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Abstract

We propose new global arti�cial boundary conditions (ABCs) for computation of ows

with propulsive jets. The algorithm is based on application of the di�erence potentials

method (DPM). Previously, similar boundary conditions have been implemented for calcula-

tion of external compressible viscous ows around �nite bodies. The proposed modi�cation

substantially extends the applicability range of the DPM-based algorithm. In the paper, we

present the general formulation of the problem, describe our numerical methodology, and dis-

cuss the corresponding computational results. The particular con�guration that we analyze

is a slender three-dimensional body with boat-tail geometry and supersonic jet exhaust in a

subsonic external ow under zero angle of attack. Similarly to the results obtained earlier

for the ows around airfoils and wings, current results for the jet ow case corroborate the

superiority of the DPM-based ABCs over standard local methodologies from the standpoints

of accuracy, overall numerical performance, and robustness.

�This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1{97046 while the �rst, second, third, and fourth authors were in residence at the Institute for
Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center. This work
was also supported by Director's Discretionary Fund, NASA Langley Research Center. Originally presented
as AIAA Paper # 99{3351 at the 14th AIAA CFD Conference, Norfolk, VA, June 1999.

yConsultant for ICASE. Permanently: Senior Lecturer, School of Mathematical Sciences, Tel Aviv Uni-
versity, Ramat Aviv, Tel Aviv 69978, Israel. Member AIAA. Phone: (972-3)640-8812, Fax: (972-3)640-9357,
E-mail: tsynkov@math.tau.ac.il.

zConsultant for ICASE. Permanently: Professor, School of Mathematical Sciences, Tel Aviv Uni-
versity, Ramat Aviv, Tel Aviv 69978, Israel. Phone: (972-3)640-8951, Fax: (972-3)640-9357, E-mail:
saul@math.tau.ac.il.

xConsultant for ICASE. Permanently: Senior Scientist, FFA, The Aeronautical Research Institute of
Sweden, Box 11021, S-161 11, Bromma, Sweden. Phone: (46-8)634-1165, Fax: (46-8)634-1071, E-mail:
nmj@ffa.se.

{Consultant for ICASE. Permanently: Professor, Keldysh Institute for Applied Mathematics, Russian
Academy of Sciences, 4 Miusskaya Sq., Moscow 125047, Russia. Phone: (7-095)250-7839, Fax: (7-095)972-
0737, E-mail: ryab@spp.keldysh.ru.

kSenior Research Scientist, Computational Modeling and Simulation Branch, Aerodynamics, Aerother-
modynamics & Acoustics Competency, Mail Stop 128. Member AIAA. Phone (757)864-2236, Fax: (757)864-
8816, E-mail: vatsa@tabdemo.larc.nasa.gov.

Tsynkov 1 of 37



Introduction

Many typical problems in aerodynamics including those that present immediate practical

interest, e.g., ows around aircraft, are formulated on in�nite domains. It is, however, obvi-

ous, that any discretization used for solving such problems on the computer must be �nite.

Therefore, any numerical solution methodology for these problems has to be supplemented

(or, rather, preceded) by a special technique that helps create such �nite discretizations.

A widely used approach to this problem is based on truncating the original ow domain

prior to the actual discretization and numerical solution. Subsequently, one can construct

a �nite discretization on the new bounded computational domain using one of the stan-

dard techniques: �nite di�erences, �nite elements, or other. However, both the continuous

problem on the truncated domain and its discrete counterpart will be subde�nite unless

supplemented by the appropriate closing procedure at the external computational boundary.

This is done by using arti�cial boundary conditions (ABCs); the word \arti�cial" emphasiz-

ing here that these boundary conditions are necessitated by numerics and do not come from

the original physical formulation.

The ideal or, in other words, exact, ABCs are obviously those that would drive the error

associated with domain truncation to zero. However, numerically e�cient procedures of this

kind cannot be attained routinely except in model (mostly one-dimensional) problems and

therefore, for typical applications one uses primarily di�erent approximate rather than exact

methodologies.

The nature of the di�culties associated with constructing the exact ABCs is that in most

cases such boundary conditions appear nonlocal (in space and also in time for unsteady

problems). Although the corresponding computational algorithms are robust and highly

accurate, they can be cumbersome and typically apply only to rather simple geometries. On

the other hand, the alternative local approaches that yield inexpensive and geometrically

universal numerical procedures may often lack accuracy in computations, which, in turn,

necessitates choosing excessively large computational domains. Basically, higher accuracy

due to boundary conditions implies that more of the nonlocal nature of exact ABCs has to be

taken into consideration. As a consequence, to avoid extra complexity due to the nonlocality

of boundary conditions, most of the modern production algorithms in CFD still employ local

ABCs that are based on simpli�ed ow models. The possibility to use local ABCs comes, as

mentioned, at the expense of running the cases on large domains.

