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Abstract. In this paper, we propose a new technique for the numerical treatment of exter-
nal flow problems with oscillatory behavior of the solution in time. Specifically, we consider the
case of unbounded compressible viscous plane flow past a finite body (airfoil). Oscillations of the
flow in time may be caused, for example, by the time-periodic injection of fluid into the boundary
layer, which in accordance with experimental data, may essentially increase the performance of the
airfoil.

To conduct the actual computations, we have to somehow restrict the original unbounded do-
main, that is, to introduce an artificial (external) boundary and to further consider only a finite
computational domain. Consequently, we will need to formulate some artificial boundary conditions
(ABCs) at the introduced external boundary. The ABCs we are aiming to obtain must meet the fol-
lowing fundamental requirement. One should be able to uniquely complement the solution calculated
inside the finite computational domain to its infinite exterior so that the original problem is solved
within the desired accuracy.

Our construction of such ABCs for oscillating flows is based on an essential assumption: the
Navier–Stokes equations can be linearized in the far field against the free-stream background. To
actually compute the ABCs, we represent the far-field solution as a Fourier series in time and then
apply the difference potentials method (DPM) of V. S. Ryaben’kii.

This paper contains a general theoretical description of the algorithm for setting the DPM-based
ABCs for time-periodic external flows. Based on our experience in implementing analogous ABCs
for steady-state problems (a simpler case), we expect that these boundary conditions will become an
effective tool for constructing robust numerical methods to calculate oscillatory flows.
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1. Introduction. The numerical study of problems originally formulated on un-
bounded domains requires the implementation of special techniques for the “treatment
of infinity” (which is necessitated by the restricted facilities of modern computers).
One of the corresponding techniques is based on an artificial truncation of the origi-
nal infinite domain, which implies that one must set special boundary conditions at
the external (artificial) boundary of the newly formed finite computational domain.
The aim of this paper is to describe the theoretical foundations for constructing such
ABCs for the computation of certain unsteady external flows.

Before proceeding to the actual description of the problem, let us first define the
concept of exact ABCs. Namely, exact ABCs are the boundary conditions that enable
one to uniquely complement the solution of the “truncated problem” to the unbounded
exterior of the computational domain so that the original problem is solved. The exact
ABCs usually appear to be nonlocal for steady-state problems in space and for time-
dependent problems in both space and time; many examples can be found, e.g., in
the comprehensive reviews by Givoli [1, 2].
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Let us note that the problem of constructing such boundary conditions that would
model (in the ideal case, equivalently replace) the solution on the exterior (far-field)
part of the domain differs from another well-known problem related to setting the
boundary conditions for numerical algorithms, namely, to construct such boundary
conditions that would ensure well posedness of the truncated problem and stability
of the integration process in time. In fact, these two formulations are not completely
independent. For example, the issue of well posedness for certain classes of (local)
ABCs was thoroughly investigated by Gustafsson [3, 4, 5]. On the other hand, a
group of delicate questions related to the issue of long-time (i.e., asymptotic) stability
is studied by Carpenter, Gottlieb, and Abarbanel [6] for some specific boundary-value
problems. The issue of connections between the nonlocal boundary conditions that
“model the infinity” and the boundary conditions that ensure the asymptotic stability
is likely to become an interesting subject for a future investigation.

In this paper, we consider an unbounded compressible viscous flow past a finite
body or configuration of bodies (e.g., single-element or multi-element airfoil). The
behavior of the flow in time is assumed to be oscillatory. We must emphasize that
while talking about the oscillatory time behavior we mean that some alternating (time-
periodic) influence is exerted on the flow (see, e.g., experimental work by Seifert et
al. [7]), and we expect that those frequencies that are connected to this influence
will dominate in the solution. We subsequently assume that the latter circumstance
will enable us to construct the ABCs without taking into account any other time-
dependent effects. From a mathematical standpoint, this case fills an intermediate
position between the steady-state and true unsteady flows.

The steady-state case is relatively simple compared to time-dependent flows.
In [8], we have constructed the ABCs for calculating external viscous compressible
steady-state flows. These boundary conditions are based on the concept of far-field
linearization and on the application of the DPM of Ryaben’kii [9, 10, 11]. The ABCs
[8] are asymptotically exact, which means they can be constructed as close to the ex-
act ABCs as desired; therefore, the ABCs [8] turn out to be global in space. However,
practical implementation of these boundary conditions is fairly easy (see [12, 13]).
They were used along with the Navier–Stokes code by Swanson and Turkel [14, 15]
for computing different external flows. Numerical experiments show that the global
DPM-based ABCs [8] provide high accuracy of computations, as well as fast conver-
gence of the multigrid iteration procedure to a steady state [12, 13]. The compu-
tational cost of boundary conditions [8, 12, 13] is not high in comparison with the
total cost of the original procedure [14, 15]. Generally, the numerical algorithm we
used for integrating the Navier–Stokes equations became more robust (in compari-
son with the standard procedure [14, 15] itself) if supplemented by the DPM-based
ABCs [8].

Let us emphasize that the ABCs [8] were constructed specially for the steady-
state problem and on the basis of stationary governing equations, independent of
any specific technique for solving the stationary equations inside the computational
domain. In practical computations (see [12, 13]), we use multigrid iterations [14, 15]
for calculating the steady-state solutions. In doing so, we set the ABCs [8] on each
iteration on the upper time level. Of course, the boundary data on the intermediate
stage of the iteration procedure (i.e., until we achieve a true steady state) are not
necessarily consistent with the formal “stationary” treatment of the far field. However,
treating the “time-intermediate” boundary data as if it were already steady has been
found effective in computational practice; see [12, 13]. We are going to use a similar
idea for the time-periodic case studied below.
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Note that, basically, most of the currently used ABCs methodologies, especially
in the area of computational fluid dynamics, are local. As a rule, such methods are
not very accurate, although they are inexpensive and easy to implement. Among the
very few highly accurate nonlocal techniques, which are at the same time computa-
tionally effective, we should mention the work by Verhoff, Stookesberry, and Agrawal
[16], in which the authors construct the ABCs for inviscid compressible external flow
computations. The main difference between our steady-state approach [8, 12, 13] and
the methodology of [16] is that we analyze viscous flows, whereas the authors of [16]
consider inviscid flows. However, an interesting feature of the approach of [16] is that,
though the Euler equations are linearized in the far field against the constant-pressure
background, a special change of variables allows the nonlinear thermodynamic rela-
tions to be retained. This enables one to explicitly take into account entropy-wake
solutions (i.e., rotational effects) that are relevant to inviscid treatment of the far
field. The Fourier transform (combined with a certain iteration technique) is used in
[16] to solve the far-field equations and to obtain the ABCs at the C-type artificial
boundary that is composed of parabolic (inflow) and linear (outflow) segments. In
[17], Verhoff and Stookesberry extend the above approach to duct problems, and in
[18], Verhoff uses an analogous technique to treat O-type configurations for circular
artificial boundaries.

True unsteady flows are much more complicated than steady-state ones in terms
of both theoretical analysis and practical calculations. As mentioned above, the ex-
act ABCs for unsteady problems will generally be nonlocal in both space and time.
Therefore, the corresponding computational cost may appear to be rather high. This
is also true for the global DPM-based boundary conditions, which can be constructed
as close to the exact ones as desired (the corresponding general theory for unsteady
problems can be found in the work by Ryaben’kii [19]).

However, an intermediate case of oscillatory time behavior must be less expensive
in terms of required computer resources, since the global character of the ABCs in time
will obviously be restricted here by the value of one period. Moreover, the theoretical
analysis of this case based on the usage of the Fourier representation in time (see
below) is, in principle, less complicated than the general one from [19], since in our
analysis we actually reduce the time-dependent problem to a family of steady-state
problems.

On the other hand, do not assume that the oscillating flow is a particular, and
therefore unimportant, case. For example, experiments [7] show that the time-periodic
injection of fluid into the turbulent boundary layer may noticeably increase its resis-
tance to adverse pressure gradients without separation. This implies an essential
improvement of airfoil performance, up to 60% for high (post-stall) angles of attack,
according to [7]. The phenomenon was observed for different geometries (original
NACA0015 airfoil, the same airfoil with the deflected flap, and some others), which
leads us to believe that it may be effectively used in aircraft design. Therefore, an
accurate numerical investigation of the phenomenon becomes an important issue, and
an accurate procedure for setting the ABCs must be one of the principle elements of
any computational algorithm used for such an investigation.

The previous example is probably not a unique one where the time-periodic treat-
ment of flow in the far field might be relevant. In general, for the oscillatory case, we
propose the following construction of ABCs. First, linearize the governing equations
in the far field. Then, assuming that the time period is initially prescribed, apply
the Fourier transform in time and obtain a family of steady-state problems (where
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the unknowns are amplitudes). The latter problems are then treated by means of
the DPM [9, 10, 11]. The central idea of the DPM-based approach is to equivalently
replace the problem formulated on the domain by a certain operator equation formu-
lated on its boundary. For each one of the above-mentioned steady-state problems
(note that the family of these problems is parameterized by the frequency, i.e., by the
dual Fourier variable), this replacement results in an operator equation formulated
at the artificial boundary of the computational domain. (This equation connects the
boundary values of the solution.) The operator involved (a projection) is somewhat
analogous to the boundary pseudodifferential operators introduced by Calderon [20].
Because of the equivalence to the exterior linear problem, the aforementioned opera-
tor equation (more precisely, the entire family of these equations) can be considered
the desired exact ABC (limited only by the accuracy of far-field linearization) for
the problem solved inside the computational domain. In other words, this operator
equation adequately takes into account the structure of the solution from outside
the computational domain, which may also be called the exact transfer of boundary
conditions from infinity; see [19].

Recall that the ABCs [8] for stationary problems were constructed irrespective
of any specific way for actual computation of the steady state. Analogously, in this
paper, the ABCs for the time-periodic case are constructed independent of any spe-
cific technique for integrating the Navier–Stokes equations inside the computational
domain. Based on the assumption of periodicity in time, these ABCs simply close
the system that is solved inside the computational domain; the closure is obtained
for the time interval of one period. In practice, however, achieving a true oscillatory
regime may require long-time computational runs that cover many periods. During
this long-time integration, whenever we need to update the external boundary data
using the ABCs (i.e., every time step; see below) we treat the flow as if it were already
time-periodic (in some generalized sense; see section 3). In so doing, the boundary
conditions should guarantee only the desirable far-field behavior of the solution. This
behavior is actually determined by the condition that all perturbations vanish at
infinity. (Note that in [8, 12, 13] we were treating the external boundary data on
each iteration as already steady and requiring that the ABCs ensure the decay of the
solution to the linearized problem at infinity.)

The material below is organized as follows. In section 2, we describe the basic
formulations of the problems. Specifically, in section 2.1, we describe the geometric
setup typical for the numerical solution of external flow problems, i.e., configurations
of the finite computational domain and its infinite exterior. In this section, we also
introduce the flow equations (parabolized Navier–Stokes) and linearize them in the
far field against the constant free-stream background. In so doing, we obtain a cou-
pled problem, which is nonlinear inside the finite computational domain and linear
outside it. Then, assuming that the period of oscillating motion is known, we Fourier-
transform the exterior linear system with respect to time and obtain an equivalent
family of stationary systems. These stationary systems must be solved as a part of
the solution of the aforementioned coupled problem. However, we do not solve them
directly, since the corresponding domain is still infinite. Instead, we replace each of
these linear stationary systems by the generalized Calderon pseudodifferential equa-
tion formulated at the external boundary of the computational domain. The exterior
solution is then obtained in the form of a generalized potential; the density of the
potential satisfies the aforementioned boundary equation. To calculate the general-
ized potential, we need a special auxiliary problem, which is first formulated on the
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entire plane for the linearized thin-layer equations (Fourier-transformed in time) with
a certain compactly supported right-hand side. Solvability of this auxiliary problem
in the sense of tempered distributions is studied in section 2.2. Then, in section 2.3,
we show how one can replace the original auxiliary problem formulated on the entire
plane by the new problem formulated on some rectangle, so that the solutions of the
two problems are in a certain sense close to each other.

