The presence of the lacuna (24b) of the right-hand side impliehtaablutiony (x, 1)

of (1), (2) will also have a lacunab*(Q) with respect to the domaig of the right-hand side. Indeed,
consider a-source for equation (1) concentrated at the p@n®) of the space-times(&, 6). At any
moment of time > 0, the solution of problem (1), (2) driven by this source will be concentrated on the
surface of the sphere of radiug — 6) centered ag in the spacer = (x1, x2, x3). Inside this sphere, the
solution will be identically zerop(x, r) = 0 for o = |x —&| < c(¢ — ). Therefore, let us now interpret the
surface (24a) as the upper portion of the characteristic cone of equation (1) in the spate-tinvth

the vertex(€, 0). Then, the solution of (1), (2) driven (&, 6) is zero in the interior of the cone (24a),
i.e., on the domain (24b) that we now denoteldy(, ),

DT, 0)={(x,0)||x —& <c(t—0), >0}, (24c¢)

and callthe lacuna of the fundamental solution of the wave equatidnte, this fundamental solution
is actually a single layer on the spherical surféee- €| = c(+ — 0), t > 6.) If we consider a general
source f (€, 0) rather than thé-sourced (€, 6), then for every particulafg, ) the solution of (1), (2)
inside the lacun@™* (&, ) given by (24c) does not depend on the valug ¢, 0) at this point(§, 6). By
the superposition principle, the solution of (1), (2) with a general soyiregll be concentrated on the
set given by the union of all spheres— &| = c¢(t — 0), t > 6, when the vertex&, 6) of the cone (24a)
sweeps the support of the right-hand sjtlg, 6). Accordingly, the intersection of ald* (&, 0) of (24c)
for all (¢, 60) € Q will be calledthe lacuna of the solution(x, t) with respect to the domai@:

DT (Q)= () D*&.0). (24d)
(£.6)e0
Clearly, the solutiorp(x, r) of (1), (2) is zero onD ™ (Q) of (24d),
p(x,t)=0 for(x,t) e DT(Q) (25)
if
suppf < Q. (26)

Alternatively, one can say that changing the valueg @&, 6) on the domainQ is not going to affect the
solutiong(x, t) of (1), (2) in the points of the lacunB™ (Q) given by (24d). In other words, we see that
the waves governed by the three-dimensional wave equation (1afdvents.If the source is compactly
supported in both space and time, then at any given locationspace the solutiop(x, ) becomes
identically zero after a finite interval of time. This finite time interval is the time from the moment of
source inception till the moment when the pairfialls into the lacunab ™ (Q) given by (24d), or in other



196 V.S. Ryaben’kii et al. / Applied Numerical Mathematics 38 (2001) 187-222

words, till all the waves generated by the source have passed thxoagl accordingly, the solution
there has become zero again.
If the domainQ is defined as follows (see Section 1.1)

O={1|xeS@), n<t<t}, (27)
then condition (26) implies that the solutigrix, r) of (1), (2) satisfies the identities
px,n=0, forr<n (28a)

and

d+ (t1 —tg)(c+ k)
c—k )

The first identity, (28a), is obvious, it takes place because the initial data of the Cauchy problem are

homogeneous, see (2). The second identity, (28b) holds in virtue of (26) because the region of the space

time (x, r) defined aqdx € S(¢), t > 1,}, see (28b), is is completely contained inside the lacDriaQ)

of (24d).In other words, as long a@) holds the time intervald + (t1 — to) (c + k))/(c — k) is sufficient

for all the waves generated by the sources inside during 7o < ¢ <, to completely leave the moving

domainS(r). To see that (28b) is indeed correct one only has to realize that the sources concentrated

on the ballS(7y) of diameterd at the moment = 1y, can be anywhere inside the sphere of diameter

d + 2k(t; — to) at the moment = #; (the larger sphere is centered at the same locatiof\@¥), see

Fig. 1. Att = t; the sources insid&(¢) cease to operate, and as the waves travel faster than the domain

S(t), ¢ > k, all the waves generated prior te= #; will eventually leaveS(¢). This will happen at the

momentt = ,, when the wave emitted by the “leftmost” possible location of the source=at pass

the “rightmost” possible location df(¢), which is schematically depicted in Fig. 1. A simple calculation

yields the expression fag given by formula (28b).

px,1)=0, forxeS@), t>t=n+

(28b)

I I

Fig. 1. Waves generated by a compactly supported source leaving the domain.
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For the case of stationary sourcéss= 0, the inequality of (28b) reduces to the obvious estimate
t > 1 +d/c, see [9]. Let us also note that the estimatesfgiven in (28b) is, in fact, conservative, it
does not use any assumptions regarding the character of the source motion except that its maximal spee
is k < c. If, however, we make an additional assumption regarding the motion of the sphere, e.g., that it
moves with a constant speédn some prescribed direction, then the estimate of (28b) can be improved
and instead we obtain

d
px,t)=0, forxeS@), t>n+ p— (28c)
C —
For a stationary sourcé,= 0, (28c) again reduces ta> t; + d/c of [9].

2.2. Decomposition of the source function in time

Let us now introduce the following partition of unity. Define the function
I+pP(r—13), 0<r<1,
OM=q3+P(3—-1), —-1<t<0, (29)
0, [t] > 1,

where P(t) is a continuously differentiable odd functiond’ P(z)/dt/) e C, j =1,2,...,8 + 2,
P(—t) = —P(1), defined fors € [-3, 3] and such thatP(3) = —3, (@ P(1)/dt))|,c12 =0, j =
1,2,...,8+ 2, wherep + 2 is the maximal smoothness of the right-hand sfde, r) with respect

to timer required by the consistency estimate (19). In particubar,) can be a polynomial of the type
P(1) =, ¢;t2 1 with the coefficients:; chosen so that to satisfy the required level of smoothness, as

well as the aforementioned conditions B(r) and its derivatives at= %
In so doing,® (¢) given by (29) is an even function efwith 8 + 2 continuous derivatives for all

t € (—o0, +00), and alsa® () is compactly supported? (r) =0 for |¢| > 1, i.e.,
supp® (1) = [—1, 1].

Specify now a parametdr and introduce the functions

t—jT

@j(t,T)=@( ) j=01,2....
Clearly,
supp®; (1, ) = [(j = DT, G+ DT], j=0,12....

Moreover, for anyl’ > 0 because of the foregoing propertiesrif) we have
> 0;t.T)=1, t>0. (30)
j=0
The representation of a function, which is identically equal to 1, in the form (30) is a partition of unity.

Notice that for every givem no more than two terms on the left-hand side of the identity (30) may differ
from zero.
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We now represent the right-hand sidéx, r) of Eq. (1) in the form

fE.D=fx0Y 0,¢.T)=> 0;¢.T)fx.n)=Y_ fix.1T), (31)
j=0 j=0 Jj=0
wheref;(x,t,T)=0;(,T) f(x,t). Clearly,
Suppfj(xv Z, T) = Q](T)a (32)
Q,(T)={(x,0)|xeS), j—DT <t<(G+DT}. (33)

For j = 0 we, in fact, will have;T <t < (j + 1T in (33), becausef(x,t) =0 for r <0, see (5).
Consider now the following sequence of problems:

R, L (0%; 0%p; 0%p;
Y + + =Jjix,1, T )
12 ( ax?  9xz  9x3 ) 7 )
) (34)
Q; .
Oili=j—pr = —L =0, j=012....
0t |i=(j-pr

Note, for j = 0, initial conditions in (34) are specified at= 0 rather thary = —T7. For j > 0 it is

clear, in fact, that these homogeneous initial conditions can be specified at any moment of time before
(j — DT because the right-hand sigie(x, ¢, T) kicks in only atr = (j — 1)T and thus we can consider
@j(x,t,T)=0forr < (j—1)T.Because of the linearity of problem (1), (2) and representatigf(ef )

in the form of sum (31), the solutiop(x, r) of problem (1), (2) can also be represented as a similar sum

o)=Y ¢;(x,1,T), (35)
j=0
whereg;(x, ¢, T') is the solution of problem (34) for a specifjc
Let us now show that fox € S(¢r) and any fixedt > O there are only a few values gffor which
@j(x,t,T) #0. First, we apply identities (28a) and (28b) which hold under conditions (26), (27) to the
solutiong;(x, ¢, T) of problem (34). In so doing, instead of (26), (27) we use (32), (33). Then, instead
of (28a) and (28b) we obtain the following two identities

@j(x,t,T)=0, fort<(j—D1T (36a)

and
d+2T k
@j(x,t,T)=0, forxeS(@), t>(j—1)T+L;+). (36b)
C —
Identities (36) imply that for any givenandT the solutiong; (x, ¢, T) may differ from zero forx € S(r)
only if the following two inequalities hold simultaneously

(J—-DT <1, (37a)

d+2T(c+k
t<(j —1)T—I—%. (37b)

A fixed prescribed = can meet both conditions (37) if and only if the indgsatisfies the inequalities

7 d+2T(c+k 7
14 dreerd 14+—. 38
T c—nr It (38)
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Therefore, there is only a finite number of valyefor which ¢; (x, ¢, T') differs from zero forx € S(r)

and agiven. If k =0 andT > d/c (and alsa is sufficiently large) then there is no more than three such

values ofj. If T — +0 ork — ¢ then the number of indexgsthat satisfy (38) increases with no bound.
Henceforth, we will be using representation (35) for the solugan, r) of problem (1), (2). We note

that the termp; (x, ¢, T') in formula (35) is of interest for us only till the moment

d+2T(c+k)
c—k ’

as starting from this moment the componentx, ¢, T') turns into zero inside the computational domain

S(¢) because of (36b), see also Fig. 1, and therefore no longer contributes into the sum (35). The moment

t; given by (39) is actually calculated asof (28b) by assuming thay = (j — 1T and#; — o = 2T.

