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Abstract. We consider an unbounded steady-state flow of viscous fluid over a three-dimensional
finite body or configuration of bodies. For the purpose of solving this flow numerically, we discretize
the governing equations (Navier–Stokes) on a finite-difference grid. Prior to the discretization, we
obviously need to truncate the original unbounded domain by introducing an artificial computational
boundary at a finite distance from the body; otherwise, the number of discrete variables will not be
finite. This artificial boundary is typically the external boundary of the domain covered by the grid.

The flow problem (both continuous and discretized) formulated on the finite computational do-
main is clearly subdefinite unless supplemented by some artificial boundary conditions (ABCs) at the
external computational boundary. In this paper, we present an innovative approach to constructing
highly accurate ABCs for three-dimensional flow computations. The approach extends our previ-
ous technique developed for the two-dimensional case; it employs the finite-difference counterparts
to Calderón’s pseudodifferential boundary projections calculated in the framework of the difference
potentials method (DPM) of Ryaben’kii. The resulting ABCs appear spatially nonlocal but are
particularly easy to implement along with the existing flow solvers.

The new boundary conditions have been successfully combined with the NASA-developed pro-
duction code TLNS3D and used for the analysis of wing-shaped configurations in subsonic and transonic
flow regimes. As demonstrated by the computational experiments and comparison with the stan-
dard local methods, the DPM-based ABCs allow one to greatly reduce the size of the computational
domain while still maintaining high accuracy of the numerical solution. Moreover, they may provide
for a noticeable speedup of multigrid convergence.
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1. Introduction.

1.1. Preliminaries. A standard approach to solving computational infinite-
domain boundary-value problems involves truncation as a first step, prior to the
discretization of the continuous problem and solution of the resulting discrete sys-
tem. The truncated problem in both continuous and discrete formulations is clearly
subdefinite unless supplemented by the proper closing procedure at the outer compu-
tational boundary. The latter boundary is often called artificial, emphasizing the fact
that it originates from the numerical limitations (the discrete system should contain
no more than a finite number of variables) rather than from the original formulation.
Typically, the artificial boundary is introduced as an external boundary of the finite
computational domain (i.e., the domain covered by the grid, on which the original
system is discretized). The corresponding closing procedure at the outer boundary is
called the artificial boundary conditions (ABCs).
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In the ideal case, the ABCs would be specified so that the solution on the
truncated domain coincides with the corresponding fragment of the original infinite-
domain solution. However, in spite of the fact that different ABC methodologies have
been studied extensively over the past two decades, the construction of such ideal (i.e.,
exact) ABCs that would at the same time be computationally inexpensive, easy to
implement, and geometrically universal still remains a fairly remote possibility. The
primary reason for this is that the exact ABCs are typically nonlocal, for steady-state
problems in space and for time-dependent problems in both space and time. The
exceptions are rare and, as a rule, restricted to one-dimensional model formulations.
From the viewpoint of computing, nonlocality may imply cumbersomeness and high
cost. Moreover, as the standard apparatus for deriving the exact ABCs involves inte-
gral transforms (along the boundary) and pseudodifferential operators, such boundary
conditions can be obtained easily only for the boundaries of regular shape.

On the other hand, highly accurate ABCs are demanded in many areas of sci-
entific computing because, as shown by various authors both theoretically and com-
putationally, the overall accuracy and performance of numerical algorithms, as well
as interpretation of the numerical results, strongly depend on the proper treatment
of external boundaries. This applies not only to external aerodynamics, which is the
subject of this paper, but to many other areas of scientific computing as well.

As mentioned above, the other usual requirements of ABCs, besides minimization
of the error associated with domain truncation, are low computational cost, geometric
universality (i.e., applicability to a variety of irregular boundaries often encountered in
real-life settings), and implementation without difficulties, in particular, readiness in
combining the ABCs with existing (interior) solvers. The requirements of this group
are typically met by many approximate local methods that are considered alternatives
to the exact ABCs as the latter are not attainable routinely. However, the basic
trend in terms of accuracy remains the following: higher accuracy for the boundary
procedure requires more of the nonlocal nature of exact ABCs to be somehow taken
into account.

In fact, almost any numerical algorithm for setting the ABCs can be thought of as
a compromise between the foregoing two groups of requirements that in a certain sense
contradict one another. Shifting the balance toward locality and practical efficacy
often implies insufficient accuracy; shifting it to the other side, toward highly accurate
nonlocal techniques, may often yield cumbersome and all but impractical algorithms.
It is not surprising, therefore, that the treatment of external boundaries in modern
production computations typically follows the first, local, path. In computational fluid
dynamics (CFD), for example, only a few ABC methodologies out of the wide variety
proposed to date can be regarded as commonly used tools. All of them are either based
on essential model simplifications, e.g., local quasi-one-dimensional treatment in the
vicinity of the artificial boundary, or are obtained as a localization of some nonlocal
ABCs. To meet the overall accuracy requirements when using such simple boundary
procedures, one often has to choose excessively large computational domains.

A survey of methods for setting the ABCs in different areas of scientific computing
can be found in our recent paper [1], as well as in the comprehensive reviews by
Givoli [2, 3]. These surveys give a comparative assessment of the advantages and
disadvantages of various global and local techniques and also explain the connections
between global and local methods.

1.2. Methods and objectives. This paper continues our work on constructing
the ABCs that would combine the advantages relevant to both local and nonlocal
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approaches. The specific area of application that we are looking at is steady-state
external viscous flows.

Previously, we have developed and implemented in practice highly accurate ABCs
for the two-dimensional case (plane geometry). Our approach is based on use of the
Calderón generalized potentials and pseudodifferential boundary projections [4] (see
also work by Seeley [5]). The potentials and projections are actually employed in the
modified form proposed by Ryaben’kii; the numerical technique used for calculating
the potentials and projections is known as the difference potentials method (DPM);
see work by Ryaben’kii [6, 7, 8] and also a description of the method in the book by
Mikhlin, Morozov, and Paukshto [9]. The resulting DPM-based boundary conditions
appear global. As will be seen, however, one of the principal advantages that we
gain using the DPM is that the method allows us to simultaneously meet the high
standards of accuracy and the requirements of geometric universality and ease of
implementation.

The two-dimensional DPM-based ABCs have been used along with the multigrid
Navier–Stokes code FLOMG by Swanson and Turkel [10, 11, 12]. In spite of their
nonlocal nature, the new boundary conditions readily apply to the boundaries of
irregular shape and appear very easy to incorporate into the existing solver. In our
computations, the DPM-based ABCs have clearly outperformed the standard local
methods from the standpoints of accuracy, convergence rate, and robustness. The
investigated regimes range from the very low (incompressible limit) to transonic Mach
numbers and encompass both laminar and turbulent flows.

The aforementioned two-dimensional constructions and corresponding numerical
results have been reported in a series of papers. In [13], we describe the foundations
of the DPM-based approach to setting the ABCs for computation of two-dimensional
external viscous flows (Navier–Stokes equations). In [14], we implement this ap-
proach along with the code FLOMG and present some numerical results for subsonic
and transonic laminar flows over single-element airfoils. In [15], we show the results of
subsequent numerical experiments and propose an approach to the approximate treat-
ment of turbulence in the far field. Our work [16] delineates the algorithm for solving
one-dimensional systems of ordinary difference equations that arise when calculating
the generalized difference potentials. In [17], we extend the area of application for the
DPM-based ABCs by analyzing two-dimensional flows that oscillate in time; we also
provide some solvability results for the linearized thin-layer equations used for con-
structing the ABCs. In [18], we present a general survey of the DPM-based method-
ology applied to solving external problems in CFD, including parallel implementation
of the algorithm, combined implementation of nonlocal ABCs with multigrid, and
entry-wise interpolation of the matrices of boundary operators with respect to the
Mach number and angle of attack. Additionally, in [18] one can find some new theo-
retical results on the computation of generalized potentials, the construction of ABCs
based on the direct implementation of boundary projections (thin-layer equations),
and some numerical results for various airfoil flows: laminar and turbulent, transonic
and subsonic, including low speeds.

The next natural objective after constructing the two-dimensional algorithm is
the analysis of three-dimensional steady-state flows. This case is undoubtedly the
one most demanded by the current practice in CFD. In [19, 20], we outline the basic
elements of the DPM-based ABCs for steady-state viscous flows around wing-shaped
configurations and show some preliminary numerical results for the subsonic regime.
The numerical results of [20] have been obtained with the NASA-developed production
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code TLNS3D of Vatsa et al. [21, 22]. In [23] we further develop the three-dimensional
DPM-based algorithm and present some computational results for transonic flows. In
all cases (see [20, 23]), the DPM-based ABCs allow one to greatly reduce the size
of the computational domain (compared to the standard local boundary conditions)
while still maintaining high accuracy of the numerical solution. This actually means
the overall increase of accuracy due to the improved treatment of the artificial bound-
ary; it also implies a substantial economy of the computer resources. Moreover, the
DPM-based ABCs may provide for a noticeable speedup (up to a factor of 3) of the
convergence of multigrid iterations.

In this paper we, for the first time, systematically describe the three-dimensional
DPM-based ABCs for calculating viscous flows around the wings. We address theo-
retical foundations of the approach, describe numerical algorithm in fairly extensive
detail, and demonstrate computational results for different flow regimes, including
low speed flow and flow with the shock-induced separation. Numerical results for the
DPM-based ABCs are compared with those obtained by the standard local method.

The material in the paper is prepared as follows. In section 2, we formulate the
problem, describe the specific geometric setting for three space dimensions, provide
foundations for the DPM-based ABCs on the continuous level, and then implement
the new algorithm in the finite-difference framework. In section 3, we first briefly
summarize the results of our previous numerical experiments in two space dimensions
and then report on the recent three-dimensional computations for various flow regimes.
Section 4 contains our conclusions.

2. External flow.

2.1. Formulation of the problem. We consider an unbounded steady-state
flow of viscous fluid past a three-dimensional wing. The flow is uniform at infinity.
We consider both incompressible and compressible formulations; in the latter case we
assume that the fluid (gas) is thermodynamically perfect and that the free stream is
subsonic. Moreover, as the fluid is viscous and the size of the immersed body (wing)
is finite, the flow limit at infinity is free stream.

Generally, the near-field flow is governed by the full Navier–Stokes equations.
However, in many cases (including those studied in this paper; see section 2.2) the full
system can be simplified and reduced to the so-called thin-layer equations [24], which
do not contain streamwise viscous derivatives. In particular, this simplification is done
in the code TLNS3D that we use for our numerical tests (section 3). Moreover, for the
most interesting case of turbulent flows the near-field numerical algorithm should also
incorporate some turbulence model; we comment on this issue in section 3, which is
devoted to numerics.

2.1.1. Linearization. In the far field (i.e., far enough from the finite immersed
body) the perturbations of the flow induced by the immersed body are small and we
therefore linearize the governing thin-layer equations against a constant free-stream
background. Introducing the Cartesian coordinates (x, y, z) and assuming (without
loss of generality) that the free stream is aligned with the positive x direction, we can
write the dimensionless linearized equations as

Lu ≡ C ∂u

∂x
+D

∂u

∂y
+E

∂u

∂z
+ F

∂2u

∂y2
+H

∂2u

∂z2
+ J

∂2u

∂y∂z
= ,(2.1a)
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where for the incompressible case

u =


p
u
v
w

 , C =


0 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1

 , D =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , E =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 ,
(2.1b)

F = H = − 1

Re


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , J = 0,

and for the compressible case

u =


ρ
u
v
w
p

 , C =


1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 M0

−2 0 0 1

 , D =


0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 M0

−2 0 0

 ,
(2.1c)

E =


0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 M0

−2 0

 , F = − 1

Re


0 0 0 0 0
0 1 0 0 0
0 0 4/3 0 0
0 0 0 1 1

Pr−1M0
−2 0 0 0 γ Pr−1

 ,

H = − 1

Re


0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 4/3 1

Pr−1M0
−2 0 0 0 γ Pr−1

 ,

J = − 1

Re


0 0 0 0 0
0 0 0 0 0
0 0 0 1/3 0
0 0 1/3 0 0
0 0 0 0 0

 .
Here, u, v, w, and p are the perturbations of the Cartesian velocity components
and pressure, respectively, and ρ is the perturbation of density for the compressible
case.

The derivation of (2.1) involves two consecutive steps. First, we introduce the
dimensionless quantities for the original thin-layer system. To do that, in both incom-
pressible and compressible cases we scale the velocity projections by the dimensional
free-stream value of the x-component u0. (As mentioned above, the free-stream y
and z velocity components are zero: v0=0, w0=0.) Moreover, for the incompressible
flow we scale the original pressure by u0

2 and for the compressible flow the pressure
is scaled by ρ0u0

2; the internal energy ε is scaled by u0
2 and the viscosity µ is scaled

by µ0. (Everywhere above, the subscript “0” denotes the corresponding “full,” i.e.,



BOUNDARY CONDITIONS FOR 3D EXTERNAL AERODYNAMICS 171

“nonlinear,” dimensional value.) Finally, we scale the coordinates x, y, and z by the
characteristic length L; for example, it may be the root chord or semispan of the wing
(see section 2.2). For the compressible flow, we also have to use the equation of state
(perfect gas) to eliminate internal energy from the original system.

After the nondimensionalization, we represent each quantity (velocities and pres-
sure for the incompressible case and velocities, pressure, and density for the com-
pressible case) as a sum of the constant background value (free stream) and small
perturbation and then modify the equations by retaining only the first-order terms
with respect to the perturbations and dropping all others. (Note that in the incom-
pressible case the original system contains only the gradient of the pressure, therefore
the actual value of the background constant for the pressure does not matter.) In
so doing, we arrive at (2.1a), (2.1b) for the incompressible flow and (2.1a), (2.1c)
for the compressible flow. In both (2.1b) and (2.1c) Re is the Reynolds number
(in the turbulent case, it is an effective far-field value; see [15]); in addition, for
the compressible flow (see (2.1c)), M0 = u0/ (γp0/ρ0)

1/2
is the free-stream Mach

number (always M0 < 1), Pr is the Prandtl number, and γ is the ratio of specific
heats.