Section 3 of this paper is devoted to numerics. In section 3.1, we introduce a
finite-difference scheme that approximates the linearized thin-layer equations. Since
we discretize the equations not only in space but also in time, we now get a finite
(discrete) series in time instead of the original infinite Fourier series. This implies
that the family of stationary systems to be solved outside the computational do-
main becomes finite as well. In section 3.2, we construct a difference analogue to the
auxiliary problem on the rectangle, describe the numerical algorithm for its solution
(referring to our previous work for some details), and briefly address our somewhat
nonstandard concept of convergence for the solutions of the difference auxiliary prob-
lem. Finally, in section 3.3, we show how one uses the recently formulated difference
auxiliary problem and obtains a difference analogue to the Calderon boundary pseu-
dodifferential projection. Then, calculating the generalized difference potential, we
actually compute the nonlocal DPM-based ABCs. The ABCs are first obtained in the
Fourier variables and then, after implementing the inverse transform, in the physical
variables as well. Finally, section 4 contains some numerical data, conclusions, and
possible generalizations.

2. Basic formulations.

2.1. Governing equations and geometric setup. Let us start with the parab-
olized Navier–Stokes equations, which are the same as the thin-layer equations for two
dimensions (see, e.g., [21] by Anderson, Tannehill, and Pletcher):

∂ρ
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+
∂ρu
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+
∂ρv

∂y
= 0,(2.1)
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]
.

Here, x and y denote the Cartesian coordinates, u and v denote the Cartesian veloc-
ity projections, ρ denotes the density, p denotes the pressure, ε denotes the internal
energy, µ denotes the viscosity, and γ denotes the ratio of specific heats. To derive
the last equation of (2.1), we assume that the gas is perfect and that the Prandtl
number Pr = µcp/κ is constant (κ is the heat conduction coefficient). We denote the
free-stream parameters (specifically, u0, v0, p0, ρ0, ε0, µ0) by the subscript “0.” We
additionally assume that v0 = 0 and u0 > 0, which does not imply any loss of gen-
erality. The system (2.1) is written in dimensionless form. The following scales were
used to obtain dimensionless quantities: u0 was used for velocity, ρ0 for density, ρ0u0

2

for pressure, u0
2 for internal energy, µ0 for viscosity, characteristic size L (typically,

airfoil chord) for all distances, and L/u0 for time. The factor 1/Re that multiplies
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the viscous terms in (2.1) arises from the nondimensionalization; here Re = ρ0u0L
µ0

is
the Reynolds number.

Note that in our previous work [8, 12, 13] we used the full Navier–Stokes equa-
tions to construct the ABCs for steady-state problems. In this paper, we are going
to use the thin-layer system (2.1). This system appears to apply quite well to the
description of certain viscous flows [21], in particular, the far-field flows that we are
studying hereafter. Moreover, for the thin-layer system (2.1), we can justify some
results on the solvability of its linearized counterpart on R2 (see section 2.2), which is
important for the general justification of our construction of ABCs. Finally, the us-
age of equations (2.1) instead of the full Navier–Stokes equations saves an appreciable
amount of computer resources, as will be seen from further consideration.

Let us now assume that the actual values of u, v, p, ρ, ε, µ in the far field only
slightly deviate from the corresponding free-stream parameters. For dimensionless
quantities, this means

ρ = 1 + ρ̃, u = 1 + ũ, v = ṽ, µ = 1 + µ̃, p =
(
γM0

2)−1
+ p̃,

ε =
(
(γ − 1)γM0

2)−1
+ ε̃,

(2.2)

where

ρ̃� 1, ũ� 1, ṽ � 1, µ̃� 1, p̃�
(
γM0

2)−1
,

ε̃�
(
(γ − 1)γM0

2)−1
.

Here, M0 = u0 (γp0/ρ0)−1/2 is the Mach number at infinity, which is always assumed
to be less than unity. By substituting (2.2) into (2.1) and retaining only the first-
order terms with respect to small perturbations ũ, ṽ, p̃, ρ̃, ε̃, µ̃, we obtain the following
system of linear partial differential equations with constant coefficients:

C
∂u
∂t

+ D
∂u
∂x

+ F
∂u
∂y

+ H
∂2u
∂y2 = 0,(2.3a)

where

u =


u
v
p
ρ

 , C =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 −M0

−2

 , D =


1 0 0 1
1 0 1 0
0 1 0 0
0 0 1 −M0

−2

 ,(2.3b)

F =


0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , H = − 1
Re


0 0 0 0
1 0 0 0
0 4/3 0 0
0 0 γPr−1 −Pr−1M0

−2

 .
The system (2.3) is the linearization of equations (2.1) against the free-stream back-
ground. We omit the tilde ˜ in (2.3), since we are going to deal only with linear equa-
tions in perturbations henceforth. We also note that the equation of state ε = 1

γ−1
p
ρ

(more precisely, its linearization, ε̃ = 1
γ−1 (p̃− 1

γM0
2 ρ̃)) was used to eliminate internal

energy from (2.3).
We have mentioned that equations (2.3) will be used for the description of fluid

motion in the far field. Let us now define a general geometric setup for the problem
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FIG. 2.1. Configuration of domains.

under consideration. The original Navier–Stokes equations are integrated on a grid
(e.g., of the C type) generated around the airfoil; this grid covers the finite computa-
tional domain which is denoted Din hereafter (see Figure 2.1). We henceforth assume
that the linearization (2.3) is valid outside the computational domain Din, i.e., on
its complement Dex (see Figure 2.1). Clearly, this assumption is true for large com-
putational domains, i.e., far enough from the immersed body. As we approach the
airfoil, the validity of linearization in Dex can always be verified a posteriori, i.e., by
analyzing the corresponding computational results (as done, e.g., in [12, 13] for the
steady-state case).
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To integrate the Navier–Stokes equations on the grid inside Din, we use some
finite-dimensional approximation of these equations. The actual type of the resulting
discrete operator (i.e., finite-difference, finite-element, etc.) is not that important from
the standpoint of constructing the ABCs; for definiteness, we assume that the Navier–
Stokes equations are integrated by means of a finite-difference scheme. To begin with,
we also suppose that this scheme is fully explicit in time. We may always think that
we already know the solution for the time level tl on the entire grid; in particular, l = 0
implies the initial data. When we advance one time step, i.e., calculate the solution
for the level tl+1 by means of the scheme, we cannot obtain this solution for the whole
grid because some nodes located near the external boundary of Din will be missing.
The actual location of missing nodes depends on the specific structure of the scheme
stencil. For example, a typical central-difference second-order approximation to the
spatial part of the Navier–Stokes operator on a structured grid requires a 3×3 stencil.
Using such spatial approximation combined with an explicit integration procedure in
time, we can obtain the solution on the level tl+1 at all nodes, except for those that
belong to the outermost coordinate row of the grid (designated Γ1 on Figure 2.1). To
advance the next time step (tl+2) we will have to somehow determine these missing
values of the solution on the level tl+1. This will be done by representing the solution
to (2.3) in the form of a generalized potential for each Fourier mode. Thus, using
the solution to (2.3) in Dex, we close the system of difference equations inside the
computational domain Din; the closure we obtain is actually the desired ABCs.

In the case of implicit schemes, we also need the ABCs that will close the system of
difference equations inside Din. Indeed, while integrating the Navier–Stokes equations
by means of an implicit scheme, one has to solve a certain discrete system on the
upper time level (tl+1), whereas the data from the lower time level(s) play the role
of forcing terms. The above system will obviously be subdefinite unless we specify
additional relations that connect the values of unknowns at the grid nodes located
near the external boundary. In particular, for the previously mentioned example of
a structured grid and central differences on the 3× 3 spatial stencil, these additional
relations, i.e., the ABCs, should connect the values of the solution at the penultimate
(the curve Γ on Figure 2.1) and outermost rows of grid nodes (see also [8, 12, 13]). By
including the missing relations that are provided by the ABCs into the system solved
on the upper time level, we close this system and then advance the next time step.

Let us now provide an exact formulation of the problem. First, we select those
nodes of the grid where the solution can no longer be determined by the scheme, but
must be obtained by means of special additional relations, i.e., by means of the ABCs.
We designate this set of nodes ν1. Second, we select those nodes of the grid where we
need to know the solution in order to obtain it on ν1 with the help of the ABCs. The
latter set is designated ν. Both ν and ν1 will depend on the structure of the specific
stencil. In particular, for the 3×3 stencil on a structured grid, ν and ν1 correspond to
the penultimate and outermost rows of grid nodes, respectively (see also [8, 12, 13]).
Without loss of generality, we assume that the artificial boundary Γ (see Figure 2.1)
is formed by the penultimate row of nodes ν, so that all nodes ν1 that form the curve
Γ1 (see Figure 2.1) already belong to Dex (i.e., to the “linear zone”).

Then, we designate the time period by T . Clearly, we can further consider our
problem for the time interval [0, T ] without loss of generality. We will also need the
following brief notations: DT

ex = Dex × [0, T ], DT
in = Din × [0, T ], ΓT = Γ × [0, T ],

and ΓT1 = Γ1× [0, T ]. The closure of the finite-difference system in DT
in, which we are

looking for and which should be provided by the ABCs, is actually a set of relations
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expressing u|ΓT1 in terms of some data specified on ΓT . As previously mentioned,
these relations will be based on the solution to the linearized system (2.3) in DT

ex.
The latter system is supplemented (on DT

ex) by the periodicity condition in time:

u|t=0 = u|t=T , (x, y) ∈ Dex,(2.4)

and the free-stream condition at infinity:

u −→ 0, as x2 + y2 −→∞, t ∈ [0, T ].(2.5)

The choice of data on ΓT that “drive” the ABCs is closely connected to the concept
of clear trace delineated in [9, 10]. The question of the possible proper constructions
of clear traces for (2.3) may require a special thorough investigation in addition to
the general analysis from [9, 10]; such an investigation is not a direct subject of this
paper. Therefore, we will not comment on this question in our further discussion;
we only point out the actual construction we use. Namely, let us first represent the
vector function u(x, y, t) in the form of a Fourier series in time for any space point
(x, y),

u(x, y, t) =
n=∞∑
n=−∞

ûn(x, y)eint
2π
T ,(2.6)

where

ûn(x, y) =
1
T

T∫
0

u(x, y, t)e−int
2π
T d t, n = 0,±1,±2, . . . .(2.7)

Instead of considering (2.3a)–(2.4)–(2.5) on DT
ex, we henceforth consider on Dex the

family of “stationary” systems

iωnCûn + D
∂ûn

∂x
+ F

∂ûn

∂y
+ H

∂2ûn

∂y2 = 0, n = 0,±1,±2, . . . ,(2.8)

parameterized by the frequency ωn = 2πn/T , n = 0,±1,±2, . . ., and supplemented
at infinity by the boundary conditions

ûn(x, y) −→ 0, as x2 + y2 −→∞, n = 0,±1,±2, . . . ,(2.9)

which directly follow from (2.5). The matrices C, D, F, and H in the system (2.8)
are the same as in (2.3b).

For each frequency ωn, we consider the pair of functions (ûnΓ,
∂ûnΓ
∂ζ ) specified on

Γ as the data that “drive” the ABCs; here, ζ is the normal to Γ. (Note that if the
interior solution is already computed by means of the scheme inside DT

in, then ûnΓ and
∂ûnΓ
∂ζ are available.)