In other words, the portiop; (x, ¢, T') of the overall solutiorp(x, r) is present on the domaifxz) only

during a finite fixed interval of time:

i=0G—-DT+ (39)

d+2T(c+k)
c—k ’

which starts ato = (j — 1)7 and ends at, =¢;, see (39)lt is very important that the length of this

interval Tinterva, S€€(40), does not depend oj This allows us to conclude that similarly to estimate (8),

we can obtain the following estimate fere S(r) and(j — 1)T <t <; for all appropriatex andg and
forall j=0,1,2,...
interval

glel 98
\ <

dx® 0th
We emphasize that unlike (8) the multiplier T;2,,,,/2 in inequality (41) does not depend ofin. Let
us also note that the sphesér) of diameterd centered akq(¢) = (xf(t), xg(t), xg(t)) represents at the
time momentr =7, given by (39)the aft frontof the propagation of;(x, ¢, T) over the unperturbed
zero background. In many cases the spherical suf&yenay, in fact, be a conservative estimate for the
actual location of the aft front; but at any raf&y) is always inside the aft front.

Numerical algorithm proposed in Sectiéghbelow is based on the idea that when calculating the
solutiong(x, ¢) of (1), (2), for everyt we actually need to calculate only a few termgx, ¢, T) in the
sum(35) that differ from zero forx € S(¢). Each of these terms will drop out of the solution for 7,
see formulg39), which essentially means that even when the total elapsed time is large, all calculations
will still be performed only on a fixed predetermined time interval of lengtherval.

However, prior to actually describing the numerical algorithm, let us introduce an important new
element of the formulation.

Tinteva=t2—to=t; — (j — DT = (40)

glel 98

Ix® 87fj(x’ 6LT)

T-2

@j(x,t,T) (41)

C

2.3. Periodization in space

Specify somez > 0 and consider the following problem that is periodic with the pedad every
coordinate direction;, [ =1, 2, 3:

0%y _Cz(azlﬁ./ + %y n 0%y
atz 2 2

0xg x5 dx3
Vi(x,t,T,2)=0, t<(j—DT,

)If/(x,f,T,Z),
(42a)
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Vj(xy+ 512, X2 + 522, X3+ 532, 1, T, 2) = (x,1, T, 2),

fixa+s1z, x2+ 822, x3+ 532, 1, T, 2) = fi(x,1, T, 2),
S1, 82, 53 =0,+1, £2, ...,

fixe,t,T,2)= fi(x,t,T) if x| <z/2,i=123

(42b)

Theorem 1. The solutiony;(x,t, T, z) of problem (42) coincides with the solutiorp;(x,?, T) of
problem(34),
wij(x,t,T):wj(x,t,T,z), (43)
on the domain
z—d

eS@), (j-DT<t<(j—-DT )
xeSm®, (G-D <@ )+c+k

(44)

Proof. Let us first note that as long &&g| = |dxo(z)/df| < k < ¢ (see (4)), wherecg = xo(z) may be
any prescribed law of motion for the center of the spldre, the right-hand sid¢; (x, ¢, T, z) of (42a),
which is periodic in all three coordinate directians x,, andxz, may differ from zero only on the union
of the ballsS(t), s = (s1, 52, 53):

3 d 2
S,(1) = {(xl, x2x5) | (0 — 512 < {5 kG- (- 1)T>} }
=1

t > —DT, s1,82,53=0,%1, 42, ... (45)

This actually follows from the fact that the sphe¥é) for r > (j — 1)T completely belongs to the ball
So(1), see (45). Moreover, it is easy to see that the lower portion of the characteristic cone (24a):

(x1— &)+ (2 — &)% + (x3 — &3)° = 2t — 0)?, 0 <t,

with the vertex in an arbitrary pointx, ) € So(¢) intersects none of the spherical domaifysr) for
|s|? =52 + 52 + 52 # 0 (i.e., none of the other balls (45)) on the time interyal- 1)T < 6 <t if only
z—d
c+k’
This argument actually becomes clear from geometric considerations, see Fig. 2. In this figure we
schematically show the trajectories 6f(¢) by straight lines|x| = +k¢t and the surface of the
characteristic cone—by straight linpg = +-ct.

Then, provided that (46) holds, the Kirchhoff formula (23) implies that the value of the solution
Vi(x,t,T,z) in the vertex(x, t) of the characteristic cone (24a) will not depend on the values of the
right-hand sidef;(§,6, T,z) of Eqg. (42a) on the domain§,(¢) for |s| # 0. In particular, the value
V;i(x,t, T,z) will not change if the right-hand sideg (§, 0, T, z) on all S,(7), s # 0, were replaced by
the identical zero for alt < ¢, wherer satisfies inequality (46). On the other hand, this replacement makes
the right-hand side of (42a) coincide with the non-periodic right-hand side of equation (35), which has
the solutiong; (x,¢, 7). Thus,v;(x,t,T,z) = ¢;(x,t, T) for all those(x, t), for which satisfies (46)
andx belongs taSy(¢). At the same time, it has been mentioned th@) C So(¢) for anyr > (j — DT.

This proves the theorem.O

t<(—DT +

(46)



V.S. Ryaben'kii et al. / Applied Numerical Mathematics 38 (2001) 187-222 201

Fig. 2. Depiction of the periodic setup.

3. Finite-difference algorithm

In this section, we construct a non-deteriorating algorithm for the approximate calculation of the
solution to problem (1), (2) on arbitrarily long time intervals using finite-difference equation (9). In
fact, we are going to present three slightly different versions of this algorithm. All three versions
will guarantee that the error will not accumulate with time (uniform grid convergence), and computer
expenses per time step (both CPU time-wise and storage-wise) will not increase, i.e., will remain
fixed and bounded throughout the entire computation. All three versions will also have the same
non-improvable computational complexity, i.e., asymptotic order of the number of required arithmetic
operations and amount of memory with respect to the grid size. However, the algorithms will differ from
one another by the actual computer resources required (while still having the same asymptotic order),
as well as by certain convenience features from the standpoints of both theoretical analysis and practica
computing.

Hereafter, we assume that> 0, 4 > 0, T > 0, andz > 0 are chosen so thdt/r andz/h are positive
integers, and /A" =r = const.

3.1. Basic non-deteriorating algorithm

This version of the algorithm provides for the most convenient model to establish the fundamental
desired property-aniform grid convergence on arbitrarily long time intervald.is based on the
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representation (35) of the solutigr(x, #) to problem (1), (2) on the bali(¢). Let us fix some arbitrary
integer! > 1 and consider from the interval

(I-DT <t <IT. (47)
For these, formula (35) can be rewritten as follows:
gﬂ(x,t) =(p[,p(x,t, T) +¢l*p+l(x’t9 T) + - +(pl(x9ta T)? (48)

whereg;(x,t,T), j=1—p,l — p+1,...,1, are solutions of the corresponding problems (34). The
positive integer numbep is chosen from the inequalities (47) and (38), i.e., so that for a given
that satisfies (47), the sum (48) contain only thegéx,, T) that differ from zero onS(r)—the
corresponding’s satisfy (38). Note, if for some smadllone or more indexels— p, [ — p+1, ... appear
negative, then we simply consider the sum

px, ) =@o(x,t, T)+---+¢(x,t,T) (49)

instead of (48). If, on the other hand, for a lafgastead of the smallest possibtethat satisfies the
foregoing constraints (the constraints that follow from (47) and (38)), one takespetgl, then an
additional termg;_,_1(x,t, T) will simply appear in the sum (48). This term, however, will turn into
zero forx € S(r) andr satisfying (47) and consequently, the work required for computing this term will
be superfluous.