Generally, it has been demonstrated theoretically and computationally in both CFD and

other areas of scienti�c computing that the treatment of ABCs may have a profound impact

on the overall performance of numerical algorithms and interpretation of the results. The

literature on various ABCs' techniques is extensive, a detailed review can be found in work
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by Givoli,1,2 as well as in a more recent paper by Tsynkov.3

The construction of ABCs based on the di�erence potentials method (DPM) by

Ryaben'kii,4{6 was an attempt to combine in one technique the advantages relevant to

both local and global methodologies, see Refs. 7{17. These boundary conditions employ

�nite-di�erence counterparts to Calderon's pseudodi�erential boundary projection opera-

tors and generalized potentials that have been �rst proposed in work by Calderon18 and then

also studied by Seeley.19 The DPM-based ABCs have been successfully implemented along

with NASA-developed multigrid Navier-Stokes solvers for the calculation of two-dimensional

(solver FLOMG by Swanson and Turkel20{22) and three-dimensional (solver TLNS3D by Vatsa,

et al.23,24) compressible viscous ows around airfoils (NACA0012, RAE2822) and wings

(ONERA M6).

In many numerical tests the DPM-based boundary conditions have consistently outper-

formed the standard local methods from the standpoints of accuracy, multigrid convergence

rate, and overall robustness (they allow for a substantial reduction of the domain size while

preserving the accuracy and may also speed up the convergence of multigrid iterations by up

to a factor of three, i.e., they would require only about one third of the original number of

multigrid cycles for reducing the initial residual by a prescribed factor). Note, the standard

local boundary conditions for external ows that are referred to above are typically based on

one-dimensional characteristics analysis for the front or inow part of the arti�cial boundary

and speci�cation of the free-stream pressure and extrapolation of all other quantities on

the rear or downstream portion of the outer boundary; this treatment may or may not be

supplemented by the point-vortex correction25 for the two-dimensional case; an example of

geometry in three dimensions is shown on Figure 1 in the next section.

All the problems analyzed previously in the DPM framework (see the aforementioned

references) can actually be characterized as \pure" external ows. In this paper, we for the

�rst time incorporate a new and essentially di�erent physical element into the formulation of

the problem; namely, we will consider external ows around con�gurations with jet exhaust.

The problems of this kind have never been studied by means of the DPM before and including

this new ow phenomena into the range of admissible formulations for the DPM-based

methodology substantially enlarges the scope of its capabilities. Moreover, as di�erent ows

with jets are frequently encountered in aerospace applications, the possibility of computing

external aerodynamics more e�ciently with jet exhaust phenomena taken into account is

important for both con�guration analysis and design.

The material in the paper is prepared as follows. In the next section we outline the basic

DPM-based procedure as developed for pure external ows; in the section that follows we

describe the changes that are necessary for incorporating the jet exhaust ows; then, we
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present the numerical results and conclusions.

DPM-based ABCs: Basic Algorithm

In this section, we outline the corresponding derivation from Ref. 15. The paper by

Tsynkov16 contains a substantially more detailed account on how to set the three-dimensional

DPM-based ABCs.

We consider a steady-state ow of a viscous, compressible, perfect gas past a �nite three-

dimensional con�guration. The ow is uniform and subsonic at in�nity; it is also symmetric

with respect to the Cartesian plane z = 0. The hydrodynamics equations are discretized and

integrated on a grid generated around the immersed body(ies). The grid actually de�nes a

bounded computational domain; the ABCs that would close the truncated problem should

be set at the external coordinate surface of the grid. Let us denote this surface �; for a one-

block curvilinear C-O type boundary-�tted grid around the ONERA M6 wing the schematic

geometric setup is shown in Figure 1.

The outermost coordinate surface of the grid is designated �1 (see Figure 1); it represents

the ghost nodes (or ghost cells for the �nite-volume formulation). Clearly, when the stencil of

the scheme used inside the computational domain is applied to any node from �, it generally

requires some ghost cell data. Unless the required data are provided, the �nite-di�erence

system solved inside the computational domain appears subde�nite, i.e., it has less equations

than unknowns. Therefore, in practical framework the closure of the discretized truncated

problem means speci�cation of the solution values at the ghost cells. This will be done by

means of the DPM-based ABCs so that the boundary data used for the closure admit an

exterior complement that solves the problem outside the computational domain. As soon

as the data in the ghost cells have been obtained as functions of the data in the interior

cells (�1 as a function of �), the corresponding relations can be incorporated into the actual

solver used inside the computational domain. If, for example, this is an iterative solver (very

often the case), then one has to update the ghost cells at each iteration to advance to the

next \time" step.

To construct the boundary conditions, we �rst assume that the ow perturbations against

constant free-stream background are small in the far �eld and consider the linearized problem

outside the computational domain (i.e., outside �). It is important to emphasize that the

possibility of far-�eld linearization (i.e., the possibility to retain only the �rst-order terms

with respect to perturbations in the governing equations) requires special justi�cation, in

particular, when analyzing transonic ows. We do not present the corresponding argument

here; a simple asymptotic analysis in the framework of the full potential model that justi�es

the far-�eld linearization in three dimensions can be found in our previous work.15,16 Of
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course, even if we know that the far �eld is linear, we still cannot say a priori whether

or not the linearization outside � is possible for a particular con�guration of the domains.

Clearly, for a very large computational domain one can linearize the ow outside �, and

as we approach the source of perturbations (the immersed con�guration), the validity of

linearization is veri�ed a posteriori (see, e.g., Refs. 8, 9, 12, 15, 16).

