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When solvinglinear scattering problems, one typically first solves for the imping-
ing wave in the absence of obstacles. Then, using the linear superposition principle,
the original problem is reduced to one which involves only the scattered wave (which
is driven by the values of the impinging field at the surface of the obstacles). When the
original domain is unbounded, special artificial boundary conditions (ABCs) have to
be set at the outer (artificial) boundary of the finite computational domain in order
to guarantee the reflectionless propagation of waves through this external artificial
boundary. The situation becomes conceptually different when the propagation equa-
tion is nonlinear. In this case the impinging and scattered waves can no longer be
separated, and the problem has to be solved in its entirety. In particular, the boundary
on which the incoming field values are prescribed should transmit the given incoming
waves in one direction and simultaneously be transparent to all the outgoing waves
thattravelin the opposite direction. We call such boundary conditiensvay ABCs
In the paper, we construct the two-way ABCs for the nonlinear Helmholtz equation,
which models a continuous-wave laser beam propagation in a medium with a Kerr
nonlinear index of refraction. In this case, the forward propagation of the beam is
accompanied by backscattering, i.e., generation of waves in the opposite direction
to that of the incoming signal. Our two-way ABCs generate no reflection of the
backscattered waves and at the same time impose the correct values of the incoming
wave. The ABCs are obtained in the framework of a fourth-order accurate discretiza-
tion to the Helmholtz operator inside the computational domain. The fourth-order
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convergence of our methodology is corroborated experimentally by solving linear
model problems. We also present solutions in the nonlinear case using the two-way
ABC which, unlike the traditional Dirichlet boundary condition approach, allows for
direct calculation of the magnitude of backscattering 2001 Academic Press

Key Words:artificial boundary conditions (ABCs); two-way ABCs; radiation;
Helmholtz equation; nonlinearity; nonparaxiality; fourth-order schemes; self-
focusing; backscattering.

1. INTRODUCTION

The Helmholtz equation

92 92
AE(X4, ..., X KE=0, A= 4 d —0 1
(X1 p) + ax%‘l’ +ax% 1)

models time-harmonic wave propagation in dimensions. The simplest case is when
k = ko, which corresponds to propagation of waves through a homogeneous medium.
example, in opticE is the electric fieldkg = wohp/C is the wavenumbedy is frequency,
Np is the (linear) index of refraction of the medium, anid the speed of light.

In many applications, one wants to solve Eq. (1) in the presence of animpinging wave f
and boundaries, which can be either surfaces of obstacles or interfaces between diffi
media. The source of the impinging wave is prescribed by a relation of the form

Einc = Ei?uc on 2:source (2)

whereXsourceCan, for example, be a point (i.e., a point source) or a plane (i.e., a plane wa
andEQ . is given. The physical properties of surfaces and/or interfaces, i.e., how they har
the impinging wave in terms of propagation through and/or reflection, are givénday

operator relations of the form
L[E] =0 on Yinterface (3)

For example, ifZinertaceiS the surface of a perfect conductor, then (3) reduc&s o0 on
Sinterface (total reflection).

Since Egs. (1)—(3) are linear, one can solve the scattering problem in two sequer
stages as follows. The solution is split into two components

E= Einc + Escat

At the first stage one solves for the incoming wave filg, which is the solution of
Eq. (1) inRP in the absence of any obstacles and/or interfaces, driven by the known soL
term (2). Typically, one can write this solution explicitly as a superposition of plane and
spherical waves. Then, at the second stage, one solves for the scattered wakig.field
which satisfies Eq. (1) with no sources, subject to the boundary condition

L[Escaﬂ = _L[Einc] 0N Xinterface
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which directly follows from (3). In the process of solving numerically .., one has
to replaceR® with a bounded computational domain. In doing so, one needs to introdu
the artificial boundary conditionfABCs), see [34], which make the boundary transparen
for outgoing waves and guarantee the solvability of the truncated problem on the fir
computational domain, such that the computed solution is close to the original infini
domain solution.

In addition to the simplest cake= ko, there are numerous applications where the mediur
is nonhomogeneous, i.&k,= k(xy, ..., Xp). In this case, one may also need to solve for
the incoming fieldEj,c numerically (using ABCs), rather than analytically. However, as thi:
problem is linear as well, one can still employ the linear superposition principle and th
solve first forEj,. and then forEgcas

In the current study, we consider a more complex case whalso depends on the field
intensity, i.e.k = k(wo, |E|?). For example, the propagation of an intense continuous-wax
(cw) laser beaithrough a Kerr-type medium such as water or silica, is described by Eq. (
with k? = k3(1 + €|E|?), wheree = 4eocn, andn in the Kerr coefficient (e.g., [4, 21]). In
this case, beam propagation is governed by the nonlinear Helmholtz equation (NLH)

AE+KE=0, kK*=K(1+e€EP. (4)

We note that the natural definition of the index of refraction is in the frequency domain.
the time domain, the cubic nonlinearity becomes a nonlocal convolution, which, in the c:
of almost-monochromatic wavepackets, reduces, to leading order, to a cubic nonlinea
see Section 8.7 and Ref. [8] for more details. Because of the nonlinearity in the equa
of propagation (4), the componeris,. and Esc,; can no longer be decoupled as in the
linear case. From a numerical point of view, this nonlinear coupling adds a new twist to 1
construction of the ABCs, since the Kerr medium interface2t0 is required to transmit
Einc in One direction and, at the same time, trandRit,in the opposite direction. Deriving
and implementing thisvo-way ABQn the discrete nonlinear framework is a key emphasic
of this study.

2. PHYSICAL MODEL

Although our numerical approach is quite general, in order to motivate the presentat
we relate it to a specific physical problem, namely that of an intense laser beam propage
through a nonlinear Kerr medium. The Kerr medium is located in the half-spac6;
the directions of increasing and decreasirage called right and left, respectively; and the
wave source in the model is a right-traveling beam, impinging on the Kerr mediziea &t
Therefore, the only physical boundary in the model is the transverse two-dimensiongl
plane atz = 0. For simplicity, we assume that the input beam is radially symmetric in tt
transverse plane and denote the transverse coordinate-by x? + y2. For the purpose of
solving the problem numerically, the original unbounded physical domaireG< +oc is
replaced with the truncated domain0z < zynax Therefore, the left computational bound-
ary atz = 0 coincides with the Kerr medium interface, and the right computational boun
ary atz = znax is a far-field artificial boundary. The desired behavior of the solution at th
boundariez = 0 andz = z,a is described in the remainder of this section.

2 A cw laser beam is a time-harmonic monochromatic wave, as opposed to, say, pulses and wave packets
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2.1. Two-Way Propagation of Waves at Media Interface

At z = 0, the electric fieldE has both incoming and backscattered components. Tt
value of the incoming wave upon entering the nonlinear medium is given by

Einc(r, 0) = E2. (). (5)

The backscattered field at= 0 cannot be known ahead of time, because backscatter
waves originate inside the domain and subsequently propagate toward the left boun
(see Section 7.1.1 for more details). The simplest formulation of the problem, which is
one used in this study, is to require that the boundary0 be completely transparent to
all backscattered waves. Consequently, the two-way ABC=a0 has to ensure the reflec-
tionless propagation of backscattered waves through the boureleagdi@tion boundary
condition) and at the same time correctly prescribe the incoming signal (5).

The main idea in our implementation of two-way ABCs is the following. The overa
solution E is composed of outgoing wavds,,; that propagate through= 0 with no
reflection, and an incoming wa\&,, which is prescribed a = 0. Assume that outgoing
wavesE,,; satisfy a homogeneous boundary condi&fh,,; = 0, whereB denotes a linear
nonreflecting boundary operator. The incoming wdg cannot satisfy this boundary
condition, because otherwise the solutiBrwould not be unique. Therefore, if we apply
the operatoB to E = Egyt + Einc, We obtainBE = BEq; + BEjnc = BEijnc # 0. Since
the incoming wavek, is given [see (5)], we see that the nonhomogeneous relBtioa
BEi,c can serve as a two-way ABC with the desired properties. In the present study
implementation of this idea is carried out through linearization in an iterative framewo
with subsequent analysis of the linear problem in Fourier space. A detailed descriptiol
the procedure is given in Section 4 for the continuous formulation of the problem, and
Section 6 for the discrete formulation of the problem.

Our construction of a two-way ABC is based on the assumption of reflectionless pro
gation of all left-going waves, as well as the incident right-going wave, thraugto. A
more accurate physical model should, of course, include reflections from the media in
facez = 0, because the linear index of refraction can be discontinuous across this inter
(see Section 8.2 for more details). These reflections can result in different values of
incoming wave field on two sides of the interface, iEjc(r, —0) # Ejc(r, +0). In the
current study we disregard this effect, which can be interpreted as either consiBfging
of (5) to be the part of the incoming wave that has already been transmitted pastibe
interface, or assuming continuity of the wavenumber across the interface. Similarly,
neglect the reflection of backscattered waves by the media interface @t In Section 8.2
we briefly comment on how one can incorporate a reflecting interface (i.e., discontint
in k atz = 0) in the methodology that we are building. In fact, we consider this one of tt
future extensions of our current work.

2.2. Behavior as z— 4+

Basically, az — +o00, we require thaE have no left-propagating components. In this
study we assume that at large distances propagation is diffraction-dominated and the
amplitude decays to zero, i.e., imy, MaX<r < |E(r, 2)| = 0, so that

lim k? = k3.

Z— 400

Therefore, at large’s the solution is a linear superposition of right-traveling waves.
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As mentioned, the simulation is carried out on a truncated domairz(< 7, (See
Sections 5 and 6). Therefore, the desired behavior of the solutiarn-astoo has to be
captured by a far-field ABC at the artificial boundary= znhax. This boundary condition
should guarantee the reflectionless propagation of all the waves traveling towasebo.

3. PARAXIAL APPROXIMATION

Most research on wave propagation in a Kerr medium has been carried out in
framework of the nonlinear Sabdinger equation (NLS), rather than the NLH. We now
briefly describe how one derives the NLS from the NLH and quote some results
wave propagation in the NLS model. For more information on NLS theory, see, e.
[10, 21, 31, 32].

For reasons that will become clear, we consider the NLIRGrwith a general power-law
nonlinearity

AE +KE =0, k*=Kk5(1+€lE|®).

We denote the axial coordinate by= xp and assume radial symmetry in the transvers
plane of the firsD — 1 coordinates, i.e.,

E=E(,2, r=/x+---+x3_;.

We also separate the slowly varying envelgpfom the fast oscillations, and we introduce
the nondimensional variables

z
2Lpg’

E = (rokove) Y7 expliko2) ¥ (F,2), F = rL 7=
0

whererg is the initial beam width antl pr = korg is the diffraction length. After dropping
the tildes, the equation for the amplituge in nondimensional form, is given by

Vpzz + V2 + ALY + Y ¥y =0,
where the transverse Laplacian is

_a2+ 92 092 D-209
S ax3_, or2 rooar

Ynp = (m) .

In typical physical setups the beam widthis much larger than the wavelengthwhich
implies that O< ynp < 1 (or, equivalently, in dimensional variables, that, < ko).
Therefore, it is customary to employ tiparaxial approximationi.e., neglect thempy;,
term. In that case, NLH reduces to the nonlinear 8dimger equation (NLS):

Ay

)

and

Y2+ ALy + Y|Py =0. (6a)
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The NLS is an evolution equation whez@lays the role of “time” and the initial condition
is given atz =0 for allr:

¥(r, 0) = EQ.(r). (6b)

Therefore, under the paraxial approximation one approximates a boundary-value prot
for the NLH with an initial-value problem for the NLS. Since the NLS accounts only for th
forward-propagating wave, backscattering effects are neglected in this model. The que:
arises, therefore, whether and how the results of the NLS model remain valid at the N
level, or alternatively, how these results are affected by backscattering. As of yet, alrr
no rigorous studies of these issues have been conducted. We therefore hope that the ¢
study, which focuses primarily on developing a computational methodology for solving t
NLH, will provide a means for numerically comparing the NLH and the NLS in the future

Let us now proceed with describing some specific results in the NLS model which
interesting to look at in the framework of the NLH.