For the incompressible case it is clear that the differential equations in small
perturbations are linear. For the compressible case, however, this fact may require
some additional justification; see section 2.1.2.

System (2.1) describes the flow in the far field. In both incompressible and com-
pressible cases, it is supplemented by the boundary condition

u −→ , as r ≡ (x2 + y2 + z2)1/2 −→ +∞,(2.2)

which means that all the perturbations vanish at infinity, or equivalently, the flow
approaches the free-stream limit.

Let us mention, that the matricesC,D,E,F ,H of (2.1b) are symmetric, whereas
the matrices C,D,E,F ,H of (2.1c) are not. As the symmetric form of the matrices
may sometimes be more convenient for the analysis and also more suitable for the
numerical calculations (especially when the Mach number M0 is low), one can use
the transformation proposed by Abarbanel and Gottlieb in [25] to simultaneously
reduce C,D,E,F ,H of (2.1c) to the symmetric form (and some of the matrices to
diagonal form). The symmetrized form [25] of the system matrices of (2.1c) appears
useful when analyzing the incompressible limit M0 −→ +0. A detailed study of the
compressible Euler and Navier–Stokes equations as the Mach number approaches zero
can be found in [26, 27, 28].

2.1.2. Asymptotic methods—linear vs. nonlinear. In connection with the
linearized model proposed above for the far field, especially as it regards the compress-
ible case, we will discuss here one group of the ABC methods that are widely used in
computations. These methods employ some asymptotic form of the far-field solution
for closing the system of equations to be solved inside the computational domain.
Typically, this approximate asymptotic form can be obtained as a few leading terms
of the series (or asymptotic series) that represents the solution in the far field. The
corresponding ABCs most often appear local. The ideas of this type were employed
by various authors; see, e.g., [29, 30, 31, 32, 33, 34, 35, 36, 37].

As a rule, asymptotic ABC methods are derived on the basis of the linear (or
linearized) equations. In certain cases, however, one takes into account the nonlinear
corrections as well. For example, when analyzing the transonic limit M0 −→ 1 for
small perturbations of the velocity potential (compressible flow), some second-order
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terms should formally be retained in the differential equation along with the first-order
terms (see, e.g., Cole and Cook [38]). This leads to the nonlinear Kármán–Guderley
equation rather than the linear Prandtl–Glauert equation (the latter is valid for
smaller M0). For two-dimensional external flows (e.g., flows around airfoils) described
by the Kármán–Guderley equation, it turns out that the nonlinear corrections to the
leading linear lift-based term ∼ −Γθ/2π in the far-field expansion of the potential (Γ
is the flow circulation, θ is the polar angle) contain terms proportional to log r/r (r is
the polar radius), which formally decay more slowly than the next linear term ∼ 1/r
as r −→ +∞. This circumstance, in particular, gave Drela in [39] and Giles and Drela
in [40] reason to include the nonlinear correction terms in their simplified far-field po-
tential model for the compressible airfoil calculations. (Note that the entire series
that represents the behavior at infinity of the potential function of a two-dimensional
subsonic compressible flow has been accurately constructed by Ludford in [41] on the
basis of the hodograph plane techniques.)

Our two-dimensional DPM-based approach of [13], however, uses the full flow sys-
tem; we never introduce the velocity potential and always consider only the linearized
far-field flow. The accuracy and performance of the corresponding nonlocal ABCs are
demonstrated by the numerical experiments; see [14, 15, 18]. This accuracy and per-
formance is typically better than those of the standard methods. However, we should
say that the investigated Mach numbers have never come close to the transonic limit;

we have always run our calculations in the range M0 <∼ 0.8. Generally, retaining the

second-order nonlinear terms in the compressible far-field model for two-dimensional
flows is most relevant to the case of Mach numbers close to one, M0 −→ 1, whereas

the linear theory works best for δ � (
1−M0

2
)3/2

(see [38]); here δ can be regarded
as, e.g., the airfoil thickness.

The case of the compressible far-field expansion for three space dimensions is
entirely different. Let us consider here the Kármán–Guderley equation (see [38])

∂2φ

∂x2
+
∂2φ

∂ŷ2
+
∂2φ

∂ẑ2
=
γ + 1

K

∂φ

∂x

∂2φ

∂x2
.(2.3)

In (2.3), φ is the perturbation of the full potential Φ of the flow around a thin three-
dimensional wing so that

1

u0

∂Φ

∂x
= 1 + δ2/3 ∂φ

∂x
,

1

u0

∂Φ

∂y
= δ

∂φ

∂ỹ
,

1

u0

∂Φ

∂z
= δ

∂φ

∂z̃
,

ỹ = δ1/3y, z̃ = δ1/3z,

(2.4a)

δ is the wing thickness (δ −→ +0 along with M0 −→ 1 in the transonic limit),

K =
1−M0

2

δ2/3
(2.4b)

is the parameter of transonic similarity (the true linear theory corresponds to large
values of K; see, e.g., [42]), the additional coordinate transformation is given by

ŷ =
√
Kỹ, ẑ =

√
Kz̃,(2.4c)

γ is still the ratio of specific heats, and the free stream is again aligned with the
positive x direction.
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The far-field expansion for φ in the linear theory, i.e., when the right-hand side
(RHS) of (2.3) is omitted, starts with the horseshoe vortex (see, e.g., [43])

φ1 =
ŷ

ŷ2 + ẑ2

(
1 +

x

r̂

)
=

(1 + cos θ) cosϕ

r̂ sin θ
,(2.5a)

where the spherical coordinates are introduced as

x = r̂ cos θ, ŷ = r̂ sin θ cosϕ, ẑ = r̂ sin θ sinϕ.

Expression (2.5a) obviously has a singularity in the wake, i.e., along the line θ = 0.
Clearly, the source term of order 1/r̂ is not present in the far-field expansion because
the surface of the wing is assumed closed. Therefore, the next term in the linear
expansion should be proportional to 1/r̂2. We consider its general form

φ2 =
∑
l,m

r̂−l−1Y ml (θ, ϕ), l = 1, m = −1, 0, 1,

where the spherical functions Y ml (θ, ϕ) are given by

Y ml (θ, ϕ) = Pml (cos θ)eimϕ

and

Pml (µ) = (1− µ2)m/2P(m)
l (µ), m ≤ l;

here Pl(µ) =
1

2ll!

dl

dµl
(µ2 − 1)l are the Legendre polynomials. Using real representa-

tion, we obtain a general form of the second term as

φ2 = a
x

r̂3
+ b

ŷ

r̂3
+ c

ẑ

r̂3
= a

cos θ

r̂2
+ b

sin θ cosϕ

r̂2
+ c

sin θ sinϕ

r̂2
,(2.5b)

where a, b, and c are some arbitrary constants.
To obtain the nonlinear corrections due to the RHS of (2.3), one can substitute

linear terms (2.5) into this RHS and solve the resulting Poisson equation. For the
purpose of simple demonstration, we will do that separately for φ1 of (2.5a) and φ2

of (2.5b), although a similar procedure can be carried out for any weighted sum of φ1

and φ2.
Substitution of (2.5a) into the RHS of (2.3) yields

1

r̂2

∂

∂r̂

(
r̂2 ∂φ

∂r̂

)
+

1

r̂2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+

1

r̂2 sin2 θ

∂2φ

∂ϕ2
= −γ + 1

K

3 cos θ sin2 θ cos2 ϕ

r̂5
.

(2.6)

Note that the singularity of potential (2.5a) in the wake (along θ = 0) vanishes with
differentiation. The RHS of (2.6) can now be expanded with respect to the spherical
functions; the corresponding finite Fourier series is, in fact, given by

cos θ sin2 θ cos2 ϕ =
1

5
Y 0

1 (θ, ϕ)− 1

5
Y 0

3 (θ, ϕ) +
1

30
Y 2

3 (θ, ϕ).(2.7)
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Taking into account that spherical functions Y ml are actually the eigenfunctions of
Beltrami’s operator on the sphere (the last two terms on the left-hand side (LHS)
of (2.6)), we can separate the variables in (2.6) and reduce it to a finite family of

one-dimensional equations with respect to the Fourier transformation φ̂l,m ≡ φ̂:

d2φ̂

dr̂2
+

2

r̂

dφ̂

dr̂
− l(l + 1)

r̂2
φ̂ =

Al
r̂k+2

, l = 1, 3, k = 3.(2.8)

The constants Al in (2.8) are, of course, inversely proportional to the transonic simi-
larity parameter K of (2.4b); they also involve the coefficients of expansion (2.7). The

homogeneous counterpart to (2.8) has two linearly independent solutions φ̂I(r̂) = r̂l

and φ̂II(r̂) = r̂−l−1. Therefore, solution φ̂(r̂) to the nonhomogeneous equation (2.8)
can be found in the form

φ̂(r̂) = cI(r̂)φ̂I(r̂) + cII(r̂)φ̂II(r̂) ≡ cI(r̂)r̂l + cII(r̂)r̂
−l−1,(2.9a)

where cI(r̂) and cII(r̂) satisfy the system φ̂I(r̂) φ̂II(r̂)

dφ̂I(r̂)

dr̂

dφ̂II(r̂)

dr̂

 d

dr̂

[
cI(r̂)

cII(r̂)

]
=

 0

Al
r̂k+2

 .(2.9b)

Solving (2.9b) with respect to cI(r̂) and cII(r̂), we have

cI(r̂) ∼ 1

r̂l+k
, cII(r̂) ∼ 1

r̂−l+k−1
,(2.10)

provided that l + k 6= 0 and −l + k 6= 1, respectively. As the latter conditions are
met for l and k from (2.8), we substitute expressions (2.10) into equality (2.9a) and
finally obtain the nonlinear correction due to the horseshoe potential of (2.5a) as

φ1NL ∼
1

r̂3
.(2.11a)

The same type of derivation can be performed for the doublet potential of (2.5b).
Substituting φ2 of (2.5b) into the RHS of (2.3), one obtains the expression proportional
to r̂−7 instead of r̂−5 in the RHS of (2.6). The expansion analogous to (2.7) will now
contain Y ml for l = 1, 3, 5, and after the separation of variables, (2.8) will also change
accordingly: we will have k = 5 instead of k = 3 and add l = 5 to the set of
wavenumbers. As a result, the nonlinear correction due to the potential φ2 of (2.5b)
can be shown to have the form

φ2NL ∼
1

r̂5
.(2.11b)

We see that the nonlinear correction φ1NL of (2.11a) decays at infinity two orders
of magnitude faster than the term φ1 of (2.5a) that it originates from. Analogously, the
nonlinear correction φ2NL of (2.11b) decays at infinity three orders of magnitude faster
than the corresponding term φ2 of (2.5b). We therefore conclude that, unlike the two-
dimensional case, the transonic nonlinear corrections are not required when analyzing
the far field for three space dimensions. This conclusion basically coincides with the
results of [38] which state that the far field around a thin three-dimensional finite-span
wing is essentially linear. In other words, we have shown that the small perturbations
of velocity potential of a three-dimensional compressible flow are described by linear
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formulas in the far field even when M0 −→ 1. This justifies the far-field linearization
of section 2.1.1.

2.1.3. Outline of the algorithm. Having introduced the linearized far-field
model (2.1), (2.2) (see section 2.1.1) we now obtain the combined problem: nonlinear
inside the finite computational domain and linear on its infinite exterior. The non-
linear and linear parts of the problem are, of course, not independent. The interior and
exterior solutions should match at the artificial boundary; consequently, the combined
problem must be solved as a whole. Therefore, at first glance the new problem is no
easier than the original one from the standpoint of solving it numerically because
it is still formulated on an unbounded domain. However, using the methodology
of Calderón’s projections and the DPM [6, 7, 8], the exterior linear problem can be
effectively reduced to a certain nonlocal relation formulated on the artificial boundary.
The latter relation can serve as the desired ABCs.

More precisely, we introduce a special space of (vector-)functions at the artifi-
cial boundary; it will be called the space of clear traces [6, 7, 8]. We also define a
(pseudodifferential) projection operator that maps the space of clear traces onto itself.
This operator will be analogous to Calderón’s boundary projections. Under certain
conditions, one can show that the element of the space of clear traces is actually a
trace of some solution to the problem (2.1), (2.2) on the exterior domain if and only
if this element belongs to the image of the aforementioned projection operator. The
latter condition can, in fact, be written in the form of Calderón’s boundary equa-
tion or the so-called boundary equation with projection (BEP) [6, 7, 8]. Its solutions
will provide us with complete boundary classification (in terms of the appropriate
traces) of all those and only those u’s (see (2.1b, c)) that solve (2.1), (2.2) outside
the computational domain.

As we intend to set the ABCs for the discretized flow problem, the foregoing
boundary classification of the exterior solutions will also be obtained in the discrete
framework using the concept of finite-difference clear traces and finite-difference coun-
terparts to Calderón’s projections and generalized potentials [6, 7, 8]. Once we are
able to calculate the image of Calderón’s projection (i.e., the result of application of
this operator to a given input) we can actually set the ABCs in a few different ways.
Earlier (see [13, 14, 15]) we solved the corresponding BEP using some variational
approach. Below, we follow a different path, namely, we implement the boundary
projections directly as proposed first in [18]. In fact, applying the Calderón operator
we update the missing boundary values on every cycle of the iteration procedure that
is employed inside the computational domain.

2.2. Geometric issues and basics of the discrete algorithm. The specific
configuration of the domains that we will be dealing with hereafter is shown in Fig-
ure 2.1.

The actual structure displayed in this figure is the well-known test wing
ONERA M6 (the wingtip is blunted and is in the “hidden” area on the figure). The
wing stretches span-wise along the Cartesian axis z and is assumed symmetric with
respect to the plane z = 0. The fluid flow is uniform at infinity and aligned with
the positive x direction; together with the symmetry of the wing this implies the
symmetry of the entire flow pattern with respect to z = 0.