We will be considering the entire problem in the framework of the thin-layer equations

(as opposed to the full Navier-Stokes equations). This simpli�ed ow model still retains

all the essential properties pertinent to the class of problems that we are studying and at

the same time it is less expensive numerically. In the far �eld, the thin-layer equations are

linearized against the constant free-stream background and supplemented by the condition

of vanishing of all ow perturbation at in�nity, which corresponds to the free stream limit

of the solution. The actual form of the linearized governing equations in the far �eld is

presented in Refs. 15, 16.

We discretize the linearized thin-layer system with the second order of accuracy on an

auxiliary Cartesian grid; a detailed description of the resulting �nite-di�erence scheme can

be found in Ref. 16. The DPM will provide us with the complete boundary classi�cation of all

those and only those exterior grid vector-functions that solve this discretized system outside

the computational domain and meet the boundary condition at in�nity (vanishing of all per-

turbations). The foregoing boundary classi�cation will be obtained as an image of a special

projection operator, which can be considered a discrete analogue to Calderon's pseudodi�er-

ential boundary projection.18,19 The projection operators act on the grid functions de�ned

as boundary traces of the solution. In actual computations, the boundary conditions are set

as follows. Every time we need to update the ghost cells we take an appropriate set of data

from inside � (see below), project it onto the subspace in the entire space of boundary data

that admits the correct exterior complement, and obtain the ghost cell values by calculating

this complement on �1.

The implementation of the DPM-based ABCs starts with splitting the nodes of the

auxiliary Cartesian grid into two distinct groups: those that are inside � and those that are

outside �. Applying the stencil of the scheme that we use to each node of both groups, we

consider the intersection of the grid sets swept by the stencil. This intersection is called the

grid boundary ; it is a multi-layered fringe of nodes of the auxiliary Cartesian grid located

near and straddling the continuous boundary �.

For any function u on the Cartesian grid we de�ne its trace Tru on  as merely a

restriction. For any grid function u speci�ed on  we introduce the generalized potential

P u with the density u; the generalized potential is de�ned on the auxiliary Cartesian

grid on the boundary  and outside it. The generalized potential is obtained as a solution
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of the special auxiliary problem (AP) driven by the right-hand side that depends on u;

the formal construction of this right-hand side is the same in two- and three-dimensional

cases, see Refs. 7, 11, 12, 16 for details. The AP is formulated on a �nite auxiliary domain,

which is a Cartesian parallelepiped that fully contains �1. The formulation of the AP involves

periodization in the cross-stream and span-wise directions y and z, respectively. The periods

are chosen su�ciently large to guarantee that the periodic solution considered on a �nite

�xed neighborhood of � and �1 provide a good approximation to the theoretical non-periodic

solution; the latter can be thought of as a limit when the periods in y and z approach in�nity.

The approximation of a non-periodic solution by the periodic one on a �xed subinterval as

the period increases is discussed in our work.7,11,12 The boundary conditions for the AP in

the stream-wise direction x are constructed semi-analytically using explicit mode selection

that would guarantee the desired far-�eld behavior of the solution, see Refs. 15, 16.

The AP allows us to calculate the generalized di�erence potential P u for any grid density

u speci�ed on . In the vicinity of the computational domain the potential approximates

the solution to the linearized equations subject to the zero boundary condition at in�nity

(the accuracy of this approximation can be controlled by choosing the periods in y and z).

The composition of the operators Tr and P , P � TrP , is a projection, P 2
 = P, and it

is a discrete counterpart of Calderon's boundary projection18,19 for the linearized thin-layer

system. The image of this projection, ImP , contains all those and only those u's that are

traces of the exterior di�erence solutions to the linearized thin-layer equations that satisfy the

boundary conditions of the AP. In the sense of the foregoing approximation (periodization),

ImP contains all those and only those u's that are traces of the exterior di�erence solutions

to the linearized thin-layer equations that satisfy the zero boundary conditions at in�nity.

Having constructed the procedure for calculating the potentials and projections for the

discrete linearized thin-layer equations, we can now close the system inside the computational

domain, i.e., obtain the ABCs. First, we take u and @u=@n on �, n is the normal, (these

data are available from inside the computational domain) and, using interpolation R� along

� and the �rst two terms of Taylor's expansion (denoted �), obtain u:

u = �R�

�
u;

@u

@n

�����
�

: (1)

Then, we need to calculate the potential P v for the density v = Pu and interpolate it

to the nodes �1:

u

���
�1
= R�1P v � R�1P u : (2)

Finally, the ABCs are obtained in the operator form
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u

���
�1
= T

�
u;

@u

@n

�����
�

; (3)

where T is composed of the operations of (1) and (2). Boundary condition (3) is applied

every time we need to update the ghost cells when solving the interior problem (e.g., on every

iteration). The implementation of ABCs (3) can either be direct or involve preliminary

calculation of the matrix T. In the latter case, the runtime implementation of the ABCs

(3) is reduced to a matrix-vector multiplication. Numerical results for ows around the

ONERA M6 wing obtained with the DPM-based boundary conditions (3) are summarized

in work by Tsynkov and Vatsa15 and Tsynkov.16,17

Application to Jet Flows

The major di�erence between the formulation of the previous section and the ow with

jet exhaust is that in the vicinity of the jet we can no longer claim that ow perturbations

against the free-stream background are small. Indeed, inside the propulsive jet the speed

of the ow is typically much higher than the one in the surrounding area, moreover, other

parameters, e.g., temperature, may also di�er substantially. Therefore, the linearization of

the ow against a constant free-stream background everywhere is, generally speaking, not

valid in this case.