Assume, for definiteness, thatis chosen according to the formula:

_ {d + 2T (c + k)} 1— {Tinterval
P=1" T G
where[ -] denotes the integer part (see (38) and (40)). We will be calculating the solutian) of
problem (1), (2) on the grigd = (nq1, ny, ns, ng) for

(n1h, noh, nsh) € S(nat), (I —DT <ngt <IT, (51)

i.e., inside the spherg(r) for ¢ satisfying (47). According to (48) and (5(he exact valuesf this
solution on the grid are given by

} +1 (50)

@(nih, nah, n3h, nat) = @_p(n1h, noh, ngh, nat, T) + @ pr1(nah, noh, ngh, ngt, T) + - -+
+ @i (n1h, noh, n3h, nat, T). (52)
Instead of the exact values (52) the first, or basic, version of the non-deteriorating algorithm that we are
discussing generategpproximate valuesf the solutiong(x, t) on the grid according to the formula:
9(nih,noh,nsh, nat) ~ ¢’ = u(l = p, T)+ gul = p+ 1L, T) + -+ ¢u (1, T). (53)

Eachtermyp,(j,T),j=[1—p,l—p+1,...,1, onthe right-hand side of relation (53) solves the following
finite-difference counterpart to problem (34):

> mnn (. T) = fu(i.T),  j=l—pl—p+1...1,
neN,, (54)

. na=G-1)T/t+J2—1 ng=Jo—1
@n(Js T)|n4:(j—1)T/r—Jl =0, @n (0, T)|n4:—J1 =0.

Of course, in (54) ifj > 0 we can formally considep,(j, T) =0forallnys < (j — )T/t + J>—1. The
right-hand sidef,,(j, T) of (54) is given by the expression

fm (.]a T) = fj (x» z, T)I(x,z)=(m1h,mzh,mgh,mu) = @j (t, T)f(xa t)I(x,t)=(m1h,m2h,m3h,m4t)
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(see (31)—(33)). Obviously,
fm(j, T)=0 if msr <(j—DT. (55)

Theorem 2. The error due to the replacement of the true solutygiy, ) of problem(1), (2) given by
the exact formulg52) for x € S(t), (I — )T <t <IT, by the difference solutiop” =3, ¢,(j. T)
obtained with the basic algorithm according to the approximate fornfa®), satisfies

l@(rah, nah, nsh, nat) — P& < (p + 1) Khmne+8), (56)

whereny, ny, n3, andn, satisfy(51), the power of: in (56)is the same as i(22), the constank depends
neither on the grid sizé nor on/, and p + 1 is the number of terms in the syBB).

Briefly, the idea of the proof is that because of the presence of lacunae, the exact solution is representec
in the form (48), where the sum contains only a finite non-increasing number of terms. Each of these
terms needs to be calculated only on a predetermined time interval of fixed non-growing length, which
guarantees that the constants in both consistency and stability estimates will not depend on the total time
Tiinal- This, in turn, immediately provides the temporally uniform convergence.

Proof. The sum (52) represents the exact solution to problem (1), (2) on the gria #®1S(z),
(I-1T <1t <IT, because of the presence of lacunae. Each¢gm ¢, 7), j=I—p,l—p+1,...,1,

in this sum needs to be considered only on the corresponding time intgrvall)T < ¢ < IT. The
length of the largest of these intervals=£ [ — p) does not exceeth + DT < Tinterval + 2T = i Tinterval
(n = const), see Eqg. (50), and, what is most important, does not depehdConsequently, for each of
thesep;(x,t,T), j=1—p,l—p+1,...,1, estimate (41) holds (Witlinerva replaced by Tinena). The
continuous solutiow; (x, ¢, T') of problem (34) for a particulay is approximated by the finite-difference
solutiong, (j, t) of problem (54) for the samg. Accordingly, the discrete problem (54) also needs to be
solved only for the same time intervgl — 1)T < ¢ < IT of the maximal lengthu Tinterva that does not
depend ori. Therefore, the consistency result (19) for a particyland(j — 1)T < myt <IT takes the
form

(h) 2T : | ala\ B
> Gmngj(nih, noh,nzh,ngt, T) — fu (i, T)| < "ervaz‘ " ﬂf/(x t, T)H h*lh
neN, C 0x%® 0t
Kl (Tinterval» fj)hmm(laHnﬁ)- (57)

Regarding the constant®,” = K" (Timenas f;), they, as always, do not depend on the grid size

Moreover, we can, in fact, claim thatj =/ — p,l — p+1,...,1: K\ < K1 = K1(Tinterva f)- This is
easy to see provided that the smoothness propertiggxafs) remain uniformly “good” in time; or in
other words,(3'*!/9x*)(3# /3t#) f (x, t) remain continuous and bounded for al: 0. In this case, all
(0! /0x*) (3P /0tP) f;(x, 1, T), see (57) will also remain continuous and uniformly bounded because the
function @ (¢) of (29) that helps us build the partition of unity (30) and the partition of the right-hand
side (31) was specially chosen sufficiently smooth so that not to decrease the extent of smoothness of th
original f (x, t).

Stability estimate (21) for the discrete scheme (54) can be rewritten as

lenGis Dl < K3 || fn U, (j—DT <ngt <IT, (58)
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where the constanky’’ depends on the actual length of time intergal- 1)T < < IT, but as none

of these intervals exceeqsTinena We can again say thatj =1 — p,l — p+1,....1: K3 < K, =
K>(Tinterva) - The constantk, obviously does not depend drand neither does it depend on the grid
sizeh.

A standard argument then yields that for each tepty, 7), j =1 — p,l — p+1,...,1, on the right-
hand side of formula (53) the convergence estimate of type (22) will hold:

) h . . in(le
H(p/(nlh7 nzhv n3h7 n4f) (pn(.]v ] )H(C) < liij)liéj)hmm(l I+1)
< K~1 KNthin(\aHnﬂ) — Kthin(|a\+nﬂ)‘ (59)

The constank in (59) obviously depends neither on the actual elapsed#imél’ nor on the grid sizes.
Remembering now that there ape+ 1 terms altogether in the sum (53), we immediately arrive at the
estimate (56) and thus prove the theorerm

We emphasize that Theoréhimplies temporally uniform grid convergence of the discrete solution
given by the basic algorithm to the original continuous solution of the dorfi&inon arbitrarily long
time intervals.Indeed, as opposed to the original convergence estimate (22), where the cdastant
depends on the final tim&;,,, and actually grows with the increase B4, the constank of (56)
depends offinerval and remains fixed for arbitrarily large timé@s,, (again, as long as the smoothness
properties off (x, t) remain uniformly “good” with respect to.

Let us now estimate the computer resources required by the proposed basic algorithm. Clearly, both
the operations count and the amount of memory (i.e., number of words) needed for advancing one time
step when calculating each tegp(j, T) of (53) are of the same asymptotic ordei#O®) with respect to
the grid sizeh. The number of termp + 1 does not change (i.e., does not grow) when the grid is refined
as long agl is fixed. Therefore, neither does the overall number of arithmetic operations, as well as the
amount of memory, required when calculating the solution by means of formula (53)—both quantities
remain of the order @:—3). The number of grid nodes that belong to the spls&re for a fixedt = nat
is also of the order @:~2%); therefore, the foregoing algorithm appears asymptotically non-improvable—
linear with respect to the grid dimensieras long as one uses scheme (9).

We also note that as we compute each of the tespig, 7), j = — p,l — p+1,...,1, on afinite
interval of time, this computation also requires only a finite domain in space because the perturbations
propagate with finite speeat] beyond this finite region across which the perturbation can propagate, the
solution is equal to zero (in the exterior of the union of all characteristic cones with the vertexes sweeping
the support of the right-hand side). Thus, the spatial domain, which originally was infinite, can, in fact, be
truncated. Out of the several terms that need to be computed according to (53), the fipstiongs, T),
is the most expensive numerically, its calculation by an explicit scheme up to the timedeuwgk =IT
requires the widest grid domain of the size approximately

d 4cT
d+2(p+1V)Tc~d—+ 2Tinterva+ 2T )c = d+2(c—k + c—k>c
1
= (G —k)d +8¢%T). (50)
c—

Dividing (60) by/ and taking the third power of the result, we will obtain a quantity of the ordér€)
(as long ag is fixed while the grid is refined). This quantity gives an estimate of what will be the actual
amount of memory needed for advancing one time step using the first, basic, version of the algorithm.
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Finally, let us mention that when discussing the long-time integration we can consider a formulation
that slightly differs from (47). Consideringfrom the interval (47) means, in fact, tHatan be arbitrarily
large and we calculate the solution on the interval of a fixed lefigtivhich can be placed arbitrarily far
away from the initial data. Alternatively, one may be interested in knowing the overall temporal evolution
of the solution, i.e., in calculating the solution on an arbitrarily long time interval, say from 0 to some
large Tiina. From the standpoint of building a non-deteriorating lacunae-based algorithm, this formulation
is not much different from the one analyzed previously. For every time interval (&, Tsna, i.€.,
everyl, the solution will still be computed using formula (53). To advance further in time, we then need
to replacel by I + 1 in formula (47). This will simply imply dropping the first ter, (I — p, T) on
the right-hand side of formula (53) and adding the new last teyth+ 1, 7). In so doing, each term
onl—q,T),q=0,1,..., p—1, for the previous interval becomesp,( + 1 — (¢ + 1), T) for the
new intervall 4+ 1. Of course, for the new interval there is no need to calculate this term from the very
beginning by solving the corresponding problem (54) starting ffom! — ¢; the calculation of each
term of (53) that is not dropped when going frdnto / 4+ 1 (i.e., every term except the first one) is
rather continued from the previous interval using the same explicit scheme. A further modification of the
algorithm, which is described in Section 3.3 below, in fact uses the aforementioned interpretation of the
long-term integration.