Our ultimate goal will be to provide a full classification of all those and only those
functions (v̂nΓ,

∂v̂nΓ
∂ζ ) that generate on Dex a solution ûn(x, y) to (2.8)–(2.9) with the

trace on Γ that coincides with the “source” function itself, i.e.,(
ûn,

∂ûn

∂ζ

)∣∣∣∣
Γ

=
(

v̂nΓ,
∂v̂nΓ
∂ζ

)
.(2.10)
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(More precisely, we do that in the discrete framework; see section 3.) As will be
seen from further consideration, the corresponding set of functions (v̂nΓ,

∂v̂nΓ
∂ζ ) can be

described as an image of a certain boundary projection operator. In other words,
these functions (v̂nΓ,

∂v̂nΓ
∂ζ ) will satisfy some boundary operator equation with projec-

tion. (The equation of this type was mentioned in section 1 as the one equivalent
to the linearized exterior problem.) Let us designate the corresponding projection
operator by Pn

Γ; we actually construct this operator in section 3. Then, specify-
ing a function (ûnΓ,

∂ûnΓ
∂ζ ) from inside Din, we apply Pn

Γ and consider the projection

Pn
Γ(ûnΓ,

∂ûnΓ
∂ζ ) = (v̂nΓ,

∂v̂nΓ
∂ζ ) as the right-hand side in (2.10) for the problem (2.8)–(2.9)–

(2.10). Representing the solution to (2.8)–(2.9)–(2.10) in the form of a generalized
potential [9, 10, 11], we find its trace on Γ1 (i.e., on ν1), which in turn enables us to
obtain the missing boundary relations that close the system of difference equations
inside DT

in. These relations, i.e., the ABCs, are derived using the inverse Fourier
transform. They can be symbolically written as

uν1 =
(

Pn
ex ◦Pn

Γ ◦R
(

ûnν ,
∂ûnν
∂ζ

))̌ ∣∣∣∣
ν1

, t ∈ [0, T ],(2.11)

where the operator R represents some (smooth) interpolation of the discrete functions
along the curve Γ, and the operator Pn

ex involves the calculation of the generalized po-
tential to solve (2.8)–(2.9)–(2.10). The specific structure of all operators from (2.11)
will be delineated in section 3, where we actually construct their discrete counter-
parts.

Let us make a few important remarks. First, to formally close the system solved
in DT

in, we have to obtain additional relations between the values of the unknowns on
ΓT and on ΓT1 . Such relations would provide ABCs that are completely independent of
any specific numerical procedure employed inside DT

in. However, to simplify our task
and at the same time only slightly compromise the above-mentioned independence,
we take into account that we almost always integrate the Navier–Stokes equations
step by step in time (explicitly or implicitly). Therefore, we do not need to construct
such ABCs that would connect the values of the solution at ν and at ν1 for the entire
interval [0, T ]. In fact, it suffices to determine u, v, p, and ρ at ν1 only for t = T
(i.e., at the upper time level), since for all previous moments these values have already
been determined when calculating previous time steps. Moreover, the formulation
(2.8)–(2.9)–(2.10), where the right-hand side from (2.10) belongs to the projection
image, (v̂nΓ,

∂v̂nΓ
∂ζ ) ∈ Im Pn

Γ, assumes that these data are the result of operating by

Pn
Γ on the Fourier transform (ûnΓ,

∂ûnΓ
∂ζ ) of some time-periodic function. However, in

conducting the step-by-step integration in time, the actual data (uΓ,
∂uΓ
∂ζ ) may not

be periodic until we achieve a true oscillatory regime. Therefore, as mentioned in
section 1, any time we use the ABCs we implement a certain generalized treatment of
the external flow as being already time-periodic. Namely, instead of the true boundary
data (uΓ,

∂uΓ
∂ζ ) at ΓT , we use the best approximation of this data by periodic functions

in the sense of least squares. This approach will be delineated in section 3, which is
devoted to numerics.

Second, to treat the problem (2.8)–(2.9)–(2.10) on Dex, we will need additional
truncation. Recall that we have already truncated the original infinite domain and
obtained Din; now we also truncate Dex in order to get the new linear problem
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formulated on a finite domain and, therefore, available for solution on the computer.
This issue is addressed in section 2.3.

Third, we certainly will not solve (2.8)–(2.9)–(2.10) every time we need to obtain
a closed system inside Din (i.e., each time step). Instead, using the linearity of the
problem, we will specify some basis in the space of boundary data and solve (2.8)–
(2.9)–(2.10) once for each basis function. This approach will enable us to obtain
the ABCs in matrix form, which is very convenient for practical computing (see also
[8, 12, 13]).

Ultimately, we will deal only with the finite-difference formulations and, conse-
quently, with the finite Fourier series (instead of the infinite series (2.6); see section 3).
In so doing, the discretization in time for the linearized exterior problem in DT

ex should
not necessarily coincide with the one used for the Navier–Stokes scheme inside DT

in.
A more convenient method may be to use interpolation in time, which was previously
proposed in [19].

Finally, let us mention that since we need to know the solution on Γ for the whole
period T to restore the solution on ν1, the first few time steps (until the total time
reaches T ) will require some special treatment. It might be based on the usage of
either a larger grid or some other external boundary conditions for the initial stage
of integration in time.

We now proceed to the actual construction of the operators involved in (2.11).
This construction will be essentially the same for all wavenumbers n. As mentioned
before, the computation of the ABCs (2.11) consists of two stages. (In practice, these
two stages can be combined into one, but for the purpose of analysis it is convenient
to consider them separately.) First, we apply the projection Pn

Γ to provide the proper
boundary data (right-hand side of (2.10)) for the problem (2.8)–(2.9)–(2.10). Then
find the solution to (2.8)–(2.9)–(2.10) in the form of a generalized potential (operator
Pn
ex). The computation of the generalized potential Pn

ex (and projection Pn
Γ) requires

solving the special auxiliary problem (AP). The AP is described in sections 2.2 and
2.3 for the continuous formulation and in section 3.2 for the difference formulation.
This AP is actually the main element of the DPM-based approach. The Green (i.e.,
inverse) operator of the AP plays in the theory of generalized potentials approximately
the same role as convolution with the fundamental solution plays in classical potential
theory [9, 10]. The AP is formulated on the entire plane (x, y) for the inhomogeneous
counterpart of the system (2.8) with a certain compactly supported right-hand side
f̂n = (f̂n1 , f̂

n
2 , f̂

n
3 , f̂

n
4 ) (to be specified later on). Namely, we will need to solve the

following system:

iωnCûn + D
∂ûn

∂x
+ F

∂ûn

∂y
+ H

∂2ûn

∂y2 = f̂n, (x, y) ∈ R2,(2.12)

suppf̂n(x, y) ⊂ Din, and we will require that the solution be unique in the class of
functions vanishing at infinity. In other words, the system (2.12) is supplemented by
the boundary condition

ûn(x, y) −→ 0, as x2 + y2 −→∞,(2.13)

which is the same as (2.9).
Once we are able to solve the AP (2.12)–(2.13), then we can properly formulate

the problem (2.8)–(2.9)–(2.10) and obtain its solution in the form of a generalized
potential. This is actually a very brief description of our DPM-based approach; it will
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be delineated in section 3 for the discrete formulation of the problem. Now we will
investigate the solvability of the AP (2.12)–(2.13).

2.2. Solvability of the linearized problem on the entire plane. We will
look for the solution to (2.12)–(2.13) in the space of tempered distributions G′ (see
[22] by Hörmander or [23] by Vladimirov), which is a conjugate space to the space
G of all infinitely smooth functions that are defined on R2, and decrease at infinity
with all their derivatives faster than any power of (x2 + y2)−1/2. Take the Fourier
transform

ˆ̂u
n
(ξ, η) =

1
2π

∞∫
−∞

∞∫
−∞

ûn(x, y) e−iξx−iηydx dy,(2.14a)

ˆ̂f
n

(ξ, η) =
1

2π

∞∫
−∞

∞∫
−∞

f̂n(x, y) e−iξx−iηydx dy(2.14b)

of both sides of (2.12), and represent the result in the form of a matrix equation

Qˆ̂u = ˆ̂f .(2.15)

Note that in the system (2.15) and henceforth in this subsection, we drop the super-
script n to simplify the notations. The symbol Q from (2.15) is given by

Q = iωC + iξD + iηF− η2H(2.16)

=


iξ iη 0 i(ω + ξ)

i(ω + ξ) + η2

Re 0 iξ 0

0 i(ω + ξ) + 4
3
η2

Re iη 0

0 0 i(ω + ξ) + γη2

Re Pr − i
M0

2 (ω + ξ)− η2

Re PrM0
2

.

We first show that the system (2.15) is solvable in G′. For the time being, we
do not need any restrictive assumptions regarding f̂ ; as previously mentioned, f̂ is
compactly supported, suppf̂ ⊂ Din, and without loss of generality, we may think
that f̂ is absolutely integrable on R2 (f̂ ∈ L1(R2)). Then, its Fourier transform ˆ̂f is
bounded and continuous on R2; consequently, if we formally write down the solution
to (2.15) as

ˆ̂u = Q−1ˆ̂f ,(2.17)

then the properties of the right-hand side in (2.17) are fully determined by the inverse
symbol Q−1. Indeed, it is well known [23] that if the right-hand side of (2.17) is
locally absolutely integrable on R2, then it defines the tempered distribution, i.e., the
generalized function from G′. The latter will coincide (in the sense of distributions)

with the classical function Q−1(ξ, η)ˆ̂f(ξ, η) everywhere on R2, except for the set of

singularities of Q−1(ξ, η)ˆ̂f(ξ, η) (if any). Since in our case the function ˆ̂f(ξ, η) is
continuous and bounded on R2, then it suffices to determine whether the function
Q−1(ξ, η) belongs to L1

loc(R
2).
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To do this, we have to find all singularities of Q−1(ξ, η). Calculating the deter-
minant of Q(ξ, η), we obtain

Q(ξ, η) =
[
−(ω + ξ)4 +

(ω + ξ)2

M0
2 (ξ2 + η2)(2.18)

+
(ω + ξ)2η4

Re2

(
4
3

+
7
3
γ

Pr

)
− 4

3
ξ2η4

M0
2Pr Re2 −

η6

M0
2Pr Re2

]
+ i

[
(ω + ξ)3η2

Re

(
7
3

+
γ

Pr

)
− (ω + ξ)ξ2η2

M0
2Re

(
4
3

+
1

Pr

)
− (ω + ξ)η4

M0
2Re

(
1 +

1
Pr

)
− 4

3
γ

(ω + ξ)η6

Pr Re3

]
.

Here, ξ, η are the variables and ω, M0, Re, Pr, γ are parameters. We emphasize that
both variables ξ and η are supposed to be real (see (2.14)); however, the coefficients
of Q(ξ, η) are, generally speaking, complex. Thus, to find singular points of the
symbol (2.16), one has to find the real roots of Q(ξ, η) (see (2.18)), which actually
implies finding common real roots of two polynomials, <Q(ξ, η) and =Q(ξ, η). First,
the point ξ = −ω, η = 0 is clearly one of such common roots. Then, we note
that =Q(ξ, η) turns into zero on the two entire straight lines, ξ = −ω and η = 0.
Moreover, <Q(ξ, η) has no other roots on the line ξ = −ω, except for η = 0. Further,
substituting η = 0 into the equation <Q(ξ, η) = 0 (see (2.18)) and assuming that
ξ 6= −ω, we find the following two roots of <Q(ξ, η) = 0 that belong to the line η = 0:
ξ1 = ωM0

1−M0
, ξ2 = − ωM0

1+M0
. We also observe that if ω = 0 (which corresponds to the

steady-state flows), then all three roots, (−ω, 0), ( ωM0
1−M0

, 0), and (− ωM0
1+M0

, 0), merge
into one.