3.1. Critical Self-Focusing—Arrest of Collapse

We recall that the focusing NLS (6a) is callsabcritical, critical, or supercritical when
o (D — 1) isless than, equal to, or greater than 2, respectively. It is known that the solutic
of both critical and supercritical NLS can actually develop singularities, i.e., blow up,
a finite z. There is, however, a marked difference between these two cases, as nea
singularity nonlinearity dominates over diffraction in the supercritical case, while the
are of the same magnitude in the critical case. As a result, unlike the supercritical c:
singularity formation in the critical NLS is highly sensitive to perturbations, which ca
arrest the blowup even when they are small [10, 11]. In this paper we focus on the crit
case, which corresponds to the physical self-focusing:(1 andD — 1 = 2). In that case,
solutions of the NLS can become singular (i.e., blow up) after finite propagation distan
provided that their initial powerl(> norm) is above a certain threshd\j, which is called
the critical power

The observation that the paraxial approximation breaks down near the singularity
been already noted by Kelley, in his celebrated paper on self-focusing [16]. Feit and FI
[7] were the first to demonstrate that nonparaxiality of the beam can arrest the blowup
showing numerically that initial conditions that lead to singularity formation in the NLS re
sultin focusing—defocusing oscillations in the NLH. In these simulations, however, they (
not solve a true boundary-value problem for the NLH. Instead, they solved an initial-val
problem for a “modified” NLH that describes the right-going wave only (while introducin
several additional assumptions along the way). Akhmediev and collaborators [1, 2] analy
an initial-value problem for a different “modified” NLH; their numerical simulations alsc
suggested that nonparaxiality arrests the singularity formation. Both numerical approac
([7] and [1, 2]), however, failed to fully account for the effect of backscattering. Fibic
[9] applied asymptotic analysis to derive an ODEziffor self-focusing in the presence
of small nonparaxiality. His analysis suggests that nonparaxiality indeed arrests the sir
larity formation, resulting instead in decaying focusing—defocusing oscillations. Howev
backscattering effects were neglected in this asymptotic analysis.

Since there are no singularities in nature (i.e., the laser beam continues to propa
beyond the NLS blowup point), a natural question is whether initial conditions that lead
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blowup in the NLS correspond to global solutions of the corresponding NLH. To the be
of our knowledge, the very issue of the solvability of the NLH still remains unresolve
including the critical case (D — 1) = 2. Therefore, we are interested in solving numeri-
cally the critical NLHas a true boundary-value problerm order to address this question.
Another issue of interest in the critical case is calculating the amount of power which
backscattered for beams which do not blow up in the NLS model. We note that at pres
there are no data coming from either analysis or numerical simulations, on the actual ex
of backscattering, besides the general notion that it should be small.

In order to simplify the calculations, we consider the critical NLH with= 2 ando = 2,
ie.,

2 92
{azﬁarZ} E(zr)+k’E =0, k®=Kk3(1+¢|E|Y), (7)

which corresponds to the critical NLS

iV, + Y + Y% = 0. (8)

Based on the insight gained from NLS theory, we can expect that the results for the crit
NLH with D = 2 ando = 2 would also apply for the critical NLH witld = 3 ando = 1.

4. NONLINEAR ITERATION APPROACH

In this section we use a continuous formulation to outline and motivate the iterati
numerical approach that we adopt in this study for solving the foregoing nonlinear we
propagation problem. The actual derivation, however, is done completely at the disci
level in Sections 5 and 6.

We are interested in solving the NLH (7) in the half-space 0, subject to boundary
condition (5) for the incoming field, decay in the transverse direction

lim E(r,z) =0,
r—o0o
and radiation conditions @& = 0 andz = +oo for the outgoing waves, as discussed in

Sections 2.1 and 2.2. We build the iteration algorithm as follows. First, we defitiadiae
version of the problem as

Le[E] =0, ©)
where
Lg = ’ .2 2(1+€F(r,z 10
F_|:E W]_'_k()( +eF(r, 2), (10)

F(r, 2) is a given function, an& satisfies the same boundary conditions as in the nonline:
problem. Then, we find the solution of the nonlinear problem (7) using the iterations

Lew [E™Y] =0, F"=|E™|* forn=0,1,2,..., N, (11)
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with the initial guessE©(r, z) = 0. Since there is no rigorous theory that guarantees t
convergence of algorithm (11), our simulations (see Section 7) serve as a numerical tes
the convergence of these iterations. In Section 8.3 we briefly discuss alternative approa
to the nonlinear iterations.

We note that iterative approaches have been used previously in numerical simulat
of problems over infinite domains, although in completely different settings; see, e.
[12, 13, 22].

4.1. Iterative Solution of the Variable-Coefficient Linear Equation
In general, one can use any linear Helmholtz solver to solve equation (11) with resy
to E™D while keepingF ™ frozen. In this study we solve (11) also iteratively as

Lo[E™P] = —ek§F™ - E™ form=0,1,2,..., M(n), (12)

where
92 92
Lo=|— + — 2.
0 {822+ar2}+k°

Note that the functiorr ™ does not change in the course of the iterations (12).
By rewriting formula (12) in the form

EM+D _ '—61 [—EKSF(H) . E(m)] ,

we see that it formally corresponds to the standard fixed point iteration scheme. Theref
these iterations are more likely to converge when the right-hand side (RHS) is small.
note that this occurs whesF™ « 1, i.e., when the nonlinearity in the NLH is weak
(k? ~ k3). We can expect this to be the case in physical self-focusing for the followir
reason. The Kerr coefficient of the mediumnis so small that even for intense laser beams
upon entering the nonlinear mediueEY, |* <« 1. In the framework of the NLS model, if
the initial beam power is above the threshold for collapse, the nonlinear contribution to
index of refractiore | E|? [see (4)] would eventually become comparable to the lineangne
However, the asymptotic analysis in [9] suggests that nonparaxiality arrests self-focus
whene|E|? « 1. As a resultk? ~ k3 for all z > 0.

4.2. Direct Solution of the Constant-Coefficient Linear Equation

At each iteration of the inner loop (12), we solve a linear constant-coefficient equati
of the form

LoE = (1, 2), (13a)
where the RHSbD is given by
® = —cksF™ . EM, (13b)

Equation (13a), withd given by (13b) and subject to the boundary conditions discusse
above, is solved in the following way. We use Fourier decomposition in the transve
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direction for the solutiorE, the RHS®, and boundary dat&2(r):
E(r,2) = Zu' (z) coglr),
|
o(r.2)= > f'(2)codlr), (14)
|
E.(r) = Z ud! coglr).
|

Because of the orthogonality of the Fourier modes ) #treFourier moda' () of E(r, 2)
satisfies the ordinary differential equation

U2+ U@ = '@, K=K-1% (15)
subject to the Dirichlet condition for the right-going wavezat 0 [cf. (5)],

0,1
uznc(o) = Uincs (16)

aradiation condition for the left-going wavezat= 0; and a radiation condition at= +oc.

Itis at this level, i.e., after the separation of variables, that we implement the two-way Al

atz = 0 and the radiation boundary conditionzat +o0. For that, we use the concept of

the one-way Helmholtz equatiofs.

4.2.1. One-way Helmholtz equations and the radiation principEguation (15) admits
two linearly independent eigenfunctiong? = &vKZ andu®? = e VK7, Whenk? > 0,
u® = ¢kiz s the right-propagating wave ant® = e %12 js the left-propagating wave,
whereas whek? < 0,u? = e~IZjsthe right-decaying (evanescent) wave afftl= ez
is the left-decaying (evanescent) wave. Therefore, the one-way Helmholtz equations
each admits only one of the two eigenfunctions while prohibiting the other one are

U, —i/keu = 0, (17a)
U, +i/keu =0, (17b)

Equation (17a) corresponds to the right-traveling or right-evanescent wéyeand
Eq. (17b) corresponds to the left-traveling or left-evanescent wete

As mentioned at the end of Section 2.2, for the purpose of numerical solution we trunc
the infinite domain [0 +o00) in zand reduce it to the finite interval [@ya4]. The one-way
Helmholtz equations (17) can be used as boundary conditions for Eq. (15) on the inte
[0, zmad- Indeed, if we want to make sure that near both edges of the interyval,[Q]
the solution is only composed of outgoing waves, then we need to use relation (17a) as
boundary condition at = zy,4 and relation (17b) as the boundary conditioz at O:

Uz - | \/ k|2l.l = O atz = Zmax, (183.)
U +i\/u=0 atz=0. (18b)

3 The term “one-way wave equation” was apparently first introduced by Trefethen and Halpern in [33].
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Clearly, as the boundary conditions (18a) and (18b) each eliminate one of the two eic
functionsu® andu®, the homogeneous version of Eq. (15) on4@a (i.e., whenf' = 0)
with these two boundary conditions is only satisfied by the trivial solution. Consequen
the nonhomogeneous Eq. (15) with boundary conditions (18) is uniquely solvable for :
RHS f concentrated on the interval,[B,ax]. From the standpoint of physics, the resulting
solution is only composed of waves due to sources located insidgdQ, which radiate to
the right and to the left, and contains no incoming waves from sources outside this inter
A solution of this type is said to satisfy tmadiation principle

4.2.2. Adding the incoming powerAs mentioned above, for the particular problem that
we are studying we also need to prescribe the incoming waze=a, i.e., complement
the radiation boundary condition (18b) for the left-traveling waves-at0 with a Dirichlet
boundary condition (16) for the given right-traveling wave, which altogether will yield th
two-way ABC. In the continuous framework, this can be done as follows. The incomi
wave (16) gives rise to a solution of the fouﬁqf:ei Viz, Substituting this expression into
the one-way Helmholtz equation (17b), we arrive at the following inhomogeneous relat

Uz + i \/%u = 2i\ /K VK7 0L (19)

As in the case of any inhomogeneous linear differential equation, the general solutiol
Eq. (19) can be written as a sum of the general solutjpio the corresponding homogeneous
equation (17b) and a particular solutiopto the actual nonhomogeneous Eq. (19):

We may pick the particular solution as the one generated by the incoming wave,
u® e vz and the general solution to (17b) is obviously giverpy= const. e=v/2,

4.2.3. Obtaining the overall solution.In order to add the incoming power to the radi-
ation solution, we replace the homogeneous boundary condition (18b) with relation (
interpreted as a boundary condition at the left edge of the interval:

Uz +i \/Eu =2 \/Eu%'c atz=0. (20)

This implies that the overall solution will satisfy Eq. (15), subject to boundary conditic
(18a) atz = znax and boundary condition (20) at= 0. Indeed, by the linear superposition
principle, the overall solution can be written as the radiation solution with the incomil
power addedy = Uragiation+ USeM?, where Uragiation Satisfies (15) and (18). Boundary
conditions such as (20) are sometimes referred tmla@mogeneous radiation boundary
conditions[17]. A similar derivation in the finite-difference framework is presented ir
Section 6.5.

4.3. Nested Iterations

In summary, our solution algorithm consists of two nested iteration loops. On the ou
loop (11) we perform iterations with respect to the nonlinearitynfer 0,1, 2, ..., V. On
the inner loop (12) we solve the linear equation with variable coefficients (which we obt:
at each nonlinear iteration) fon =0, 1, 2, ..., M(n). The numbers\t = M(n) andN,
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at which we terminate the inner and outer iteration loops, respectively, are determi
experimentally in the course of iterations.

Our particular choice of solver for the linear variable-coefficient equation (11) is mof
vated by the following two reasons:

(1) The inner loop iterations (12) require inverting a lineanstant-coefficierdperator
(which is the discrete analogue tg) rather than a variable-coefficient one. As a result
the inversion can be performed by a direct method that involves separation of variables
LU decomposition. Moreover, the implementation of the radiation boundary conditior
including the two-way ABC at = 0, is particularly convenient to do with the operaltgr

(2) If we used some other linear Helmholtz solver, on each outer loop iteration (1
we would have had to invert a different linear operates. However, using our particular
linear solver involves repeated inversion of the same operator throughout both inner an
outer loops This implies that the actual inversion can be performed only once in the ve
beginning and then the inverse operator, which is stored in memory, can be applied repea
to the changing right-hand side. From the standpoint of numerical efficacy this is benefi
because the inversion of the discretizedamounts to performing LU decomposition of a
family of sparse matrices obtained after the separation of variables. The result of the
decomposition is also sparse, hence its application to a given right-hand side has only li
complexity. Since the number of iterations required for convergence is large (see Sectiol
this yields substantial savings of computer resources.