3.2. Modification based on periodization

As has been mentioned in Section 3.1, the actual size of the computational domain that we need for
using the basic non-deteriorating algorithm is given by the estimate (60). In this section, we modify the
basic algorithm so that to make use of the periodic formulation introduced in Section 2.3 and thus reduce
the size of the computational domain and consequently, the required computer resources.

In the periodic version of the algorithm, instead of formula (48) we use the following representation
of the solutiong(x, ¢) forx € S(¢), | — DT <t <IT:

go(x? t) == Wl—p(x, t? T? Z) + K[/lfpﬁ*l(x? t’ T’ Z) +---+ Wl(x, t» T» Z)a (61)
herey;(x,t,T,z), j=1—p,l — p+1,...,1, are solutions of the corresponding problems (42). For
smalll we, similarly to (49), may need to use representation

Qﬂ(x»t)=W0(x»t,T,Z)+“'+K/fl(x»t,T,Z) (62)
instead of (61). When using either (61) or (62), the pedadviously has to be chosen so that for every
functiong;(x,t,T), j=1—p,l —p+1,...,1, the equality

<p.,~(x, t,T)= w./(x, t,T,z)
hold on the entire time interval
d+ 2T (¢ + k)

—k
on which according to formulae (37) the functign(x, ¢, 7) may differ from zero forx € S(¢) (see

also (40)). In other words, we require that the time interval (63) be contained inside the time interval (44),
for which according to Theorem 1 the periodic and non-periodic solutions coincide:
d+2T(c+k) z—d

(j—l)T+T<(j—1)T+c+k- (64)

(G-DT <t<(—-DT+ =(j — DT + Tintervar (63)
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The latter inequality yields the following lower bound for the period
1
2> (2cd +2c+ k)?T). (65)
C [e—

Condition(65) essentially guarantees that all the waves generated by the sources Siisidirat operate
on the time intervalT will leave the domain of interesi(s) before the waves generated by all other
sources from the periodic structure can enter this domain.

To actually build the periodic algorithm, we replace the differential equation and initial condition
of (42a) by the finite-difference equation and discrete initial condition, respectively:

> @wnVu (. T.2) = fu(j. T.2), j=1—p,l—p+1...1,
neNp (66a)

. na=(G-1)T/t+J—1 ng=Jo—1
wn(]a Ta Z)‘ﬂ4=(j*1)T/1:7]1 = Oa l/fn(o» Tv Z)”M:*Jl = 09

where the right-hand sidg, (j, T, z) is az-periodic grid function with node values

Jm (G, T,2) = fj(x, 6, T, 2)(x.y=(m1h,moh,mzh,mar)-
Again, in (66a) if j > 0 we can formally conside, (j, T,z) =0 for all nys < (j — DT/t + Jo — 1.
The periodicity boundary conditions (42b) are replaced by their discrete counterparts in every coordinate
directionx;, x,, andxs (the ratio of the period and grid size:, z/h = b, is assumed positive integer):

Vn(j, T,2) =Yw(j, T,2), n = (ni,nz,n3 na), n =ni+s1b,ny+ s2b,n3+ s3b,ny),
51, §2, §3 = O, :|:l, :|:2, e (66b)

The approximation to the solutian(x, r) for x € S(t), ( — DT <t <IT, in the periodic algorithm is
obtained as an approximation to the sum (61) rather than (48), in do doing instead of (53) we obtain:

@(nih, noh, nzh, nat) ~ o0 =4, — p, T, ) + Yl —p+ LT, 2) + -+ 9., T,2). (67)

Each termy,(j,T,2), j =1 — p,1 — p +1,...,1, on the right-hand side of relation (67) solves the
corresponding problem (66).

Proposition 1. The uniform grid convergence result guaranteed by TheoPefar the basic non-
deteriorating algorithm of Sectio.1 will hold for the periodic version of the algorithm as well, once
we replacep!" of (53) by /" of (67)in inequality (56).

Proof. Proposition 1 is, in fact, clear because we have chosen the pergodording to (65) so that
the periodic and non-periodic solutions coincide $@), (j — DT <t < (j — DT + Tinterval for all
j=I01—p,l—p+1,...,1. Therefore, estimate (56) fgr.’ ") of (67) can be obtained by exactly repeating
all steps of the proof of Theorem 2.0

As we did previously for the first algorithm, let us now consider the transition ffdm/ 4+ 1 in
formula (47) in the framework of the periodic algorithm. Assume we are interested in calculating the
overall temporal evolution of the solution from= 0 till an arbitrarily larger = Tjina. Over this period of
time, the domairs(¢) that was centered at(0) = (x2(0), x3(0), x3(0)) at the moment = 0 can travel
arbitrarily far in space from its initial location, in fact, as farkina:

xo(t) = (x2(t), x3(t), x3(1)) = x0(0) + / uo(0) do, (68a)
0
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|x0(t)| < kTfina,  0< 1 < Tinar. (68b)
In the z-periodic setting, all functions are defined for;| < z/2, i = 1,2,3, and the edges; =
+z/2, i = 1,2, 3, are identified with one another. Accordingly, instead of the motion described by

relation (68a), we consider the motion $f:) on a three-dimensional toroidal surface. Instead of (68a)
we will then have

Z

1 t
xo(t) = (x(1), x3(t), x3(1)) = {E <xo(0) + /uo(()) d9> }Z — 5 (69a)
0

where {-} in (69a) denotes the fractional part. Also, conforming to the periodicity conditions,
inequality (68b) transforms into

Z
lxo(n)| < 5 0<1<Tinar (69b)

The computational procedure does not change much. We calculate separately every term on the right
hand side of (67). When we go fromto / + 1, we stop calculatingr,(I — p, T, z) and add the new
termy,, (I + 1, T, z). This allows us to run the computation arbitrarily long with no error accumulation
and no growth of computer expenses per time step. In so doing, of course, thexggntef S(r), as

well as the entire domain of intereStz) itself, can be located anywhere within the period, i.e., in the
cube{|x;| <z/2, i =1, 2, 3}, and not necessarily close to its middle. This, however, does not affect the
solution calculated insid&(¢) because according to condition (65), no waves from outside can enter the
domainS(z) before the waves generated insiglg) by the sources that operate during the interval 2
(say,j =1 — p) leave it. Then, as soon as these waves have left, this entire portion of the solution is taken
out by dropping the tern,, (I — p, T, z) in the sum (67). In other words, both the waves generated inside
S(¢) that have already left it and the waves generated outsideby the other sources of the periodic
structure that operate during the same time interval are eliminated. As has been pointed out, this does nc
change anything insid&(¢) as the waves have already left, but it prevents the waves generated outside
from propagating further in.

The periodic algorithm of this section appears somewhat more efficient than the basic algorithm of
Section 3.1 because the actual domain size and consequently, the number of grid nodes involved in the
computation, is smaller for the periodic algorithm; this follows from the comparison of (65) against (60),

k < c. The aforementioned better efficiency implies, of course, the better actual constants, whereas the
asymptotic order with respect tofor both the operations count and amount of memory required by the
periodic algorithm remains at the same unimprovable level@f€), which is also pertinent to the basic
algorithm of Section 3.1. The number of terms- 1 in formulae (67), similarly to (53), does not depend

on the grid sizé: as long ag’ remains fixed.

3.3. Madification based on the continuous time marching and discrete Fourier transform

The third version of the algorithm uses the exact same representation of the solution as the previously
described periodic algorithm does, see formula (61). However, the computations in the third version
are organized in a substantially different way. Here, instead of calculating separately each term on the
right-hand side of (67) we rather use a “one-sweep” time-marching approach and when it comes to the
transition from/ to/ 4 1 in (47), the termy,,(I — p, T, z) on the right-hand side of (67) is taken out by
the explicit subtraction.
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Introduce a new grid function

W, p.T.2)= Y ¥u(j.T.2), (70)
j=l-p

wherey, (j, T, z) is the solution of problem (66) for a particular Herep is the same integer number as
in formula (61). For small, the summation in (70) may need to start frgre: O rather thary =/ — p < 0.
Notice thaty, (, p, T, z) is a function of the argumemt, but it also depends on the discrete parameters
[ and p. This means that for a given grid node= (n1, n,, n3, n4) we may basically consider different
values ofY, (I, p, T, z) that correspond to differerit(not necessarily such th&t — 1)T < nat <IT).
From the formulation of problem (66) for eveyy it is clear that for any fixetk = (n1, ny, n3, n4) N0
more than several first terms of the series (70) may differ from zero.