In an attempt to find other real roots (if any) of Q(ξ, η) (see (2.18)), we divide
the equation =Q(ξ, η) = 0 by (ω + ξ)η2/Re. (It is possible, since we have already
proven that no other zeros exist on the two lines ξ = −ω and η = 0 except for those
already found.) The resulting equation,

(ω + ξ)2
(

7
3

+
γ

Pr

)
− ξ2

M0
2

(
4
3

+
1

Pr

)
− η2

M0
2

(
1 +

1
Pr

)
− 4

3
γ

η4

Pr Re2 = 0,

(2.19)

is of the fourth order, and taking into account that the equation <Q(ξ, η) = 0 (see
(2.18)) is of the sixth order, we conclude that the polynomial Q(ξ, η) may have no
more than a finite number of isolated real roots in total (three of which have already
been found). We emphasize here that this property (finite number of isolated real
roots) presents an essential difference between the problem under investigation and
classical acoustics problems in which the viscous terms in the governing equations are
usually neglected. Namely, for the acoustics equations (i.e., linearized Euler equa-
tions), the singular points of the symbol are no longer isolated. They usually form
a curve on the plane R2. This circumstance may cause noticeable difficulties when
justifying uniqueness of the solution. The difficulties are similar to those that arise
in studying the Helmholtz equation, which may be referred to as describing acoustics
in the stationary medium. We do not deal with Helmholtz-like equations in this pa-
per; we only note that contrary to the acoustics case the system (2.12) is presumably
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easier from the standpoint of analyzing the uniqueness, since the corresponding proof
appears elementary (see Proposition 2.4 below).

Equation (2.19) is of the second order with respect to ξ. Therefore, we can resolve
it for each η and obtain explicit function(s) ξ= = ξ=(η). Because we are interested
only in real solutions, we have to consider a few different cases.

First, we assume that ω 6= 0. Then, we rewrite (2.19) as

ξ2
(

7
3

+
γ

Pr
− 1
M0

2

(
4
3

+
1

Pr

))
+ 2ωξ

(
7
3

+
γ

Pr

)
+ ω2

(
7
3

+
γ

Pr

)
− η2

M0
2

(
1 +

1
Pr

)
− 4

3
γ

η4

Pr Re2 = 0

(2.20)

and observe that if M0
2 = (4

3 + 1
Pr )( 7

3 + γ
Pr )−1, then equation (2.20) degenerates and

therefore has a unique real solution ξ
(0)
= = ξ

(0)
= (η) for any η. If M0

2 > (4
3 + 1

Pr )·
( 7

3 + γ
Pr )−1, then we can easily make sure that the discriminant

D = 4ω2
(

7
3

+
γ

Pr

)2

− 4
(

7
3

+
γ

Pr
− 1
M0

2

(
4
3

+
1

Pr

))
·
(
ω2
(

7
3

+
γ

Pr

)
− η2

M0
2

(
1 +

1
Pr

)
− 4

3
γ

η4

Pr Re2

)(2.21)

is always positive, which means that equation (2.19) has two different real solutions,
ξ

(1)
= = ξ

(1)
= (η) and ξ

(2)
= = ξ

(2)
= (η), for any η. If M0

2 < ( 4
3 + 1

Pr )( 7
3 + γ

Pr )−1, then the
condition D ≥ 0 (see (2.21)) imposes certain restrictions on η. Namely, we have

−
[

3Pr Re2

8γ

(
− 1
M0

2

(
1 +

1
Pr

)
+
√
D1

)]1/2

≤ η ≤
[

3Pr Re2

8γ

(
− 1
M0

2

(
1 +

1
Pr

)
+
√
D1

)]1/2

,

(2.22)

where

D1 =
1

M0
4

(
1 +

1
Pr

)2

− 16
3

γω2

Pr Re2M0
2

(
7
3

+
γ

Pr

)(
4
3

+
1

Pr

)
·
(

7
3

+
γ

Pr
− 1
M0

2

(
4
3

+
1

Pr

))−1

.

Therefore, in this case the real solutions to (2.19), ξ(1)
= = ξ

(1)
= (η) and ξ

(2)
= = ξ

(2)
= (η),

exist only for η within the above range; see inequality (2.22).
Now consider the case ω = 0 (which corresponds to the steady-state problem).

From (2.19), we easily derive

ξ2
(

7
3

+
γ

Pr
− 1
M0

2

(
4
3

+
1

Pr

))
=

η2

M0
2

(
1 +

1
Pr

)
+

4
3
γ

η4

Pr Re2 .(2.23)

Clearly, equation (2.23) has real solutions, ξ(1)
= = ξ

(1)
= (η) and ξ

(2)
= = ξ

(2)
= (η), only for

M0
2 > ( 4

3 + 1
Pr )( 7

3 + γ
Pr )−1. Otherwise, we conclude that the equation =Q(ξ, η) = 0
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for ω = 0 has no other real roots except for ξ = 0, η = 0, and therefore, the same is
true for the equation Q(ξ, η) = 0.

In practice, we have calculated explicit symbolic expressions for the functions
ξ

(0)
= = ξ

(0)
= (η), ξ(1)

= = ξ
(1)
= (η), and ξ

(2)
= = ξ

(2)
= (η) using Mathematica; see [24] by Wol-

fram. (These expressions are not presented here because they are fairly cumbersome.)
Then, substituting the functions ξ(0)

= = ξ
(0)
= (η), ξ(1)

= = ξ
(1)
= (η), and ξ

(2)
= = ξ

(2)
= (η) into

the second equation, <Q(ξ, η) = 0, we obtain the algebraic equations with respect to
only one variable, η. Clearly, the above equations (which are different for the different
solutions, ξ(0)

= = ξ
(0)
= (η), ξ(1)

= = ξ
(1)
= (η), ξ(2)

= = ξ
(2)
= (η)) may have real root(s) if and

only if the original equation Q(ξ, η) = 0 has other real zero(s) besides those that have
already been found, (−ω, 0), ( ωM0

1−M0
, 0), and (− ωM0

1+M0
, 0). Therefore, we have finally

reduced the question about the real zeros of the equation Q(ξ, η) = 0 to the question
about the real root(s) of certain algebraic equations of one variable.

Unfortunately, the resulting equations (after the substitution of ξ(0)
= = ξ

(0)
= (η),

ξ
(1)
= = ξ

(1)
= (η), ξ(2)

= = ξ
(2)
= (η) into <Q(ξ, η) = 0) appear too complicated for obtaining

general expressions for their real root(s). However, we may implement the following
seminumerical approach, which provides fairly convincing results.

First, note that the case ω = 0 seems to be the simplest one. This case actually
admits rigorous analysis without making any simplifying assumptions. As previously
mentioned, equation (2.23) has no real solutions for M0

2 < (4
3 + 1

Pr )( 7
3 + γ

Pr )−1 (which
implies that the determinant (2.18) has no real roots); for M0

2 = (4
3 + 1

Pr )( 7
3 + γ

Pr )−1,
equation (2.23) degenerates; any pair (ξ, η) of the kind ξ arbitrary, η = 0, is its root.
Substituting this root into <Q(ξ, η) = 0 (see (2.18)), we obtain ξ4(1/M0

2 − 1) = 0,
which yields ξ = 0. Therefore, we have not found any new real zero. For M0

2 >
( 4

3 + 1
Pr )( 7

3 + γ
Pr )−1, equation (2.23) has two different real solutions for any η; moreover,

ξ
(1)
= = ξ

(1)
= (η) = −ξ(2)

= = −ξ(2)
= (η). Since all powers of ξ in <Q(ξ, η) are even, we

do not need to separately consider ξ(1)
= = ξ

(1)
= (η) and ξ

(2)
= = ξ

(2)
= (η). Substituting

ξ
(1,2)
= = ξ

(1,2)
= (η) into <Q(ξ, η) = 0, we obtain the eighth-order equation with respect

to η: aη8 + bη6 + cη4 = 0, where the coefficients a, b, and c are obviously real. The
explicit expressions for a, b, and c were obtained by means of Mathematica [24]; we do
not present them here because of cumbersomeness. However, using these expressions,
we can prove that a > 0, b > 0, and c > 0. Then, it becomes clear that there are no
other real roots, except for the one we have already found, η = 0 (which also yields
ξ = 0). Indeed, the equation aη4 + bη2 + c = 0 for a > 0, b > 0, and c > 0 may have
only essentially complex roots η. Therefore, we conclude that for ω = 0 the symbol
(2.16) has only one singular point, ξ = 0, η = 0.

Recall that all equations under study generally depend on five real parameters, ω,
M0, Re, Pr, and γ. To simplify our task, we fix the values of some of these parameters.
Namely, let us set γ = 1.4 (two-atom gas) and Pr = 0.72 (air). This choice of values for
the ratio of specific heats and for the Prandtl number, respectively, is most frequently
used since it is closely related to numerous practical problems; we will not consider
any other numerical values for these two parameters. We now investigate another
simple case: ω 6= 0, M0

2 = (4
3 + 1

Pr )( 7
3 + γ

Pr )−1. Then, we have

ξ
(0)
= (η) = −ω

2
+
(
η2

M0
2

(
1 +

1
Pr

)
+

4
3
γ

η4

Pr Re2

)((
7
3

+
γ

Pr

)
2ω
)−1

.

Substituting this expression into <Q(ξ, η), we obtain a 16th-order polynomial with
respect to η. This polynomial contains only even degrees from 0 to 16. It is possible
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to make sure (with the help of Mathematica [24]) that the coefficients of the above
polynomial are positive ∀ω, ω 6= 0, and ∀Re; consequently, the corresponding 16th-
order equation has no real roots. Therefore, the determinant (2.18) has no other real
zeros in this case either.

We have finally come to the most complicated case, which so far allows us only
approximate investigation. Let M0

2 < ( 4
3 + 1

Pr )( 7
3 + γ

Pr )−1. Then, we have to clar-
ify whether the functions <Q(ξ(1)

= (η), η) and/or <Q(ξ(2)
= (η), η) turn into zero for η

within the range given in the inequality (2.22). Both functions are actually of a gen-
eral algebraic type (they contain noninteger powers), which means we have only a
remote possibility of accurately (analytically) showing that they have no real roots,
particularly because these functions depend on many parameters. At least at this
point, we are unable to construct the corresponding rigorous proof, so we use the
approach based on certain graphical study.

To start, we select some representative discrete set of the parameters involved.
The range for the Mach number is known, so we simply choose a few points within
this range. As for the Reynolds number, the representative values for the graphical
analysis we will conduct may be chosen to be of the order of a few thousand. Indeed,
we are not studying Stokes’s flows corresponding to very low Re. As for typical
laminar solutions for the flows around an airfoil, they apparently cease to exist starting
from Reynolds numbers of around a few thousand. Moreover, for many practically
interesting turbulent flows with true molecular Reynolds numbers of around a few
million, one can successfully model turbulence in the far field by introducing a new
effective value of the Reynolds number, which also appears to be of the order of a few
thousand [13]. Finally, recall that the periodicity of flow in time is caused by some
external influence, and [7] reports that the maximum effect of (i.e., response to) such
an influence corresponds to non-dimensional frequencies of around one. Therefore, we
will not consider frequencies much less than unity, or frequencies much higher than
unity. Note that the upper bound for the band of frequencies originates from the
numerics, since we are going to pass from the series (2.6) to the finite Fourier series
while actually solving the problem on the computer (see section 3).