However, in many applications (in particular, aerospace) one can clearly distinguish be-

tween those parts of the overall ow that contain jet(s) and the remaining areas. Therefore,

the most comprehensive way to develop the far-�eld linearization in this situation will ap-

parently be to use the appropriate asymptotic solutions for jets (see, e.g., Abramovich26)

in the corresponding regions as a background. For ow regions outside the jet, it is always

reasonable to assume that the foregoing linearization around a uniform free-stream solution

will still be valid there.

The particular setting that we will be studying hereafter is schematically shown in Fig-

ure 2. (The meaning of the two external grid surfaces is the same as � and �1 in Figure 1.)

It includes a three-dimensional slender body (symmetric with respect to the z = 0 plane

but not axially symmetric, i.e., not a body of revolution) with sharp nose and boat-tail aft

con�guration; the rearmost plane surface of the body (not shown explicitly in Figure 2) is

actually a location of the nozzle outlet; the outlet is rectangular in cross section. The exte-

rior ow is subsonic with the free-stream Mach number M0 = 0:6 and zero angle of attack,

the jet that is discharged from the outlet is supersonic, Mj = 1:6, and conuent with the

exterior ow.

The speci�c shape of the body (see Figure 2) as well as parameters of the ow have been
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previously proposed for numerical study and analyzed in work by Compton.27 In this original

work,27 Compton had calculated external ow with the propulsive jet and also considered

the interior portion of the ow, namely the ow in the actual nozzle located inside the

afterbody (this nozzle ow obviously produces the jet). For our study, we have generated

new grids and also simpli�ed the overall formulation by eliminating the nozzle and specifying

instead the uniform supersonic ow conditions at the nozzle outlet i.e., at the place where

the jet starts. Compton's goal27 was to assess the performance of di�erent turbulence models

including their prediction capabilities for the ow inside the nozzle; our goal is to assess the

performance of di�erent external boundary conditions for the ows with jet exhaust. We,

therefore, think that the aforementioned simpli�cation is justi�ed.

Our typical grid consists of two blocks: block 1 of C-O type is for the exterior ow

and block 2 of H-O type is for the jet portion (see Figure 2). Of course, this subdivision

can only have an approximate meaning because the jet will obviously tend to spread while

propagating downstream; basically, it means that the shear layer between the jet and coow

is located in the vicinity of the block interface. On this interface, the two grid blocks are

point-matched, which is a requirement for TLNS3D.

As has been mentioned, the exterior ow is subsonic and the jet is supersonic (other

parameters of the ow will be pointed out later). The standard boundary conditions in

TLNS3D for this two-block jet ow case include one-dimensional characteristics for external

inow (block 1, upstream portion of the boundary), speci�cation of the free-stream pressure

with extrapolation of all other quantities for external outow (block 1, downstream portion

of the boundary), extrapolation of all quantities for the jet downstream boundary (block

2) and speci�cation of all quantities for the jet inow boundary (block 2); the boundary

conditions on the solid surface of the body are standard no-slip conditions. Extrapolation

of all ow quantities at the jet outow boundary is justi�ed because as shown by numerous

simulations the core of the jet remains supersonic even at large distances downstream of the

body, at least as far as 40{50 nozzle calibers away.

The primary goal of this paper is to develop an alternative to the foregoing local bound-

ary conditions for the jet ow case { global ABCs similar to those described in the previous

section, and compare the performance of the two techniques. A direct implementation of the

ABCs (3) will, however, encounter a major obstacle in this case: as has been mentioned, we

cannot linearize against the free-stream background in the jet region and therefore, cannot

directly implement the operator T of (3) over the entire external boundary as this operator

is obtained on the basis of the thin-layer system linearized against a uniform free-stream

background. Of course, if we linearized the ow against a constant free-stream background

outside the jet and against some approximate asymptotic solution in the jet region (see
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Ref. 26) and then used the corresponding linear system (it will have variable coe�cients)

to construct the operator analogous to T of (3), then we could have applied the boundary

conditions (3) straightforwardly as done in the previous work15,16 for ows with no jets.

Computation of the new operator T in this framework will, in turn, require a di�erent con-

struction of the AP, certainly more elaborate (because of variable coe�cients) and possibly

more expensive than the one described in the previous section. One way of largely eliminat-

ing the di�culties associated with variable coe�cients is apparently to take advantage of the

supersonic nature of the jet and use marching-type algorithms in a subdomain of the new

AP domain. Although this may make the whole foregoing program feasible, we consider its

implementation as future work. In this paper we present the algorithm based on boundary

conditions (3) with minimal alterations.

As the ABCs (3) obviously cannot be applied in the jet area, i.e., on that portion of the

arti�cial boundary where the jet exits the domain, we need another procedure. The most

natural choice will be to extrapolate all ow quantities downstream at the outow boundary

because the core of the jet remains supersonic even at large distances away from the nozzle

outlet. Of course, we cannot actually predict where on the downstream boundary the ow

actually becomes subsonic, i.e., where the extrapolation ceases to be applicable. However,

we have observed that for the particular case under study we can extrapolate at least on the

entire downstream boundary of the second grid block (see Figure 2). Thus, extrapolation of

all ow quantities will be used henceforth as downstream boundary conditions for block 2.