In the particular case wheti — 1)T < nat < IT there is no more thap + 1 non-zero terms in the
series (70). In this case, the sum (70) coincides, in fact, with the approximation of the sqglgtion
given by formula (67) for such that satisfy(nih, nah, n3h) € S(nat), | — DT < nat <IT (see (51)).
Thus, for this specific combination of, /, and p, the computation of?, (I, p, T, z) by formula (70)
can be interpreted as the computation of the approximate solution by formula (67). In this section, the
approximate solution to problem (1), (2) will therefore be calculated according to formula (70).

Substituting expression (70) into the left-hand side of the finite-difference equation (9), we obtain

> Wl p. T, 2)=ful —p.T.)+ ful—p+ LT+ -+ ful . T.2)+---.  (71)

neNy,

According to the definition ob (¢), see (29), and formula (31), as well as the definitiowpfl, p, T, z),
see (70), and definitions af,(j, T, z) and f,,(j, T, z), see (66), the following equality holds:

fu = f(mih,moh,msh,mar) = > fu(j, T.2) (72)
Jj=l=p
for all thosem, for which
myt = ({ — p)T. (73)

(Again, for smalll we may need to replade— p by 0 on the right-hand side of both (72) and (73).)
Egs. (71) and (72) together imply that the functigg(l, p, T, z) satisfies the finite-difference equation

Z Aun Y, p, T, 2) = ful,p,T,2) (74)
neN,,

for thosem, for which inequality (73) holds. Besides, according to (11) we consider
v,(l,p,T,z)=0 forngs<Jo—1 (75)

Egs. (75) will provide for the initial conditions when calculatigg (/, p, T, z) consecutively starting
withthe smalll: [ =1,2,....

Let us now recall that the stencl,,, see (10), of the finite-difference equation (9) containg 1
time levels (/ = 2 for the second order scheme (12), (13), (14), (16)). The values of the solution on the
uppermost time level of the stencil are calculated with the help of the explicit formula (9) using the values
on theJ preceding levels that have been obtained previously. We start the computadiQ .op, T, z)
for | — 1)T < n4t < IT with the homogeneous initial data (75) and using the explicit scheme (74)
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in the periodic setting of Section 2.3 (see also Section 3.2) advance one time step after another for
ng = Jo, o +1,.... This way we first calculater, (/, p, T, z) for [ = 1 while 0 < nst < T, then
v, p,T,z) forl =2 while T < n4t < 2T, etc.We emphasize that these computations are performed
by the conventional explicit marching in tini&4) with the periodicity boundary conditions in space.
When we reach sufficiently far in time, namely, whér- p becomes positivel/ (— p > 0), the
standard marching algorithm for calculating, (/, p, T, z) will require a special augmentation. This
augmentation has to account for the fact that summation in formula (70) for lessgets with! — p
rather than 0. Indeed, given a particulaand (I — 1)T < nat <IT, the sum (70) containg + 1 terms
for j=1—p,l—p+1,...,1. When! increases by ond,—~ [ + 1, it will contain p 4+ 1 terms for
j=l—p+11—-p+2...,1+ 1. Therefore¥! when switching fromw, (, p, T, z), which is used
for ( — DT <nat <IT,t0¥,(0+1, p,T,z), which is used foiT < n4t < (I + 1T, the continuing
straightforward time-marching should be augmented by dropping the first non-zerg jém p, T, z)
from the sum (70).
Assume that for some sufficiently largeve already know the approximate solution, i.e., the values of
v, p,T,z),onall time levels

[ —1DT | —1DT IT
_u=br ,u-br ., T (76)
T T

I =nq4T. Ny

We formally switch from/ to / + 1 when for the uppermost time level of the stendj, we have

ng =1T/t + 1. The switching consists of subtracting the teggmn(! — p, T, z) from the sum and thus
completely disregarding it for the future computation. (Of course, when subtragtiig- p, T, z), we

take into account the structure of the stencil (10) of finite-difference scheme (9) or (74), see below.) Then,
we continue marching in time and calculate the approximate sol#joh+ 1, p, T, z) on the subsequent

time levels

IT IT [+1DT
! = N4t n4=—+1,—+2,...,(+ ) . (77)
T T T

Having completed the time-marching computationdgfl + 1, p, T, z) for the levels (77), we again
arrive at a situation when another term, this tithgl — p + 1, T, z), needs to be taken out from the sum.
Thus, the procedure cyclically repeats itself and can be continued for as long as required.

The aforementioned subtractionf (I — p, T, z) is done according to the definition &, (, p, T, z),
see (70), that implies

lpn(l—i_l’p’T’Z)=lpn(l’p’T’Z)_wn(l_p9T9Z)- (78)
Equality (78) holds for alk; we will use it for the last/ time levels of the grid (76):
IT T T
t=n4t. Np=——J+1, ——J+2,...,—. (79)
T T T

As the firstterm&, (I, p, T, z) on the right-hand side of formula (78) is assumed known on the grid (76), it
is also known on its sub-grid (79yhe second termf,, (I — p, T, z) on the right-hand side of formul@8)
needs to be subtracted frow, (I, p, T, z) on theJ time levels given b{79); then, because the stencil
N, of (10) has J + 1 levels altogether, starting from, =T/t + 1 and for all n4 > IT/t + 1 the
contribution ofy,, (I — p, T, z) will no longer be present in the solutiohe termy,,(I — p, T, z) in (78)

is the solution of problem (66) fof =1 — p. The right-hand sid¢,,(I — p, T, z) of the latter problem
may differ from zero only for those: = (m1, m,, m3, m4) that satisfy

I—p—DT <myt <(U—p+DT, (80)
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and the initial data for calculating/,,(I — p, T, z) are homogeneous/,(j — p, T, z) = 0 for ny =
(G—p—-DT/t—J1<ny<(j—p—LT/t + J, — 1, see (66). Let us also note that the parameters of
the problem are obviously chosen so that by the time we subfaét— p, T, z) it is already a solution
to the homogeneous equation or in other words, the interval of time (80), during which the right-hand
side f,,({ — p, T, z) that drivesy,, (I — p, T, z) may differ from zero, is located sufficiently far behind on
the time axis with respect to the moment of subtractibyir.

Clearly, by the time we need to implement the subtraction (78), the contribytiegh— p, T, z)
will have already been calculated once, however not separately but rather as a Yaft, of, T, 2),
see (70). To actually perform the subtraction (78) on the grid (79), we need to cofpute p, T, z)
separately once more, and this computation will be split into two stages. First, we will calculate the
solution v, (I — p, T, z) with the explicit finite-difference scheme (66a) step after step in time for the
levels

_(U—p-DT (—p+1T

I =n4t. nNa +Joy ..., —————+ Jo. (81)
T

Clearly, the uppermost time level of the stengj), of (10) will reach the last time level given in (81),
i.e,ng=(—p+ 1T/t + Jp, at exactly the same moment of time when the center of the stencil will
be atm, = (I — p + 1)T/t and therefore, according to (80) at this very moment the finite-difference
equation (66a) fony, (I — p, T, z) becomes homogeneous. The computationygff — p, T, z) on the
levels (81) takes

2T [z7)\°
v . (h) (82)
arithmetic operations, wherneis the number of operations required for advancing the solution one step
in time in one grid node. (In other words s the number of arithmetic operations “on the stencil” of the
scheme.)

The values of the solutiott, (I — p, T, z) on the last/ levels of (81), i.e.ns=(I—p+ DT/t —J1 +
1,....,0— p+ 1T/t + J, will be used as the initial data for calculating this solutigp(! — p, T, z)
on the time levels (79), on which it needs to be subtracted. As the right-hand,sifle- p, T, z) is
equal to zerof,(I — p,T,z) =0, forms > (I — p+ 1T /7, see (80), an efficient way to calculate the
solutiony,, (I — p, T, z) for the grid (79) will be through representing it in the form of a discrete Fourier
series while the initial data foy,,(I — p, T, z) on the last/ levels of (81) are known. The finite Fourier

expansion is built with respect to the following system of grid basis funcﬁéns

e%:exp(i(ﬁ, E)), i=+—-1 7= (nq,no n3), k= (kq, ko, k3),
ki,k2,k3=0,1,2,..., % —1, (m, k) =niks+ noko + ngks.
Hereafter we assume thath is a power of 2 so that the fast Fourier transform (FFT) can be used for for
calculating the coefficients of the discrete Fourier series of a given grid function, as well as for restoring
the node values of the grid function from its Fourier representation. Each of the foregoing transformations
obviously requires

O((%)ﬂn%) (83)

arithmetic operations.
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Having introduced the discrete Fourier transform on the grid, we organize the second stage of the
computation ofy,(I — p, T, z) on the time levels (79) as follows. First, we Fourier transform the
data on the last/ levels of grid (81), which taked times the number of operation (83). Then, we
advance each Fourier component independently to the leyelsiT/t — J,...,IT/t, see (79), using
the explicit formulae that are easily obtained from the Fourier representation of the finite-difference
operator of (74); essentially, this reduces to multiplication by the appropriate powers of the corresponding
amplification factors and obviously takes @/ /)% operations. Finally, we need to restore the node
values ofyr, (I — p, T, z) on the grid (79) using the inverse FFT, which again takdsnes the number
of operations (83). The overall computational cost of this second stage will then be

o(1(5) i) +o((3) ) +ols(5) i) =e((5) )

arithmetic operations becaudeis fixed and does not depend on the grid size. Consequently, the total
operations count for calculating, (I —s, T, z) on the grid (79) for subtraction, i.e., calculating the second
term in the recurrence formula (78), consists of the expenses for the first (82) and second (84) stages an
adds up to

v2$<%>3+o(<%>sln2> (85)

arithmetic operations. Recurrence formula (78) is used for subtracting the contribution of the entire
“chunk” of 2T/t time levels (80). Therefore, if one recalculates the associated expense (85)
proportionally per time step, it obviously reduces to

/(5 oz () i) =o((3))

The calculation of the first term in the recurrence formula (78) also requikgés/@3) arithmetic
operations per time step as this is done simply using the explicit scheme (74).