We also note that the limits for η (see (2.22)) do not depend on the sign of ω.
Moreover, since ξ(1)

= (η, M0, Re, Pr, γ, |ω|) = −ξ(2)
= (η, M0, Re, Pr, γ, −|ω|), ξ(2)

= (η,
M0, Re, Pr, γ, |ω|) = −ξ(1)

= (η ,M0, Re, Pr, γ, −|ω|) (see (2.20)), and all powers of ξ
and (ω+ ξ) in <Q(ξ, η) are even, it suffices to investigate the behavior of only one of
the above functions for both positive and negative values of ω. We do this by plotting
the corresponding graphs for the following specific values of the parameters involved:
ω = ±0.5, ±1, ±10, ±50; M0 = 0.4, 0.7; Re = 1000, 2000, 5000; γ and Pr are still
1.4 and 0.72, respectively. The graphs drawn with the help of Mathematica [24] in
different scales show that neither of the above curves intersects the real axis. (We do
not present these plots here because they are not of any interest except to show that
the corresponding curve has no zeros). Relying on this approximate graphical inves-
tigation, we may expect that at least within some range of the parameters involved,
the symbol (2.16) has no other real singular points, except for those that have already
been found.

We use an analogous graphical approach for the case M0
2 > (4

3 + 1
Pr )( 7

3 + γ
Pr )−1.

We have no prescribed range for η in this case. However, it is clear that the asymp-
totics of the functions <Q(ξ(1,2)

= (η), η) for large η is η8, so it suffices to study the
behavior of the above functions only on some finite interval of η. We used Mathe-
matica [24] to plot the corresponding graphs for the same values of ω, Re, γ, Pr as
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mentioned before, and for M0 = 0.8, 0.9. The graphs (drawn in different scales for
different η-intervals, up to −105 < η < 105) show that neither of the curves has real
zeros in this case either.

Summarizing, we conclude that at least for a certain reasonable range of the
parameters involved, M0, Re, Pr, γ, ω, we have justified the following proposition.

PROPOSITION 2.1. The symbol Q(ξ, η) (see (2.16)) has only three real singular
points on the (ξ, η)-plane: (−ω, 0), ( ωM0

1−M0
, 0), and (− ωM0

1+M0
, 0). For ω = 0, these

three points merge into one.
To determine whether the inverse symbol Q−1(ξ, η) belongs to L1

loc(R
2), it suffices

to investigate the behavior (integrability) of this matrix function near the three singu-
larities. This investigation actually means that we have to check integrability of each
of the sixteen elements of Q−1(ξ, η). These elements are given by

(
Q−1

)
j,i

= δi,j/Q,
1 ≤ i, j ≤ 4, where δi,j are the corresponding cofactors.

Let us first concentrate on the singularity ξ = −ω, η = 0 for ω 6= 0. We replace
the above expressions for the elements of the inverse symbol by their equivalents,(
Q−1

)
j,i

= (δi,jQ̄)/(QQ̄) (Q̄ means complex conjugate), to make the denominator
purely real. Since both the denominator QQ̄ and the numerator δi,jQ̄ are the sums
of monomials of the type const · (ω + ξ)kηlξm (here const depends on M0, Re, Pr, γ,
ω, and k, l, m are nonnegative integers), then it is sufficient to make sure that any
expression of the type ∣∣const · (ω + ξ)kηlξm

∣∣
QQ̄

(2.24)

that originates from (δi,jQ̄)/(QQ̄), 1 ≤ i, j ≤ 4, is integrable near ξ = −ω, η = 0.
Since ω 6= 0, then the factors ξm do not contribute to the asymptotics of the expression
(2.24) near ξ = −ω, η = 0 (which is an essential difference in comparison with the case
ω = 0; see below). Therefore, we may investigate this asymptotics by constructing
Newton’s diagram (see [25] by Walker) with respect to only two variables, ω + ξ
and η. Namely, we show in Figure 2.2 the set of points (k, l) that correspond to all
monomials const · (ω + ξ)kηlξm involved in QQ̄. The Newton diagram [25] is a lower
part of the convex hull of the above set. The diagram is shown by the dashed line in
Figure 2.2. Those points (k, l) which belong to the Newton diagram are, generally
speaking, those that determine the asymptotics of QQ̄ near ξ = −ω, η = 0.

More precisely, not only is the asymptotic behavior of QQ̄ near the singularity
determined by the lowest degree monomials (see Newton’s diagram in Figure 2.2),
but it may also depend on some higher-order terms if the form

A
(ω)
Q

def
=

ξ4

M0
4 (ω + ξ)4 +

16
9

ξ4

Re4Pr2M0
4 η

8

+
ξ4

Re2M0
4

[(
4
3

+
1

Pr

)2

− 8
3Pr

]
(ω + ξ)2η4

(2.25)

(which corresponds to the previously mentioned lowest-degree terms that constitute
the Newton diagram) degenerates under some conditions. However, in this specific
case, the form A

(ω)
Q of (2.25) is positive definite (because [(4

3 + 1
Pr )2 − 8

3Pr ] is posi-
tive for any Pr). Therefore, after some natural change of variables (see below), the
asymptotics of the denominator QQ̄ becomes uniform with respect to the polar angle,
which implies that while investigating the integrability of Q−1(ξ, η), one may simply
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l
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1

FIG. 2.2. Powers involved in the denominator QQ̄ ( • ) and Newton’s diagram for QQ̄; ξ = −ω,
η = 0 (ω 6= 0).

neglect all higher-order terms (“bullets” above the dashed line on Figure 2.2) and
consider the expression ∣∣const · (ω + ξ)kηlξm

∣∣
A

(ω)
Q

(2.26)

instead of (2.24). Furthermore, we may only increase the ratio (2.26) by neglecting the
third term (∼ (ω + ξ)2η4) in the denominator (2.25). Indeed, it is easy to see that in
doing so, we only decrease the denominator but still preserve its positive definiteness.
Finally, let us eliminate the factors ξm, for simplicity. We have already mentioned
that ξm do not contribute to the asymptotics of (2.26) near ξ = −ω, η = 0 (ω 6= 0).
Therefore, to estimate the integrals, we may replace these factors by appropriate
constants, e.g.,∣∣const · (ω + ξ)kηlξm

∣∣
ξ4

M0
4 (ω + ξ)4 + 16

9
ξ4

Re4Pr2M0
4 η8
≤

∣∣const · (ω + ξ)kηl
∣∣ |ξ|mmax

ξ4
min

M0
4 (ω + ξ)4 + 16

9
ξ4
min

Re4Pr2M0
4 η8

,

where minimum and maximum are found on a sufficiently small neighborhood of
ξ = −ω, η = 0.
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Thus, we have reduced the original question of integrability of δi,jQ/(QQ̄) to
checking the integrability of the function∣∣const · (ω + ξ)kηl

∣∣
a(ω + ξ)4 + bη8 , a > 0; b > 0; k, l nonnegative integers,(2.27)

on some neighborhood of ξ = −ω, η = 0. Because of the symmetry, it suffices to
integrate (2.27) only on one quadrant, for example, ω+ ξ ≥ 0, η ≥ 0. Moreover, since
we are studying local integrability, we also introduce some upper limits for ω+ ξ and
for η, e.g., ω + ξ ≤ 1, η ≤ 1. Let us now change the variables,

√
a(ω + ξ)2 = ζ,√

bη4 = χ, and proceed to the following integral:

const

1∫
0

1∫
0

ζ(k−1)/2χ(l−3)/4

ζ2 + χ2 dζ dχ.(2.28)

Further, make another change of variables, from the Cartesian (ζ, χ) to polar (%, θ) co-
ordinates, and for simplicity, truncate our rectangular domain: {0 ≤ ζ ≤ 1, 0 ≤ χ ≤ 1}
7−→

{
ζ2 + χ2 ≤ 1

}
, which obviously does not influence the result (integrable or not

integrable). Finally, instead of the integral (2.28), we obtain

const

1∫
0

%1+(k−1)/2+(l−3)/4

%2

π/2∫
0

(cos θ)(k−1)/2(sin θ)(l−3)/4dθ d%.(2.29)

From (2.29) one can easily derive the conditions sufficient for the integral to exist.
Namely, they are

k − 1
2

+
l − 3

4
> ε,(2.30a)

k − 1
2

> ε− 1,(2.30b)

l − 3
4

> ε− 1,(2.30c)

where ε is an arbitrarily small positive number.
We now have to make sure that all the conditions (2.30) are satisfied for all

cofactors δi,j , 1 ≤ i, j ≤ 4. First, we note that since k and l are always nonnega-
tive integers, then two conditions (2.30b) and (2.30c) are met automatically. Then, to
check the fulfillment of (2.30a), one has to accurately calculate all monomials involved
in all cofactors δi,j , 1 ≤ i, j ≤ 4, and to analyze the powers (k, l) for (ω + ξ)kηl.
This step was done with the help of Mathematica [24]. In Figure 2.3, we have col-
lected all the relevant powers (k, l) for all cofactors δi,j , 1 ≤ i, j ≤ 4. We also show
in Figure 2.3 the range of powers (k, l) which satisfies conditions (2.30) (grey area).
Using Figure 2.3, one can easily conclude that all monomials involved satisfy condi-
tions (2.30); therefore, the inverse symbol Q−1(ξ, η) is absolutely integrable near the
singular point ξ = −ω, η = 0 (ω 6= 0).

The integrability of Q−1(ξ, η) for ω = 0 near the singular point ξ = 0, η = 0 is
investigated by the same method. We only note that since ξ and ω + ξ are now the
same, both of them do contribute to the asymptotics of Q−1(ξ, η) near ξ = 0, η = 0.
Therefore, the sets of monomials involved, as well as the Newton diagram, for QQ̄
will differ noticeably from those relevant to the case ω 6= 0. Indeed, the asymptotic
behavior of the denominator QQ̄ near ξ = 0, η = 0 is now determined by the following
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FIG. 2.3. Powers of the monomials in cofactors ( • ); ξ = −ω, η = 0 (ω 6= 0). Grey area
corresponds to integrability conditions (2.30).

form (compare to (2.25)):

A
(0)
Q =

(
1 +

1
M0

4 −
2

M0
2

)
ξ8 +

η12

M0
4Pr2Re4(2.31)

+
(

2
M0

4 −
2

M0
2

)
ξ6η2 +

1
M0

4 ξ
4η4 +

1
M0

4Re2

[(
1 +

1
Pr

)2

− 2
Pr

]
ξ2η8,

which corresponds to the Newton diagram presented in Figure 2.4.
As in the case ω 6= 0, the form A

(0)
Q (2.31) also appears positive definite, since all

five coefficients in the expression (2.31) are positive ∀Re, Pr, M0 < 1. However, the
Newton diagram shown in Figure 2.4 consists of two straight intervals, whereas the
one in Figure 2.2 contains only one interval. This difference is essential, because now
each of the aforementioned two intervals (see the two-segment dashed polygonal line
on Figure 2.4) will determine its own domain of integrability for the expressions∣∣const · ξkηl

∣∣
A

(0)
Q

(2.32)

on the (k, l)-plane; here k and l are the powers in the numerator of (2.32). Since
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l
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1

FIG. 2.4. Powers involved in the denominator QQ̄ ( • ) and Newton’s diagram for QQ̄; ξ = 0,
η = 0 (ω = 0).

the form A
(0)
Q is not simply positive definite, but all powers involved are even, and

each coefficient in the expression (2.31) is positive, we can find the corresponding
domain of integrability on the (k, l)-plane independently for each of the two parts of
the Newton diagram; see Figure 2.4.