In the standard procedure, the downstream boundary conditions for grid block 1, i.e.,

on the rest of the outow boundary, are based on the speci�cation of free-stream pressure

and extrapolation of all other quantities. Basically, these boundary conditions are relevant

for subsonic outow. In practice, some portion of the downstream boundary of block 1 may

also be supersonic; in this case, however, the implementation of these pressure boundary

conditions does not lead to noticeable errors because the streamwise variations of pressure

away from the nozzle are small (the jet is close to design, it is slightly overexpanded, see

below) and therefore, speci�cation of the free-stream pressure and extrapolation from the

interior are both procedures with acceptable accuracy.

To replace local boundary conditions on the outer boundary of block 1 (the region outside

the jet) by the more accurate global ABCs, we use relation (3). However, in formula (3)

both the input and output are global, i.e., not only the operator T provides the ghost cell

data along the entire boundary but also requires the data along the entire (penultimate)

boundary as driving terms. By using extrapolation downstream in the jet core instead of

using (3), we make sure that the possibly erroneous data from the global procedure are not

used on this part of the boundary. However, as the global operator T is constructed on the
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basis of the linearization against a constant background, which is not valid in the jet area,

plugging the actual ow quantities (including the jet pro�le) into the right-hand side of (3)

may potentially generate errors along the entire outer boundary.

On the other hand, it has been veri�ed for model examples14 and also seen for more

complex cases that typically, closely located boundary nodes inuence one another much

stronger than the remote ones. This behavior is reasonable from the standpoint of physics;

the structure of operators T reects this behavior so that although the matrix of T is dense

(non-locality), its near-diagonal terms are much larger than the o�-diagonal ones (for sys-

tems as opposed to scalar equations, it will be a similar block-wise structure). The speci�c

rate of decay for the o�-diagonal terms can probably be obtained only for the most elemen-

tary formulations (e.g., the Laplace equation with periodic boundary conditions). However,

although we cannot obtain analytical estimates for the kernels involved in operators T of

(3), we can still make use of the actual (block-wise) o�-diagonal decay in the numerical ex-

periments. In practical terms, this implies that although substituting the jet pro�le into the

right-hand side of (3) violates the small perturbations assumption, the associated error on

the left-hand side of (3) will mostly be concentrated again in the jet area, where the results

are not used for boundary conditions anyway as they are overridden by extrapolation.

Thus, the actual combined DPM-based ABCs that we employ for computation of the

foregoing jet ow case are the following. For most of the outer boundary (except the near-

jet area) we use formula (3) while substituting the actual ow pro�le in its right-hand

side. For the jet core (outow boundary for grid block 2) we extrapolate all ow quantities

downstream. For the small intermediate portion of the downstream boundary (near the jet

core) we extrapolate all quantities except pressure, the latter is prescribed from its free-

stream value. In fact, we have observed that within a certain range (5 to 30 cells of the

�ne grid described in Numerical Results), the actual location of where to switch from the

pressure boundary condition to formula (3) does not exert much inuence on either the �nal

accuracy or multigrid convergence rate. In the next subsection, we provide an additional

justi�cation for the use of this procedure.

Jet Outow Boundary Conditions

To describe and explain the speci�c boundary treatment in the vicinity of the jet exit

through the boundary, we start by considering the model problem below, disregarding for a

moment the connection to the global boundary procedure described above.

A model problem describing the error due to inaccurate outow pressure data for the
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steady Euler equations is,

Aex +Bey + Cez = 0; x < 0;

p = g(y; z); x = 0;

�1 < y; z <1;

(4)

where e = (�; u; v; w; p)T denotes the error and A, B, and C are constant matrices. We

assume that the boundary data has compact support outside a small portion of the boundary,

i.e.

g(y; z) = 0; jy; zj � �; (5)

We also assume that the base ow is subsonic and moves to the right. The problem (4),(5) is

a model for the error in an approximate solution with correct outow boundary data given

on jy; zj � � and erroneous one's on jy; zj < �.

The relation of the model problem (4),(5) to the speci�c outow problem in this paper

can briey be described as follows. The global boundary procedure far away from the jet

and the extrapolation procedure, see Refs. 28, 29, in the supersonic part of the jet lead to

very small errors, i.e. jgj � 0. In an intermediate domain between the supersonic part of

the jet and the part where the global boundary conditions are used, pressure with erroneous

data is speci�ed, i.e. jgj � O(1) in that part of the domain.

Note that for problems with boundary conditions in the x (or streamwise) direction it

makes little di�erence if one consider the inviscid Euler equations instead of the viscous

thin layer Navier-Stokes equations since the number and nature of the boundary conditions

required in the x direction are the same for the two sets of equations.

Let 
n
L = ([�(L + 1);�L] � Rn�1) where n is the number of spatial dimensions, see

Figure 3. The following theorem describes the error distribution in the halfspace x < 0.

Theorem 1 The error e in (4),(5) satis�es:

kekL2(
nL)
� C

vuut 1� u2q
(1�Q

2
j�pmaxj

�
�p
L

�n�1

(6)

where C is a constant and j�pmaxj is the maximal magnitude of the pressure error in jy; zj <
�, Q

2
= u2 + v2 + w2 for n = 3 and Q

2
= u2 + v2 for n = 2.