The latter symmetry, in turn, means that the components ui of u, i = 1, . . . , 4
for (2.1b) and i = 1, . . . , 5 for (2.1c) (note that the x projection of the velocity vector
u ≡ ui for i = 2) satisfy the following set of equalities for i 6= 4,
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Fig. 2.1. Schematic geometric setup; the wing on the left is enlarged.
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∂x
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(2.12a)

which, in particular, implies

∂ui

∂z
(·, 0) = 0,

∂2ui

∂y∂z
(·, 0) = 0 for i 6= 4,(2.12b)

and satisfy the following set of equalities for i = 4,

ui(·, |z|) = −ui(·,−|z|),

∂ui

∂x
(·, |z|) = −∂u

i

∂x
(·,−|z|), ∂ui
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(·, |z|) = −∂u

i

∂y
(·,−|z|), ∂ui

∂z
(·, |z|) =
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∂z
(·,−|z|),

∂2ui

∂y2
(·, |z|) = −∂

2ui

∂y2
(·,−|z|), ∂2ui

∂z2
(·, |z|) = −∂

2ui

∂z2
(·,−|z|), ∂2ui

∂y∂z
(·, |z|) =

∂2ui

∂y∂z
(·,−|z|),

(2.13a)
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which yields

ui(·, 0) = 0,
∂ui

∂x
(·, 0) = 0,

∂ui

∂y
(·, 0) = 0,

∂2ui

∂y2
(·, 0) = 0,

∂2ui

∂z2
(·, 0) = 0 for i = 4.

(2.13b)

Relations (2.12), (2.13) will be used in section 2.4 when constructing discretization
for the linearized system.

The flow equations are integrated numerically on a curvilinear grid generated
around the wing. The grid shown in Figure 2.1 is a one-block C-O type grid; in this
paper we will use the grids of this type only. The surface designated Γ in Figure 2.1
is actually an external set of nodes of the C-O grid, i.e., the artificial boundary.
Henceforth, we will also need the notation Din for the interior of Γ, i.e., for the finite
computational domain, and the notation Dex for the infinite exterior of Γ.

The curve Γ1 ⊂ Dex (see Figure 2.1) actually represents the set of ghost nodes
(or centers of the ghost cells for the case of finite-volume discretization); it can also be
thought of as the outermost set of nodes of the original C-O grid; the surface Γ then
becomes the penultimate set of nodes. We will further assume that the linearization
(2.1) is valid in Dex, i.e., outside Γ, so that Γ1 already belongs to the linear zone.
The actual admissible size of Din such that the perturbations can be considered
sufficiently small and therefore that the assumption of linearity in Dex holds, is,
of course, unknown ahead of time. We verify the validity of linearization in Dex

a posteriori through the series of numerical experiments; see section 3.
Clearly, when the stencil of the scheme used inside Din is applied to any node

from Γ, it generally requires some ghost cell data. Note that for the second-order
central difference schemes (like those employed in the code FLOMG (see [10, 11, 12])
and TLNS3D (see [21, 22])) the consideration of only one layer of ghost cells Γ1 is
sufficient, but the case when the stencil is more extensive, and, consequently, more
ghost cells are required, can be treated similarly. Unless the missing ghost cell data are
provided, i.e., obtained with the help of the ABCs, the discrete system solved inside
the computational domain is subdefinite; in other words, it has less equations than it
has unknowns. As mentioned in section 2.1.3, the apparatus of DPM [6, 7, 8] gives us
a complete characterization of boundary traces of all exterior linear solutions. Since
the linear zone Dex extends from Γ to infinity and contains Γ1, the following approach
appears most natural for setting the ABCs. First, the data provided from inside Din

are subjected to the projection operation. The resulting projection will, by definition,
admit a complement on Dex that solves (2.1), (2.2). The latter complement can be
calculated in the form of a generalized potential and considered on Γ1. Altogether,
this procedure yields the missing relations between the values of the solution on Γ
and Γ1. In other words, it provides for a desired closure to the discrete system solved
inside Din, or the ABCs. Typically, the solution algorithm inside Din involves some
pseudotime iterations (see section 3); then, the foregoing closing procedure is applied
on every iteration cycle, more precisely, every time the ghost cells need to be updated
in order to advance to the next time step.

We now describe the generalized potentials and boundary projections, as well
as their finite-difference counterparts, that are required for setting the DPM-based
ABCs. Note that if the potentials and projections are calculated for the true operator
L of (2.1a) (this operator acts on functions u defined on the entire infinite domain
Dex and satisfying boundary conditions (2.2)), then the corresponding BEP appears
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equivalent to the original linear problem (2.1), (2.2) (see [6, 7, 8]). We, however, will
have to introduce some simplifications and carry out the DPM-based procedure for a
certain approximation of problem (2.1), (2.2) (see sections 2.3 and 2.4) rather than
for this problem itself. Nevertheless, the corresponding approximate solution can be
made as close to the original one as initially prescribed (see [18] and below for more
details). Therefore, within the accuracy of far-field linearization the resulting ABCs
can be made as close to the exact ones as desired.

2.3. Foundations of the DPM-based ABCs. Here, we will first formulate
and solve the so-called auxiliary problem (AP) for the inhomogeneous version of
system (2.1) with boundary conditions (2.2). This AP will be a central element of our
construction of Calderón’s generalized potentials and boundary projections. In fact,
the solution of the AP can be thought of as a substitute for the convolution with the
fundamental solution in classical potential theory.

2.3.1. Infinite-domain AP. Let us consider a compactly supported vector-
function

{
f i
} ≡ f ≡ f(x, y, z), suppf ⊆ Din, of dimension 4 (i = 1, . . . , 4 for

(2.1b)) or 5 (i = 1, . . . , 5 for (2.1c)); in the meantime, we do not specify the concrete
form of f . This function f will be the RHS for the AP. The AP is initially formulated
on the entire space R3; namely, we will be looking for a solution u of system

Lu = f(2.14)

that meets boundary condition (2.2) at infinity.
Note that when discussing regular solutions below, we assume, if necessary, that

the functions involved can be represented in the form of their Fourier integrals.
Proposition 2.1. Let f be a compactly supported distribution, f ∈ D′(R3),

suppf ⊂ Din. Then, system (2.14), (2.1b) is solvable in the Schwartz space D′(R3).
To justify Proposition 2.1, we use the standard methodology based on application

of the Fourier transform over the entire R3 (see, e.g., [44]). Clearly, to demonstrate
that (2.14) is solvable in D′(R3) it is sufficient to make sure that the inverse symbol
of the operator L (see (2.1)) belongs locally to L1(R3). Denoting the dual (Fourier)
variables to (x, y, z) by (ξ, η, ζ), we can write the symbol Q of L as

Q = iξC + iηD + iζE − η2F − ζ2H − ηζJ .(2.15)

Then, the entrees q̃jk = q̃kj , j = 1, . . . , 4, k = 1, . . . , 4, of the inverse symbol Q−1 for
the incompressible case (2.1b) are given by

q̃11 =
iξ + η2+ζ2

Re

%2
, q̃12 =

−iξ
%2

, q̃13 =
−iη
%2

, q̃14 =
−iζ
%2

,

q̃22 =
η2 + ζ2(

iξ + η2+ζ2

Re

)
%2
, q̃23 =

−ξη(
iξ + η2+ζ2

Re

)
%2
, q̃24 =

−ξζ(
iξ + η2+ζ2

Re

)
%2
,

q̃33 =
ξ2 + ζ2(

iξ + η2+ζ2

Re

)
%2
, q̃34 =

−ηζ(
iξ + η2+ζ2

Re

)
%2
,

q̃44 =
ξ2 + η2(

iξ + η2+ζ2

Re

)
%2
,

(2.16)
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where %2 = ξ2+η2+ζ2. From (2.16) one can see thatQ−1 has only one real singularity,
located in the origin, (ξ, η, ζ) = (0, 0, 0). Clearly, all q̃1k, k = 1, . . . , 4, are absolutely
integrable near the origin and consequently, q̃1k ∈ Lloc1 (R3) for k = 1, . . . , 4. As for
the other q̃jk, we introduce the spherical coordinates ξ = % cos θ, η = % sin θ cosϕ,
ζ = % sin θ sinϕ, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π, and notice that for sufficiently small %’s

%2

Re2 ≤ cos2 θ +
%2

Re2 sin4 θ, 0 ≤ θ ≤ π.(2.17)

For j = 2, . . . , 4 and k = j, . . . , 4, estimate (2.17) immediately yields

|q̃jk| ≤ const
%2∣∣∣iξ + η2+ζ2

Re

∣∣∣ %2
=

const

%
(

cos2 θ + %2

Re2 sin4 θ
)1/2

≤ const
Re

%2
,

and we therefore conclude that q̃jk ∈ Lloc1 (R3) for all j = 1, . . . , 4, k = 1, . . . , 4. Thus,
we have shown that Proposition 2.1 does hold for the incompressible case (see (2.1b)).
Note that a similar proof for the two-dimensional compressible case can be found in
[17].

Proposition 2.2. Let f ∈ L1(R3). Then, (2.14), (2.1b) may have no more than
one regular solution u ∈ D′(R3) that vanishes at infinity, i.e., satisfies (2.2).

Indeed, the Fourier transformation f̂ of the RHS is continuous on R3 in this
case. The regular solution u to (2.14), (2.2) is given by the inverse Fourier transform

u = (Q−1f̂ )̌. Since Q−1f̂ has only one real singularity (in the origin), then any
other solution can differ from u by no more than an inverse Fourier transformation
of a distribution concentrated in the origin. The latter can be nothing but a sum of
δ-functions and their derivatives, which correspond to polynomials after the Fourier
transform. Therefore, Proposition 2.2, which is actually a statement of conditional
uniqueness, has been justified. Note that we have been able to establish uniqueness so
easily because the inverse symbol Q−1 has only one isolated real singular point. This,
for example, would not be the case for the Euler equations, which can be obtained by
formally letting Re−1 = 0.

Proposition 2.3. Let f be compactly supported and f ∈ L2(R3). Then, (2.14),
(2.1b) has a solution u = uI + uII , where uI is infinitely smooth on R3, i.e., uI ∈
C∞(R3), and satisfies boundary condition (2.2), and uII ∈ L2(R3). Moreover, for any
ε > 0, one can always choose the representation u = uI+uII so that

∥∥uII∥∥
L2(R3)

<ε.

Consider a partition of unity 1 = g0 + g0̄, where both (scalar) functions g0 and g0̄

are infinitely smooth on R3, g0 ≡ 1 on a ball UR0
centered in the origin with the fixed

radius R0, and g0 ≡ 0 outside a bigger ball UR0+µ with the radius R0 + µ, µ > 0.
Clearly, as f ∈ L2(R3) and f is compactly supported, then f ∈ L1(R3). The solution

u is given by the inverse Fourier transform u = (Q−1f̂ )̌ = (Q−1g0f̂ )̌+(Q−1g0̄f̂ )̌. The

first term of the foregoing sum, uI ≡ (Q−1g0f̂ )̌, is obviously an inverse Fourier trans-
formation of a function from L1(R3). Moreover, for any polynomial P ≡ P (ξ, η, ζ):

PQ−1g0f̂ ∈ L1(R3). Therefore, uI ∈ C∞(R3) and uI meets boundary condition

(2.2). The second term, uII ≡ (Q−1g0̄f̂ )̌, is an inverse Fourier transformation of a

function from L2(R3) because f̂ ∈ L2(R3) and Q−1 is bounded when % −→ +∞ as
can be clearly seen from expressions (2.16). (The Fourier transform in this case can
be regarded in the sense of Plancherel.) Therefore, uII ∈ L2(R3). Clearly, both uI

and uII depend on the choice of the partition of unity 1 = g0 + g0̄, i.e., on the choice
of R0. Since ûII ≡ Q−1g0̄f̂ ∈ L2(R3) for any R0, then ‖Q−1g0̄f̂‖L2(R3) −→ 0 as
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R0 −→ +∞ and, consequently, ‖uII‖L2(R3) −→ 0 as R0 −→ +∞. This concludes the
proof of Proposition 2.3.

Proposition 2.4. Let f̂ be the Fourier transformation of f on R3 and f̂ ∈
L1(R3). Then, system (2.14), (2.1b) has a continuous solution u on R3 that meets
boundary condition (2.2).

Proposition 2.4 is obvious as in this case Q−1f̂ ∈ L1(R3).

In our further constructions, however, we will not always be able to guarantee
the inclusion f̂ ∈ L1(R3) as required in Proposition 2.4. Typically, suppf ⊆ Din and
we may also assume that f is sufficiently smooth on Din. On the other hand, we do
not generally require the differentiability of f on the entire R3; f and its derivatives
may have discontinuities (of the first kind) on the surface Γ ≡ ∂Din. For any RHS f
of this type, we will make sure that when we approximate f by a sequence of smooth
functions fn, the corresponding smooth solutions un in a certain sense converge to
the solution u guaranteed by Proposition 2.3.