To do this for either part of the diagram, we neglect those terms in the denom-
inator which correspond to another part (in so doing, the denominator may only
decrease). Then, we formally divide both the numerator and the denominator by the
common factor ξ4 and, using the changes of variables analogous to those implemented
above, come to the following set of conditions sufficient for the integrability of the
function (2.32) near ξ = 0, η = 0:

k − 1
2

+
l − 7

4
> ε,(2.33a)

k − 1
2

> ε− 1,(2.33b)

l − 7
4

> ε− 1,(2.33c)
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l

k0 1

1

FIG. 2.5. Powers of the monomials in cofactors ( • ); ξ = 0, η = 0 (ω = 0). Light-grey area
corresponds to integrability conditions (2.33); middle-grey area corresponds to integrability conditions
(2.34); dark-grey area is common to both (2.33) and (2.34).

and

k − 5
2

+
l − 1

2
> ε,(2.34a)

k − 5
2

> ε− 1,(2.34b)

l − 1
2

> ε− 1.(2.34c)

Note that the three conditions (2.33) correspond to the upper part of the Newton
diagram, and conditions of (2.34) correspond to its lower part (see Figure 2.4).

In Figure 2.5, we show (by “bullets”) all powers (k, l) involved in all cofactors
δi,j , 1 ≤ i, j ≤ 4, for the case ω = 0. Grey areas on this figure correspond to the
range of the coefficients (k, l) that satisfy the integrability conditions (2.33), (2.34).
Note that the conditions (2.33c) and (2.34b) impose some additional restrictions on
l and k for the upper and lower components, respectively, of the Newton diagram in
Figure 2.5. We do not have such restrictions in the case ω 6= 0; see (2.30). One can
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easily see from Figure 2.5 that all elements of Q−1, (δi,jQ̄)/(QQ̄), 1 ≤ i, j ≤ 4, are
absolutely integrable near ξ = 0, η = 0 in the case ω = 0 as well.

Finally, we only have to show that Q−1(ξ, η) is absolutely integrable on some
neighborhood of each of the singular points ( ωM0

1−M0
, 0) and (− ωM0

1+M0
, 0) for ω 6= 0.

Clearly, if we simply ensure that
∣∣Q−1(ξ, η)

∣∣ is integrable on the same neighborhood,
then the integrability of Q−1(ξ, η) follows. To do this, first note that gradQ(ξ, η) 6= 0
at either of these two points. Indeed, it is easy to see from (2.18) that ∂Q

∂ξ 6= 0 at both
( ωM0

1−M0
, 0) and (− ωM0

1+M0
, 0) ∀M0 < 1. Then, refer to work by Vainberg [26], where

the author proves exactly the same statement we need, namely, the integrability of∣∣Q−1(ξ, η)
∣∣ on some neighborhood of an isolated real zero of the polynomial Q(ξ, η)

when gradQ(ξ, η) 6= 0 at this point.
Thus, we can finally formulate the following proposition.
PROPOSITION 2.2. The inverse symbol Q−1(ξ, η) (see (2.16)) is absolutely inte-

grable on any finite domain of R2; i.e., Q−1(ξ, η) ∈ L1
loc(R

2).
In accordance with [23], Proposition 2.2 immediately implies the existence.
PROPOSITION 2.3 (existence). For any compactly supported f̂ ∈ L1(R2), the

system (2.15) with ˆ̂f defined by formula (2.14b) is solvable in G′.
The solution to the AP (2.12)–(2.13) that we are looking for can now be found by

means of the inverse Fourier transform (again, the superscript n is omitted below):

û(x, y) =
1

2π

∞∫
−∞

∞∫
−∞

ˆ̂u(ξ, η) eiξx+iηydξ dη.(2.35)

Using the brief notation, we may rewrite (2.35) as û = (ˆ̂u)̌ = (Q−1ˆ̂f )̌ . However,
in so doing we still do not know whether the function û(x, y) of (2.35) satisfies the
boundary condition (2.13). Let us first prove the following proposition.

PROPOSITION 2.4 (uniqueness). If the solution û of the system (2.12) satisfies
boundary condition (2.13), then it is unique in the class of distributions vanishing at
infinity.

Proof. Any function û that solves (2.12) is actually an inverse Fourier transform

of some solution to the system (2.15), û = (ˆ̂u)̌ . In turn, any distribution ˆ̂u ∈ G′ that

solves (2.15) (see (2.17)) should coincide with the regular function Q−1(ξ, η)ˆ̂f(ξ, η)

everywhere on R2, except at the three singular points of Q(ξ, η) (since ˆ̂f(ξ, η) has no
singular points). Therefore, any other solution to (2.15) may differ from ˆ̂u only by a
distribution with the support belonging to the three-point set{

(−ω, 0),
(

ωM0

1−M0
, 0
)
,

(
− ωM0

1 +M0
, 0
)}

.

Such a distribution may only be a finite sum of δ-functions and their derivatives [23].

Therefore, if û = (ˆ̂u)̌ vanishes at infinity, then any other solution to (2.12) will
differ from û by an inverse Fourier transform of a finite sum of δ-functions and their
derivatives, and, consequently, it will not vanish at infinity since Fourier transforms
of δ-functions and their derivatives are polynomials [23]. Thus, Proposition 2.4 is
justified.
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Let us now select a finite ball B, B ⊂ R2. By B− ε and B+ ε we denote the balls
with the radii rB − ε and rB + ε, respectively, where rB is the radius of B (ε > 0).
We require that

B − ε ⊃
{

(−ω, 0),
(

ωM0

1−M0
, 0
)
,

(
− ωM0

1 +M0
, 0
)}

and construct a partition of unity, 1 = gB + gB̄ , where the functions gB and gB̄ are
infinitely smooth and bounded on R2. By definition, the function gB is identically
zero outside the ball B + ε; therefore, gB̄ is identically zero inside the ball B − ε.

Note that such functions always exist (see, e.g., [23]). Obviously, û = (Q−1ˆ̂f )̌ =

(Q−1gB
ˆ̂f )̌ +(Q−1gB̄

ˆ̂f )̌ . We will separately analyze each term on the right-hand side

of the above sum. First, it is clear that Q−1gB
ˆ̂f ∈ L1(R2) because ˆ̂f is bounded and

Q−1 ∈ L1
loc(R

2). Therefore, (Q−1gB
ˆ̂f )̌ −→ 0 while

√
x2 + y2 −→∞. For the second

term (Q−1gB̄
ˆ̂f )̌ , we cannot yet construct a general proof of its decay at infinity.

The difficulties here arise from the fact that Q−1 ∈ L1
loc(R

2) but Q−1 6∈ L1(R2); i.e.,
it is not absolutely integrable near infinity. Therefore, a general proof may require
an appropriate regularization of the corresponding oscillatory integral. However, we
retain this question for a future investigation. For the time being, we can formulate the
following two statements. Each will address the vanishing of the solution at infinity
for some particular case (or in a weaker formulation).

First, assume that f̂ ∈ L2(R2), which is actually not restrictive for our purposes.

Then, ˆ̂f ∈ L2(R2) (we may treat the Fourier transform here in the sense of Plancherel).
As mentioned before, Q−1 6∈ L1(R2); however, Q−1gB̄ can be shown to be bounded on

R2. Therefore, Q−1gB̄
ˆ̂f ∈ L2(R2), which immediately yields (Q−1gB̄

ˆ̂f )̌ ∈ L2(R2).
Thus, in this case the solution û to the system (2.12) is represented as a sum of two
terms, û(1) + û(2), where û(1) −→ 0 while

√
x2 + y2 −→ ∞ (true vanishing in the

sense of (2.13)) and û(2) ∈ L2(R2), which may be treated as a “generalized decay.”
We also note here that the statement on uniqueness proven in Proposition 2.4 also
applies to the functions from L2(R2), since the polynomials obviously do not belong
to L2(R2).

Second, if we impose some additional restrictions on f̂ , namely, if we require that
f̂ be sufficiently smooth on R2 so that ˆ̂f ∈ L1(R2), then we obtain a true decay

for the second term as well, (Q−1gB̄
ˆ̂f )̌ −→ 0 while

√
x2 + y2 −→ ∞. Therefore,

for a more particular class of the right-hand sides, we may affirm that the problem
(2.12)–(2.13) is uniquely solvable in G′. We note that for many different cases (see
[9]) such a restriction of the class of admissible right-hand sides does not influence the
construction of the DPM-based numerical algorithm.

2.3. Truncation of the linearized problem. As mentioned in section 2.1, the
domain Dex must be truncated in order to numerically solve (2.8)–(2.9)–(2.10). In
the framework of DPM, it suffices to construct an equivalent finite substitute for the
auxiliary problem (2.12)–(2.13). Below, this is done after introducing some simplifying
assumptions in regard to both the smoothness of the solution we are looking for as well
as the rate of its decay at infinity. This enables us to avoid unnecessary complications
that are not essential for the purpose of constructing the numerical algorithm.
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For reasons of numerical convenience and effectiveness, we will use a different
method for solving the AP, rather than the one from section 2.2. Using this new
solution technique, we will equivalently reformulate the AP on a new finite domain.
Namely, let us again take the Fourier transform of both sides of the system (2.12);
however, now we do so only in one Cartesian direction, y (compare to (2.14)):

ˆ̂u(x, η) =
1√
2π

∞∫
−∞

û(x, y) e−iηy dy,(2.36a)

ˆ̂f(x, η) =
1√
2π

∞∫
−∞

f̂(x, y) e−iηy dy.(2.36b)

(Again, we drop the subscript n hereafter in this subsection to simplify the notations.

Moreover, we retain here the same notations, ˆ̂u and ˆ̂f , as in section 2.2; however, the
left-hand sides of the expressions (2.14) and (2.36) are obviously not the same.) Then,
we obtain the following family of systems of ordinary differential equations (ODEs):

dˆ̂u(x, η)
d x

+ Q(η)ˆ̂u(x, η) = f̃(x, η),(2.37)

where

Q(η) = D−1


0 iη 0 iω

iω + η2

Re 0 0 0
0 iω + 4

3
η2

Re iη 0
0 0 iω + γη2

Re Pr − iω
M0

2 − η2

Re PrM0
2

(2.38a)

and

f̃(x, η) = D−1ˆ̂f(x, η).(2.38b)

The matrix D from (2.38) is defined in (2.3b). Note that Q from (2.38a) and Q from
(2.16) are not the same. The family (2.37) is parameterized by the continuous variable
η, −∞ < η <∞, and x in (2.37) is an independent variable. Recall that the solution
û(x, y) we are going to calculate should vanish at infinity (see (2.13)). Consequently,
we will generally impose the following boundary condition on the solution of (2.37):

ˆ̂u(x, η) −→ 0, as |x| −→ ∞.(2.39a)

However, in particular cases (see below and [8] for details) the condition (2.39a) may
appear too restrictive, namely, the cases when Q(η) has purely imaginary (or zero)
eigenvalues. Therefore, for some selected values of ω and η, we will only require∣∣∣ˆ̂u(x, η)

∣∣∣ ≤ const, as |x| −→ ∞.(2.39b)

Note that we do not consider solutions that grow polynomially; the latter solutions
correspond to the case when Q(η) has multiple purely imaginary eigenvalues and does
not have a basis composed of eigenvectors.
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Once we are able to find (for all η) a solution to the system (2.37) that would
satisfy boundary conditions (2.39) at infinity, then the solution to the AP (2.12)–(2.13)
can be restored by means of a one-dimensional inverse Fourier transform:

û(x, y) =
1√
2π

∞∫
−∞

ˆ̂u(x, η) eiηy dη.(2.40)

Let us designate the inverse operator for the one-dimensional problem (2.37)–(2.39)
by Gx(η). That is, the solution ˆ̂u(x, η) to this problem is given by

ˆ̂u(x, η) = Gx(η)ˆ̂f(x, η).(2.41)

The operator Gx(η) is obviously linear. Combining the formulas (2.36), (2.40), and
(2.41), we obtain the following formula for the solution of the AP (2.12)–(2.13):

û(x, y) =
1

2π

∞∫
−∞

Gx(η)

∞∫
−∞

f̂(x, s)e−i(s−y)ηds dη.(2.42a)

Now, we will show how one can pass from the AP (2.12)–(2.13) to the new AP
formulated on the strip {−∞ < x < ∞} × {−Y2 ≤ y ≤ Y

2 } and periodic in the y
direction, Y being the value of the period. In doing so, we expect that when the
period Y grows, Y −→ +∞, the solution to the new periodic AP will uniformly
converge to the solution of the original AP (2.12)–(2.13) on any strip {−∞ < x <
∞} × {−y̆ ≤ y ≤ y̆} where y̆ is fixed and always less than Y

2 . Note that the same
approach was used in [8] for the steady-state problems.