Theorem 1 means that by measuring the error in a local L2-norm on the �xed domain 
n
L, an

error decay can be observed. Note that if the error was measured by computing the L2 norm

in the whole computational domain, no error decay could be observed. The proof of theorem

Tsynkov 11 of 37



1 involves a straightforward application of the theory of Ref. 30. Numerical experiments

that verify the decay rate (6) can be found in Ref. 31.

For our speci�c outow problem with erroneous data given on the intermediate domain

between the supersonic part of the jet and the part where global boundary conditions are

used, theorem 1 means that the error decays with the rate �2=L away from the outow

boundary. Furthermore, in our speci�c ow problem we have a slightly overexpanded jet

which means that the maximum pressure error j�pmaxj in (6) is rather small.

E�ective Reynolds Number

To calculate the operator T of (3), we are solving the AP for the linearized thin-layer

equations. These equations formally involve the molecular Reynolds number of the ow.

However, as the actual ows that we are studying are turbulent, to integrate the thin-layer

equations numerically one complements them with turbulence models inside the computa-

tional domain. These models may be complex and require solving some additional di�erential

equations (see next section).

For the simpli�ed linearized far-�eld representation, we do not use these accurate and

sophisticated turbulence models. However, we still need to account for the corresponding

turbulent mixing and dissipation, at least in an approximate way. In previous work9 Tsynkov,

et al. have used the concept of e�ective turbulent viscosity for the far �eld and calculated

the e�ective turbulent Reynolds number using the fact that the laminar and turbulent plane

wakes behind the body have the same asymptotic behavior.32

The asymptotic behavior of laminar and turbulent circular jets is also known to be the

same.26,32 It involves a linear increase in width and a decrease in center-line velocity inversely

proportional to the distance from the source. The virtual kinematic viscosity (incompressible

case) can be considered constant through the entire jet region. Although we do not use

boundary conditions (3) in the core of the jet, the outer portions of the shear layer region

are still covered by the global procedure, therefore we need to provide the e�ective value of

1=Re for the linearized thin-layer equations.

The jet that we are studying is rectangular in its initial cross section (see next section

for particular details); however, its shape will approach circular further away of the outlet.

Therefore, we will use the results obtained for circular jets to �nd an approximate value for

the e�ective Reynolds number. First, we notice that the universal velocity pro�les in a cross

section of an incompressible submerged jet (i.e., the jet that propagates through a medium

at rest) are the same as those obtained for the excess velocity of the jet propagating in a

coow.26 Moreover, many experimental observations corroborate26 that the same universal

pro�les remain valid for a compressible supersonic jet spreading through either a stationary
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or moving medium. Of course, while the pro�les are universal, the actual spreading rate for

the jet will di�er for di�erent cases. Second, for the particular case under study (the ratio of

stagnation temperatures is T �

j =T
�

0 = 0:936; the design pressure ratio is p�j=p0
��
design

= 4:25 at

Mj = 1:6 whereas the actual pressure ratio is p�j=p0 = 4:00, the jet is slightly overexpanded),

the initial value of the compressibility parameter26 is �� = �0=�j = 1:41 and the initial velocity

ratio is m = u0=uj =
p
T0=TjM0=Mj = 0:459. According to Ref. 26, these values are within

the range (0 � m � 0:6, 0:3 � �� � 1:43), for which the correction due to compressibility for

the spreading rate b of the jet can be taken into account by calculating it as

bcomp = cx
1 + ��

2

1�m

1 + ��m
(7a)

instead of the old expression

binc = cx
1�m

1 +m
; (7b)

which is relevant for the incompressible ow; c in formulae (7) is a constant and x is the

distance from the source.

According to the measurements referenced by Schlichting,32 for a submerged incompress-

ible jet b1=2 = 0:0848x, where b1=2 is half width of the jet at half depth. Substituting this

into the solution for laminar jet:26,32

b1=2
x

= 5:27
�p
K
;

one obtains the virtual kinematic viscosity:32

�T = 0:0161
p
K; (8)

here K is the total kinematic momentum ux. Since the velocity pro�les are universal, for

the jet with coow we only need to multiply the spreading rate by (1�m)=(1+m) according

to formula (7b) and for the compressibility correction we use (7a), which altogether yields:

�T = 0:00636
p
K: (9)

As has been mentioned, the boundary condition that we specify for the jet inow is a uniform

supersonic pro�le across the entire nozzle outlet. Therefore, the quantity K can be obtained

by multiplying the square of the excess velocity (relative velocity of the jet with respect to the

velocity of coow) by the area of the outlet �, K = (uj�u0)2�. Then, the e�ective turbulent
Reynolds number is calculated as ReT = UL=�T , where U is the characteristic speed and L
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is the characteristic length. For the particular setting under study, it is reasonable to assume

that U = juj � u0j and L =
p
�. Consequently, from (9) we conclude that

ReT = 0:00636�1 � 157: (10)

In our computations, the actual value of Re for the linearized thin-layer system was taken

from (10).

Numerical Results

The particular geometry of the body shown in Figure 2 is the following: rectangular cross

section y�z = 6:2�6:8 with rounded edges; sharp nose and boat-tail afterbody; total length

in the x direction is 63; rectangular nozzle outlet y� z = 2:62� 5:12; full description can be

found in the work by Compton.27

The geometry and the ow are symmetric with respect to the plane z = 0 (zero angle

of attack). For our computations we have used three di�erent domains with successively

reduced dimensions, see Figure 4; domain I (or large domain) with the diameter of about

30 calibers of the body was used for calculating the reference solutions, domain II is 0:36 or

about 1=3 of the size of domain I in each direction and domain III is 0:22 or about 1=5 of

the size of domain I in each direction.