5. DISCRETIZATION

We integrate the linear constant-coefficient equation (13) on a Cartesian grid of variat
(r, 2) in the finite rectangular computational domainf@.,] x [0, Zmax]- Since the original
physical domain stretches all the wayzte- +o0, at the artificial boundaryg = zyaWe set
a radiation boundary condition that guarantees the reflectionless propagation of right-gc
waves (see Section 6). On the physical boundaty0 we set a two-way radiation boundary
condition that similarly guarantees the reflectionless propagation of left-going backscatte
waves and also correctly prescribes the right-going incoming signal (Section 6). For
transverse direction, we assume that the solution vanishes atryay

E(rmax, 2 =0, z>0. (21)

Physically, this condition amounts to having a conducting surface-at 4%, Which acts
as a perfect reflector. Therefore, we makg; sufficiently large so that reflections from this
boundary do not contaminate the solution in the primary region of interest ned. We
also assume thd is symmetric with respectto= 0, i.e.,

E(r,z)=E(-r,z, z>0. (22)

This assumption is physically plausible and allows us to consider only half of the dom:
[0, rmax in ther direction rather than the full domain-f max maxl-

We use a uniform Cartesian grid with sizeand a total oM cells in ther direction f, =
r'max/ M), and sizeh, and a total ofN cells in thez direction i = zmax/N). Accordingly,
the grid nodes are

{(rm,Zn)|rm:m'hr,Zn:n'hz,m:O,l,...,M,nzo,l,...,N}. (23)
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We discretize Eq. (13) using a fourth-order accurate central-difference scheme,

L Eonlpn + L3Em |n + K6Emn = Pmn,

(24)
m=01....M—-1 n=23...,N-2
where
—Em- 16E,_1n — 30E 16E —E

Ln E-,n _ m—-2,n + m-1,n 121;1,n + m+1,n m+2,n 7 (25&)

m,n r
L?ZEm" _ —Em,n—2 + 16Em,n—l - ?-OZE;LH + 16Em,n+1 - Em.n+2 . (25b)

m,n z

The indexn that corresponds to the coordinateuns from 2 toN — 2 in Eq. (24) because
the stencil, which is five nodes wide in each direction, obviously cannot be applied to any
the boundary nodes= 0, 1, N — 1, andN located neaz = 0 andz = zna The treatment
of these near-boundary grid nodes is discussed in Section 6 in the framework of the disc
radiation boundary conditions.

Similarly, the direct application of the transverse anrtof the discrete operator in (24)
may also require a special treatment of the near-boundary moee®, 1, andM — 1. This
treatment should take into account the transverse boundary conditions at(22) and
atr = rmax (21). We can avoid this, however, by expanding the solufg,, for each
n, in a finite series with respect to eigenfunctions of the transverse discrete opé“rator
which also satisfy the two boundary conditions (21) and (22) [this is a discrete analog
the continuous Fourier expansion (14)]. This discrete eigenfunction expansion allows u
treat the operatdrPr in the transformed space from the very beginning and never impleme
it directly on the grid. In addition, the radiation boundary conditions inzl@ection are
most natural to implement in the transformed space separately for each longitudinal (
z-aligned) mode, as we have seen in the continuous formulation in Section 4.2.1.

We shall now derive the discrete eigenfunction expansiorfgg. Let us introduce the
space of all grid functions that are equal to zermat M, i.e.,

V={¢m|m=O,17---,M,WM=O}~

Clearly, for eac, the functionE. , € V. We can define a weighted inner product\n

1 1 v
(W, ¢) = 5 rvodo + 11 m; YmPm. (26)

PROPOSITIONS.1. Let us consider a family of M one-dimensional grid functions of th
argument m
why .

= k=12...,M. 27
max  2M @7

Y = cog(2k — HMAB), AH =

Then

) (YO, c V.
(Il) The functiongy® are orthogonal with respect to the inner produ2g), i.e.,

(p®@, gDy =0 fork #l. (28)
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(1) The sefy @M, forms a basisin V.
(V) ¥ are even functions of the argumentine., symmetric with respect to e 0:

1/,(k) lﬂ(k)

(V) v® are eigenfunctions of the transverse component of the finite-difference opera
of (24) with eigenvaluesy,* i.e.,

h k k
er 1/f( ) = _)"kl/f( )7

1 2k — 1A .
e [16 r?<f) —sirf((2k — 1) AB)|.

(29)
Ak =

Proof. The inclusion (1) follows from the definition of the spa@eand the explicit form
of the functionsy ¥ (27). To show the orthogonality (1I), we calculate

1p(k) 1p(l) Z 1p(k) O _
M-1 1
= Z cos(2k — 1)mAH) cos(2l — 1)MAG) — >
m=0
M

Z [cos((2k + 21 — 2)MAF) + cog(2k — 21)mAH)] — %

[COS(Zq MAG) + COS2SMAH)] — %

I\)\H
MZ

=0
M1 _ _ _ 1
— = e|2qué) +e—|2qu€ +e|23mA9 +e—|23mA€ _ =
4= 2
1 1_ei2qMA8 1_e—i2qMA9 1 1_ei25MA(~7 1_e—i2SMA9 1
- 4[ 1_ o0 T 1 g 20 ]4’4{ 1_emar T 1_eizar | 3 =0

We indeed obtain zero, because out of the two integer numberk +1 — 1ands =k — I,
one is always odd and the other is even, and thus one of the expressions in rectant
brackets on the last line in the previous chain of equalities is always equal to zero and
other one is equal to two. Property (111) follows easily from the orthogonality (II) because t
orthogonality implies that th& functionsy®, k = 1,..., M, are linearly independent,
and the spac& is obviously M-dimensional. Property (IV) is trivial and immediately
follows from the definition (27). Finally, property (V), including the explicit expression fol
the eigenvalue given in (29), is obtained by directly applying the operdtfir of (25a)

to eachy ™, k = 1,..., M. The application oi_{‘r to ay® in the near-boundary nodes
requires using the symmetry property (IV) and also noticing thag &, k =1, ..., M,

are in fact antisymmetric with respectto= M, which again immediately follows from
the definition (27). m

4 Note that for small wavenumbers the discrete eigenvalues and eigenfunctions are similar to those in the co
uous formulation (cf(14) and(15)) asix ~ (K — 1/2)2( /T ma0? aNdY |y = Y% = cos(k — 1/2)7T /T may).
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Proposition 5.1 shows that the syst¢#®}M ; forms an orthogonal basis of the space
V, composed of the eigenfunctions of the operm{br which are symmetric with respect
to m = 0 and vanish at = M. For alln we can construct the expansion with respect tc
these eigenfunctions according to

1 1 M-1
Ukn = (B, ¥) = S Bon + D Emn COS(2k — hmAD),

m=t (30a)

k=12...,M,
so that
M M
Emn=2) UknCos((2k — HMAO) =2 " Uat .

k=1 k=1 (30b)

m=0,1,..., M.

Representation (30b) can be easily verified by directly substitutingof (30a) and per-
forming the transformations similar to those performed when proving Proposition 5
Obviously, formulae (30a) and (30b) are particular versions of the direct and inverse (
crete Fourier transforms, respectively.

The above eigenfunction expansion can be used to implement the transverse dis
differentiation along with the boundary conditionsrat 0 andr = rpmax. Indeed, if we
expandEn, and the RHS®y , in the form (30b) with the coefficientsyx , and fy n,
respectively, obtained using (30a), then because of the orthogonality of the eigenfunct
v ® (28), we arrive at the following family of one-dimensional discrete equafions:

RTHS ’k,n — AU n + K3uin
_ —Ukn-2+ 16Uk n-1 — 30Uk n + 16Uk ns1 — Ukni2
= 122
K=ki—i, k=12....M, n=23.. N-2

+ kguk.n = fkn, (31)

where the eigenvaluds.y} are defined in (29). Each of thd equations of (31) is inde-
pendent of the others and will be solved separately using the methodology of Sectio
Having obtained the modal solutiong , for all k=1,2, ..., M, we then recover the
overall solutionEy, , by means of the inverse transformation (30b).

5.1. Implementation of Transformations (30) Using FFT

It is convenient to implement the direct and inverse transformations (30a) and (3
using the standard discrete Fourier transform, for which library subroutines optimized
performance are available (fast Fourier transforms). To do that, we note again (see end
proof of Proposition 5.1) that representation (30b) allows us to exEgndfor anyn beyond
m = Oandm = M using the explicitform of the basis functiort$?; see (27). The extension
for negativem’s is symmetric with respect tmm = 0, and the extension beyond= M is

5 Note the analogy to (15).
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antisymmetric with respect tm = M. For a given functiorEmn, m=0,1,..., M, itis
convenient to first extend it antisymmetrically with respeatte- M (so that the function
is defined form =0, 1, ..., 2M), and then also extend it symmetrically with respect tc
m = 0 (so that it finally is defined fom = —2M, ..., 0, ..., 2M). In doing so, we arrive
at a periodic grid function with the periodW. It is easy to see that for a function extended
in this particular way the standard discrete Fourier transform

1 2M-1
_ —ilmA6 _
U= m;m Emn€ , l=-2M,....,2M — 1, (32a)

reduces to (30a). Indeed, &, is real we will always have) , = u_; ,, and in this
particular case the symmetry with respectite= 0 implies that allu, ,, are also real and
thusu, , = u_; ». Consequently, we can consider oniM 2+ 1 independent real coefficients
u.,forl =0,1,...,2M. Then, the antisymmetry with respectrito= M will yield that

un,=0foralleven =0,2,4,...,2M and we are thus left with only the coefficienis,
foroddl =1,3,5,...,2M — 1. In other words, we can rewrite (32a) as
1 1 M-1
Uin = 5o Bon + o mz_l EmncosimAg), 1=1,3,...,2M —1,

and conclude thatitindeed coincides with (30a) if we change notationd froth 3, 5, . . .,

2M —1tok=(1+1)/2,k=1,2,..., M. Similarly, it is easy to see that because of the
aforementioned properties of , (Ui, = U_;n, U n real, andu , =0forl =0,2,4, ...,
2M), the standard inverse discrete Fourier transform

2M-1 .
> ua€™ m=-2M,...,2M, (32b)
|=—2M

1
F = am

reduces to (30b).

6. THE ONE-DIMENSIONAL DISCRETE HELMHOLTZ EQUATION

In this section we analyze the discrete one-dimensional linear nonhomogeneous He
holtz equation (31), paying special attention to the treatment of the boundary conditions
z =0 andz = znx. We recall that the boundary conditionszat z,,«x should guarantee
that this boundary be transparent for all waves traveling to the right (i.e., a standard radia
ABC). The boundary conditions at= 0 should guarantee that this boundary be transpare
for all backscattered waves traveling to the left, and at the same time impose the gi
incoming wave fieldtivo-way ABGQ. We emphasize that we have not discussed a particul
discrete form of these boundary conditions until now, since typically the ABCs are mc
convenient to set in the transformed space rather than in the original space [34].

To simplify the notations, we drop the subscilipso that Eq. (31) takes the form

—Un—2 + 16Upn_1 — 30Up + 16Un4+1 — Uns2
12h?
n=23,...,N—2

+ kgun = fn,

(33)
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Equation (33) is a fourth-order difference equation. It is obtained, however, as a fout
order accurate difference approximation to the second-order differential equation. Th
fore, compared to its original continuous counterpart, the difference equation (33) requ
additional boundary conditions. A total of four boundary conditions are needed to guar
tee the solvability and uniqueness for Eq. (33). Two extra boundary conditions that are
present in the continuous case are a pure numerical artifact. They are accounted for b
presence of two extra evanescent waves among the solutions of the homogeneous ve
of Eqg. (33) in addition to the two standard traveling or evanescent waves (see Section |
Altogether, these four boundary conditions should ensure the desired behavior of the s
tion nearz = 0 and neae = zax. We also reiterate that the finite-difference equation itsel
obviously cannot be written in the form (33) for the grid nodles 0,1, N — 1, andN.

A special form of the discrete equation for these four grid nodes is therefore required; 1
special form will actually constitute the boundary conditions and make the total numbel
equations in the linear system equal to the number of unknowns.

6.1. The Discrete Homogeneous Problem

We start by analyzing the homogeneous counterpart to the finite-difference equation
over an infinite grid domain, i.e.,

—Un—2 + 16Un_1 — 30Uj + 16Un41 — Uns2
12h2
n=0,+1 42 ....

+ k2up =0,
(34)

PROPOSITIONG.1. Leta = (h,k;)? be such that eithed < « < 16/30or —3 < o < 0.
Then the general solution to Eq34) has the form

Un = C10f + C205 +C_10; " +C_20, ", (35)

where g, ¢y, C_1, and c_; are arbitrary constantsand g and ¢ are roots of the charac-
teristic equation that corresponds 84).
In addition

(I) whenO < o < 16/3, qf and ¢ " are waves propagating to the right and to the Jeft
respectively. In particulaiwhen0 < o « 1, then

o = €M+ O((k - hy)®), (36a)
Q2 = %M 1 O((k - hy)®), (36b)

and as suchq] and " are the discrete analogues of the right and left traveling wave
gk and e %2, respectivelywith fourth-order accuracy.

(I When—3 <« < 0, g} and ¢ " are evanescent waves decaying to the right and t
the left respectively.