Summarizing, we conclude that the overall computational cost of the third version of the algorithm
is O((z/ h)®) arithmetic operations per one time step. It is also easy to see that the required amount of
memory (i.e., number of words) is of the orde¢(€ 1)%) as well.

Proposition 2. The uniform grid convergence result guaranteed by TheoPefar the basic non-
deteriorating algorithm of SectioB.1 will hold for the modified version described in this section as
well.

Proof. As the non-deteriorating algorithm of the current section essentially reproduces the calculations
by formula (67) for the periodized version of Section 3.2 with the difference only in the computational
procedure, Proposition 2 immediately follows from Proposition 1, see Section 3.2.

Moreover, we also note that the interpretation of spatial periodicity given by formulae (69), and
subsequent comments for the periodic algorithm of Section 3.2, apply to the current version with no
changes.

We emphasize that the variant of the non-deteriorating algorithm presented in this section is designed
so that to still guarantee the grid convergence uniformly in time, see Therbat on the other hand
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maximally resemble the standard time-marching computational procedure pertinent to an explicit scheme
with the periodicity boundary conditions in space. Indeed, the only difference between the procedure that
we have just described and typical unaltered time marching is that here we need to cyclically perform the
subtraction(78); in so doing, the complexity of the modified procedure with respect to the grid dimension
remains asymptotically the same as for the standard marching algorithni86ke

4, Numerical demonstrations

To actually demonstrate that the lacunae-based algorithm is an appropriate procedure that does delive
according to its theoretical design properties, we present some numerical results for the wave equation
For our simulations, we assume axial symmetry and employith® cylindrical coordinates so that
to account for the three-dimensional effects using two-dimensional geometry. Accordingly, Eqg. (1)
becomes:

2 2
iz_c(la(éh)+3 ) Frnzt), 130, (87)

at2 ror 072

The solutiong of Eg. (87), as well as the source functigi are functions of-, z, andz. The initial
conditions for Eqg. (87) remain homogeneous as before, see (2).

We introduce the rectangular auxiliary dom@nR] x [—Z /2, Z /2] of variables(r, z). The boundary
conditions are periodic with the periagdin the z direction, and zero Dirichlet at= R:

o(r,zx£Z,t) =¢(r,z,1), o(R,z,t)=0. (88)

Note, in Sections 2.3 and 3.2 we have used lower-casm denote the period. In the current section we
use capital Z” for this purpose so that not to confuse it with the conventional notatidror the axial
coordinate.

The mathematical formulation of the problem obviously requires no boundary conditions @t
However, for the purpose of subsequently building a discrete scheme (see below) we notice that the
natural assumption op(r, z,t) being a bounded smooth function, along with the axial symmetry,
immediately imply tha{de/dr)|,—o = 0. Consequently, the Taylor expansion gonearr = 0 yields:

192
0r) =90+ 555 00,
which means that
dp %y )
O .
ar =l O

Substituting the latter expression into (87) and considering the #imit0, we obtain that on the-axis,
i.e., atr =0, Eq. (87) reduces to:
3% ¢ 3%

W_c (ZW—FW):f(F,Z,I), r:O,t}O (89)
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To assess the quality of our numerical method we need to build a reference exact solution of
problem (87), (2). This solution is obtained using the Lorentz’ transform:

1 k/c Z
= - . —
\/l—]lccjécz \/1—k2{c2 c (90)

T T ee
Transformation (90) introduces the new coordinate system 6). The origin of this new coordinate
system moves with the speg@long thez-axis of the original coordinate system. In other words, at every
givenrt it is positioned at = krz in the original frame of reference. In implementing transformation (90)
we will always need to assume thak c, as has also been suggested in Section 1.1, Eq. (4).

The key property of the Lorentz’ transform (90) is that it does not change the form of the wave
equation (1) (and consequently, (87) and (89)), see, e.g., [1]. As such, let us introduce an arbitrary
function of time x = x(¢), x(¢t) =0 for ¢t < 0, so that it also be smooth on the entie If we also
definep? =r? + ¢2, then

Y(r,¢,0)= M (91a)

becomes a solution to the wave equation in the new coordiriatessd). Solution (91a) is driven by a
point §-type source, which is located at the oridin= 0, ¢ = 0} and modulated in time by the function
x(0). As x’'(0) = 0, this solution also satisfies the homogeneous initial conditions. Consequently, the
function

Y(rz,t) = xO(z,1) —p(r,z,0)/c)
p(r,z,1)

obtained by substituting (90) into (91a) is a solution of Eq. (87) with the right-hand f&ide;, t) =

x(t) - 8(r,z — kt). In other words,(r, z,t) of (91b) is a solution to the wave equation excited by

a §-source that moves straightforwardly and uniformly and is modulated in time by a given smooth

function x. Solution (91b) also satisfies homogeneous initial conditions (2). From the standpoint of

physics, solution (91b) can be characterized as radiation of spherical waves by a moving point source.
Solution (91b) is obviously singular. To use it for testing the numerical algorithm we need to remove

the singularity. For that, we first introduce the actual donfin as a ball of diameted with its center

at the origin of the new coordinate systefm:= 0, z = kt}. As such, this spherical domain moves

uniformly along thez-axis, which obviously helps us keep the axial symmetry intact. Let us also define

72 =r?+ (z — kt)? and introduce the functio® = Q(7), r > 0, such thatQ(0) = 0, Q(7) = 1 for

r >«d/2, wherex <1, and also

d"00) d"Q(kd/2)
dim drm

till at leastm = 4. Then, it is easy to see that the functipir, z, 1) = ¥ (r,z,t) - Q(7r) is regular

everywhere. Moreover, it is easy to verify by direct differentiation that the funcyion z, 1) def

Oe(r, z,t), whereO denotes the wave operator, i.e., the left-hand side of Eq. (87), is also regular
(continuous and bounded) everywhere. We will ySe, z, t) defined this way as the source function
for Eq. (87). Clearly,f (r, z, t) may, generally speaking, differ from zero only on the ball of a smaller
diametercd concentric withS(¢). Everywhere else, i.e., fot> «d /2, f(r,z,t) = 0.

(91b)

=0 form=12,...
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Clearly, the solution of problem (87), (2) driven by thigr, z, t) is the foregoing

p(r,z,t) =y (r,z,1) - Q(r). (92)
This function satisfies the non-homogeneous wave equation with the right-hang @ider) on a
smaller ball of diametekd concentric withS(z). Everywhere else it is a solution to the homogeneous
wave equation because it coincides witky, z, ¢) of (91b). Consequently, the solutier(r, z, t) of (92)
can be interpreted as the radiation of waves by a compactly supported moving soureer).
Numerically, we will be reproducing solutiop(r, z, t) given by (92) on the domaifi(¢) using finite-
difference methods.

We employ three different explicit central-difference schemes in our simulations. In all three cases
we construct a uniform rectangular grid on the plane): r; =ih,,i =0,1,...,N,, h, = R/N,, and
zj=jh,, j=0,%£1,...,£N,, h, = Z/2N,. The discrete time levels arg=nt,n =0, 1,.... For the
cell-centered second-order scheme, we keep the values of the unknown funetighe grid nodes in
thez direction and at mid-points in thedirection:

+1 wy
Ol — 2001 + Oliiva, c2< 1 1 [r 1¢f+3/2,j —¥lh1/2, . Pi'y1y2.; — P12,
R _— '+ - [
72 Tiv1/2 h, l h, l hy
V121~ 210 T a1
+ = = fli1)2- (93a)
V4

Egs. (93a) hold for all > 0. As in this case we do not have the unknown function defined on the axis of
symmetry, and the closest values that corresporic=0 are half-grid-size awayy , ;, then the scheme

for i = 0 is obtained by simply assuming th@t’,, , ; — ¢i"1,2 ;)/ h-lizo = 0, which can be interpreted

as a second-order approximation of the natural condiigrydr)|,—o = 0. This immediately yields:

1 -1
(pil/—’é’j — 2015t 915 B cz(i ir P32 — P12, 4 Pl ji1— 2010+ (ﬂf/z,jl) =
72 rpahe T hy h2 2.
(93b)
For the node-centered second-order schenigfaken at the actual grid nodes, andfor O we have:

n+1 n n—1
g — 29 tei;