As has been mentioned, to integrate the thin-layer equations on the curvilinear grid

shown on Figure 2 we use the code TLNS3D by Vatsa, et al.23,24 This is a central-di�erence

code with �ve stage explicit pseudo-time Runge-Kutta relaxation used for obtaining steady-

state solutions. The code employs local Courant step, semi-implicit residual smoothing, and

multigrid for accelerating the convergence. In our computations, we used either three or

two nested grid levels with V cycles (depending on the grid dimension); this multi-level V-

cycle algorithm is, in fact, a �nal stage of the full multigrid (FMG) procedure. In addition,

to improve the convergence to steady state, the solver is preconditioned according to the

methodology of Ref. 33.

The DPM-based ABCs are implemented only on the �nest grid for the V-cycle in the �nal

FMG stage; the boundary data for coarser levels are provided by the coarsening procedure.

Moreover, even on this �nest grid we implement the DPM-based ABCs only on the �rst and

the last Runge-Kutta stages, which has been found15,16 to make very little di�erence com-

pared to the implementation on all �ve stages; the boundary data for the three intermediate

stages are provided from the DPM-based ABCs on the �rst stage.

To account for the turbulent phenomena, the solver is also supplemented with Menter's

two-equation turbulence model.34 The actual molecular Reynolds number based on unit
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length is Re = 321000, Prandtl number is Pr = 0:72, speci�c ratio is � = 1:4.

We have used several di�erent grids to calculate the jet ow; in all cases we kept the

normal spacing near the solid surface the same: � 3 � 10�4. All grids are stretched, the cell

size increases away of the body in geometric progression. The dimension of the C-O grid

block 1 for domain I was i�j�k = 385�77�33 (i is the streamwise C-type coordinate, j is

the radial coordinate, and k is the circumferential cross-stream O-type coordinate, quarter

circle). The dimension of the H-O grid block 2 for domain I was i� j�k = 81�77�65 (i is

streamwise, j is radial, and k covers half circle). We will further refer to this grid as �ne. On

the �ne grid, we have calculated two reference solutions, one with standard ABCs and another

| with global ABCs. As the arti�cial boundary for domain I is located su�ciently far away

of the body, the di�erence between the corresponding results is negligible. In Figures 5 and

6 we show convergence histories for this case: residual of the continuity equation is plotted

vs. work units in Figure 5 and drag coe�cient is plotted vs. work units in Figure 6. (One

work unit is the cost of advancing one time step on the �nest grid.)

From Figures 5 and 6 we conclude that multigrid convergence rates are the same for local

and global ABCs on domain I. Moreover, the values of total drag coe�cient per unit area CD

are summarized for this case in the right column of Table 1. They di�er by about one third

of one per cent, which corroborates that the type of external boundary conditions has little

e�ect on the solution itself, as well as multigrid convergence history, for large computational

domains.

For domain II, we have computed the ow on two grids with di�erent dimensions. The

�rst grid has the same number of nodes as the one used in domain I; it was, in fact, con-

structed by scaling down the original large grid by a factor of 0:36 in each direction. We

will also refer to it as �ne grid. As shown in Table 1, the coe�cient CD obtained on this

grid with global ABCs di�ers by less than one per cent from its reference value, whereas the

accuracy provided by local ABCs is not nearly as good, about 9% discrepancy; moreover,

because of the poor convergence (see Figures 7 and 8) the value of CD for local ABCs is

given with the error bands indicated.

The much smaller size of domain II compared to domain I actually suggests that on

domain II one can successfully compute the solution on a grid with fewer nodes. Therefore,

the second grid that we have used for domain II had one half of the original dimension in two

out of three directions, block 1 i�j�k = 193�39�33 and block 2 i�j�k = 41�39�65, this
grid will be referred to as coarse. Again, as follows from Table 1, global ABCs provide for an

accurate solution whereas the accuracy of local ABCs is not su�cient and the convergence is

slow (or even non-existent). Convergence histories for domain II are presented on Figures 7
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and 8.

Since the node count for the coarse grid is only 1=4 of the node count for the �ne grid,

the convergence vs. work for the coarse grid is about four times faster (see Figures 7 and 8),

although convergence rates measured vs. number of multigrid cycles will be approximately

the same for both grids. Note that because of the particular grid dimensions (the issue of

divisibility by 2) we have used three nested multigrid levels on the �ne grid and two levels

on the coarse grid. One can clearly see from Figures 7 and 8 that the DPM-based ABCs

provide for a noticeably higher multigrid convergence rate than the standard local ABCs do.

Moreover, it is, in fact, hard to conclude from Figures 7 and 8 whether or not the algorithm

with local ABCs converges. If it does, the resulting CD will be about 10% o� its reference

value.

On domain III, the computations were performed on the �ne grid, which again was

obtained by scaling down the grid from domain I (a factor of 0.22 in each direction). The

algorithm with local ABCs for this domain/grid failed to converge, whereas the algorithm

with global ABCs converged with the same rate as before. However, the actual computed

CD is about 5% o� its reference value (see Table 1). This can apparently be attributed to

the fact that the assumption of linearity (small perturbations) outside the computational

domain is violated for such a small domain size. Convergence histories for domain III are

presented on Figures 9 and 10.