Hereafter, we assume that all functions involved are defined on the infinite strip
{−∞ < x <∞}× {−Y2 ≤ y ≤ Y

2 }. The width of the strip Y is initially supposed to
be greater than the diameter of suppf̂ (later, we will consider the limit Y −→ +∞).
We assume periodicity of the solution to the new AP in the y direction. Then, the
solution that vanishes as |x| −→ ∞ is given by

ûY (x, y) =
k=∞∑
k=−∞

Gx

(
2πk
Y

)
1
Y

Y/2∫
−Y/2

f̂(x, s)e−i
2πk
Y (s−y)ds.(2.42b)

In formula (2.42b), we used the Fourier series of a periodic function instead of the
Fourier integral used in the formula (2.42a). Our goal is to estimate |û(x, y)− ûY (x, y)|
from above on a finite (fixed) interval (−y̆, y̆), y̆ < Y

2 , uniformly with respect to x. Let
us introduce a uniform mesh in η, where hη = 2π/Y is the mesh size, and designate
ηk = k hη, k = 0,±1,±2, . . .. Let us then fix some interval (−A,A); we will always
choose hη (and consequently, Y ) so that A = hη(K + 1/2), K being integer. Then,

|û(x, y)− ûY (x, y)|

=
1

2π

∣∣∣∣∣∣∣
∞∫
−∞

Gx(η)

∞∫
−∞

f̂(x, s)e−i(s−y)ηds dη −
k=∞∑
k=−∞

hηGx(ηk)

Y/2∫
−Y/2

f̂(x, s)e−iηk(s−y)ds

∣∣∣∣∣∣∣
≤ 1

2π

∣∣∣∣∣∣∣
A∫
−A

. . .−
k=K∑
k=−K

. . .

∣∣∣∣∣∣∣+
1

2π

∣∣∣∣∣∣∣
∫

|η|>A

. . .−
∑
|k|>K

. . .

∣∣∣∣∣∣∣ =
1

2π
|·|1 +

1
2π
|·|2.
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Let us separately estimate each of the two terms above (the first one corresponds
to the finite interval, and the second one corresponds to the complementary infinite
interval).

1
2π
|·|1

≤ 1
2π

k=K∑
k=−K

∣∣∣∣∣∣∣
(K+1/2)hη∫

(K−1/2)hη

Gx(η)

∞∫
−∞

f̂(x, s)e−i(s−y)ηds dη

− hηGx(ηk)

Y/2∫
−Y/2

f̂(x, s)e−iηk(s−y)ds

∣∣∣∣∣∣∣
≤ 1

2π

k=K∑
k=−K


∣∣∣∣∣∣∣

(K+1/2)hη∫
(K−1/2)hη

Gx(η)

∞∫
−∞

f̂(x, s)e−i(s−y)ηds dη

−hηGx(ηk)

∞∫
−∞

f̂(x, s)e−iηk(s−y)ds

∣∣∣∣∣∣∣
+ hη

∣∣∣∣∣∣∣Gx(ηk)
∫

|s|>Y/2

f̂(x, s)e−iηk(s−y)ds

∣∣∣∣∣∣∣


Clearly, the right-hand side of the previous inequality is actually the sum of errors of
the quadrature formula of rectangles for the function

ˆ̂u(x, η)eiηy = Gx(η)
∫ ∞
−∞

f̂(x, s)e−iη(s−y)ds

(see (2.41)) on elementary segments of the kind [(k − 1/2)hη, (k + 1/2)hη], k =
−K, . . . ,K. Indeed, for each k, k = −K, . . . ,K, the third term that corresponds to
the integration over |s| > Y

2 turns into zero for sufficiently large Y ’s since f̂(x, s) is
compactly supported. Therefore, one can obtain the following estimate:

1
2π
|·|1 ≤ const · hη2A max

x∈R
η∈(−A,A)

∣∣∣∣ ∂2

∂η2

(
ˆ̂u(x, η)eiηy

)∣∣∣∣
≤ const · hη2A max

x∈R
η∈(−A,A)

(∣∣∣∣∣∂2 ˆ̂u(x, η)
∂η2

∣∣∣∣∣+ 2|y|
∣∣∣∣∣∂ ˆ̂u(x, η)

∂η

∣∣∣∣∣+ y2
∣∣∣ˆ̂u(x, η)

∣∣∣)

=
(
c1 + c2|y|+ c3y

2)hη2A, c1, c2, c3 > 0.

Note that if we initially assume that the solution û(x, y) decreases at infinity suffi-
ciently fast, then the differentiability of its Fourier transform ˆ̂u(x, η) (see the right-
hand side of the above inequality) follows directly.
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For the second expression, we obtain

1
2π
|·|2 ≤

1
2π

 ∫
|η|>A

∣∣∣∣∣∣Gx(η)

∞∫
−∞

f̂(x, s)e−iη(s−y)ds

∣∣∣∣∣∣ dη

+
∑
|k|>K

hη

∣∣∣∣∣∣∣Gx(ηk)

Y/2∫
−Y/2

f̂(x, s)e−iηk(s−y)ds

∣∣∣∣∣∣∣
 .

Let us replace the integration limits
∫ Y/2
−Y/2 in the second term on the right-hand side

of this inequality by
∫∞
−∞, as was done while estimating |·|1. Then,

1
2π
|·|2 ≤

1
2π

 ∫
|η|>A

∣∣∣ˆ̂u(x, η)
∣∣∣ dη +

∑
|k|>K

hη

∣∣∣ˆ̂u(x, ηk)
∣∣∣
 .

Additionally, let us assume that the solution we are looking for has two absolutely
integrable derivatives. Then its Fourier transform decreases faster than |η|−2, and the
previous inequality directly implies

1
2π
|·|2 ≤

c4
A , c4 > 0.

Combining the two obtained estimates, one easily gets

|û(x, y)− ûY (x, y)| ≤ c0hη2A+
c4
A ,

where c0
def
= maxy∈(−y̆, y̆)(c1 + c2|y| + c3y

2), c0 > 0. Clearly, all constants involved
in the foregoing estimates depend, generally speaking, on the specific nonperiodic
function û(x, y) that we approximate by the periodic functions ûY (x, y).

Now let ε be an arbitrary positive number. We will choose sufficiently large Yε
(i.e., sufficiently small hηε) so that the inequality

c0hη
2A+

c4
A < ε(2.43)

is satisfied ∀Y > Yε. In other words, we require that for a prescribed ε and for
any hη < hηε, the inequality (2.43) has real positive solutions A of the special kind
A = (K + 1/2)hη (K being integer). The latter requirement is always met once, e.g.,
the distance between the real roots of the quadratic equation c0hη2A2 − εA+ c4 = 0
is greater than hη. This, in turn, yields the inequality ε2 − 4c0c4hη2 − c02hη

6 > 0 for
hη. This inequality is obviously satisfied for any 0 ≤ hη < hηε, where hηε ∈ R is a
unique positive root of the equation ε2 − 4c0c4hη2 − c02hη

6 = 0. Since the fulfillment
of the inequality (2.43) is sufficient for the estimate

|û(x, y)− ûY (x, y)| < ε(2.44)

to be true, then we have shown that ∀ε > 0, one can always find a sufficiently
large period Yε so that for any Y > Yε, the absolute value of the discrepancy
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between the nonperiodic solution û(x, y) and its periodic approximation ûY (x, y),
|û(x, y)− ûY (x, y)|, does not exceed ε for all x and for all −y̆ ≤ y ≤ y̆.

Thus, we have reduced the original AP (2.12)–(2.13) to the new AP formulated
on the strip {−∞ < x < ∞} ×

{
−Y2 ≤ y ≤

Y
2

}
. In section 3, we show that we will

only need to know the solution of the AP in some neighborhood of suppf̂ ; therefore,
the approximation of the nonperiodic function û(x, y) by a periodic one, ûY (x, y),
only on a finite interval −y̆ ≤ y ≤ y̆ is sufficient for our purposes. Let us now show
how to pass from the domain {−∞ < x <∞}×{−Y2 ≤ y ≤

Y
2 }, which is still infinite,

to a truly finite domain for the new AP.
Instead of {−∞ < x < ∞} × {−Y2 ≤ y ≤ Y

2 }, let us now consider a rectangular
domain D0

Y = (0, X) × (−Y/2, Y/2) (see Figure 2.1). This new domain D0
Y should

completely contain Γ and Γ1. We will reformulate the new AP so that its solution
will be determined only on this finite domain D0

Y and will coincide there with the
corresponding fragment of the solution found on {−∞ < x < ∞} × {−Y2 ≤ y ≤ Y

2 }
before the reformulation. As previously mentioned, we only need to calculate the
solution to the AP in some neighborhood of Din. Therefore, we are always able to
choose an appropriate X and Y so that this neighborhood belongs to D0

Y , and con-
sequently, we only need to construct special boundary conditions at the lines x = 0
and x = X, so that the reformulated new AP being solved on D0

Y is equivalent to
the periodic AP on the strip {−∞ < x < ∞} × {−Y2 ≤ y ≤ Y

2 } described above.
These boundary conditions at x = 0 and x = X will be set separately for each
wavenumber k, k = 0,±1,±2, . . . (see (2.42b)) involved in the Fourier representation
of the function ûY (x, y). Namely, for each k, k = 0,±1,±2, . . ., we require that
the corresponding Fourier mode ˆ̂u(x, ηk) ≡ ˆ̂u(x, 2πk/Y ) meets the boundary con-
ditions (2.39) at infinity. To exactly transfer the boundary conditions (2.39) from
infinity to the finite boundaries x = 0 and x = X, we use the following consid-
eration. Since (2.37) is the system of ODEs with constant coefficients, and since
it is homogeneous outside (0, X) (recall that suppf̂(x, y) ⊂ Din, and consequently,

suppˆ̂f(x, η) ⊂ (0, X) ∀η), then it obviously has four linearly independent eigenso-
lutions (in the region of homogeneity). Depending on the structure of the set of
eigenvalues of the matrix Q(η), these eigensolutions may either increase or decrease
exponentially or oscillate as x −→ +∞ and as x −→ −∞. The case of decrease
corresponds to the boundary conditions (2.39a); the oscillatory case corresponds to
the boundary conditions (2.39b). As previously mentioned, we do not consider the
last possible case when Q(η) has multiple purely imaginary (or zero) eigenvalues and
does not have a basis composed of eigenvectors, which leads to polynomially growing
solutions. Sometimes one can analytically make sure that this case really does not
take place. For example, we do so in section 3 in the discrete formulation for some
particular values of ω and η. In other situations, this question may require some
additional numerical investigation as in [8]. At any rate, to satisfy the boundary
conditions (2.39), we must prohibit at x = 0 all solutions that do not decrease to
the left (i.e., as x −→ −∞), and prohibit at x = X all solutions that increase to the
right (i.e., as x −→ +∞). The reason for this asymmetry was mentioned before: once
we have purely imaginary (or zero) eigenvalues of Q(η) and, consequently, oscillating
or constant-in-space solutions (see (2.39b)), then we cannot always prohibit at both
ends of the interval (0, X) all modes that do not decrease in the corresponding direc-
tion. However, it should not affect the result, since the final solution we are looking
for, û(x, y), decreases at infinity (see section 2.2). Moreover, we have proven in [8]
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that once we have a selected nondecreasing mode in Fourier representation of the
solution, then after the inverse Fourier transform, the entire solution will nevertheless
decrease. Therefore, we can take into account selected nondecreasing modes (if any)
by simply admitting them at one of the two boundaries, x = 0 or x = X. (If we
do not do this, the problem may appear overdetermined.) It seems more natural to
admit the nondecreasing Fourier modes (if any) at the downstream boundary x = X
(see [8]).