(Ill) Inboth casesi.e., for0 < « < 16/3and for—3 < « < 0,q) and ;" are evanes-
cent waves decaying to the right and to the, lefspectively.

Proof. Let us introduce the characteristic algebraic equation

—1+4 169+ (12« — 30)g°> + 160° — q* =0 (37)
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for the homogeneous finite-difference equation (34). It is generally known (see, e.g., [1
thatif all the rootsy; of a given characteristic algebraic equation are distinct, then the gene
solution to the corresponding homogeneous finite-difference equation is obtained as a il
span of the grid functionqu‘, where the powen is determined by the grid location. In the
specific case that we are studying, Eqg. (37) is a quartic algebraic equation and thus prov
that its four rootg(q; ‘j‘zl are distinct, the general solution to the homogeneous equati
(34) has the form

Un = €107 + C203 + C305 + Ca0ly, (38)

where{c; ‘J-"Zl are arbitrary constants.

Hereafter, we restrict ourselves only to the case when the {qp}t‘%:l of Eq. (37) are
distinct. By explicitly calculatingq; ‘j‘:l (see below), we will show that multiple roots are
only possible for the two cases= 0 anda = 16/3, which are easy to avoid in practical
computations.

To simplify the actual calculation of the roots of quartic Eq. (37), we first note that t
dividing (37) byg* we arrive at exactly the same equation fggq1Therefore, ifg is a root,
theng~! is also a root (this follows, of course, from the fact that the discretization (33)
symmetric). Accordingly, we rename the four roots of Eq. (3728, ql‘l, andqz‘l, and
write

—1+ 169+ (12« — 30)q® + 16q° — *
=-@-aw(@-a)a-u (-9
= —(@? - diq + 1)(q% — doq + 1)
= —1+ (dh + dp)q — (24 did)q® + (d1 + d)q® — g*, (39)

where
=g +at =g+ (40)

By comparing the beginning and the end in the chain of equalities (39) we obtain syst
of equations fod; andd,

d;+d, =16, —2-—did, =12« — 30,
from which we find that

di=8-6y1+a/3, Op=8+6y1+a/3. (41)

From formulae (41) we conclude that bathandd, are real provided that > —3. If, for
exampleh, ~ h, (the cellaspectratio of the discretizationis close to one), then the definitic
of k. (see (31)), wherg is given by (29), along with the definition af= (h,k,)?, suggests
that even for negative’s their absolute values are sufficiently small, and thus we can alwa;
assume that > —3 and consequently consideér andd, real. However, allowing for the
complex values ofl; andd, may make the analysis more cumbersome, but it does ni
change any of the results hereafter. This, in particular, is corroborated by the computat
of Section 7.1, which were conducted on the grids with cell aspect ratjds&t 203.
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From (40) we know thad; andqj‘l are the roots of the quadratic equation
g>-dig+1=0, j=12 (42)

Let us analyze the cage= 1 first. For O< o < 16/3, Eq. (42) has two complex conjugate
roots
dy+iy/4—d? o, Op—iy/4—d?
=7 (@ =—F""". (43)
2 2
From (43) it follows thatq;| = |q1‘1| = 1 and, in addition, that when @ o « 1 then (36)
holds.
When—3 < « < 0, we have

_dovdi-4 o it Vdi-4 (44)
> - W=

Q1 1

Therefore, both roots are real and satiffy] < 1 and|q{1| > 1, showing thaty and
g; " of (44) are discrete analogues of two evanescent waves. We note thathasges
from positive to negative in formulae (43), the right-propagating wagivehanges into
an exponential decreasing to the right and the left-propaggifigvave changes into an
exponential decreasing to the left, a fact that simplifies the identification of the right a
left traveling and decaying waves in the actual implementation of the boundary conditic
atz = 0 andz = znax.

The casex > 16/3 remains to be considered. For the positive valuekZpfive can
introduce the wavelength, = 27/k. and for this range ofr obtain Ac/h, < +/37/2.
Thus, we see that > 16/3 implies a poor “points per wavelength” resolution even for the
long waves.; > Ao = 27 /kgo. This makes the choice > 16/3 inappropriate for practical
computations. Finally, regarding the last case that has not yet been considesed,
we note that for this value af Eq. (42) will have a double roa; = g1 = 1. However,
formulae (29) and (31) show that the case: 0 < k2 = 0 can be easily avoided by slightly
changing the parameters of the discretization.

For j = 2, we find from Eq. (42) that
_dz—\/d22—4 qfl_dz—i- d22—4

> , = .

2 5 (45)

(07)

Clearly, || < 1, |q2‘1| > 1 for all relevant values af (¢ > —3), i.e., the two components
gy andg, " of (45) always correspond to evanescent wavas.

6.2. Discrete One-Way Helmholtz Equations

In analogy with the continuous description in Section 4.2.1, we now construct the ¢
crete one-way Helmholtz equations based on the solution (35) of the homogeneous fi
difference scheme (34). From the very beginning, we think of these discrete one-v
Helmholtz equations as the relations to be used as boundary conditions for Eq. (33).

According to Proposition 6.1, the discrete homogeneous equation (34) has four line:
independent eigenfunctions, two of which are either traveling or evanescent waves
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two of which are always evanescent waves; the presence of the latter (in contrast to
continuous case) is due to the fact that (34) is a fourth—order finite-difference equat
that approximates the original second-order differential equation. When constructing
discrete one-way Helmholtz equations, we of course first need to make sure that they |
dle the first pair of discrete waveg; andg;", in the same way that Egs. (17) handle the
corresponding continuous waves. In addition, we need to decide how the discrete one-
Helmholtz equations will handle the second pair of discrete waykeandq, ", which are
purely numerical (i.e., due to the use of a fourth-order difference scheme). It is natura
require that the one-way-to-the-right discrete Helmholtz equation admit the right trav
ing/evanescent wawg' and the right evanescent wayand that the other two waves from
representation (35, " (left traveling/evanescent) ang"” (left evanescent), be suppressed
by this equation. Indeedj; " may either be traveling “the wrong way” or grow without
bound a1 — +o0, andg, " will always grow without bound as — +00.8 Clearly, if we
use the one-way-to-the-right equation that possesses such properties as a boundary ¢
tion for (34) nean = N, it will guarantee that the corresponding far-field solution N)

is always bounded at infinity and also that this solution is only composed of outgoing (rig
propagating and/or right decaying) waves. In other words, the one-way-to-the-right disci
Helmholtz equation implies that in the far fiakd> N one can represent the solutiofin

the “restricted” form

Un = €107 + G203, (46)

as opposed to the general form (35). Formula (46) is equivalent to requiring that the v
tor [un_3, Un_2, Un_1, UN] be a linear combination of the two vectors f, qf, qf] and
[1, 02, 92, 93], which is the same as requiring that

UnN-3 UNn-2 Un-1 Un
Rank| 1 o o2 ¢f|=2 (47)
1 @ o o

Relation (47) immediately yields the two linearly independent conditions

UN-3 UNn-2 Un-1 UN—2 UNn-1 UN
det| 1 o o | =0 det| ¢« af o |=0,
1 @ ¢ R % 9

which reduce to

0102Un—3 — (01 + Go)Un—2 +Un_1 =0 (48a)
and

0102Un—2 — (01 + g2)Un—1 + Un = 0. (48b)

The two scalar Egs. (48a) and (48b) constitute the one-way-to-the-right discrete Helmh
equation.

5 Besides being “natural,” this choice is also motivated by the well-posedness considerations, as the analy:
[14, 23] suggests.
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The one-way-to-the-left discrete Helmholtz equation is constructed similarly. Symm
rically to the previous case, we require that it admit the left traveling/evanescentvave
and the left evanescent wagg" and that the other two waves from representation (35,
gf (right traveling/evanescent) ang (right evanescent), be prohibited by this equation
(From the standpoint of physics the two wawgg’ andag, ", account for the phenomenon
of backscattering.) The waveg andqy are to be suppressed in this case becafiseay
either be traveling “the wrong way,” i.e., to the right, or grow without bound as —oo,
andqg will always grow without bound am — —oo. If the one-way-to-the-left discrete
Helmholtz equation is used as the boundary condition for (34) mean, it will guaran-
tee that the corresponding far-field solutian< 0) is always bounded as— —oo, and
also that this solution is only composed of outgoing (left propagating and/or left decayi
waves. In other words, the one-way-to-the-left discrete Helmholtz equation implies tha
the far fieldn < 0 one can represent the solutignin the “restricted” form

Un =C_10;"n+C o0, ", (49)

as opposed to the general form (35). To make sure that representation (49) holds
require that the vectomp, us, uy, us] be a linear combination of [1g; %, q[z, q;3] and

1,05 0% 0]

Rank| 1 o' o2 o°| =2 (50)

1 gt o® @

Relation (50) is equivalent to the two linearly independent homogeneous conditions
Uo — (G1 + O2)U1 + iUz = 0 (51a)
and
U1 — (G1 + O2)Uz2 + ChG2Us = O, (51b)

which constitute the one-way-to-the-left discrete Helmholtz equation.

We note that splitting the general solution (35) into right- and left-going waves (Egs. (4
and (49), respectively), and allowing for only one direction while prohibiting the other
the corresponding edges of the interval, constitutesddetion principlein the finite-
difference discrete framework.

Having constructed the one-way discrete Helmholtz equations (48) and (51), we r
implement them as boundary conditions for the discrete homogeneous equation (34). |
consider the finite grich = 0, 1, ..., N on the interval [0zy4y], the five-node difference
stencil cannot be centered atthe near-edge noee8, 1, N — 1, andN. As a consequence,
the number of equations in the linear system is four less than the number of unknowns
make the number of equations and the number of unknowns equal, we supplement Eqgs.
onthegridn=2,3,..., N — 2 by Egs. (51a) and (51b) for= 0 andn = 1, respectively,
and by Egs. (48a) and (48b) for= N — 1 andn = N, respectively. In doing so, we arrive
at a linear homogeneous algebraic system Wit 1 equations an®l + 1 unknowns,

Au = 0, (52)
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where
(1 —(m+ 0102 0 0 0]
0 1 —(O1+02) il 0 . 0
—1 16 (120 —30) 16 —1 . 0
1
A = lz‘]% . . . . .
0 . —1 16 (12« — 30) 16 —1
0 e 0 Q02 — (01 +2) 1 0
| 0 0 0 0102 -+ 1 |
(53)
and, obviouslyy = [ug, Uz, ..., un]".

The following Proposition (6.2) establishes the solvability and uniqueness of the soluti
for the nonhomogeneous counterpart of system (52).

PROPOSITION6.2. The linear nonhomogeneous system of equatfns= f with the
matrix A given by(53) is uniquely solvable for any right-hand sifle= [ fo, f1, ..., fn]7.

Proof. We show that the corresponding homogeneous system (52) has only a tri
solution. Indeed, the only solution to any of the equationdw 0 except the first two
and the last two is a linear combination of the type (35). However, each of the compone
of (35) is explicitly eliminated by one of the boundary conditions (48a), (48b), (51a), «
(51b), i.e., by one of the one-way discrete Helmholtz equations (the first two and the |
two equations ofAu = 0). Therefore, the only solution to the homogeneous system is tt
trivial one! m

Although we have just shown that one can find the solutioAuo= f for any given
f =[fo, f1,..., fn], this solution will not, in fact, correctly approximate the corresponding
solution of the nonhomogeneous differential equation, or in other words, it will not, genera
speaking, be the discrete radiation solution from the soufrceg fo, f1,..., fn]. The
reason for this discrepancy is that the one-way Helmholtz equations which are used inthe
two rows and the last two rows of the matfivhave been constructed for the homogeneou
case. As a result, these four equations will not handle the near-boundary source te
correctly, which may, generally speaking, be present. The “cure” to this problem, in t
form of a local modification td, is derived in Section 6.4.

In our simulations (see Section 7), we solve the finite-difference Helmholtz equation
inverting the matrixA of (53). However, for the purpose of deriving the two-way ABCs
that would correctly handle the near-boundary inhomogeneities, we now show how
construct the solution by using the Green'’s function of the finite-difference operator o
(34). As we shall see, this approach is rather expensive numerically and thus not usefu
actual computing. However, it provides the most conceptually straightforward way to bu
the radiation solution. Moreover, the analysis that employs the Green’s function reve
the mechanism of the aforementioned discrepancy between the radiation from the sou
f =[fo, f1,..., fn] @nd the solution téAu = f.

" This solvability result is obviously similar to the one in the continuous case; see Section 4.2.1.
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6.3. Radiation Solution by Means of the Green’s Function

In this section, we introduce a problem very similar to (33), except that the soluton
now defined on the infinite grid = 0, £1, &2, . . ., and the right-hand sidg, is compactly
supported:

—Un—2 + 16Un_1 — 30U + 16Un41 — Ung2
1202
n=0,+1 42 ..., (54)

+ kgun = fn,

fa=0 forn<0 and n> N.