Computations on a coarse grid for domain III were not performed because we did not

expect to recover the accurate value of CD. However, the fact that the algorithm with global

ABCs converges on domain III corroborates the high robustness of this procedure.

Basically, the computational results presented above already allow us to see that the per-

formance of the global DPM-based ABCs is superior to that of the standard local boundary

conditions. This conclusion is supported by the faster multigrid convergence rates, as well

as better accuracy of the calculated drag coe�cient CD on small domains, that we obtained

through the use of the DPM-based ABCs. In terms of accuracy, we corroborate this con-

clusion even further by presenting a more detailed account of the ow characteristics that

pertain to the computed solutions (in addition to the values of the overall drag coe�cient).

In Figures 11 and 12, we present the distribution of the pressure coe�cient

Cp =
p� p0
1
2
�0u02

;

where p0, �0, and u0, are static pressure, density, and absolute velocity of the ow at in�nity,

respectively, in the vertical plane of symmetry z = 0 on the afterbody portion of the analyzed

con�guration (see Figure 2). Figure 11 shows a longer stretch for the streamwise coordinate
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x normalized by the total length of the body L: 0:84 � x=L � 1:0; and Figure 12 presents

a \zoomed in" view of the same distribution on a shorter stretch 0:88 � x=L � 0:94. Both

Figures summarize the distribution of Cp on all three computational domains on �ne grids.

From Figures 11 and 12 we see that on the large domain I the solutions obtained with

global and local ABCs indeed deviate from one another very slightly. The solution obtained

with global ABCs on the intermediate domain II practically does not deviate from the

reference solution (domain I) as well. As opposed to global ABCs, the solution obtained

with local ABCs on the intermediate domain II di�ers from the reference solution (domain I)

much more noticeably. On the small domain III, the solution with local ABCs could not be

computed at all, and the solution with global ABCs di�ers from the reference solution even

less than the solution with local ABCs from domain II does. Similar behavior of the pressure

coe�cient Cp can be observed in the horizontal plane of symmetry y = 0 on the afterbody

portion of the analyzed con�guration as well, see Figures 13 and 14.

Let us also note that we have picked these particular Cp distributions (see Figures 11,

12, 13, and 14) as the examples of more detailed calculated ow characteristics (as opposed

to presenting only integral force coe�cients) because it is known that the Cp pro�les on

the afterbody are rather sensitive to the type and parameters of the numerical algorithm.

Besides, these particular computed pro�les have also been chosen by Compton for presenting

in Ref. 27; and the results of our computations display a good correlation with the results

by Compton that have been obtained on a very large computational domain.

All computations described in this section were conducted on Cray Research computers,

J90 and C90 series. Computational overhead due to the use of global ABCs is about 15%

for the particular �ne grid referenced before. This overhead is determined mostly by domain

geometry and typically does not scale linearly with the dimension of the interior grid. For

the aforementioned coarse grid the overhead reaches 30%.

Conclusions

We have constructed and implemented global ABCs for calculating external ows with

jet exhaust. The ABCs combine extrapolation of all ow quantities downstream in the

supersonic core of the jet and nonlocal DPM-based treatment for the remaining portion of

outer boundary. The overhead associated with implementation of the new technique is is

compensated for by the reduced grid dimension on small domains and higher convergence

rate. In the series of computations performed, the DPM-based algorithm have consistently

demonstrated better accuracy, faster multigrid convergence, and higher robustness compared

to the standard local methodology.
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List of Table Captions

Table 1: Total drag coe�cient per unit area CD.

Tsynkov 21 of 37



Domain geometry III II I
Grid dimension �ne coarse �ne �ne
CD for local ABCs | 2:77� :03 2:74� :04 2.506
CD for global ABCs 2.365 2.495 2.484 2.497
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List of Figure Captions

Figure 1: Schematic geometric setup for the ONERA M6 wing; wing on the left is enlarged.

Figure 2: Schematic geometric setup for the slender body with jet exhaust.

Figure 3: The domain 
2

L
where L is the distance from 
2

L
to the boundary. L >> 1.

Figure 4: Three computational domains for the jet ow, projection onto the z = 0 plane.

Figure 5: Convergence histories for the residual of the continuity equation, domain I, �ne
grid.

Figure 6: Drag convergence, domain I, �ne grid.

Figure 7: Convergence histories for the residual of the continuity equation, domain II, �ne
and coarse grids.

Figure 8: Drag convergence, domain II, �ne and coarse grids.

Figure 9: Convergence histories for the residual of the continuity equation, domain III, �ne
grid.

Figure 10:Drag convergence, domain III, �ne grid.

Figure 11:Distribution of the pressure coe�cient Cp on the afterbody in the symmetry
plane z = 0.

Figure 12:Distribution of the pressure coe�cient Cp on the afterbody in the symmetry
plane z = 0. Zoomed in view.

Figure 13:Distribution of the pressure coe�cient Cp on the afterbody in the symmetry
plane y = 0.

Figure 14:Distribution of the pressure coe�cient Cp on the afterbody in the symmetry
plane y = 0. Zoomed in view.
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