Consider a sequence fn, n = 1, 2, . . . , of infinitely smooth compactly supported
on Din functions that converges to f in the sense of L2(Din): ‖f − fn‖L2(Din) ≡
‖f − fn‖L2(R3) −→ 0 as n −→ +∞. (The sequence fn always exists because f ∈
L2(Din) and the space D(Din) of all compactly supported infinitely smooth functions
on Din is everywhere dense in L2(Din); see, e.g., [44].) The Fourier transformation

f̂n of any fn ∈ D(Din) is infinitely smooth on R3 and decays at infinity faster than
any power of r−1 with all its derivatives. (Fourier transform in the sense of Plancherel
obviously coincides here with the standard transform in the sense of L1.) Therefore,

for any polynomial P ≡ P (ξ, η, ζ): PQ−1f̂n ∈ L1(R3) and, consequently, the solution
un to the system Lun = fn is also infinitely smooth on R3, un ∈ C∞(R3), and
satisfies boundary condition (2.2). We now consider the same partition of unity

1 = g0 + g0̄ as used when proving Proposition 2.3. un = (Q−1f̂n )̌ = uIn + uIIn ,

where uIn = (Q−1g0f̂n )̌ and uIIn = (Q−1g0̄f̂n )̌; clearly, both uIn, u
II
n ∈ C∞(R3)

and both uIn, u
II
n −→ 0 when r −→ ∞. As fn

L2(R3)−→ f , then f̂n
L2(R3)−→ f̂ and

g0f̂n

L2(UR0
)−→ g0f̂ . Consequently, g0f̂n

L1(UR0
)−→ g0f̂ and therefore g0f̂n

L1(R3)−→ g0f̂ .

Since Q−1 ∈ Lloc1 (R3), then Q−1g0f̂n
L1(R3)−→ Q−1g0f̂ and also for any polynomial

P ≡ P (ξ, η, ζ): PQ−1g0f̂n
L1(R3)−→ PQ−1g0f̂ . Therefore, uIn uniformly converges

to uI = (Q−1g0f̂ )̌ on R3 with all its derivatives, ∂α+β+γ

∂xα∂yβ∂zγ
uIn −→−→ ∂α+β+γ

∂xα∂yβ∂zγ
uI as

n −→ +∞ (see, e.g., [45]). As for the second term, obviously g0̄f̂n
L2(R3)−→ g0̄f̂ and,

consequently, Q−1g0̄f̂n
L2(R3)−→ Q−1g0̄f̂ . Therefore, uIIn

L2(R3)−→ uII as n −→ +∞.
Thus, we have justified the following proposition.

Proposition 2.5. Let suppf ⊆ Din and f ∈ L2(Din). For any fn ∈ D(Din), the
solution un to the system Lun = fn (see (2.1b)) satisfies boundary conditions (2.2)
and un ∈ C∞(R3). Moreover, if the sequence fn ∈ D(Din), n = 1, 2, . . . , converges to

f in the sense of L2, fn
L2(R3)−→ f , then each solution un can be represented as a sum

of two terms, un = uIn + uIIn , where uIn, u
II
n ∈ C∞(R3), uIn, u

II
n −→ 0 as r −→∞,

∂α+β+γ

∂xα∂yβ∂zγ
uIn −→−→ ∂α+β+γ

∂xα∂yβ∂zγ
uI , and uIIn

L2(R3)−→ uII as n −→ +∞. Here uI and uII

are the same as in Proposition 2.3.

2.3.2. Finite-domain AP. To implement the DPM-based ABCs in practice
(section 3), we will need to be able to actually calculate the solution to the auxiliary
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problem. Since the formulation of the AP from section 2.3.1 still involves infinite
domain, we replace it by an approximate finite-domain formulation that allows easy
numerical solution.

As any linear system of PDEs with constant coefficients, (2.14) admits the sep-
aration of variables in the Cartesian coordinates. Therefore, we implement Fourier’s
transform in the cross-stream and span-wise directions,

û(x, η, ζ) =
1

2π

∞∫ ∫
−∞

u(x, y, z)e−iηy−iζzdy dz,(2.18a)

f̂(x, η, ζ) =
1

2π

∞∫ ∫
−∞

f(x, y, z)e−iηy−iζzdy dz,(2.18b)

and obtain a family of one-dimensional systems

C
dû

dx
+
(
iηD + iζE − η2F − ζ2H − ηζJ) û = f̂(2.19)

that we consider on the entire line −∞ < x < ∞ for all (η, ζ) ∈ R2. Each system
(2.19) is supplemented by the boundary condition

|û(x, η, ζ)| ≤ const for −∞ < x <∞,(2.20)

which actually implies |û(x, η, ζ)| −→ 0 as |x| −→ ∞ (compare to (2.2)) if the
matrixQ ≡ C−1

(
iηD + iζE − η2F − ζ2H − ηζJ) has no zero eigenvalues. The only

special case, for which the decay of û(x, η, ζ) when |x| −→ ∞ cannot be guaranteed,
is (η, ζ) = (0, 0); therefore, we generally set the boundary conditions in the form
(2.20). However, it has been shown in [13] that after the inverse Fourier transform
the solution u will still vanish as |x| increases.

Note that, although designated by the same notation, û and f̂ in formulas (2.18),
as well as Q, are not the same here as in the previous section. Indeed, the direction
x has been left out when calculating Fourier’s transformations (2.18). This has been
done because the natural spatial anisotropy prescribed by the free-stream direction
exists in our model and therefore the stream-wise coordinate x will be given special
treatment in the finite-domain AP.

Generally, the solution û(x, η, ζ) to problem (2.19), (2.20) can be found as a
convolution

û(x, η, ζ) =

∞∫
−∞

G1(x− x′, η, ζ)f̂(x ′, η, ζ)dx ′(2.21)

with the corresponding one-dimensional fundamental solution G1(x, η, ζ). Then, the
solution u to Lu = f can be restored by means of the inverse Fourier transform,
which eventually yields

u(x, y, z) =
1

(2π)2

∞∫ ∫
−∞

eiyη+izζ

∞∫
−∞

G1(x− x′, η, ζ)

∞

×
∫ ∫
−∞

f(x′, y′, z′)e−iηy
′−iζz′dy′ dz′ dx′ dη dζ.

(2.22)
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Now, let us consider the new formulation of the AP that is periodic in both cross-
stream and span-wise directions. Specifically, we introduce the periods Y and Z for
the coordinates y and z, respectively, replace Fourier’s integrals with Fourier’s series,
and, instead of (2.22), obtain

uY Z(x, y, z) =
1

Y Z

kz=∞∑
kz=−∞

ky=∞∑
ky=−∞

eiy
2πky
Y +iz 2πkz

Z

∞∫
−∞

G1

(
x− x′, 2πky

Y
,

2πkz
Z

)
∞

×
∫ ∫
−∞

f(x′, y′, z′)e−i
2πky
Y y′−i 2πkz

Z z′dy′ dz′ dx′.

(2.23)

In our previous work (see [13, 17, 18]), we analyzed similar periodic formulations
for the two-dimensional case. It has been shown that for any fixed-size subdomain
the periodic solution will converge to the original nonperiodic solution as the period
increases. These results can be transferred to the case of three space dimensions
without changes. Namely, let Y0 and Z0 be fixed. Then,

uY Z(x, y, z) −→ u(x, y, z) as (Y, Z) −→ (+∞, +∞),

when −Y0

2
< y <

Y0

2
, −Z0

2
< z <

Z0

2
.

(2.24)

Typically, the type of convergence considered in (2.24) is uniform. Convergence for
the derivatives can also be established under some additional conditions (see [18]).
Finally, as we are going to solve the AP by a finite-difference method (section 3),
certain relations between the period(s) and grid size(s) should hold; see [13, 17] for
more details. We also note that convergence on a fixed-size domain is sufficient for
our purposes because for constructing the ABCs we will need to know the solution of
the AP only on some neighborhood of the artificial boundary.

Thus, we have replaced the original infinite-domain AP with the new problem
formulated on the domain [−∞, ∞]× [−Y/2, Y/2]× [−Z/2, Z/2]. This domain is still
infinite in the stream-wise direction. To make the entire formulation truly finite, we
first introduce some interval [0, X] so that [0, X]× [−Y/2, Y/2]× [−Z/2, Z/2] ⊃ Γ1.
Consequently, systems (2.19) will be homogeneous outside [0, X] for all (ηky , ζkz ) ≡
(

2πky
Y , 2πkz

Z ). Then, boundary condition ∏
<λ(k)<0

(Q(k)− λ(k)I)

 û(0,k) = (2.25a)

prohibits the nondecreasing modes in the solution of the corresponding homogeneous
system as x −→ −∞, and boundary condition ∏

<λ(k)≥0

(Q(k)− λ(k)I)

 û(X,k) = (2.25b)

prohibits the modes that increase as x −→ +∞. Therefore, boundary conditions
(2.25) are equivalent to (2.20) in the sense that the solution to (2.19), (2.25) on [0, X]
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will be the same as the corresponding fragment of the solution given by (2.21). In
formulas (2.25), k ≡ (ky, kz), û(·,k) ≡ û(·, ηky , ζkz ), Q(k) ≡ C−1(iηkyD + iζkzE −
η2
ky
F − ζ2

kz
H − ηkyζkzJ), λ(k) are the eigenvalues of Q(k), and I is the identity

matrix of appropriate dimension.

The formulation of the finite-domain AP is therefore complete. For a given com-
pactly supported RHS f , suppf ⊆ Din, it consists of solving system (2.14) on the
parallelepiped [0, X] × [−Y/2, Y/2] × [−Z/2, Z/2] with periodicity boundary condi-
tions in the y and z directions and boundary conditions (2.25) in the x direction.
As mentioned above, by increasing the periods Y and Z one can make the solution
to this AP arbitrarily close to the original nonperiodic solution on any finite fixed
neighborhood of Din.

We will designate the Green’s, i.e., inverse, operator of the finite-domain AP by
G so that if Lu = f , then u = Gf . We also introduce the space F 3 f of the
RHSs for the finite-domain AP (for all f : suppf ⊆ Din) and the space U 3 u of
its solutions so that L : U 7−→ F and G : F 7−→ U . Keeping in mind that the
functions u ∈ U approximate the solutions to the infinite-domain AP of section 2.3.1
in the sense mentioned above, we will henceforth consider those u ∈ U as satisfying
the appropriate boundary conditions at infinity.

2.3.3. Generalized potentials and boundary projections. Let us now in-
troduce the space of clear traces Ξ . The elements ξ ∈ Ξ are the vector-functions
defined on the artificial boundary Γ; typically, for any u ∈ U we may consider
ξ =

(
u, ∂u∂n

)∣∣
Γ
, where n is the normal to Γ. The concept of clear trace is delin-

eated in [6, 7]. The operator Tr : U 7−→ Ξ that associates the clear trace with each
u ∈ U is called the clear trace operator.

Now let some ξ ∈ Ξ be prescribed. One can always find a compactly supported
function v such that Tr v = ξ. Then, the truncated function f = (Lv)|Din ∈ F can
be an RHS for the finite-domain AP. The corresponding solution of the finite-domain
AP considered only on Dex is called the generalized potential with the density ξ:

P ξ
def
=
[
G
(

(Lv)|Din
)]∣∣

Dex
. The generalized potential can be shown to depend only

on its density ξ and not on the choice of v (see [6, 7]).

The composition of operators P and Tr, PΓ
def
= Tr P , maps the space of clear

traces onto itself, PΓ : Ξ 7−→ Ξ . This new operator is a projection, P 2
Γ = PΓ, and is

called the generalized boundary projection. Those and only those ξ ∈ Ξ that belong
to the image of the generalized boundary projection, ξ ∈ ImPΓ, or in other words,
that satisfy the boundary equation with projection ξ = PΓξ, are actually traces of
some u ∈ U .

In the next section, we construct the finite-difference counterparts to the gener-
alized potentials and boundary projections and apply those to setting the ABCs.

2.4. Computation of the DPM-based ABCs.

2.4.1. Formulation of the difference AP. Let us introduce a Cartesian grid
on the parallelepiped [0, X]×[−Y/2, Y/2]×[0, Z/2] ⊃ Γ1. By virtue of symmetry (see
section 2.2 and, in particular, formulas (2.12), (2.13)), we may consider only half the
domain along the coordinate z. The x-grid is uniform with the size hx: xm = mhx,
m = 0, 1, . . . ,M , x0 = 0, xM = X. The grids in y and z can also be uniform
with the sizes hy and hz, respectively: yjy = −Y/2 + jyhy, jy = 0, 1, . . . , 2Jy + 1,
y0 = −Y/2, y2Jy+1 = Y/2; and zjz = −Z/2+jzhz, jz = Jz, . . . , 2Jz+1, zJz = −hz/2,
z2Jz+1 = Z/2. (For the z-grid, we use here the same indexing of nodes as if we
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considered the entire interval [−Z/2, Z/2] rather than only its half [0, Z/2]. This is
done mostly to keep consistency in the notation.) However, as we expect to have
better accuracy for bigger periods Y and Z (see section 2.3.2), it may be convenient
for application to keep the y- and z-grids uniform only in the vicinity of Din and then
stretch them away from the computational domain. This will allow us to cover bigger
periods with the same number of nodes. In so doing, we can retain the same indexing
for the nodes yiy and zjz but the grid sizes hy and hz will no longer be constant. In
all our computations (section 3), we have actually used the stretched grids in the y
and z directions.

We designate the entire three-dimensional Cartesian grid by N0,

N0 ≡ { (xm, yjy , zjz )
∣∣m = 0, 1, . . . ,M, jy = 0, 1, . . . , 2Jy + 1, jz = Jz, . . . , 2Jz + 1

}
.

The solutions uh ∈ Uh of the difference AP will be defined on this grid. We also
introduce another Cartesian grid M0, on which we will define the RHSs fh ∈ Fh of
the difference AP. Compared to the nodes of the grid N0, the nodes of the new grid
M0 are shifted by the half-size hx/2 in the x direction:

M0 ≡ { (xm−1/2, yjy , zjz )
∣∣m = 1, . . . ,M, jy = 0, 1, . . . , 2Jy + 1, jz = Jz, . . . , 2Jz + 1

}
,

where xm−1/2 ≡ (m− 1/2)hx.