We also require that the solutian, of (54) satisfy the radiation principle in the areas of
homogeneityn < 0 andn > N. In other words, we require that far< 0 one can represent
Up in the form (49) and fon > N in the form (46). This is the most general formulation of
the problem of finding the solution that corresponds to the radiation of waves by the soul
f =[fo, f1,..., fn]7 in the finite-difference framework.

To solve this problem, we introduce the fundamental solu@in(free-space Green’s
function) for the one-dimensional discrete Helmholtz operator, which is defined on 1
entire infinite gridn = 0, 1, £2, ... and is the solution of the equation

_Gn72 + 16anl —30G" + 1GGn+l _ Gn+2

12h2 +KG" = &,
‘ (55)
n=0,+1+£2, ...,
where
5 — 1, n=0
"7 10, n#o0.

We also require that the Green'’s functiG? satisfy the radiation principle as— oo,
or in other words, that it can be represented in the following form:

(56)

G a1q + a0y, n>0
| g+ g, n<O.

ProOPOSITIONG.3. The values of the constantsg, a,, by, by in (56) are given by

2

&= —— 1?}_(]1 —, (57a)

(0" —a) (07" — ga) (G2 — qo)

_19p2

e ST~ S s mrme L (57b)

(" — o) (or ' — d2) (02 — O)

—12h%q;?

by = — S —" - , (57c)

(Q2 Lo O 1) ((h T QZ) (ql - Q1)

2~—1

by = L2, (57d)

(@t —ort) (' — ) (" — o)
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Proof. To find these four constants, we need four equations. By matching the t\
branches (56) of the Green’s functi@f atn = 0 we immediately obtain one equation:
a; +ax = by + by, (58a)

The other three equations for the coefficients of (56) are obtained from the original Eq. (
written for the nodes = 0O, 1, and—1. Forn = 0 we have

—G 241667+ (12¢ — 30)G° + 16G* — G? = 1212,
or

— (0102 + bo0?) + 16(byoy + o) + (120 — 30)(ay + &) + 16(a10s + a202)
— (210f + ap03) = 1202,
The previous equation can be simplified by subtracting from it the relation
— (a0y? + @20, %) + 16(200; * + 8205 1) + (120 — 30)(ay + @) + 16(a101 + ax02)
— (a0 +203) =0,

which comes from the fact that each branch of the Green’s function (the right kagafch
apqy in this particular instance) satisfies the homogeneous finite-difference equation (3
The subtraction yields

— (010Z + b20Z) + 16(b101 + botp) — 16(a10; * + @20, 1) + (a10; % + @20, 2) = 12h2.
(58b)

Forn = 1, Eq. (55) takes the form
—G 1 4+16G%+ (120 — 30)G* + 16G? — G =0,

and again, using the homogeneous equation for the right branch of the Green’s funct
we obtain

—(b10 + o) + (au0y t + a0, t) = 0. (58¢)
Finally, forn = —1 we have
—G 341662+ (120 —30G 1 +16G° - G =0.

Combining this relation with the homogeneous difference equation for the left branch
the Green’s function, we arrive at

(baay ™t + 0o ) — (21 + 820p) = O. (58d)

Now we need to solve Egs. (58) far, a,, by, andb,. First, we multiply (58c) by 16 and
substitute it into (58b), and then we rewrite all four equations as follows:

&’ %? -of -6 ra 12h2
ot gt -~ % ||| _| o0 (59)
1 1 -1 -1 |b 0

1 _qgl b, 0

g Q9 —0qp
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The determinant of system (59) is easily reduced to a Vandermonde determinant, wl
eventually leads to expressions (57

From the definition ofz", we have the following.

PrOPOSITION 6.4. For any given right-hand side ,f compactly supported on
[0,1,..., N], the solution ta(54), subject to the radiation principlds given by the con-
volution

m=N

Up = Z fnG"™™ n=0,+1 £2, .... (60)

m=0

6.4. Radiation Solution by Means of Inverting the Matfix

The cost of calculating the convolutions in (60) foe= 0, 1, ..., N is O(N?). We now
show that the portion of the solution (60) that we are interested in, namelgr n =
0,1,..., N, can be recovered by means of inverting the ma#inf (53). The cost of
this inversion will be onlyO(N) operations because the matAxis pentadiagonal; see
Section 6.7 for additional details.

PROPOSITIONG.5. Let A be defined by53) andu = [ug, Uy, ..., ux]" be defined by
(60)forn=0,1,..., N. Denotef =[fo, f1,..., fny_1, fn]T. Then Au = f, where

S o
0 fq
f2 0
fe o+ . 61)
fa_2 0
0 fano1
L 0 | fiy
fo 1212[(foG°+ 167 — (@ + G (foG + F1G°)
+ qu0(foG? + f1Gh)], (62a)
i 1212[(foGl+ f1G° + £,G71) — (a1 + G) (1oG? + f1G + 1,GO)
+qu0(foG® + f1G? + f,G1)], (62b)
fuoa & 1212[q1q2(fN G+ fnaGTP A+ TGP — (G + d2) (oGP
+ fNoaG T+ TNG ) + (fy_2Gh 4 fn1 Gl + fNGTh, (62c)
and
v & [mG(fuaaG ™t + TG — (1 + G (fu_1G + NG

12h2
+ (fno1Gr + NGO (62d)
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Proof. By definition of the Green’s functio®@" (see Section 6.3)Au), = f, for
2<n =< N-2.Indeed, for2<n < N — 2 we have

1
(AU)y = o3[ —Un—2 + 18Un—1 + (12 — 30)Un + 16Un+1 — Uny2]
z
1 N N N
= Doz |~ 2 G F M +16)  fnG" T+ (124 —30) Y G
z =0 m=0 m=0

N N
+ 162 fmGr‘H-l—m _ Z fmGFH-Z—m
m=0 m=0

N
1
= 12h2 Z fm(—G“727m+l6Gn*1*m+(12[x _ 30)Gn7m+16Gn+17m—Gn+2*m)

Z m=0
N
= Snmfm = fo.
m=0

As for (Au)g, (Au)1, (Au)n_1, @and(Au)y, these four components need to be calculate
separately. They will, generally speaking, differ frofg f,, fy_1, and fy, respectively,
because of the special structure of the first two and the last two rows of the iatvhich
admit waves going in only one direction; see Section 6.2.

We start the analysis from the left edge of the interval. Clearly, fanfor m > 2 is not
going to contribute tqAu)e because when substitutingof (60) into (51a), we in fact,
substitute only the left branch of the Green’s funct®fr™; see (56). Indeed, in formula
(51a) we only need the valuesf forn = 0, 1, 2, and ifm > 2 this impliesn — m < 0.
The left branch of the Green’s function (56) by definition turns (51a) into an identit
therefore(Au) is not affected byf,, for m > 2. Consequently,

(Au)o = (A[ foG" + f1G" o,

which proves (62a). Similarly, substitution of the left branch of the Green’s function int
(51b) suggests that arfy, for m > 3 is not going to contribute teAu),. Therefore,

(Au)1 = (A[ foG" + £,G"* + £,G"2)),,

which proves (62b).

Similar analysis is conducted for the right edge of the interval. Ofjlyand fy_1
affect(Au)y = f n because for all other components of the RHi$e contribution to the so-
lution u at n=N-2, N—1 N is given by the right branch of the Green’s
function only; then the explicit form of the solution (60) and the definitionAo{53)
easily yield expression (62d). Analogously, only three components of the right-hand si
fn, fn_1, and fy_p, contribute to(Au)n_1 = fn_1, which together with (60) and (53)
implies (62c). =

From the standpoint of the original physical model the situation mearz,,x differs
substantially from the situation near= 0, because we can always make the effect o
nonlinearity and/or variation of coefficients neae zq« Negligible, by takingznmax suffi-
ciently large Therefore, from here on we will always assume thatf fy_1 = fy_2 = 0.
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Obviously, if we use the RH$ = [fo, f1,..., fn_3,0,0,0]" of this particular kind as
source terms in (54), then for the corresponding solutien[ugp, Uy, ..., uy] we will have
(Au)n_1 = fno1=0 (see 62c) andAu)y = fn=0 (see 62d) In otherwords the mod-
ified right-hand sidé of (60) in this case becomés= [fo, fi, fo .o, e 3, 0,0,0]".

Let us emphasize thafto = (Au)o (see 62a) depends ofg and fl, and f1 = (Au),
(see 62b) depends ofy, fi, and f,. Likewise, in order to obtairf y_; = (Au)y_; =0
(see 62¢) andf y = (Au)y = O (see 62d), in addition to the obvious requirement tha
fn = fno1 = 0, we also need to imposk,_, =0

Propositions 6.2 and 6.5 guarantee thatdhby solution of the linear systerAu = f,
wheref = [fo, f1, fa, ..., fn_3,0,0,0]", is the solutionu of (54) with the RHSf =
[fo, f1, f2, ..., fn_3, 0, 0, 0] subject to the radiation principle. Thus, we have addresse
the concern raised at the end of Section 6.2, namely which modifications to the rig
hand sidd are needed to ensure that the solution obtained by inverting the matvii
coincide with the pure radiation solution from these particular sourc€ovided that
near the right edge of the interval the RHS is zero, thatfjis= fy_1 = fn_2 =0, it
turns out that these modifications are local and require only the replacement of the
old quantitiesfy and f; near the left edge of the interval by the new quantiiﬁesand fi,
respectively. It is also important to mention that formulae (62a), (62b) are by themsel
local as well, and therefore the overall modificatfor> f amounts to only local, and thus
numerically inexpensive, operations on the grid near 0. Finally, we note that besides
the aforementioned unique solvability, the well-posedness of the discrete formulation ne
to be established; for the problem studied in this paper it can be done by applying the the
of [14, 23].

6.5. Adding the Incoming Power

The boundary conditions a= 0 should guarantee the complete transparency of th
boundary for all backscattered waves and at the same time be capable of accurately
scribing the incoming signal; the combination of these two properties has been referre
asthe two-way ABCsSimilar to the continuous case analyzed in Section 4.2.2, the incor
ing sug;naluInc results in a forward propagating wave, givenuf},.ql. The grid function
vn = Uf,.q] solves all equations of the homogeneous sygters 0except for the first two,
which are the one-way-to-the-left discrete Helmholtz equation (51). Therefore, by apply
the matrixA of (53) to the vectow we create a right-hand side that we denoteagbit is
easy to see that

— (Qu + )G + G50
L0 (1 — (g1 + g2)q1 + g50p)
g= inc 0 . (63)
12h2 :
0

Proposition 6.2 guarantees that the only solution of the system of equaticagy, where
gis given by formula (63), is = u?_q}. Note that the inhomogeneigof (63) is a discrete
counterpart of the right-hand side of relation (20) (and 19) obtained when introducing
incoming signal in the continuous framework; see Sections 4.2.2 and 4.2.3.
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6.6. Obtaining the Overall Solution

We can, finally, put together the foregoing stages of the derivation. Assume that there
given RHS of the original equation (3B)= [ fo, f1, f2,..., fn_3,0,0, O]T. To obtain the
solution with the incoming poweu?, g added, we first construct the new RH®N the
basis off according to formulae (61) and (62a), (62b). Then, we construct the additior
source termg according to formula (63). Due to the linear superposition principle an
according to Proposition 6.2 that guarantees solvability and uniqueness, we immedia
see that the grid function that we recover by solving the overall system

Au=f+g (64)

is the solution we seek. Indeed, includiﬁ@n the right-hand side of (64) guarantees the
radiation from the original sourcdsboth to the left and to the right, and includiggon
the right-hand side of (64) guarantees that the correct incoming sifjp@{l will be added.
The system (64) is, of course, solved by inverting the ma&rixly once and not by solving
separately with the RHSsandg.

Thus, setting the desired boundary conditiors-at0 andz = zya«is reduced to building
and inverting the special matri& of (53) and also modifying the right-hand side of the
equatiorf — f+ g. We again emphasize that the latter modification is not computational
expensive as bolﬁqandg are obtained by only local operations on the grid mear0. These
operations will come at virtually no cost when implementing the algorithm numerically.

6.7. Solution ofAu = f + g

We solve the systeriu = f+ g using standard LU decomposition; for a pentadiagona
matrix A the components of this decomposition will obviously be banded as well. As tt
equationAu = f+ g needs to be solved many times with a changing source term but wi
the saméA, at the beginning of a simulation we calculate the LU decompositigharice
and use it throughout the iterations. Therefore, the costs per iteration in terms of solving
equation are only due to the backward substitution, whi@l(iNl) arithmetic operations.