2
T
11 o=l o — :| o —2(/)?’.4—(/)?’.)
VY e i+l Lo iJ i-1j ij+1 0] LiZl) _ ¢ (944
c (ri I [rz+1/2 n ri—1/2 i + 2 [l (94a)

To obtain the scheme on the axis of symmétgy O in this case, we need to approximate equation (89).
For the?/3r? derivative in this equation we can first formally writ®%p/9r2)|,—0 ~ (p1.; — 2¢0,j +
@-1;)/h?. This expression obviously reduces @?¢/dr?)|,—0 ~ 2(¢1; — ¢o.;)/h? because of the
symmetry:p_1 ; = @1 j, and we consequently obtain:

n+1 n n—1 n n n n n

g =20 +oi; 2 P17~ 90, | %0441~ 290, T 90,1 "
! L) ¢ (4 STt F E— >=fo,j. (94b)
r Z

The last scheme is a node-centered fourth-order scheme. More precisely, it approximates spatial

derivatives with the accuracy @ + h?) and temporal derivative with the accuracyt®). Fori > 1
we have:

2
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i =20 et ( 411 { Gl =l e wf-l,/}
72 3 r hr i+1/2 hr i—1/2 hr
111 [ ‘P?Jrz,j - ‘P;fj ‘P;fj - ‘ﬂzﬂz,]}
— a5 il 5, —li-l— 5
37, 2, 2h, 2h,
+ —¢} 12+ 1697 — 3007, + 1607, 1 — ‘/’51,]2) _ (95a)
1212 b
Fori =1 we have;,_; = rg = 0 and consequently:
n+1_2n n—1 n _ _n n _ _.n n o _ n
¥1,; $1,; T 91 —c2<ﬂ£i {r $2; —¥1,; _, ¥1,; %,,} 111 {r ¥3,; ‘Pl,./}
72 3rih, L% Ve, 3ri2h, |2 2h,

_¢f,j+2 + 1&01,,j+1 - 30(/)1’,]' + 169011‘71 - 901',,'72
+
12h2
Finally, for i = 0 we again have to approximate Eq. (89). Using symmetry like in the previous case, we
arrive at:

) — /1, (95b)

05t — 208+ o5
2
T
_ 2 2—2%’, ;321 ; — 3005 n —8 42+ 1608 ;1 — 3005 + 1605 1 — @5, 0\ P
12z 1242 =Jo -
(95¢)

For all three schemes, (93), (94), and (95), setting the discrete boundary conditions (88) on the outer
boundary of the auxiliary domaii®, R] x [—Z/2, Z/2] is straightforward. An extra boundary condition

is needed for the fourth-order approximation, and we simplypget, ; = 0 in addition tog}, ; = 0.
Regarding the time step, all three schemes are explicit and as such, there is a Courant-type stability
constraint.

As has been mentioned, the purpose of presenting the results of numerical computations that follow
is to corroborate the theoretical design properties of the lacunae-based algorithm, i.e., to show the
temporally uniform grid convergence on long time intervals. For that, we conduct a grid refinement
study, i.e., approximate the exact solution (92) on a sequence of successively more fine grids. In so
doing, the time step for the two second-order schemes (93) and (94) is always reduced with the same
rate as the corresponding spatial sizesand#,; and the time step for the fourth-order scheme (95)
is reduced twice as fast (i.e., by a factor of four every timend#, are reduced by a factor of two) so
that to demonstrate the fourth-order overall convergence in the end. The computations in each case wer
run till the dimensionless time= 200-d/c, i.e., for 200 times the time interval required for a wave to
cross the domairs(¢). This certainly qualifies as “long term” from the standpoint of any conceivable
application.

The actual parameters that we have used for our simulations are the followviadZ = =, d = 1.8,
c=1, k=01, « =0.8. The spatial grid is composed of square ceNs:= N, and consequently,

h, = h, = h. The actual grid dimension&, x 2N, are: 64x 128, 128x 256, and 256« 512. The
temporal partition size 2, see (32) and (33), is found from (64) once the other parameters have
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been set. The functio® (z), as well asQ(r), on the intervals of their variation from 0 to 1 are
built as polynomials of degree 9 (with only odd powers included), as suggested in the beginning of
Section 2.2. This guarantees four continuous derivatives in transition to the constant (either 0 or 1).
The function x (¢) is defined as followsy (1) = (1 + %sint)R(l —t/(2r)), where R(¢) is, again, a
polynomial of degree 9 that decays smoothly from 1 to O on the intddvd] and thus provides
four continuous derivatives, see Section 2.2. Finally, the actual algorithm used for computations is
the version described in Section 3.3. In the radial directiprinstead of the conventional Fourier
transform we use expansion with respect to the corresponding discrete eigenfunctions calculated
numerically.

In Fig. 3 we show error profiles (more precisely, the logarithm of the relative error on the dSimgin
in the maximum norm as it depends on the dimensionless time) on all three grids for both second-
order schemes (93) and (94). In Fig. 4, similar curves are shown for the fourth-order scheme (95).
From these figures we conclude that indeed no error is accumulated in the course of computations
because all error profiles are flat throughout the entire-200 time interval. Thus, the solution does
not deteriorate as time elapses. Fig. 3 also shows that every time the grid is refined by a factor of
two the error drops by approximately a factor of four, which indicates the second-order convergence.
Similarly, Fig. 4 shows that every time the grid is refined by a factor of two the error drops by
approximately a factor of sixteen, which is an indication of the fourth-order convergence. Consequently,
we can conclude that numerical experiments fully corroborate the theoretical design properties of the
algorithm.

Lacunae-based (2,2) cell-centered scheme Lacunae-based (2,2) node-centered scheme
-4.0 : -4.0 : . ,
-45 ] -45 | J
A A A A AAAAAAAAAASAAAAAA AN AAAAAAASAAAANAAAAAS NAAAAAAASAAASAAAAAAAAANAMAAMAAMAAAA A AAASAA AN
50 | ] -5.0 | J
—— 64x128 grid _ —— 64x128 grid
T 55L o——o 128x256 grid J 5 -55F e——o 128x256 grid |
5 I_ *—— 256x512 grid 5 *— 256x512 grid
: s .l _
E -6.0 ; E -6.0 R R -
e £
S 65 ] = 65 _
-7.0 . -7.0 [ _
75 F 75 F KK KKK KKK KN
-8.0 ‘ L L -8.0 L L '
0.0 50.0 100.0 150.0 200.0 0.0 50.0 100.0 150.0 200.0
Dimensionless time Dimensionless time
(a) (b)

Fig. 3. Grid convergence study for the long-term integration of the wave equation. (a) The second-order
scheme (93). (b) The second-order scheme (94).



V.S. Ryaben'kii et al. / Applied Numerical Mathematics 38 (2001) 187-222 217

Lacunae-based (2,4) node—centered scheme

-5.0
-55 ¢

o9 \\ANV\ANVV\AAMAN\/\ANVWV\MNV\/\N\NVW\N\/\NWAN\/\ANV\N;
-6.5 ¢ M
70 | ]
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95 |
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_105 |
~11.0
_115 [
_120 |
_125

0

Ln [relative error]

L L |
.0 50.0 100.0 150.0 200.0
Dimensionless time

Fig. 4. Same as Fig. 3 for the fourth-order scheme (95).

5. Possible generalizations

First, let us note that the assumption of homogeneity of the initial data (2) can be alleviated and
replaced by a weaker requirement

dp(x,1)
8t =0

wheregg(x) andg; (x) are sufficiently smooth functions that turn into zero outside the doS@j,—o =
S(0).

Further, as has been mentioned the requirement of smoothnesécfan throughout the entire space-
time (x, r) along with consideringf (x, t) # 0 only for ¢ > 0 actually implies thatf (x, r) and its first
several derivatives with respect #dave to vanish as— +0. This condition can also be alleviated by
requiring that the functiorf (x, 1), suppf (x, t) C S(t), be smooth only for > O rather than on the entire
space-timeR3 x (—oo, 00). The resulting Cauchy problem, which appears somewhat more complex, can
actually be reduced to problem (1), (2) if one represents the solution to the new problem as a sum of two
functions:

@(x,1)|1=0 = @o(x), = @1(x),

px, 1) =0(x, 1)+ ¢(x,1).

The functiong(x, t) will be a solution to the Cauchy problem with the given non-homogeneous initial
data and the right-hand sidé(x, 1) = ©(¢) f (x, t) that turns into zero for > 1. The functiong(x, t)
will be a solution to the problem

%9 ,(0%  3%p 0%
PR A — - - — | = , 1) — F , 1), t 20,
0z ¢ (axf ax§+ax§> f&.6) = F(x.0)
(96)
_ d¢
—o=—| =0.
@li=0 ot |, o




218 V.S. Ryaben’kii et al. / Applied Numerical Mathematics 38 (2001) 187-222

Problem (96) is obviously of the type (1), (2). The problemd@@x, ) needs to be solved only till some
t = tg, after whichg(x, r) = 0 whenx € S(¢) because of the presence of lacunae in the solutions of the
three-dimensional wave equation.