We discretize the operator L of (2.1) on the grid N0 with the second order of
accuracy. The finite-difference scheme is centered with respect to the nodes (m −
1/2, jy, jz). To discretize ∂u

∂x , we use first-order differences in x; this ensures the
second order of approximation because the residuals are evaluated on the same semi-
integer grid M0, on which the RHSs are specified. For the first derivatives ∂u

∂y and ∂u
∂z ,

we use the three-point second-order discretization and designate the corresponding
grid operators by Dy and Dz, respectively. The dimension of these operators is the
same as the dimension of the grid because they operate on vector-functions u·,jy,·
and u·,·,jz componentwise. On the uniform grid, this discretization turns into the
standard central differencing as the central node drops out, but if the grid is stretched,

the discretization contains all three nonzero coefficients. The second derivatives, ∂
2u
∂y2 ,

∂2u
∂z2 , and ∂2u

∂y∂z , are discretized by the appropriate compositions of the first difference

derivatives D2
y, D2

z , and DyDz, respectively. We will designate the discrete direct

operator by Lh.

Now let uh ≡ um,jy,jz and fh ≡ fm−1/2,jy,jz . Because of the periodicity in y,

u·,0,· = u·,2Jy+1,·, f·,0,· = f·,2Jy+1,·.(2.26a)

Also, because of the symmetry/antisymmetry with respect to z = 0 (see boundary
conditions (2.12), (2.13)) and periodicity in z,

(2.26b)

ui·,·,jz = ui·,·,2Jz+1−jz , f i·,·,jz = f i·,·,2Jz+1−jz , jz = 0, 1, . . . , Jz for i 6= 4,

ui·,·,jz = −ui·,·,2Jz+1−jz , f i·,·,jz = −f i·,·,2Jz+1−jz , jz = 0, 1, . . . , Jz for i = 4.

of although we formally enumerate the z-nodes from 0 to 2Jz + 1 in (2.26b), these
formulas in fact show how one can consider only half these nodes instead.
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To replace the continuous transforms (2.18), we introduce the discrete transforms
T (y) and T (z) so that for each i

ûi·,ky,kz =

jz=2Jz+1∑
jz=1

jy=2Jy+1∑
jy=1

T
(z)
kz,jz

T
(y)
ky,jy

ui·,jy,jz ,(2.27a)

f̂ i·,ky,kz =

jz=2Jz+1∑
jz=1

jy=2Jy+1∑
jy=1

T
(z)
kz,jz

T
(y)
ky,jy

f i·,jy,jz .(2.27b)

The operators T (y) and T (z) have the inverse that we denote by T̃ (y) ≡ T (y)−1
and

T̃ (z) ≡ T (z)−1
, respectively, so that

ui·,jy,jz =

kz=Jz∑
kz=−Jz

ky=Jy∑
ky=−Jy

T̃
(z)
jz,kz

T̃
(y)
jy,ky

ûi·,ky,kz ,(2.28a)

f i·,jy,jz =

kz=Jz∑
kz=−Jz

ky=Jy∑
ky=−Jy

T̃
(z)
jz,kz

T̃
(y)
jy,ky

f̂ i·,ky,kz .(2.28b)

We require that the operator T (y) diagonalize the first and, consequently, second
difference derivative with respect to y:

T̃ (y)DyT
(y) = diag

{
iηky

}
, T̃ (y)D2

yT
(y) = diag

{
−η2

ky

}
,(2.29a)

where ηky , ky = −Jy, . . . , Jy, are real. Similarly, we require that the operator T (z)

diagonalize the first and second difference derivatives with respect to z:

T̃ (z)DzT
(z) = diag {iζkz} , T̃ (z)D2

zT
(z) = diag

{−ζ2
kz

}
,(2.29b)

where ζky , kz = −Jz, . . . , Jz, are also real. From (2.29a) and (2.29b) it follows that

T̃ (z)T̃ (y)DyDzT
(y)T (z) = −diag {ηky} diag

{
ζkz
}
.(2.29c)

Clearly, the columns of the matrix T (y) should therefore be the eigenvectors of Dy

and, analogously, the columns of T (z) should be the eigenvectors of Dz.
Note that in practical computations on the stretched grids (section 3) the eigen-

vectors and eigenvalues of Dy and Dz and the inverse operators T̃ (y) ≡ T (y)−1
and

T̃ (z) ≡ T (z)−1
are calculated using standard IMSL (International Mathematical and

Statistical Library) subroutines. Although the resulting systems of eigenvectors are,
generally speaking, not orthogonal, the accuracy of this eigenvalue and eigenvector
computation, as well as the accuracy of the numerical transforms T (y), T (z), T̃ (y), and
T̃ (z) (expansions with respect to skewed systems), has been found to greatly exceed
the accuracy of the interior discretization.

If, in particular, the grids in y and z are uniform, then T (y) and T (z) are reduced
to the well-known discrete Fourier transforms (from here on, the overbar ¯ means
complex conjugate)

T
(y)
ky,jy

=
e−ikyjyhy

2π
Y√

2Jy + 1
√

2Jz + 1
, T

(z)
kz,jz

=
e−ikzjzhz

2π
Z√

2Jy + 1
√

2Jz + 1
,(2.30a)
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T̃
(y)
jy,ky

= T̄
(y)
ky,jy

=
eikyjyhy

2π
Y√

2Jy + 1
√

2Jz + 1
, T̃

(z)
jz,kz

= T̄
(z)
kz,jz

=
eikzjzhz

2π
Z√

2Jy + 1
√

2Jz + 1
.

(2.30b)
Let us now consider a special class of grids, namely, yjy = −y2Jy+1−jy for jy =

0, . . . , Jy and zjz = −z2Jz+1−jz for jz = 0, . . . , Jz. Obviously, all uniform grids belong
to this class; for the stretched grids it means symmetric stretching. Then, one can
make sure that

T
(y)
−ky,jy = T̄

(y)
ky,jy

for ky = 0, . . . , Jy,

T
(z)
−kz,jz = T̄

(z)
kz,jz

for kz = 0, . . . , Jz,

(2.31a)

T
(y)
ky,2Jy+1−jy = T̄

(y)
ky,jy

for jy = 0, . . . , Jy,

T
(z)
kz,2Jz+1−jz = T̄

(z)
kz,jz

for jz = 0, . . . , Jz,

(2.31b)

and also

T̃
(y)
jy,−ky = ¯̃T

(y)
jy,ky

for ky = 0, . . . , Jy,

T̃
(z)
jz,−kz = ¯̃T

(z)
jz,kz

for kz = 0, . . . , Jz,

(2.32a)

T̃
(y)
2Jy+1−jy,ky = ¯̃T

(y)
jy,ky

for jy = 0, . . . , Jy,

T̃
(z)
2Jz+1−jz,kz = ¯̃T

(z)
jz,kz

for jz = 0, . . . , Jz.

(2.32b)

For the discrete Fourier transform on uniform grids, relations (2.31) and (2.32) im-
mediately follow from (2.30a) and (2.30b), respectively; for nonuniform grids these
relations are verified experimentally.

Substituting (2.31) into (2.27b), taking into account relations (2.26) and also that
fh is real, we obtain for i 6= 4 (< means the real part)

f̂ i·,|ky|,|kz| =

jy=2Jy+1∑
jy=1

 jz=2Jz∑
jz=Jz+1

(
2T

(y)
|ky|,jy<T

(z)
|kz|,jzf

i
·,jy,jz

)

+T
(y)
|ky|,jy<T

(z)
|kz|,2Jz+1f

i
·,jy,2Jz+1

]
, f̂ i·,|ky|,−|kz| = f̂ i·,|ky|,|kz|,

f̂ i·,−|ky|,|kz| = f̂ i·,−|ky|,−|kz| =
¯̂
f i·,|ky|,|kz|,

(2.33a)

and for i = 4 (= means the imaginary part)

f̂ i·,|ky|,|kz| = i

jy=2Jy+1∑
jy=1

jz=2Jz∑
jz=Jz+1

2T
(y)
|ky|,jy=T

(z)
|kz|,jzf

i
·,jy,jz ,

f̂ i·,|ky|,−|kz| = −f̂ i·,|ky|,|kz|, f̂ i·,−|ky|,|kz| = −¯̂
f i·,|ky|,|kz|,

f̂ i·,−|ky|,−|kz| =
¯̂
f i·,|ky|,|kz|.

(2.33b)
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The relations similar to (2.33) can also be obtained for uh on the basis of formulas
(2.26), (2.27a), and (2.31). Furthermore, taking into account that uh is real and using
formulas (2.28a) and (2.32), we obtain for the inverse transform, if i 6= 4,

ui·,jy,jz = 4

kz=Jz∑
kz=1

ky=Jy∑
ky=1

(
<T̃ (z)

jz,kz
<T̃ (y)

jy,ky
<ûi·,ky,kz −<T̃ (z)

jz,kz
=T̃ (y)

jy,ky
=ûi·,ky,kz

)

+ 2

kz=Jz∑
kz=1

<T̃ (z)
jz,kz
<T̃ (y)

jy,0
<ûi·,0,kz

+ 2

ky=Jy∑
ky=1

(
<T̃ (z)

jz,0
<T̃ (y)

jy,ky
<ûi·,ky,0 −<T̃ (z)

jz,0
=T̃ (y)

jy,ky
=ûi·,ky,0

)
+T

(z)
jz,0

T
(y)
jy,0

ûi·,0,0 ,
(2.34a)
and if i = 4,

ui·,jy,jz = −4

kz=Jz∑
kz=1

ky=Jy∑
ky=1

(
=T̃ (z)

jz,kz
<T̃ (y)

jy,ky
=ûi·,ky,kz + =T̃ (z)

jz,kz
=T̃ (y)

jy,ky
<ûi·,ky,kz

)

−2

kz=Jz∑
kz=1

=T̃ (z)
jz,kz
<T̃ (y)

jy,0
=ûi·,0,kz .

(2.34b)
Use of the transforms (2.33) and (2.34) instead of (2.27) and (2.28), respectively,
allows us to calculate only one fourth of the total number of coefficients, namely,
those for ky = 0, 1, . . . , Jy and kz = 0, 1, . . . , Jz. This obviously implies a fourfold
speedup and fourfold shrinkage of the storage requirements when implementing in
practice the separation of variables for the difference AP.

In the transformed space, instead of Lhuh = fh, we obtain a family of one-
dimensional systems

Akûm,k +Bkûm−1,k = f̂m−1/2,k,

m = 1, . . . ,M, k ≡ (ky, kz),

ky = 0, . . . , Jy, kz = 0, . . . , Jz,

(2.35)

where

Ak =
1

hx
C +

iηky
2
D +

iζkz
2
E −

η2
ky

2
F − ζ2

kz

2
H − ηkyζkz

2
J ,

Bk = − 1

hx
C +

iηky
2
D +

iζkz
2
E −

η2
ky

2
F − ζ2

kz

2
H − ηkyζkz

2
J .

(2.36)

For each system (2.35), we have to specify the boundary conditions at m = 0 and
m = M . Analogously to the continuous boundary conditions (2.25), the boundary
conditions for the discrete system should explicitly prohibit the corresponding growing
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modes of the solution. This can be achieved by setting ∏
|λ(k)|>1

(Qk − λ(k)I)

 û0,k = (2.37a)

and  ∏
|λ(k)|≤1

(Qk − λ(k)I)

 ûM,k = ,(2.37b)

where Qk = A−1
k Bk, λ(k) are the eigenvalues of Qk, and I is the identity matrix of

appropriate dimension.
The finite-difference AP has thus been formulated completely. It consists of solv-

ing the discrete system Lhuh = fh on the grid N0 with the RHS specified on the grid
M0. The boundary conditions in the directions y and z are periodicity and symme-
try; see (2.26). The boundary conditions in the direction x are specified by formulas
(2.37) in the transformed space separately for each component after the original sys-
tem Lhuh = fh has been reduced to (2.35), (2.36) by the separation of variables
(2.33), (2.34). The methodology for solving systems (2.35), (2.36) with boundary
conditions (2.37), as well as the specific structure of these boundary conditions, is
studied in the next section.

2.4.2. Solvability of the difference AP. Let us first concentrate here on the
incompressible case, when the 4×4 system matrices are given in (2.1b). For simplicity,
we will temporarily omit the indices k. If η ≡ ηky 6= 0 or ζ ≡ ζkz 6= 0, then the
solutions λs ≡ λs(k) and es ≡ es(k), s = 1, . . . , 4, of the problem Bke− λAke = ,
are given by

λ1 = −
(

1

hx
− η2 + ζ2

2Re

)(
1

hx
+
η2 + ζ2

2Re

)−1

= λ2,

λ3 =

(√
η2 + ζ2

2
− 1

hx

)(√
η2 + ζ2

2
+

1

hx

)−1

,

λ4 =

(√
η2 + ζ2

2
+

1

hx

)(√
η2 + ζ2

2
− 1

hx

)−1

,

e1 = [0, 0, −ζ, η]
t
,

e2 =

[
0, 1,

−iη
Re

,
−iζ
Re

]t
,

e3 =

[
−
√
η2 + ζ2 +

η2 + ζ2

Re
,
√
η2 + ζ2, −iη, −iζ

]t
,

e4 =

[√
η2 + ζ2 +

η2 + ζ2

Re
, −
√
η2 + ζ2, −iη, −iζ

]t
.

(2.38)

From (2.38) we see that we have to analyze two different cases. In the regular case,

when
√
η2 + ζ2/2−1/hx 6= 0, none of the eigenvalues λs degenerate, the inverse A−1

k
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exists, and the eigenvalues/eigenvectors (2.38) are also the eigenvalues/eigenvectors of
Qk. The determinant of the Gram matrix constructed on the normalized eigenvectors
es from (2.38) can be shown to be

DetG =
4
(

1− η2+ζ2

Re2

)2

(
1 + η2+ζ2

Re2

)((
1 + η2+ζ2

Re2

)2

+ 8

) .(2.39)

Therefore, if (η2 + ζ2) 6= Re2, then the eigenvectors es are linearly independent, and

for
√
η2 + ζ2/2− 1/hx 6= 0 we can diagonalize the system (2.35):

S−1
k QkSk = diag {λs} , where Sk =

[
e1

|e1| ,
e2

|e2| ,
e3

|e3| ,
e4

|e4|
]
.(2.40)

Let us note that since η2 <∼ 1/h2
y and ζ2 <∼ 1/h2

z (hy and hz are the smallest grid sizes),

then the condition (η2 + ζ2) 6= Re2 appears to be not too restrictive. For example,
the asymptotic width of the plane viscous wake in the far field behind the body is
∼ 1/

√
Re (see, e.g., [46]). Therefore, to resolve this structure it is sufficient to have

the grid sizes of order 1/
√

Re as well (Re is an effective turbulent Reynolds number),
which puts the operator Sk of (2.40) far from the possible singularity. We also note
that in the formal inviscid limit 1/Re −→ 0, the determinant DetG of the Gram
matrix (see (2.39)) becomes fully independent of the wavenumbers η and ζ, which
essentially means that the “extent of skewness” for the basis {es} will be constant.