7. NUMERICAL EXPERIMENTS

To assess the numerical performance of our algorithm, we first solve a linear probl
with variable coefficients in several different settings.
7.1. Linear Problem with Variable Coefficients and Backscattering

On a slender rectangular domain in ttrez) coordinates [Ormay] x [0, Zmax, Where
rmax = 7 /2 is fixed andzmax Will vary as an essential part of testing the methodology, we
recover the solution

E = Eiight + C - Eett, (65)

whereC is a constant, and the right and left propagating comporEgjis and Eier are
given by

Eright = vz cosvr)[1 + ez*e77, (66a)
Eert = V522 cogur e~ @8’ (66b)
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In the framework of our study, the left propagating comportggtof (66b) is interpreted as
backscattering. Several parameters that control the actual shape of the solution (65) a
follows: kg is the wavenumber that corresponds to the homogeneous medium (see Secti
and 2);v is the transversal frequency;in (66a) determines the extent of deviation from
the constant-coefficient case for the right propagating mode (see below}p, en¢b6b)
determines the spatial (longitudinal) extent to which the backscattered waves are prese
the solution. In the linear case we of course introduce the backscattered waves artificially
we are trying to follow the physically interesting situation when these waves are genere
inside the domain and propagate toward and through the left boundafy. The constant
C isintroduced in (65) so as to control the magnitude of the backscattered signal relativ
the forward propagating signal and in particular to be able to fully eliminate backscatter
(C = 0) if desired.

SubstitutingEign: of (66a) into Eq. (13a), we obtain

AEsight + K3Eright = €€V}~ cogur )77z 22[2i\/kE —v2(4z — %) + 12— 8z + 7]
e 222[2i \/K§ — v2(4z — %) + 12— 8z + 7]

=€ 1+e. iz right

= —Gngright' Eright. (67)

We therefore conclude th&gn, of (66a) satisfies the variable-coefficient equation
AEqight + kfzigm(z) Erignt = 0,
whereknght(z) = k§(1 + eFignt(2)) and Figni(2) is defined by equalities (67). We indeed

see thak controls the extent of spatial variation of the wavenumihgs:. The solution
Erignt is driven by the incoming wave

Einc = € V5% Zcoqur), z<0. (68)
Similarly, the backscattered solutidiy of (66b) satisfies the variable-coefficient equation
AEjet + K2 (2) Ejert = 0,

wherek2(2) = k3(1 + Fert(2)) and

1 2 47
Fiert(2) = ie [ \/ k§ — E T g + /32]~ (69)
For the overall solutiore of (65) we obviously have
AE +k*(2E =0, (70)

where

Eright C - Egett
kz(z) - knght HEQ + kl?sft E . .

The driving incoming signal for Eq. (70) B, of (68), evaluated at = 0. The variable-
coefficient linear equation (70) fd& will be solved on the domain [@may x [0, Zmax With
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the homogeneous radiation boundary condition (18a)atz,a.x and the non homogeneous
(two-way) radiation boundary condition (20) 2= 0. The boundary conditions at= 0
andr = rpaxare symmetry and zero Dirichlet, respectively, which correspond to the gene
construction of Section 5, as well as to the particular explicit form of the solution (65), (6
that we use here. The solution will be obtained by iterations described in Section 4.2;
corresponding discrete solution methodology is delineated in Sections 5 and 6.

Our primary goal when solving numerically the foregoing linear problem is to demol
strate that the algorithm that we have constructed indeed possesses the design prope
i.e., (1) it converges with the fourth order of accuracy when the grid is refined, and {
it properly handles the radiation of waves (including backscattering) or in other worc
introduces no reflection from the boundaries: 0 andz = z,,5 back into the domain. A
secondary goal is deriving the guidelines for subsequent nonlinear simulations, for exam
how geometric parameters such as domain size may affect the solution.

The forthcoming series of computational experiments corroborates our expectation
terms of grid convergence and handling the backscattered waves and also provides
comparison between the following two algorithms: the one constructed in this paper w
the two-way ABC at the bounday= 0, and a more traditional one with the Dirichlet
boundary condition at = 0 (at the far-field boundarg = z,ox We set the same radiation
ABC in both cases).

7.1.1. Traditional approach—Dirichlet boundary conditionThe algorithm that we
have just referred to as a more traditional one is formulated with the Dirichlet bounds
condition forE atz = 0. In fact, from the standpoint of physics one can already anticipat
that this algorithm is not going to perform well when backscattering is present. Indes
the physical setup of the model implies that all the information availal#e-a0 pertains
only to the incoming wavé hus, we basically cannot say anything about the backscatter
signal ahead of time because it is generated inside the domain (in the current exar
we of course know everything because we simply construct a sample solution includ
the backscattering, then produce the corresponding sources/inhomogeneities, and fi
recover the same solution by the numerical method, but this is done only for demonstra
purposes.) When constructing the two-way ABCs, we do not make and do not need
assumptions regarding the backscattered wave; we simply make the boundary transp
for all such waves. In contrast, in the Dirichlet case we can only specify the incomil
wave as the boundary data because no explicit information about other waves is avail
Mathematically, this amounts to making the assumption/approximation that

E(r, 0) = ED.(), (71)

which, as opposed to (5), prescribes the entire field at0, rather than its incoming
component only. Consequently, the Dirichlet boundary condition will essentially refle
all backscattered waves reaching= 0 back into the medium, in contrast with the two-
way ABC, which will let them go through. We therefore expect that the algorithm wit
the Dirichlet boundary condition (71) at= 0 may produce reasonable results only if no
backscattered waves are present in the solution. Otherwise, the error should be rough
the magnitude of the backscattered signal. The numerical results below corroborate tl
expectations.

Note that to enforce the Dirichlet boundary conditionzat O for the discretization
we obviously assign a prescribed value to the solution at the leftmost grid mede.
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Besides, in the framework of the fourth-order scheme we are using, we need an additi
relation to be specified right next to the boundarynat 1. This is similar to obtain-
ing the discrete one-way Helmholtz equations in the formvad scalar relations see
Section 6.2. The additional relation for the Dirichlet boundary conditions should be mer
an approximation of the underlying differential equatiomat 1, but this cannot be the
same approximation that we are using for the interior nodes 2) because the latter em-
ploys a five-node-wide symmetric stencil. Thus, either a one-sided difference or a comy
Pads-type approximation needs to be usedhat 1. We chose the fourth-order Rafb]

on a three-node-wide stencil in the particular form proposed in [30] because as oppc
to the “long” nonsymmetric differences, it preserves the pentadiagonal structure of
matrix.

7.1.2. Results. For the simulations in the linear case we have chosen the followir
particular values of parameters (see formulae (65), (&) 20,¢ = 0.2,v =3 orv =
1, Zmax = 30 orzmax = 10, 8 = 3, C = 1/2 for the case with backscattering, aBd= 0
for the case with no backscattering. The wavelengths irr taad z directions are\, =
27 /v and 1, = 21/ ko, respectively. We choose the grid sizgsand h, accordingly as
fractions of the corresponding wavelengths: For the grid convergence study we refine the
synchronously in both theandz directions. We note that having the same resolution (node
per wavelength) in both directions yields the cell aspect ratib,¢h, = A; /A, = ko/v,
which in our simulations is equal to either /A0or 20/3.

We have looked at the values of the relative error (the difference between the compt
and exact solution normalized by the maximum of the exact solution over the domain
the maximum norm:

MaX,z) | Ecomputed— Eexact

Error=
ma)Qr,z) | Eexacﬂ

(72)

The results are summarized in Tables | and Ilfoe 1 andv = 3, respectively. In both
tables all values, except those in the last column, corresponghic= 30.

From Tables I and Il we first conclude that, as expected, the Dirichlet boundary condit
(71) provides no convergence when the backscattering is present (third column). In all o
columns we obsenafourth-order grid convergence, because every time the grid is refine

TABLE |
Maximum Relative Error (72) of the Calculated Solution in the Linear Case forv = 1

Backscattering

Off (C =0) OonC =1/2)
Boundary condition at = 0
Dirichlet Two-way Dirichlet Two-way Two-way
Grid sizes Zmax = 30 Zmax = 10
h, = ,/10,h, = 2,/10 0.256 0.257 0.33 0.24 0.16
h, = A,/20,h, = 4,/20 0.0165 0.0165 0.33 0.016 0.01
h, = A,/40,h, = %,/40 0.001 0.001 0.33 0.001 0.0012
h, = A,/80,h, = 1,/80 65-10° 6.5-10°° 0.33 65-10°° 0.00075
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TABLE Il
Maximum Relative Error (72) of the Calculated Solution in the Linear Case forv = 3

Backscattering

Off (C =0) OonC=1/2)
Boundary condition at = 0

Dirichlet Two-way Dirichlet Two-way Two-way

Grid sizes Zmax = 30 Zmax = 10

h, = A,/10,h, = A,/10 0.25 0.25 0.33 0.24 0.089
h, = A,/20,h, = A,/20 0.016 0.016 0.33 0.015 0.0064
h, = A, /40,h, = A,/40 0.001 0.001 0.33 0.001 0.0012

h, = 4,/80,h, = 4,/80 63-10°° 6.3-10°° 0.33 63-10°° 0.00075

by a factor of two in each direction, the value of the error drops by approximately a factor
sixteen(except for the last column of each table, as discussed below). Thus, the algorithn
have constructed indeed possesses the design convergence properties. Besides, we
see that the left propagating waves in the solution present no problem from the standp
of numerics for the algorithm with the two-way ABC at= 0.

Let us now return to the data appearing in the rightmost column of both Table | a
Table Il. These data clearly do not demonstrate the fourth-order grid convergence. The «
difference between these data and all other data in the tables is that the rightmost colu
correspond to a smaller computational domain inzllgection,z,.x = 10, as opposed to
Zmax = 30. The breakdown of the grid convergence that we observe on the small dom
has the following explanation.

The boundary condition that we specifyzat zyaxis the homogeneous radiation bound-
ary condition (18a), which is approximated by the one-way-to-the-right discrete Helmho
Eq. (48). Both the continuous (18a) and discrete (18) radiation boundary conditions
Z = ZmaxWere obtained under the key assumption that the governing equation €.y
reduces to the constant-coefficient Helmholtz equatida + k2E = 0. In other words,
this means that the modgg; of (66a) has to reduce to the “pure” propagating mode
gvk—vz cogqvr), and that the mod& of (66b) has to effectively vanish at= znax.
From the specific form of the modes that we analyze (see 66), we conclude that the la
we make the domain [&nay, the better the quality of the agreement with the desire
properties neazx = Zyay. In other words, for the smaller domaipx = 10 we are essen-
tially trying to apply a homogeneous radiation boundary condition to the equation, whi
is not “sufficiently homogeneous” itself, and therefore the error is dominated by this d
crepancy, rather than by the actual truncation error associated with the discretization of
differential operator. As a consequence, we do not observe the fourth-order grid con
gence for the smaller domain. This demonstrates the importance of choagipgtiaat is
sufficiently large, so that the homogeneous radiation boundary conditions can be apy
successfully.

Another interesting phenomenon we would like to discuss in the framework of the line
case is the behavior of the error as a function of the coordinagetypical example in
Fig. 1, which corresponds to the case of no backscattering, shows a linear growth of
error with z except in the area of a small “bump” near the boundagy 0. The actual
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0.017

Error(z)

0 30
z

FIG. 1. Behavior of the error (73) for = 1, two-way ABC atz =0, h, = A,/20,h, = A,/20,8 = 3, and
Znax = 30; no backscattering; = 0.

guantity represented in Fig. 1 is

max | Ecomputed_ Eexacﬂ (73)

Errorn(z) =
@ mMaX, ) | Eexact

A similar error pattern is obtained for the case with backscattering, as shown in Fig.
The curve in Fig. 2 can be described as an oscillatory region next to the bounday
associated with backscattering (the magnitude of the error is still small there) follow
again by a stretch of linear growth.

It is, in fact, easy to see where this linear growth comes from. Proposition 6.1 impl
that the discrete right propagating moglgapproximates the continuous right propagat-
ing modeek? = gk=M=" (in the notations of this sectiok? = \/k3 — v2). Indeed, as-
suming thatk. - h, is small, we have obtaineg; = €k + O((k; - h,)®); see formula
(36a). Consequently, under the same assumption wedfaxee k"= + O(n(k; - h,)%) =
gz 4 O(zh;‘) becausez = h,n. As 0< z < znax, We see that the error grows linearly
in z and that the maximal error 9 (Znax - h‘z‘). The aforementioned linear growth of the
error explains, in particular, whgn coarser gridsve obtain a smaller maximal error for
Zmax = 10 (fifth column) than fozy,x = 30 (fourth column); see Tables | and II.