Appendix

There are multiple problems in mechanics and physics that involve a wave propagation process of some
kind as at least one key element. Therefore, an efficient numerical method for computation of waves on
long time intervals with uniform error bounds, such as the one described in the paper, is important for
various applications. As a specific example, let us consider the Euler equations of motion of inviscid
compressible fluid written with respect to some inertial frame of referéncg:

ap

— +V =0,

8t+ (pv)

ov

,oa—i—p(vV)v—l—Vp:O, (A.1)
e

,OE‘F,OUVE-Fva:O,

where p is the density,p—pressureg—internal energy, anad is the velocity vector; the system of
equations (A.1) should also be supplemented by the equation of state. Let the new frame of reference
(x’, t") move with respect to the old one with the given velogity= uq(¢) so that the new coordinates
be connected with the old ones via the Galileo transform:

t

x' =x- /uo(G)dQ, t'=t. (A.2)
0

Note, for simplicity we assume only the translational motion of coordinate frames with respect to one
another; but rotational motion can also be taken into account. Denoting the velocity vector in the new
coordinates by, we obviously have = uo+ u. Then, applying the transformation (A.2), we can rewrite
Egs. (A.1) in the new coordinates:

ap
o V'(pu) =0,

auo

ou , ,
p—+p(uV)u+Vp=—pW,

- (A.3)

ae , ,
pg—i—puVe—l—qu:O.

The nonhomogeneous term on the right-hand side of the momentum equation in (A.3) accounts for the
acceleration of the coordinate system because the new frame of reference is, generally speaking, n
longer inertial (unlesgq = const).

In practical terms, the transformation (A.2) may correspond, for example, to a maneuvering aircraft,
whereug(t) is its full velocity at a given momemt Egs. (A.3) will then correspond to the description
of the flow around the aircraft in the frame of reference that is connected with this aircraft. The term
—p(Qug/0t’) represents forces due to the translational acceleration of the coordinate frame. As has been
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mentioned, Coriolis-type accelerations can also be accounted for, but this is not essential for the current
general purposes.
Let us now consider stationary fluid in the original frame of reference:

0=, p=7, £ =F, v=0. (A.4)
In the new coordinate system the stationary solution (A.4) obviously becomes
p=07, p=7, £=¢, u=—uqg. (A.5)

Linearizing Egs. (A.3) against the solution (A.5), which is constant across the space for any particular
time, we obtain

)

—p—uov/p—i—V/u:O,

or' (A.6)
du , ,

W—(ro)u—l—Vp:O.

The quantitiesp andu in (A.6) denote the perturbations with respect to the corresponding background
values given in (A.5). To actually perform the linearization, we need to assume that the fluid motion
is adiabatic and that the foregoing perturbations are small; then, retaining only the first-order terms
with respect to the perturbations, we arrive at Egs. (A.6). Linear equations (A.6) are natural to use for
describing the fluid flow in the far field, i.e., far away from the source of perturbations, which would
be the aircraft in the example mentioned previously. We emphasize that the external acceleration term in
Egs. (A.6) has dropped, and Egs. (A.6) actually look exactly like the equations of advective acoustics with
the background velocity, that may depend on time. This means tinet process of propagation of small
perturbations from an accelerating source in the far field is quasi-statiorergyery given moment of
time ¢ these perturbations behave like the perturbations from the source with the instantaneous speec
uo(t).

As has been mentioned, one can use linear equations (A.6) far away from the source of perturbations.
Let us assume that there is a sufficiently large Salbf diameterd centered at the origin’ = O that
fully contains the source of perturbations (aircraft) and such that linear homogeneous equations (A.6)
hold outsideS’. Inside S’ the flow needs to be described by a more complex model, e.g., the original
Euler equations supplemented by the proper boundary conditions on the solid surface, or even more
sophisticatedHowever, for the purpose of describing the far field, this complex interior model can be
simply replaced by the right-hand sides to E(%.6) that would be concentrated insid®. Formally,
this is very easy to do. Assuming that we know the flow solution throughout the space (if there is an
immersed configuration like aircraft contained §h we can use any smooth extension inside it), we
simply substitute it into (A.6) and thus generate inhomogeneities irfside

a
a—p, —uoV'p+Vu=g(x,1t),
! (A.7)
au / / / /
g—(u()V)u+Vp=g2(x,t).

This approach, of course, cannot (and need not to) be actually applied in practice, as it requires an a prior
knowledge of the solution. For the current description, however, this is not ess@ntis@mphasis here

is rather on giving an example of motivation for the development of a non-deteriorating algorithm for
long-term numerical computation when the source terms are assumed known.
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On one hand, the latter problem is important and interesting by itself from the standpoints of both
theory and applications, for example, when flow perturbations are generated not by an immersed
configuration (e.g., aircraft) but rather when the linearized flow equations are driven by known
guadrupole-type sources that are often used for describing turbulence-generated noise. On the other han
as shown by Ryaben’kii in [6,8], a universal constructionuoteady artificial boundary conditions
(ABCs) for the near-field computations in fact reduces to the generation of appropriate right-hand sides
to the far-field equations, and then solving the resulting linear nonhomogeneous problem throughout
the space-time. We note that the term “ABCs” is generally used for external boundary conditions that
serve as a closure to the truncated problem for the purpose of solving it numerically once the original
problem is formulated on an unbounded domain, see [11]. The aforementioned appropriate right-hand
sides that are built in [6,8] turn out to be concentrated insfdeext to the external artificial boundary
9S’. Thus, the numerical solution methodology that we refer to above is needed for constructing the
ABCs as well.

The work by Ryaben’kii [6,8] treats the problem of unsteady ABCs in the finite-difference framework
andprovides a general recipe for constructing such boundary conditions using the concept of difference
potentials(see [3-5,7]). The ABCs of [6,8] can be applied to different problems in various fields of
scientific computing. In this paper we do not discuss the issue of ABCs per se. We, however, reiterate
that an integral part of any ABCs of type [6,8] is a linear solver for nonhomogeneous equations with
known right-hand sides. Thus, to implement the general methodology of [6,8] in a specific important
case of long-term computations, we need to be able to numerically integrate linear equations with known
right-hand sides over long time intervalBhe corresponding technique for wave radiation solutions is
the focus of the analysis in this paper.

Returning to the previous example with the linearized Euler equations, we simply assume the functions
gi1(x’,t") and g,(x', "), see (A.7), to be known, sugp(x’,t’) C S’ x [0, +00) and supg,(x’,t') C
S" x [0,+00); 8" ={x'| |x'| <d/2}. In Egs. (A.7), let us now change the independent variables back,
i.e., from(x’, t) to (x, 1), see (A.2):

t

2—]Z+Vv=g1<x+/uo(9)d9,t> = fulx, 1),

0 (A.8)
0
8—:+Vp=gz<x+0/uo(9)d9,t> = falx, 1),

where p andv in (A.8) denote the perturbations with respect to the corresponding background values
given in (A.4). Clearly,

suppfi(x,t) C {(x,7) | x € S(t), t >0},

(A.9)
suppfo(x, 1) C {(x,1) | x € S(r), t > O},
where S(¢) is a ball of variablesc defined by relation (3). Thus, Egs. (A.8) can be interpreted as the
equations of ambient acoustics driven by moving sources, at every given moment of time the sources are
concentrated in the ball(z), see (3), of diametef centered ak(?).
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To further simplify our considerations, let us assume that the velocity fiddds a potentiay =
@(x,1) so thatv = Vg. Then, we also have to assume tBat = v (x,1): f,(x,t) = Vi, obviously
suppy(x, 1) C {(x,1) | x € S(¢), t > 0} (see (A.9)). In so doing Egs. (A.8) transform into:

9
8—]; + Agp = fi(x, 1),
(A.10)
dg
V(E-i‘p—lﬁ) =0.

Clearly, the second equation of (A.10) implies that the expression in brackets is a function obtifge
Using the existing uncertainty in the definition @f(v = V¢ and therefore an arbitrary function of time
can be added tp), we can always assume that
0
-§+p—w=0 (A.11)
OutsideS(r) Eg. (A.11) obviously translates into the standard definition of the poteptial—a¢/dt.
Differentiating (A.11) in time and substituting the expressiondpyd: into the first equation of (A.10)
we recover the nonhomogeneous wave equatiop er ¢):
32 )
——f+A(p:f1(x,t)+—w(x,t)zf(x,t). (A.12)
ot ot
Eq. (A.12) is the wave equation driven by a moving source: gupp:) C {(x,1) | x € S(#), t > 0}. It
is practically the same as equation (1) except that in (A.12) the (dimensionless) speed of sound is equa
to one.
To conclude, we should mention that besides acoustics (linearized Euler's equations), the lacunae-
based algorithms can be built and likely prove useful for electromagnetics (Maxwell's equations) and
elastodynamics (Lame’s equations).
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