The solution to the diagonalized system (2.35) is easy to find by marching those
components, for which λs ≤ 1, from left to right and those components, for which
λs > 1, from right to left. It is also easy to make sure that boundary conditions (2.37a)
essentially imply that the components, for which λs > 1, are not specified (i.e., can
be arbitrary) on the left edge of the interval and the components, for which λs ≤ 1
(those that would not decay as m −→ −∞), are zero at m = 0. Similarly, boundary
conditions (2.37b) mean that the components, for which λs ≤ 1, are not specified
(i.e., any value is admitted) on the right edge of the interval and the components,
for which λs > 1 (those that would increase as m −→ +∞), are zero at m = M .
Let us also note that 1/Re may be arbitrarily small but as long as it is positive,
|λs| 6= 1 for all s. Consequently, we have only growing and decaying modes and
no constant or oscillating modes in the solution of the corresponding homogeneous
system. Therefore, in accordance with the results of [47] we have arrived at the
following.

Proposition 2.6. Let ηky 6= 0 or ζkz 6= 0; let also
√
η2
ky

+ ζ2
kz
/2 − 1/hx 6=

0. Then, system (2.35), (2.36), (2.1b) with boundary conditions (2.37) is uniquely

solvable and well-posed for any compactly supported RHS f̂m−1/2,k. The constant in

the well-posedness estimate ‖û·,k‖ ≤ const‖f̂·,k‖ does not depend on M .

Note that the system (2.35), (2.36), (2.1b), (2.37) can also be solved using the
methodology of [16].

The case
√
η2 + ζ2/2−1/hx = 0 requires special analysis. In this case, λ3 = 0 and

also formally λ4 =∞. However, it is in fact easy to make sure that both matrices Ak
and Bk are singular for

√
η2 + ζ2/2− 1/hx = 0. Let us therefore consider a regular

pencil of matrices Ak +µBk (see, e.g., [48]). We can rewrite these pencil matrices as
follows: Ak + µBk = (Ak −Bk) + (µ + 1)Bk ≡ A′k + (µ + 1)Bk. As A′k = 2

hx
C,
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this matrix is nonsingular and therefore Ak + µBk = A′k(I + (µ+ 1)A′k
−1
Bk). The

combination of matrices in the brackets can be diagonalized, which yields

Ak + µBk =

A′kS
′
k


1 0 0 0

0
(

1
2 + 1

hxRe

)
+ µ

(
− 1

2 + 1
hxRe

)
0 0

0 0
(

1
2 + 1

hxRe

)
+ µ

(
− 1

2 + 1
hxRe

)
0

0 0 0 −µ

S′k−1
,

(2.41)

where S′k is the corresponding similarity transform. (It is easy to make sure that all
the eigenvectors are linearly independent so that nonsingular S′k does exist.)

From representation (2.41) we conclude that there are still three components
in the solution that should be calculated by marching from left to right and one
component that should be calculated by marching from right to left. This obviously
matches the structure of boundary conditions (2.37) as both equalities can also be
multiplied from the left by a nonsingular matrix A′k. In fact, the pencil Ak+µBk has
one zero elementary divisor that corresponds to marching from right to left, at least
one “infinite” elementary divisor that corresponds to marching from left to right, and
may have either two finite elementary divisors or another two “infinite” elementary
divisors that would also correspond to marching from left to right. Clearly, any
of these marching procedures will easily lead to an M -independent estimate of the
resulting solution via the prescribed RHS. Therefore, we have justified the following.

Proposition 2.7. Let ηky 6= 0 or ζkz 6= 0; let also
√
η2
ky

+ ζ2
kz
/2 − 1/hx =

0. Then, system (2.35), (2.36), (2.1b) with boundary conditions (2.37) is uniquely

solvable and well-posed for any compactly supported RHS f̂m−1/2,k. The constant in

the well-posedness estimate
∥∥û·,k∥∥ ≤ const‖f̂·,k‖ does not depend on M .

Let us now mention that for the discrete Fourier transforms on uniform grids
ηky = sin(

2πkyhy
Y )/hy and ζkz = sin

(
2πkzhz
Z

)
/hz. Then, to avoid the considerations

that result in Proposition 2.7 and to restrict oneself by the case of Proposition 2.6
only, one can impose the following limitation on the grid sizes: h−2

x > (h−2
y + h−2

z )/4.
We note also that general analysis of constant-coefficient ordinary difference equations
based on the canonical forms of the corresponding pencils of matrices can be found
in [49].

Analysis of the last remaining case, ηky = ζky = 0⇐⇒ k = , is straightforward
as Q = −I and the solution of (2.35), (2.37) can therefore be found by marching
all the components from left to right. The well-posedness constant in this case may
formally be proportional to M . However, as f̂·, is premultiplied by A−1

 , which is of
order hx = 1/M , then the overall estimate will again be M -independent.

For the compressible case (2.1c), similar results hold also. However, analytical
expressions of type (2.38) are generally hard to obtain, so the actual eigenvalues and
eigenvectors must be calculated numerically (we again use the standard IMSL sub-
routines). The critical value, for which the eigenbasis becomes singular (see Proposi-

tion 2.7), is now
√
η2
ky

+ ζ2
kz
/2−

√
1−M2

0 /hx = 0.

We will designate Green’s, i.e., the inverse, operator of the difference AP by Gh

so that if fh ∈ Fh and Lhuh = fh, then uh = Ghfh and uh ∈ Uh.



BOUNDARY CONDITIONS FOR 3D EXTERNAL AERODYNAMICS 191

2.4.3. Difference potentials and projections. Let Stm−1/2,jy,jz be the sten-

cil of the difference operator Lh; according to section 2.4.1, we use first-order
differences for the coordinate x and central-type differences and their products for
the coordinates y and z. Let us also introduce the following grid sets (the overbar
D̄in here means the set-theoretical closure):

Min
def
= M0

⋂
D̄in, Mex

def
= M0

⋂
Dex,

Nin =
⋃

(m−1/2,jy,jz)∈Min

Stm−1/2,jy,jz , Nex =
⋃

(m−1/2,jy,jz)∈Mex

Stm−1/2,jy,jz ,

γ = Nin

⋂
Nex.

(2.42)
By definition (2.42), Min and Mex do not have common nodes. The sets Nin and
Nex already have some common nodes because these sets are swept by the stencil
Stm−1/2,jy,jz as it is applied to every node from Min and Mex, respectively. The
intersection of Nin and Nex is called the grid boundary γ. It is actually a multi-
layered fringe of nodes of the auxiliary Cartesian grid concentrated in the vicinity
of and straddling the continuous artificial boundary Γ. Similarly to the continuous
case (section 2.3.3), the density of the generalized difference potential will be defined
on the grid boundary γ. An example of the grid boundary (actually, a few planar
cross sections of this set) for a typical configuration studied in this paper is shown in
Figure 2.2.

The difference clear traces ξγ ∈ Ξγ of functions uh ∈ Uh are now defined as merely

restrictions to the grid boundary, i.e., Trhuh
def
= uh

∣∣
γ

= ξγ , Trh : Uh 7−→ Ξγ .

Now let some ξγ ∈ Ξγ be prescribed and vh be a grid function defined on N0

such that Trhvh = ξγ . Clearly, there are many functions vh that would meet this
condition, for example,

vh =

{
ξγ on γ,
o on N0\γ.(2.43)

Then, consider the function

Fh 3 fh =

{
Lhvh on Min,
o on Mex,

(2.44)

where vh is defined by (2.43), and solve the difference AP with this RHS fh of (2.44).
The resulting solution considered only on Nex is called the generalized difference
potential with the density ξγ :

P hξγ
def
=
(
Ghfh

)∣∣
Nex

(2.45)

(fh in (2.45) is defined by (2.44)). Analogously to the continuous case (section 2.3.3),
the generalized potential P hξγ of (2.45) can be shown to depend only on its density
ξγ and not on the choice of vh (in other words, the actual vh in (2.44) may differ

from the one presecribed by (2.43) as long as Trhvh = ξγ holds); see [7].

The composition of operators P h and Trh, P h
γ
def
= TrhP h maps the space of the

difference clear traces onto itself, P h
γ : Ξγ 7−→ Ξγ . This new operator is a projection,
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Fig. 2.2. Continuous artificial boundary Γ, grid boundary γ, collocation grid σ on Γ, and ghost
nodes Γ1 for a typical three-dimensional configuration.

P h
γ

2
= P h

Γ , and is called the generalized difference boundary projection. Those and
only those ξγ ∈ Ξγ that belong to the image of the generalized difference bound-
ary projection, ξγ ∈ ImP h

γ , or, in other words, that satisfy the difference boundary

equation with projection ξγ = P h
γ ξγ , are actually traces of some uh ∈ Uh.

Note that numerical verification of the projection property P h
γ

2
= P h

γ is an
ideal test for accuracy of the solution of difference AP. In our practical computations
for different geometries on different grids, we have always been able to obtain, for

arbitrary ξγ ’s, ‖P h
γ

2
ξγ − P h

γ ξγ‖ < 10−9. This, in particular, justifies the use of
stretched grids when solving the difference AP.

As mentioned before (section 2.3.2), we think that the continuous functions u ∈ U
satisfy the appropriate boundary conditions at infinity because the difference between
the nonperiodic solution and its periodic approximation is controlled by Y and Z and
can, in fact, be made as small as initially prescribed. In its own turn, the discrete space
Uh approximates the continuous space U ; therefore, we consider those grid densities
ξγ that belong to ImP h

γ , ξγ ∈ ImP h
γ as boundary functions that admit the exterior

complement in the right sense. In other words, these and only these functions ξγ admit

such a complement uhex
def
= P hξγ that satisfies boundary conditions of the difference

AP (see (2.26), (2.37)); this complement can be made arbitrarily close (near Din) to
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the original linearized exterior solution; in the next section, it is used for setting the
difference ABCs.

2.4.4. Global DPM-based artificial boundary conditions. Having con-
structed the procedure for calculating the generalized difference potentials and pro-
jections, we can now provide for a closure to the discretized Navier–Stokes system that
is solved inside the computational domain Din, i.e., obtain the ABCs. As mentioned
in section 2.2, the interior solvers typically involve some sort of pseudotime iterations.
To advance every next step of the iteration procedure, we need to know the previous-
step solution everywhere on the grid, including the ghost nodes Γ1. If these data
are available, then on the next step we will know the solution everywhere except on
Γ1. Consequently, to proceed with another iteration we will have to supplement the
missing data on Γ1. This will be done by projecting the available boundary data at
Γ onto the “right manifold,” i.e., the one that admits the right exterior complement
(see the previous section), and then calculating this complement on Γ1. In so doing,
we can obtain the missing relations between the values of the solution on Γ and Γ1

every time the ghost nodes need to be updated.
First, let us introduce the intermediate collocation grids σ and σ1 on both surfaces

Γ and Γ1. An example of such σ ⊂ Γ is shown in Figure 2.2. These grids are typically
a few times coarser than Γ and Γ1. Use of the collocation grid on Γ is an element of
general procedure of the difference potentials method [7]. Moreover, for the specific
problem under study use of the collocation grids results in multifold acceleration of
the computational procedure and also in memory savings if the boundary conditions
are implemented in the matrix form (see below).

Then, let us take ξΓ =
(
u, ∂u∂n

)∣∣
Γ
, where n is the normal to Γ (these data are

available from inside the computational domain Din on every iteration) and, using
the clustering Rσ on Γ, obtain ξσ. The latter procedure (clustering), in fact, implies
local averaging or smoothing along Γ. Furthermore, we drop normals from all nodes
γ to the surface Γ and interpolate ξσ with sufficiently high order to the feet of these
normals. The corresponding operation is denotedRn; typically, we use the biquadratic
surface interpolation. Having obtained u and ∂u

∂n at the feet of the normals, we use
the first two terms of the Taylor expansion (denoted πγ) and obtain ξγ :

ξγ = πγRnRσ

(
u,

∂u

∂n

)∣∣∣∣
Γ

.(2.46)

Then, we calculate the potential P hξ′γ for the density ξ′γ = P h
γ ξγ and interpolate it

(operation Rσ1
) from Nex to the nodes σ1 ⊂ Γ1:

u|σ1
= Rσ1

P hξ′γ ≡ Rσ1
P hξγ .(2.47)

The second equality in (2.47) holds because of the projection property of P h
γ . Finally,

the missing values of the solution at the nodes Γ1 are obtained from u|σ1
by means of

interpolation along the surface Γ1, which altogether yields the nonlocal DPM-based
ABCs in the form

u|Γ1 = T

(
u,

∂u

∂n

)∣∣∣∣
Γ

;(2.48)

here the operation T is composed of the operations (2.46), (2.47), and interpolation
along Γ1. As mentioned above, in the course of the iteration procedure boundary
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condition (2.48) is applied every time we need to update the values of the solution
at the ghost nodes Γ1. The implementation of ABCs (2.48) can either be direct or
involve preliminary calculation of the matrix T . In the latter case, the runtime imple-
mentation of the ABCs (2.48) is reduced to a matrix-vector multiplication. Moreover,
in this case we can do the first clustering Rσ and the last interpolation along Γ1 sep-
arately, i.e., leave these operations out of the structure of T . Then, instead of (2.48)
one can write

u
∣∣
σ1

= T ′ξσ,

where both the dimension of T ′ and its computational cost are many times smaller
than those of T from (2.48).