Itis, in fact, instructive to see how the error curve similar to those displayed in Figs.
and 2 would look for a solution computed on the small dorzgiy = 10. In Fig. 3 we show
such a curve for exactly the same set of parameters used for computations that led to F

0.016

Error(z)

0 30
z

FIG. 2. Same as Fig. 1 but with backscatteri@y= 1/2.
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x10

Error(z)

Y4

FIG. 3. Same as Fig. 1 with,, = 10.

except tharmaxis equal to 10 instead of 30. Although the magnitude of the error is small, v
observe oscillations throughout the entire domain. As we have no backscattering in this «
(C = 0), the oscillations may come only from the right (far-field) boundagy z,,,«. In fact,
these oscillations are an early manifestation of the phenomenon we discussed above
small domains, the application of the homogeneous far-field radiation boundary conditi
(18a) and (48) is not fully “legitimate” because the governing equation itself is not y
sufficiently close to the constant-coefficient versiaft + k3E = 0. The inconsistency
gives rise to the oscillations shown in Fig. 3. For finer grids this inconsistency, as we h:
seen, prevents the methodology from converging on small domains with the theoretic
prescribed rate af (h%).

7.2. Nonlinear Problem

Having corroborated the design properties of the numerical algorithm in the linear regi
in Section 7.1, we now address its performance for the nonlinear case. In all cases tha
analyze hereafter we take the valu&kgt= 8 and as before denate = 27 /kg. In addition,
in all simulations the solution is driven by the incoming signal

Ei(r)m(r) = e_r2~ (74)

The key quantity in the NLS model, as far as nonlinear self-focusing and singular
formation are concerned, is the ratio of the poweiEdf, and the critical poweN. (see
Section 3.1). Therefore, we now briefly review the calculation of the critical power for tf
NLS (8).

7.2.1. Critical power. Weinstein [36] had proved that the critical power for singularity
formation in the critical NLSN, is equal to the power of the so-called waveguide solution
In the case of the (% 1)D critical NLS (8), the waveguide solutions are of the form

Y(z,r) =expiaz)Q(r; a).
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Substitution of this solution in (8) shows that the waveguide pr@ileatisfies
Qr —aQ+Q°=0, Q0 =0, Q(x)=
Integration of this equation yields
Q(r; a) = (3a)Y4sect/?(2\/ar).

Therefore, a necessary condition for singularity formation in (8) is that

/ Yo(F)2dF > N,
0

where

Nc=/OOQ2<r>dr = @.
0 4

In dimensional variables, this condition is

/ |Emc(r)| dr > kol\i;_

Therefore, the fractional critical power &° . of (74) is

fOOO|E|nc‘ dr \/>
P= N/ kove Kov/e. (75)

7.2.2. Results. We start with a moderate nonlinearity in Eq. (€)= 0.04, which ac-
cording to (75), corresponds to 74% of the critical power wkeg: 8. Our goal is to first
demonstrate the grid convergence of the algorithm. We also compare the two-way A
against the standard Dirichlet boundary condition &t 0, as we did in the linear case, both
from the standpoint of accuracy of the solution and the rate of convergence of our itera
scheme.

For the grid convergence study we first choose the following parametgss= 20,
INmax/Zmax = 1,h; = A,/10,h, = A,/2.Inour computations we have observed that changin
the discretization parameters in thdirection may exert a more noticeable influence on the
solution than changing the discretization in thdirection. Therefore, we initially refine
the grid in ther direction only and in Fig. 4 present three solution curves: absolute vali
| Ecomputed 0, 2)| 0on the axis of symmetry = 0 as a function ot for h, = 4,/2, A,/4, and
A1z/8. We see that the last two curves that corresportd te 1,/4 andi,/8 are virtually
indistinguishable from one another and both differ noticeably from the first one obtain
on a coarser gritl, = A,/2. We therefore conclude thas the grid is refined the numerical
solution does convergeven so in this nonlinear case we do not know what the exa
solution is and consequently cannot explicitly find the error.

We note that we plot the values of the computed solution on the axis of symmetfy
because this is the most interesting location in the domain where the genuinely nonlir
phenomena take place. A clear manifestation of these nonlinear phenomena is the “bu
or peak, on the solution curve in Fig. 4, whose valugigherthan that of the incoming
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1.1

[E(0.2)|

20
z

FIG. 4. Grid convergence foe = 0.04, Z,ax = 20, I'max/Zmax = 1, h, = A,/10, for h, = A,/2 (solid line),
h, = 1,/4 (dotted line), andh, = 1,/8 (dashed line).

wave E2_(0) = 1. Clearly, in the absence of nonlinear effects (kes 0), an unfocused
input beam, such as (74), would simply diffract while propagating to the right, i.e., towa
largez’s, with its maximum amplitude monotonically decreasing. The amplification of th
incoming signal due to the nonlinear response of the medium is c@léfbocusingand is
wellknown within the NLS framework.

Another interesting phenomenon, which is actually the one that our methodology |
been specifically designed to capturepackscatteringln the previous linear studies in
Section 7.1, the extent of backscattering was predetermined by the valDe Taf es-
timate the extent of backscattering in the current nonlinear case, we plot the quan
| Ecomputedl’, 0) — Ei%c(r)| as a function of . In Fig. 5 we show the corresponding graph for
€ = 0.04,Zmnax = 20, max/Zmax = 1, h; = A,/10, andh, = A,/4. From Fig. 5 we conclude
that most backscattering occurs around the axis of symmetr{), and that the magnitude
of backscattering there is about 1.2% of the incoming power. Backscattering obviou
accounts for the deviation of the solution curve at 0 in Fig. 4 from the incoming signal
value there, which is equal to 1.

A comprehensive grid refinement study should, of course, include refinement in th:
direction along with the refinement in tedirection. In addition to the cases reported

0.012
{a
|
5 0.006
I
0
0 10 20

r

FIG.5. Backscattering foe = 0.04,Z,.x = 20, andr max/Zmax = 1. Gridsizesh, = 1,/10 andh, = 1,/4.
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TABLE 11l
Grid Refinement and Domain Enlargement Study fore = 0.04

Maximum Maximum
Zimax I max/ Zmax h, h, self-focusing backscattering
20 1 2,/10 A /4 1.0136 0.013
20 1 A./10 A2/8 1.0129 0.0128
20 2 12/10 ro/4 1.0135 0.0128
40 1 2,/10 A /4 1.0132 0.0127
20 1 X2/20 A/ B 1.0124 0.0112
20 1 A2/20 A2/8 1.0119 0.0111

previously, we have run several others, refining the grid either separately in each direc
or synchronously in both directions, and also changing the size of the computational dom
Note that determining the correct, i.e., sufficiently large, size of the computational domail
important, because choosing one too small inttgection may cause reflections from the
boundaryz = zyax (Section 7.1), and choosing a domain that is too small im tthieection

is dangerous because the boundaey rnay is reflecting and the reflections may, in fact,
completely destroy the solution (we have actually observed the latter phenomenon in
computations).

Basically, the solutions that we have obtained on all grids finer thaa 1,/2, h, =
Az/10 (i.e., finer than the coarsest of the previous grids), and all domains larger thar
equal tozmax = rmax = 20, are almost identical. We do not plot these solutions as they &
very close to one another but rather summarize the results of our computations in Table
in which the two key quantities for each case are presented: the maximum value of ¢
focusing, defined as mg)E (O, 2)| (i.e., the peak on the curve similar to those shown ir
Fig. 4), and the maximum backscatteringat 0, defined as maE(r, 0) — E2 (r)| (i.e.,
the peak on the curve similar to those shown in Figs. 5 and 6).

From Table Il we see that all values of maximum self-focusing we have comput
on different grids and different domains differ from one another by at most 0.17%. Tt
indicates that for the ranges of parameters (grid sizes and domain sizes) we have L
the numerical solution is already “well converged.” The level of backscattering in all o
simulations is between 1.1 and 1.3% of the incoming power, which again constitutes an e
of only about 0.2% (relative to the maximum of the solution). One should probably rege
the computational variant presented in the last row of Table Il as the most accurate
because it was computed on the finest grid. The corresponding backscattering profile
h, = 1,/20,h; = A,/8) is shown in Fig. 6. We again see that this profile is practically th
same as the one from Fig. 5, which corresponds to the grid twice as coarse in each direc

We now look at the convergence histories for our numerical solutions. Let us recall that
iteration scheme we employ is nested. Onthe innerloop we solve a variable-coefficient lir
equation, whereas on the outer loop we iterate with respect to the nonlinearity. Currel
we update the coefficiek? = kZ (1+ ¢|E|*), i.e., make one nonlinear iteration, every ten
linear iterations [i.e., in the notations of SectionM{(n) = 10 in (12)]. In Figs. 7 and 8
we show the convergence histories for the two cases we have discussed already—thos
correspond to the first and last rows of Table Il (Figs. 7 and 8, respectively).

The actual quantity shown in Figs. 7 and 8 is the maximum absolute difference betw
the two consecutive iterations. The sawtooth character of both curves is accounted fo
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FIG. 6. Same as Fig. 5, but with the gridsizes= A,/20 andh, = ,/8.
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FIG. 7. Convergence of iterations for = 0.04, Zyax = 20, I'nax/Zmax = 1. Gridsizes:h, = 2,/10 and
h, = 2,/4.
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FIG. 8. Same as Fig. 7 but with the gridsizZes= 1,/20 andh, = 1,/8.
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the nested structure of the iterative procedure. The fast-scale decay followed by a jt
back up is the convergence of linear iterations on the inner loop with subsequent updat
k2. The slow-scale decay all the way up to machine zero corresponds to the convergen
nonlinear iterations on the outer loop.

Figures 7 and 8 demonstrate the convergence of iterations. Besides, we notice that
finer grid (see Fig. 8), this convergence is faster (about twice as fast) than on the coe
one (see Fig. 7). In fact, we have observed in various simulations that the geometry in
r direction influences the rate of convergence most noticeably. The larger the domain
I'max and/or the finer the grid size, the faster the iterations converge. As of yet, we dc
not have a rigorous explanation of this computational phenomenon. We can only ass
that both refining the grid in thedirection and putting the boundary= r s« further away
somehow reduce the adverse influence of this reflecting boundary on the solution.

As stated at the beginning of this section, a major goal of the nonlinear simulations i
compare the performance of the new two-way ABC against that of the traditional Dirich
boundary condition a& = 0 (71). In Fig. 9 we compare the actual computed solutions wit
the two boundary conditions for the case that we have analyzed befer8:04,z,.x = 20,
rmax/Zmax = 1, h, = 1;/10,h, = 1,/4. We see a noticeable discrepancy between the tw
curves. The dotted line that corresponds to the Dirichlet boundary conditions is ab
the solid one, which corresponds to the two-way ABC. The extent of the aforementior
discrepancy is roughly equal to the level of backscattering that we have recovered previol
which is clearly a natural result.

We also compare the rates of convergence of the iterative algorithm for the two type:
boundary conditions that we setat 0. The convergence history for the two-way ABC is
shown in Fig. 7; the convergence history for the Dirichlet boundary conditions is shown
Fig. 10. We see that the convergence with the two-way ABCs is about 1.5 times faster t
that with the Dirichlet boundary conditions, which presents another advantage of us
the new methodology. Let us mention that the phenomenon of convergence speedu
iterative solvers caused by the application of highly accurate nonlocal ABCs (similar
those developed in this paper) has been noticed previously by several authors, althou
completely different settings primarily associated with fluid flow computations; see [34]

1.1

|E(0,2)]

20

z

FIG. 9. |EcompuedO, 2)| for the two-way ABC (solid) and for the Dirichlet boundary conditions (dots).
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FIG. 10. Same as Fig. 7, with the Dirichlet boundary conditioz at 0.

We now consider the case= 0.06, for which the input beam power is 90% of the critical
power. Basically, the results have the same qualitative features as for thed%84. In
particular, the convergence of iterations is faster for finer grids and larger computatio
domains, as well as for the two-way ABC compared with the traditional Dirichlet bounda
condition atz = 0. Moreover, we note that for = 0.06 some cases with the Dirichlet
boundary condition did not converge at all.