Let us also note that we need to know the potential only on some neighborhood
of the surface Γ1 (see (2.47)). At the same time, according to (2.43) and (2.44) the
density of the potential differs from zero only near γ. Therefore, for both the direct
T (y), T (z) (see (2.27)) and inverse T̃ (y), T̃ (z) (see (2.28)) transforms, we actually have
to take into account only a few “nonzero” nodes out of the total numbers of 2Jy + 1
and Jz + 1 along y and z, respectively. This effectively makes the computational cost
of these transforms grow linearly rather than quadratically, with respect to 2Jy+1 and
Jz + 1, and obviously implies a very substantial reduction of the required computer
resources.

3. Numerical results.

3.1. Two-dimensional summary. For completeness we first briefly comment
on the two-dimensional results from our previous work (see [14, 15, 18]), when we have
calculated several subsonic and transonic viscous flows past single-element airfoils
(NACA0012 and RAE2822).

The two-dimensional computational domain is formed by the C-type curvilinear
grid generated around the airfoil. On this grid, the Navier–Stokes equations are in-
tegrated using the code FLOMG of Swanson and Turkel [10, 11, 12]. The standard
treatment of external boundary in FLOMG is based on locally one-dimensional anal-
ysis of characteristics, which may or may not be supplemented by the point-vortex
correction [33].

Basic conclusions that could be drawn from our two-dimensional numerical ex-
perience are the following. The DPM-based ABCs are geometrically universal, algo-
rithmically simple, and easy to implement with the existing solver. For large compu-
tational domains (30–50 chords of the airfoil), performance of the standard method
and performance of the DPM-based ABCs are very close to one another. However, as
the distance between the artificial boundary and airfoil shrinks, discrepancy between
the corresponding solutions increases. The lift and drag coefficients obtained on the
basis of the two-dimensional version of boundary conditions (2.48) deviate from their
asymptotic (50 chords) values much less (within fractions of 1%) than the coefficients
obtained with the local ABCs do. In other words, the nonlocal DPM-based ABCs
allow one to use much smaller computational domains (as small as 2–3 chords) than
standard boundary conditions do and still maintain high accuracy of the numeri-
cal solution. Moreover, if we compare three models, DPM-based, point-vortex, and
standard local (characteristics-based), then it turns out that the DPM-based ABCs
display the best performance for small computational domains, performance of the
local characteristic boundary conditions for small domains is very poor, and the point-
vortex boundary conditions perform much better for the lift coefficient than they do
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for the drag coefficient. This is natural since the point-vortex model is a lift-based
treatment.

We also note that for certain variants of computation, the DPM-based ABCs
may noticeably increase (by up to a factor of 3) the convergence rate of multigrid
iterations; see [13, 14, 15]. Some discussion on the combined implementation of the
DPM-based ABCs with multigrid is contained in [18]; see also [50] for more details.

3.2. Three-dimensional computations. The DPM-based boundary condi-
tions (2.48) have been combined with the interior Navier–Stokes solver and used for
calculating viscous flows around the ONERA M6 wing for different regimes that range
from very low to transonic speeds and include both attached and separated turbulent
flows.

We use the NASA-developed code TLNS3D of Vatsa et al. [21, 22] to integrate
the thin-layer equations on the C-O type curvilinear grid (see Figures 2.1 and 2.2)
generated around the wing. The code is based on the central-difference finite-volume
discretization in space with first- and third-order artificial dissipation. Pseudotime
iterations are used for obtaining the steady-state solution; the integration in time
is done by the five-stage Runge–Kutta algorithm (with Courant’s number calculated
locally) supplemented by the residual smoothing. For the purpose of accelerating
the convergence, the multigrid methodology is implemented; in our computations we
used three nested grid levels with V-cycles; this three-level V-cycle algorithm is, in
fact, a final stage of the full multigrid (FMG) procedure. In addition, we use the
preconditioning technique of [51] to improve the convergence to steady state. We
implement the DPM-based ABCs (2.48) only on the finest grid for the V-cycle in the
final FMG stage; the boundary data for coarser levels are provided by the coarsening
procedure. Moreover, even on the finest level we implement the DPM-based ABCs
only on the first and last Runge–Kutta stages, which has been shown to make very
little difference compared to the implementation on all five stages; the boundary data
for the three intermediate stages are provided by the DPM-based ABCs on the first
stage. Unlike the two-dimensional case, the standard treatment of external boundary
in three dimensions (code TLNS3D) is based only on locally one-dimensional analysis
of characteristics and extrapolation (as the point-vortex model is not applicable).

All three-dimensional flows that we have analyzed are turbulent. In the near field
(i.e., inside Din), the Navier–Stokes solver is supplemented by a special turbulence
model to account for the corresponding phenomena. Depending on the specific flow
variant, either an algebraic or a differential turbulence model can be employed. In the
far field, we use Boussinesq’s concept of the effective turbulent viscosity, i.e., effective
Reynolds number (see [15]). This simplest approach has been found to produce accu-
rate results when incorporated into the structure of the DPM-based ABCs. The value
of the Prandtl number for all the calculations was either Pr = 0.72 (air) or Pr = 1.

In all the cases below, the auxiliary Cartesian grids are stretched along the co-
ordinates y and z. The stretching typically starts outside Γ1; the stretching factors
(we use geometric progression) vary between 1.07 and 1.1 for different variants. The
typical values of Y and Z that we have used vary between 20 and 30 sizes of Din in
the cross-stream direction and 4 and 10 sizes of Din in the span-wise direction. The
uniform Cartesian grid in the vicinity of Din is always chosen so that the distance
between Γ and Γ1 can be well resolved.

We should also emphasize that in spite of their nonlocal nature the DPM-based
ABCs (2.48) are geometrically universal. In other words, these boundary conditions
can be obtained for the boundary Γ of any irregular shape by means of the same com-
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Table 3.1
ONERA M6: M0 = 0.01; Re0 = 11.7 · 106; α = 3.06◦.

“Average radius” of Din 1.25 root chords 10 root chords
Dimension of the grid 193× 49× 33 193× 49× 33
Type of ABCs Standard DPM Standard DPM

Full lift, CL 0.2052 0.1954 0.1940 0.1939
Relative error 5.78% 0.77% 0% 0%

Full drag, CD × 100 0.695 0.685 0.681 0.681
Relative error 2.1% 0.58% 0% 0%

putational procedure. This conclusion directly follows from the previous considera-
tions and has also been corroborated repeatedly in numerical experiments. Moreover,
ABCs (2.48) appear easy to incorporate in the structure of the existing flow solvers.
This has been demonstrated in practice as well and is very important from the stand-
point of applications. The issue of computational cost of boundary conditions (2.48)
and some possible ways of its reduction will be addressed later, in section 3.3.

Finally, we would like to stress that, as has been shown in our previous work and
will also be seen from the following numerical tests, one of the main advantages of the
new boundary conditions is that they allow smaller computational domains. The as-
sociated potential benefit from the standpoint of practical computing is twofold. One
can truncate the discretization to fit the smaller computational domain, thus obtain-
ing a computation of comparable accuracy to the large domain computation using less
computational resources. One can also use the smaller domain, but employ the same
number of points, thus using the DPM-based boundary conditions to obtain a more ac-
curate computation at roughly the same expense of the original computation. In every
particular set of numerical tests described below we will follow one of these strategies.

3.2.1. Low Mach number regime. We first consider a very low speed flow,
M0 = 0.01, which is, in fact, close to the truly incompressible case. Preconditioning
[51] makes the analysis of this flow possible with TLNS3D. The flow is turbulent with
the molecular Reynolds number based on the root chord of the wing Re0 = 11.7 · 106;
the angle of attack is α = 3.06◦; there is no separation and the turbulence inside Din

is simulated using the Baldwin–Lomax algebraic model, which is based on the concept
of mixing length.

Since the free-stream Mach number is so small, we have implemented here the
incompressible version of the nonlocal DPM-based ABCs (2.48) constructed on the
basis of matrices (2.1b). In Table 3.1, we present the results of calculations for two
different computational domains of the “average radii” of 10 and 1.25 root chords of
the wing, respectively (root chord means the chord length at z = 0).

In both cases, we used the C-O type grids of the same dimension 193× 49× 33;
for the small domain the grid was obtained by scaling down the bigger grid and was
obviously finer in the near field. Therefore, for this set of computations one can expect
to achieve a better resolution of the flow field near the wing on the small domain.
From Table 3.1, one can see that for the large domain the results (force coefficients
CL and CD) obtained using both methods are very close to each other. However, as
the domain shrinks the accuracy obtained with the DPM-based procedure appears to
be much better than the accuracy provided by the standard methodology. In other
words, the nonlocal DPM-based ABCs (2.48) allow one to substantially reduce the
size of the computational domain without compromising the accuracy. This confirms
that if the structure of the far-field solution is correctly taken into account by means
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Table 3.2
ONERA M6: M0 = 0.5; Re0 = 11.7 · 106; α = 3.06◦.

“Average radius” of Din 1.25 root chords 2 root chords 10 root chords
Dimension of the grid 193× 49× 33 193× 49× 33 193× 49× 33
Type of ABCs Standard DPM Standard DPM Standard DPM

Full lift, CL 0.2218 0.2065 0.2185 0.2065 0.2081 0.2072
Relative error 6.58% 0.34% 5.0% 0.34% 0% 0%

Full drag, CD × 100 0.817 0.791 0.793 0.791 0.787 0.788
Relative error 3.8% 0.38% 0.76% 0.38% 0% 0%

of the ABCs, then within a certain range of domain sizes the computed near-field
solution becomes essentially domain-independent. Moreover, as the near-field grid on
the small domain is finer than on the large domain, it provides for a mechanism to
improve the overall accuracy of numerical solution.

3.2.2. Subsonic regime. The next case is a subcritical (i.e., fully subsonic)
compressible flow for M0 = 0.5. Here, the free-stream Mach number is already high
enough to make the compressibility effects essential, but on the other hand it is still
not too high and therefore the flow remains subsonic throughout the entire domain.
The angle of attack and the molecular Reynolds number for this case are the same as
for the previous one: α = 3.06◦, Re0 = 11.7 · 106. The flow is also fully attached and
the turbulence model inside Din is algebraic (Baldwin–Lomax).

The DPM-based ABCs (2.48) for this case were constructed on the basis of non-
symmetrized matrices (2.1c). For this specific value of Mach number, M0 = 0.5, the
“extent of nonsymmetry” in the system matrices (2.1c) still appears quite acceptable.

However, for low Mach numbers M0
<∼ 0.1 treated in the compressible framework

(unlike in section 3.2.1), the use of the symmetrizer [25] can be recommended. On
the other hand, we should note that in [18] we have been able to obtain accurate
two-dimensional results for M0 = 0.01 without symmetrizing the system matrices in
boundary conditions.

In Table 3.2, we compare the results of calculations for three different computa-
tional domains. Similarly to the previous case (section 3.2.1), we use the same grid
dimension for the domains of different sizes; as a consequence, we expect to obtain
a higher resolution of the near field on the smaller domains. As one can clearly see
from Table 3.2, the DPM-based ABCs produce much more accurate solutions for the
domains of (half-)size of 1.25 and 2 root chords than standard boundary conditions
do. This essentially creates a vehicle for calculating the solutions unaffected by the
size of the computational domain (within a certain range). Along with the grid refine-
ment on smaller domains, it implies (at least for this series of tests) a better overall
accuracy while keeping the computational cost at approximately the same level.

3.2.3. Transonic regime. Most of the standard test cases for flows around the
ONERA M6 wing are transonic (see, e.g., the experimental work [52]). In such flows
the free-stream Mach number is sufficiently high so that the local speed exceeds the
speed of sound in some bounded region near the upper surface of the wing. This leads
to the formation of a supersonic (i.e., supercritical) “bubble,” which typically has a
sonic–surface-type upstream boundary and a shock–wave-type downstream boundary.

Attached flow. The first transonic case that we present is M0 = 0.84, α = 3.06◦,
Re0 = 11.7 · 106. In this case, the angle of attack α remains sufficiently small so
that the weak shock on the upper surface of the wing does not cause flow separation.
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Table 3.3
ONERA M6: M0 = 0.84; Re0 = 11.7 · 106; α = 3.06◦.

“Average radius” of Din 3 root chords 10 root chords
Dimension of the grid 193× 49× 33 209× 57× 33
Type of ABCs Standard DPM Standard DPM

Full lift, CL 0.298±0.004 0.2798 0.2805 0.2786
Relative error 6.24%±1.43% 0.43% 0% 0%

Full drag, CD × 10 0.168±0.008 0.1537 0.1542 0.1531
Relative error 8.95%±5.19% 0.39% 0% 0%

Therefore, we still use the Baldwin–Lomax model for simulating the turbulence inside
Din. An important difference compared to the previously studied cases is that here
we cannot bring the artificial boundary as close to the wing as done in sections 3.2.1
and 3.2.2. The reason is that our far-field treatment is purely subsonic and, therefore,
the artificial boundary should not come too close to the boundary of the supercritical
bubble. Therefore, we ran our computations for two domains—the “radius” of the
large one is still about 10 root chords of the wing and the “radius” of the small one
is about 3 root chords of the wing. Moreover, unlike in the previous cases, here
we employed a different strategy, namely, used a larger grid (i.e., more nodes) for
a larger domain. Thus, provided that the new boundary conditions algorithm will
again produce solutions (almost) unaffected by the domain size, we will obtain the
reduction of computational cost while preserving the accuracy. Geometrically, the
smaller (3 root chords) C-O grid is constructed as an exact subset of the larger (10
root chords) grid. This should completely eliminate any influence that the change of
the grid in the near field may possibly exert on the calculated solution.

The nonlocal ABCs (2.48) for this case were again constructed on the basis of
matrices (2.1c). In Table 3.3, we compare the computed results (calculated lift CL
and drag CD coefficients) for two different types of ABCs on two different domains.
For the small computational domain, the DPM-based ABCs again clearly outperform
the standard method from the standpoint of accuracy. Moreover, the total num-
ber of nodes in the larger grid here (see Table 3.3) is about 25% more than in the
smaller grid, which obviously implies a proportional difference in the associated cost
of computations.

Even more important is that for this transonic case the DPM-based ABCs in-
fluence not only the final accuracy of the solution but also convergence rate of the
iteration procedure employed inside Din. Namely, multigrid iterations with standard
ABCs on the small domain converge noticeably more slowly than they do if supple-
mented by the DPM-based ABCs. In fact, for the same 500 V-cycles on the finest
multigrid level, we simply could not obtain a fully converged solution on the 3 root
chords domain with standard boundary conditions. That’s why the corresponding
data in Table 3.3 are given with the error bands indicated. Convergence history for
transonic computation on the 3 chords domain is given in Figure 3.1(a) for the residual
of the continuity equation and in Figure 3.1(b) for the number of supersonic points
in the domain. (The latter quantity is deemed very sensitive for calculation of the
transonic flows.) Note that in our opinion the behavior of the corresponding curves
in Figure 3.1 suggests that the standard algorithm on the 3 root chords domain still
converges, although extremely slowly.

Quantitatively, from Figures 3.1 one can see that the multigrid convergence rates
for different types of ABCs can differ by as much as approximately a factor of 3.
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Fig. 3.1(a). ONERA M6: M0 = 0.84,
Re0 = 11.7 · 106, α = 3.06◦. Convergence his-
tory for the residual of the continuity equation.
“Average radius” of Din is 3 root chords of the
wing; dimensions of the grid are 193× 49× 33.

Fig. 3.1(b). ONERA M6: M0 = 0.84,
Re0 = 11.7 · 106, α = 3.06◦. Convergence
history for the number of supersonic nodes in
the domain. “Average radius” of Din is 3 root
chords of the wing; dimensions of the grid are
193× 49× 33.
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Fig. 3.2(a). ONERA M6: M0 = 0.84,
Re0 = 11.7 · 106, α = 3.06◦. Convergence his-
tory for the residual of the continuity equation.
“Average radius” of Din is 10 root chords of the
wing; dimensions of the grid are 209× 57× 33.

Fig. 3.2(b). ONERA M6: M0 = 0.84,
Re0 = 11.7 · 106, α = 3.06◦. Convergence his-
tory for the number of supersonic nodes in the
domain. “Average radius” of Din is 10 root
chords of the wing; dimensions of the grid are
209× 57× 33.

The history of convergence of the same two quantities for the large (10 root
chords) computational domain is presented in Figure 3.2. We see that in this case the
DPM-based ABCs also provide for some convergence speedup, although the difference
between the two methodologies appears less dramatic. This seems reasonable because
one could generally expect that the larger the computational domain, the smaller the
influence that the external boundary conditions exert on the numerical procedure.

Let us also note that on the small (3 root chords) domain the two algorithms
apparently converge to quite different solutions (this is most clearly seen in Fig-
ure 3.1(b)), whereas Figure 3.2(b) allows one to assume that on the large (10 root
chords) domain the final solutions are close to one another. The data from Ta-
ble 3.3 corroborate these conclusions. This behavior of the solution again fits into the



200 SEMYON V. TSYNKOV

aforementioned concept that the overall impact of the ABCs on the computational
algorithm decreases as the domain enlarges.

Separated flow. When one increases the angle of attack α in the transonic regime,
the flow pattern changes. The shock on the upper surface of the wing becomes
stronger. Since the chord length of the wing decreases span-wise as z increases (see
Figure 2.1), then the stream-wise dimension of the supersonic bubble decreases as
well, and eventually the upstream sonic surface and the downstream shock wave meet
somewhere in the area close to the wingtip. For sufficiently strong shocks this, in par-
ticular, produces flow separation on the upper surface of the wing. We have analyzed
the separated flow of this type for M0 = 0.84, α = 5.06◦, Re0 = 11.7 · 106.

The separation zone on the upper surface of the wing for this case is relatively
small; the flow fully re-attaches before it reaches the trailing edge so that no phenom-
ena associated with the separation are present in the wake. However, the simulation
of such flows already requires more sophisticated turbulence models inside the compu-
tational domain; we have used the the two-equation Menter’s model [53]. Moreover,
it requires much finer grids in the near field than the simulation of the attached flows
does.

As in the previous transonic case, the global ABCs (2.48) are constructed here
on the basis of matrices (2.1c). The computations are conducted for two different
domains of the “average radii” of 3 and 10 root chords of the wing, respectively. The
grids for both domains in this case have dimensions 193× 49× 33, i.e., we choose the
same gridding strategy as for subsonic numerical experiments of sections 3.2.1 and
3.2.2. Of course, the actual grids here are not the same as those used previously; their
normal cell size near the wing surface is an order of magnitude smaller. Similarly to
the foregoing subsonic cases (sections 3.2.1 and 3.2.2) we expect for this case that the
resolution of the near field for the smaller domain will be better than for the larger
domain. This is particularly important because of the complicated flow structure that
involves the shock-induced separation.

In Figure 3.3, we present the distribution of the pressure coefficient

Cp =
p− p0
1
2ρ0u0

2

on the upper and lower surfaces of the wing in the cross section z = const at 90%
of semispan. The 90% of semispan station corresponds to the area of developed
separation. The three solutions that we have computed in this case are for global
DPM-based ABCs on the 3 and 10 root chords domains and standard ABCs on the 10
chords domain. These solutions are compared in Figure 3.3 against the experimental
data.

From Figure 3.3 we conclude that all three numerical solutions match one another
very well and also match the experimental data to a reasonable degree of accuracy.
We also emphasize that, analogously to the previous cases, the DPM-based global
ABCs (2.48) are capable of generating an accurate numerical solution on the small
domain for this separated flow case. On the other hand, the standard algorithm
for α = 5.06◦ (separated flow around ONERA M6) fails to converge on the 3 root
chords computational domain; the corresponding convergence history is presented
in Figure 3.4(a). Comparing Figure 3.4(a) with Figure 3.1(a) we see that for the
attached case α = 3.06◦ (which is relatively easy) one could still observe a very slow
convergence of the standard algorithm, whereas its convergence for the separated case
α = 5.06◦ is completely destroyed. At the same time, on the large (10 root chords)
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Fig. 3.3. ONERA M6: M0 = 0.84, Re0 = 11.7 · 106, α = 5.06◦. Surface pressure distribution
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Fig. 3.4(a). ONERA M6: M0 = 0.84,
Re0 = 11.7 · 106, α = 5.06◦. Convergence his-
tory for the residual of the continuity equation.
“Average radius” of Din is 3 root chords of the
wing; dimensions of the grid are 193× 49× 33.

Fig. 3.4(b). ONERA M6: M0 = 0.84,
Re0 = 11.7 · 106, α = 5.06◦. Convergence his-
tory for the residual of the continuity equation.
“Average radius” of Din is 10 root chords of the
wing; dimensions of the grid are 193× 49× 33.
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domain both the DPM-based and standard algorithms for α = 5.06◦ converge at the
same rate. See Figure 3.4(b).

Figures 3.3 and 3.4 allow us to conclude that nonlocal DPM-based ABCs (2.48)
not only speed up the convergence of multigrid iterations but are generally capable
of increasing robustness of the entire numerical procedure. Note that the issues of
combined implementation of global DPM-based ABCs with multigrid and resulting
speedup of multigrid convergence have been specifically addressed and emphasized in
our recent paper [50].

3.3. Computational cost of the DPM-based ABCs. In all the three-
dimensional computations described above, the DPM-based ABCs were implemented
directly, without computing the matrix of operator T from (2.48). By applying the
new procedure only on the first and last Runge–Kutta stages and only on the finest
multigrid level, the total number of calculations of the generalized potential has been
brought to a minimum. In so doing, the average cost of applying the DPM-based
ABCs (2.48) adds about 20–25% of the CPU time to the cost of the same procedure
with the standard (characteristics-based) boundary conditions. This extra expense is
not high (taking into account the improvement of accuracy); moreover, it can often be
compensated for and even noticeably prevailed over by the convergence acceleration
and reduction of the domain size. Furthermore, to explicitly decrease the computa-
tional cost associated with the DPM-based ABCs we plan on the future use of the
entry-wise interpolation of boundary operators (see [23]) and/or multiresolution-based
methodologies (see [20, 23]). We expect that the latter can also be employed when
implementing the DPM-based ABCs for multiblock grids.

Having addressed the actual computational cost of the DPM-based ABCs for the
specific implementation described above, we would also like to make a few general
comments on our choice of the interior solver (TLNS3D) as well as on the potential for
combining the new ABCs methodology with other available CFD codes. The primary
reason for choosing TLNS3D is that this code is, in fact, one of the “workhorses”
extensively used nowadays for production flow computations in both research and
industrial applications. The code is universal; it can calculate fluid flows around over
complicated geometries for a wide variety of flow regimes. Although the chimera grid
capability is not yet incorporated into TLNS3D, experimentally the code has been found
quite robust on multiblock grids that consist of point-matched and patched grid block
interfaces.

Concerning the performance, it is generally acknowledged that TLNS3D is not the
fastest code. In particular, it is quite possible that the multigrid strategy employed
in TLNS3D can be replaced by a much better algorithm (see below). However, other
currently available production codes in CFD are not much faster than TLNS3D. For
example, the NASA-developed code PAB3D, which does not use multigrid, is expected
to be somewhat slower than TLNS3D for the computations that involve the reverse
flow regions. Although this code has advanced capabilities for turbulence modeling
(which is advantageous, e.g., for the jet mixing problems), it was not the issue for
the class of problems studied in this paper. Another widely used NASA-developed
solver, CFL3D (see [54]), which is based on upwind discretization (as opposed to central
differences in TLNS3D) and does employ multigrid, may display a better performance
compared to TLNS3D (the same is true for the code OVERFLOW, which is very similar
to CFL3D in its basic concepts). However, the difference in performance is not that
dramatic. In [55], Rumsey and Vatsa compare the results obtained with TLNS3D

and CFL3D for the flow cases that are very close (some are actually the same) to
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those investigated in this paper; they have found that the difference in CPU times
was only about 11% to the advantage of CFL3D on a Cray Y-MP platform. All the
computations presented in this paper were actually conducted on either a Cray Y-MP
or another Cray Research computer, the J90 series, which is similar to the Y-MP in
its architecture. Therefore, on these platforms, implementation of the DPM-based
ABCs, even with a faster production solver, CFL3D, would not result in an overhead
much higher than the 20–25% mentioned previously (this is well compensated for by
the improvement of accuracy and the speedup of multigrid convergence).

It is also known that the actual performance of the code is, in fact, platform-
dependent. For example, on a Cray C90 system, CFL3D may run about 1.5 times faster
than TLNS3D, which is most likely due to the better use of vectorization. Our code
for calculating the ABCs (2.48) can also take full advantage of the vector capabilities
of the machine; therefore we do not think its performance would decrease if run on a
C90 platform. At the same time, on the cache-based machines (powered, e.g., by an
SGI R10000 processor) the performance of CFL3D and TLNS3D is essentially the same.
Therefore, the overhead due to the new ABCs would be the same as well. Other flow
solvers, e.g., ARC3D, may be better tuned for the cache-based machines and therefore
run almost twice as fast as either TLNS3D or CFL3D, which only proves once again that
the issue of program performance cannot be studied abstractly—it has to relate to a
specific code implemented on a specific platform.

For the sake of completeness, however, we should say that all the aforementioned
solvers (as well as all others that are used extensively for production computations
nowadays) are based on what most likely can already be called the previous genera-
tion of concepts in CFD. A massive effort is currently underway toward developing
much faster CFD codes with the potential of achieving the so-called “textbook multi-
grid efficiency.” The corresponding approaches are based on the innovative ideas of
genuinely multidimensional upwind discretizations and factorization of the flow sys-
tem into the elliptic and advection subsystems with subsequent multigrid solution of
the elliptic part and downstream marching of the advection part. In our view, these
techniques, if successful, can revolutionize the entire area of CFD. However, at the
current stage of their development they are nowhere close to solving the viscous flows
of the type analyzed in this paper.

Therefore, the discussion on performance of the DPM-based ABCs, if combined
with some solver other than TLNS3D, has to be restricted to the currently available pro-
duction codes. As has been pointed out, all these codes basically demonstrate similar
performance; recently, some of them (TLNS3D and CFL3D) have even become similar in
their coding structures. Consequently, both implementation-wise and overhead-wise
there are no serious reasons to expect any substantial difference if the DPM-based
boundary conditions are combined with some other production solver. Implemen-
tation with TLNS3D alone already proves, in our view, the effectiveness of the new
methodology for the fluid flow computations.

4. Conclusions. The new global ABCs for calculating steady-state external vis-
cous flows in three space dimensions have been constructed on the basis of the differ-
ence potentials method (DPM). The approach generalizes and extends our previous
two-dimensional results.

The new ABCs are capable of greatly reducing the size of the computational
domain (compared to the standard methods) while still maintaining high accuracy of
the numerical solution. This size reduction amounts to either the possibility of refining
the grid in the near field, which potentially leads to increasing the accuracy, or usage of
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the smaller-dimensional grids while keeping the accuracy at the same level. Moreover,
the DPM-based ABCs may noticeably speed up the convergence of multigrid iterations
and generally improve robustness of the entire numerical procedure. Finally, the
new boundary conditions appear geometrically universal and easy to incorporate in
the structure of the existing flow solvers. The properties of the new ABCs have
been corroborated experimentally by computing subsonic and transonic flows past
the ONERA M6 wing with the NASA-developed code TLNS3D, which is widely used
for production flow computations in both research and industrial environments.
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