In Fig. 11a, we plot the on-axis amplitude raised to the power 4 for the domain of t
same size as corresponds to Fig. 4 (but with a finer grid). We plot this particular quan

0 10 20

FIG. 11.  |Ecompuied0. 2)|* for € = 0.06,h, = 2.,/20,h, = 3,/8, I/ Zemax = 1. (2) Zmax = 20; (0) Zpay = 40.
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1.1
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FIG. 12.  |Ecompuied0, 2)| for € = 0.06,h, = 1,/20,h, = A,/8, I'max/Zmax = 1. Solid line—z.« = 20; dotted
line—zmnay = 40.

because itis the one that controls the relative magnitude of nonlinearity, which is crucial
our study, and it also allows us to see most clearly that the solutionfee= 20 has small
oscillations throughout the domain, which are reminiscent of those seen in Fig. 3. In or
to verify that these oscillations are indeed due to the right bourdary,« being placed
too close, we reran the same simulation but with the right boundary located at twice
previous distance, i.€zmax = 40. The corresponding profile PEcomputedO, 2)|* is shown

in Fig. 11b, but only for the half of the new range fron0z < 20, to make the scale the
same as that in Fig. 11a. From Fig. 11b we see that in thezzage- 40 the little wiggles
have almost disappeared, suggesting that this is indeed a numerical artifact, rather
a true physical phenomenon. Apart from the little wiggles, the two solutions seem to
identical, as Fig. 12 indicates.

The explanation for the appearance of the small wiggles throughout the domain wher
right boundary is too close is the same as in the linear case, namely, that in order for the £
atzmaxto performwell¢| E|* should be sufficiently small there so thét~ ké with sufficient
accuracy. Therefore, at higher one needs more decay |iE|* for this approximation to
hold. On top of that, at higher powers self-focusing is stronger, implying| &jatwould
decay slower ire. This, in turn, means that we may need to use larger and larger doma
at higher powers, otherwise, the quality of the computed solution will deteriorate. Besic
the convergence rate of our iterations may also be affected by the location of the bount
Z = Zmax- FOr higher powers on those domains we have considered it becomes prohibitiy
slow (if there is convergence at all). This is why, at present, we could not go abev®06.
We should note, however, that besides enlarging the domain, changing the iterative algor
itself to a more efficient one may alleviate the aforementioned problem. This issue will
studied in the future.

The results of the grid convergence study & 0.06 are summarized in Table IV.
Comparison of Table Il with Table IV shows that as the input power increases (relat
to the critical power), more energy gets backscattered and the self-focusing peak becc
higher, which is expected from physical considerations.
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TABLE IV
Grid Refinement and Domain Enlargement Study fore = 0.06

Maximum Maximum
Zimax I max/ Zmax h, h, self-focusing backscattering
20 1 A2/10 s 1.0567 0.0188
20 1 22/20 A2/8 1.0528 0.0188
20 1 A2/20 A2/16 1.0526 0.0188
20 2 A2/20 A2/8 1.0527 0.0188
20 1 22/40 A2/8 1.0518 0.0179
40 1 A2/20 A./8 1.0512 0.0173

8. DISCUSSION

In this section we briefly describe the approaches that have been used previously ir
literature for solving similar problems. We then discuss the motivation behind making sol
particular choices when constructing our algorithm, present the conclusions, and out
directions for future research.

8.1. Previous Approaches for Solving the NLH

Feit and Fleck [7] solved the NLH by splitting the wave into its forward and backwar
components and solving only for the forward propagating part. Under this approach it v
assumed that the “transverse variation in [K] is sufficiently small.” As for backscatterin
their algorithm “removes power that cannot propagate in the forward direction withc
accounting explicitly for where it goes” [7]. Akhmediev and collaborators [1, 2] solved a
initial-value problem which can be viewed as a “modified” NLH. However, they neglecte
they,, term, as well as backscattering.

In contrast to the aforementioned approaches, in this paper we solve the Helmh
equation as a true “unabridged” boundary-value problem. By doing that, we can acco
correctly for the backscattering, without introducing any adhoc assumptions, the valic
of which is unclear.

8.2. Discontinuity at the Interface z 0

In the current study we consider the simplest possible model for the interface,
where we assume that this interface is nonreflecting, i.e., the wavenkrgeontinuous
acrosg = 0 (Section 2.1). From the standpoint of physics this is, of course, not necessa
true. For example, an incoming laser beam traveling through air which impinges on a w:
interface would be partially reflected, due to the difference in the (linear) index of refracti
between air and water. The easiest way to incorporate the discontinditstin= 0 into
the model would be to do that for the linear constant-coefficient Eq. (12) in the framewc
of the iteration scheme, as we do all other boundary conditions. After the transverse Fol
transform, we obtain a collection of one-dimensional Helmholtz equations. For each of
latter, the application of the standard elliptic interface conditions, which for the secor
order equations are the continuity of the solution and its flux across the interface, yie
the standard expressions for the reflection and transmission coefficients, once the incol
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wave is given. If we want to use the transmitted wave (i.e., already past the interface
the primary data for the problem, the same expressions will yield the amount of reflect
and the original incoming signal. Moreover, they will also apply to treating the possikt
reflection of the backscattered waves by the interfaee0.

8.3. Nonlinear Iterations

The primary motivation behind our choice of the nonlinear iteration scheme (s
Section 4) was its simplicity. We note that Egs. (9), (10) have been obtained by sim
freezing the nonlinear term rather than differentiating it in the sense of Frechet. For comp|
valued solution€ (which is the case in our study), the nonlinearity in Eq. (7) is obviousl;
nondifferentiable and consequently, the direct implementation of Newton’s method is |
possible. However, as mentioned by Bayliss [3], Newton-type iterations may still apply
Eq. (7) if it is solved separately for the real and imaginary componenis dfe did not
try to implement this idea in the current study. We acknowledge, however, that among
different parts of our algorithm the nonlinear iteration scheme is apparently the primary c
didate for improvements in order to achieve convergence with higher input power, i.e.,
largere.

8.4. Linear Solver

The solver that we employ for the variable-coefficient linear Helmholtz equation is al
iterative and fits as the inner loop of the overall nonlinear solver. This choice is, of cour
by no means unique. In general, one can solve the linear Helmholtz equation with vari
coefficients using a variety of other methods, such as the Ricatti method [18]. A rec
review by Turkel of different approaches for solving the linear Helmholtz equation can
found in [35]. We note, however, that combining a Helmholtz solver with global ABC:
and in particular, a two-way ABC of the type constructed in this paper, presents a rat
difficult task, since the speed of propagation of plane waves iz thieection depends on
their transverse wavenumber. Indeed, most of the solvers available in the literature
with simpler boundary conditions, such as those of the Dirichlet type. The solver that
have constructed involves a direct inversion of the constant-coefficient operator on e\
iteration using the separation of variables. This approach, as mentioned, is most nature
incorporating global ABCs into the model.

8.5. Fourth-Order Scheme

In this study we chose a fourth-order method, rather than a conventional second-o
one, for our simulations. The motivation behind this choice is, in fact, standard, and re
primarily on the possibility of having less points per wavelength and accordingly reduci
the required overall grid dimension for a given level of accuracy. Besides, our numeri
simulations corroborate that the extent of backscattering in the model we study is ind
small. In such cases, i.e., when the interesting phenomenon is small in magnitude comg
to the background, it is generally acknowledged that higher order methods perform be
than lower order ones.

We note in this connection that the construction of one-way discrete Helmholtz equati
and radiation ABCs for a second-order scheme would be conceptually the same as
construction described in Section 6 but substantially less cumbersome in both deriva



674 FIBICH AND TSYNKOV

and implementation, as it would not require taking care of an extra pair of evanesc
waves. However, having a higher order method justifies, in our opinion, the additional wc
invested in obtaining the more sophisticated ABCs.

8.6. Discrete Implementation

The implementation in this study of both the conventional radiation boundary conditi
atz = zyax and the two-way ABC at = 0, is done after the continuous problem has beel
replaced with a discretized finite-difference formulation. The “fully discrete” approach th
we have adopted is quite different from the more common technique of deriving continuc
ABCs and subsequently discretizing them; see [34]. The advantage of working comple
at the discrete level is that discretizing (20) may be nontrivial, especially in the fram
work of a higher order method. Another advantage of building the ABCs at the discre
level is the “automatic” well-posedness of the resulting formulation. As mentioned, t
corresponding solvability and well-posedness analysis for general one-dimensional
tems of finite-difference equations can be found in [14, 23]. To the best of our knowled
the proposed full-fledged discrete construction of the two-way ABCs for a higher orc
finite-difference scheme is unique.

8.7. Time-Dependence

In the present study we have focused on the nonlinear Helmholtz equation (NLH), wh
models the propagation of stationary (cw) laser beams in a Kerr medium. It is importan
note that from the standpoint of physics, the natural formulation of the Kerr effect is a cul
nonlinearity in the time-harmonic framework described by the NLH (4) and, according
a nonlinear convolution for time-dependent problems (of propagation ofpatss3 (see
[4]) rather than the other way around. As mentioned, the NLS in nonlinear optics is deriv
from the NLH under the paraxial approximation; see Section 3. Therefore, our results
be used to assess, for example, the effect of nonparaxiality and that of backscatterin
soliton propagation in the one-dimensional cubic NLS. We reemphasize that the “dynan
NLS (6a) in nonlinear optics describes stationary propagation, since the axial coordir
variablez plays the role of “time” (recall that the initial condition (6b) is prescribed at 0
forall0 <r < o0).

In nonstationary models that are used in nonlinear optics for propagation of laser pul.
one can formally consider time as an additional spatial variable, because the field inten
(“initial condition”) is prescribed az =0 forall 0<r < oo and all—o0 <t < c0. In
that case, the extension of our methodology is straightforward. Solving “genuine” tirr
dependent problems in other nonlinear wave models can, of course, present a signifi
independent interest. Without delving into details, we mention that construction of ac
rate ABCs for time-dependent problems is often more demanding (both theoretically
computationally) than for similar steady-state or time-harmonic problems. An approz
to constructing accurate global fully discrete ABCs for time-dependent wave propagat
problems is presented in [27, 28].

8.8. Conclusions

In the current paper we have developed and implemented a fourth-order finite-differe
method for solving the nonlinear scalar Helmholtz equation that accounts for the phenom
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of self-focusing and backscattering. The method is supplemented by the highly accu
global ABCs that make the external artificial boundaries fully transparent for all outgoi
waves (including the backscattered waves) and at the same time are capable of corr
prescribing the incoming signal at the outer boundary of the computational domain. To
best of our knowledge this is the first attempt ever to construct global ABCs that poss
the foregoing two-way capability.

The fourth-order grid convergence of the method has been directly verified by sc
ing model linear problems. In the presence of backscattering, the new method cle
outperforms a traditional technique based on the Dirichlet boundary condition. We h
also conducted a comprehensive experimental study of the nonlinear case in the re
where the input power is below the critical one for blowup. As with the linear case, tt
study corroborates the convergence of the method and its superiority over the traditic
approach.

The new method allows for a systematic quantitative study of backscattering in nonlin
self-focusing. To the best of our knowledge, this is the first study that allows, for examg
a calculation of the actual extent of backscattering, its dependence on the input po
etc. As mentioned, the new extended capabilities are accounted for by the fact that, ur
previous studies, we solve the NLH as a true nonlinear boundary-value problem, with
introducing any simplifying assumptions on the continuous level prior to the discretizatic
Therefore, the only error that we are actually left with is the truncation error associated v
the discrete approximation of derivatives.

8.9. Future Work

In this paper we have developed a new numerical methodology for solving the t
boundary-value problem for the NLH. We believe that our approach can be extende
address various other issues that are not covered by the present study. For example
interesting to conduct a systematic comparison of NLH simulations with the correspond
NLS simulations. Such a comparison would enhance our understanding of the role
nonparaxiality and backscattering. It is also interesting to compare our NLH simulatic
with earlier approaches for solving the NLH, which did not treat the NLH as a true bounda
value problem. In addition, future studies should attempt to go above the critical power
blowup. If successful, this would provide strong support for the current belief that there
no blowup in the presence of nonparaxiality.

In this study we have primarily focused on the NLH which corresponds to the cr
ical NLS. However, our numerical approach can be applied for both subcritical NL
(e.g., calculating the amount of backscattering for solitons), as well as the supercrit
case.

We finally note that the nonlocal homogeneous radiation ABC=atzy,y, as well as the
nonlocal nonhomogeneous two-way ABCzat 0, can be cast into the general framework
of pseudo-differential boundary equations and projection operators of Calderon’s type
Calderon equation in the case of the two-way ABC will be nonhomogeneous as well)
the difference potentials method by Ryaben'kii; see [5, 20, 24-26, 29]. This, in particul
may allow considering curvilinear outer boundaries if necessary, as opposed to only lir
boundaries considered in the current study. Besides, such a reformulation will be genel
useful from the standpoint of understanding the fundamental connections between gl
ABCs of various types that appear in the scientific computing literature.
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