Now, we calculate the eigenvalues λr(ηk), r = 1, . . . , 4, for the matrix Q(ηk).
Those eigensolutions that increase to the right correspond to eigenvalues <λr < 0,
and those eigensolutions that do not decrease to the left correspond to eigenvalues
<λr ≥ 0. Therefore, the following boundary conditions at x = 0 and x = X may be
considered to provide an exact transfer of boundary conditions (2.39) from infinity:

S−(ηk)ˆ̂u(0, ηk) = 0, k = 0,±1,±2, . . . ,(2.45a)

S+(ηk)ˆ̂u(X, ηk) = 0, k = 0,±1,±2, . . . .(2.45b)

Here, S−(ηk) and S+(ηk) are the special rank-deficient 4× 4 matrices that depend on
Q(ηk), with their ranks equal to the numbers of eigenvalues λr(ηk) with nonnegative
and negative real parts, respectively. These matrices are given by

S−(ηk) =
∏

<λr(ηk)<0

(Q(ηk)− λr(ηk)I) ,(2.46a)

S+(ηk) =
∏

<λr(ηk)≥0

(Q(ηk)− λr(ηk)I) .(2.46b)

Here, I is an identity matrix and products in (2.46) are calculated in accordance with
the multiplicities of the eigenvalues. Analogous conditions will be used in section 3
while dealing with the finite-difference formulation of the AP.

Thus, the formulation of the new finite AP is now complete. Namely, we have to
solve equations (2.12) for the compactly supported right-hand side f̂ , suppf̂ ⊂ Din,
on the domain D0

Y (see Figure 2.1) with the periodicity boundary conditions in the
y direction (Y being the value of the period) and with boundary conditions (2.45a)–
(2.46a) at x = 0 and boundary conditions (2.45b)–(2.46b) at x = X. In the next
section, we proceed to the finite-difference formulation of the problem and describe
the numerical algorithm for setting the global DPM-based ABCs.

3. Numerical method.

3.1. Finite-difference scheme. Let us introduce a uniform Cartesian grid in
D0
Y × [0, T ], with hx, hy, and τ being the sizes of the grid in the x, y, and t directions,

respectively. We designate this grid N 0T ,

N 0T = {(xm, yj , tl) ≡ (mhx, jhy − Y/2, lτ) |hx, hy, τ > 0;

m = 0, 1, . . . ,M, M = X/hx; j = 0, 1, . . . , 2J + 1, 2J + 1 = Y/hy;

l = 0, 1, . . . , 2L+ 1, 2L+ 1 = T/τ } .

(3.1)

We will construct a second-order finite-difference approximation of the system (2.3a)
on the grid N 0T (see (3.1)) using the stencil shown in Figure 3.1.

Namely, we use the first-order differences in the x and t directions and second-
order central differences in the y direction, and we center the scheme with respect to
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x

y

t

(m,j,l)

(m,j-1,l)

(m+1,j-1,l+1)

(m,j+1,l)

(m+1,j+1,l+1)

(m+1,j+1,l)

(m+1,j,l)

(m+1,j-1,l)

(m+1,j,l+1)

(m,j+1,l+1)

(m,j,l+1)

(m,j-1,l+1)

FIG. 3.1. Stencil.

the point (m+ 1/2, j, l + 1/2), which yields

(3.2)

1
2
C

(
ul+1
m,j − ulm,j

τ
+

ul+1
m+1,j − ulm+1,j

τ

)
+

1
2
D

(
ul+1
m+1,j − ul+1

m,j

hx
+

ulm+1,j − ulm,j
hx

)

+
1
4
F

(
ulm,j+1 − ulm,j−1

2hy
+

ulm+1,j+1 − ulm+1,j−1

2hy

+
ul+1
m,j+1 − ul+1

m,j−1

2hy
+

ul+1
m+1,j+1 − ul+1

m+1,j−1

2hy

)

+
1
4
H

(
ulm,j+1 − 2ulm,j + ulm,j−1

h2
y

+
ulm+1,j+1 − 2ulm+1,j + ulm+1,j−1

h2
y

+
ul+1
m,j+1 − 2ul+1

m,j + ul+1
m,j−1

h2
y

+
ul+1
m+1,j+1 − 2ul+1

m+1,j + ul+1
m+1,j−1

h2
y

)
= 0.

The finite-difference scheme (3.2) is written for the nodes m = 0, . . . ,M − 1, j =
0, . . . , 2J , l = 0, . . . , 2L, with the assumption that we later impose periodicity bound-
ary conditions in time as well as in the y direction. (Note that the discretization of
the type (3.2) has been found to be unconditionally stable in the von Neumann sense
for the corresponding scalar advection-diffusion equation.)

Then, using the periodicity conditions (compare to (2.4))

u0
m,j = u2L+1

m,j , m = 0, . . . ,M, j = 0, . . . , 2J + 1,(3.3)
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we implement the discrete Fourier transform in time (compare to (2.7) (2.6)),

(3.4)

ûnm,j =
1

2L+ 1

2L∑
l=0

ulm,je
−inlτ 2π

T , m = 0, . . . ,M, j = 0, . . . , 2J + 1, n = −L, . . . , L,

ulm,j =
L∑

n=−L
ûnm,je

inlτ 2π
T , m = 0, . . . ,M, j = 0, . . . , 2J + 1, l = 0, . . . , 2L,(3.5)

and instead of the system (3.2), obtain

sn
2

C
(
ûnm,j + ûnm+1,j

)
+ cnD

ûnm+1,j − ûnm,j
hx

(3.6)

+
cn
2

F
(

ûnm,j+1 − ûnm,j−1

2hy
+

ûnm+1,j+1 − ûnm+1,j−1

2hy

)
+
cn
2

H
(

ûnm,j+1 − 2ûnm,j + ûnm,j−1

h2
y

+
ûnm+1,j+1 − 2ûnm+1,j + ûnm+1,j−1

h2
y

)
= 0.

Here,

sn = 2i sin
(

1
2
nτ

2π
T

)
/τ, cn = cos

(
1
2
nτ

2π
T

)
, n = −L, . . . , L,

m = 0, . . . ,M − 1, j = 0, . . . , 2J.

The finite-difference system (3.6) is a discrete analogue of the continuous system
(2.8) on the two-dimensional grid N 0,

N 0 = {(xm, yj) ≡ (mhx, jhy − Y/2) |hx, hy > 0;

m = 0, 1, . . . ,M, M = X/hx; j = 0, 1, . . . , 2J + 1, 2J + 1 = Y/hy } ;

(3.7)

hx and hy in (3.7) are the same as in (3.1).
We also note that once τ −→ 0, then sn −→ i2πn/T = iωn (see section 2) and

cn −→ 1.

3.2. Difference auxiliary problem. Let us construct another Cartesian grid
in D0

Y ,

M0 =
{

(xm+1/2, yj) ≡ ((m+ 1/2)hx, jhy − Y/2) |hx, hy > 0;

m = 0, 1, . . . ,M − 1, M = X/hx; j = 0, 1, . . . , 2J + 1, 2J + 1 = Y/hy } .
(3.8)

Here, the grid sizes are the same as before. The difference AP is formulated for the
inhomogeneous counterpart of (3.6) with a certain compactly supported right-hand
side. The unknowns for the difference AP are defined on the grid N 0 (see (3.7)), and
the right-hand side is defined on the grid M0 (see (3.8)). In doing so, we obviously
have the second order of approximation. We will define the specific right-hand side
for the AP, f̂nm+1/2,j , m = 0, . . . ,M−1, j = 0, . . . , 2J , later on in section 3.3. For now,
we provide an exact formulation of the difference AP assuming that this right-hand
side is already known (suppf̂nm+1/2,j ⊂ Din).
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In accordance with the results of section 2.3, we impose the periodicity boundary
conditions in the y direction,

ûnm,0 = ûnm,2J+1, m = 0, . . . ,M,

ûnm,−1 = ûnm,2J , m = 0, . . . ,M.

(3.9)

Then, we implement the discrete Fourier transform (compare to (2.36))

ˆ̂unm,k =
1

2J + 1

2J∑
j=0

ûnm,je
−ikjhy 2π

Y , m = 0, . . . ,M, k = −J, . . . , J,(3.10a)

ˆ̂fnm+1/2,k =
1

2J + 1

2J∑
j=0

f̂nm+1/2,je
−ikjhy 2π

Y , m = 0, . . . ,M − 1, k = −J, . . . , J,(3.10b)

and instead of the inhomogeneous counterpart to the system (3.6) obtain

An
k

ˆ̂unm+1,k + Bn
k

ˆ̂unm,k = ˆ̂fnm+1/2,k ,

m = 0, . . . ,M − 1, k = −J, . . . , J,
(3.11)

where the 4× 4 matrices An
k and Bn

k are given by

An
k =

sn
2

C +
cn
hx

D +
cnrk

2
F +

cntk
2

H,

Bn
k =

sn
2

C− cn
hx

D +
cnrk

2
F +

cntk
2

H.

(3.12)

Here,

rk = i sin
(
khy

2π
Y

)
/hy, tk = −4 sin2

(
1
2
khy

2π
Y

)
/h2

y,

and C, D, F, and H are as defined in (2.3b). For each wavenumber k, k = −J, . . . , J ,
(3.11) is a system of ordinary difference equations and a discrete analogue of (2.37).
To find a solution to the difference AP, we will have to solve the system (3.11) for all
k, k = −J, . . . , J . However, the formulation of the difference AP is still incomplete.
To complete it, we have to set some boundary conditions at m = 0 and m = M (as
was done at x = 0 and x = X for the continuous case in section 2.3). These boundary
conditions should guarantee the desirable far-field behavior of the solution (i.e., decay
at infinity). They will be formulated separately for each wavenumber k, k = −J, . . . , J ,
i.e., the system (3.11) will be supplemented for each k by some boundary conditions
at m = 0 and m = M . The idea for constructing these boundary conditions in the
discrete case is analogous to the one implemented in constructing boundary conditions
(2.45), (2.46) for the continuous system (2.37). Namely, when formally considered on
an infinite one-dimensional mesh, −∞ < m <∞, the system (3.11) obviously becomes
homogeneous at least for m ≥ M and m ≤ 0. The homogeneous system has four
linearly independent eigensolutions: those that correspond to |µnr (k)| < 1 decrease
to the right (i.e., as m −→ +∞), those that correspond to |µnr (k)| > 1 decrease to
the left (i.e., as m −→ −∞), and those that correspond to |µnr (k)| = 1 have either
constant or oscillatory behavior. Here, µnr (k), r = 1, . . . , 4, are the eigenvalues of

the matrix Qn
k

def
= (An

k )−1 Bn
k . Let us note that while calculating the eigenvalues
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µr(k) for the stationary Navier–Stokes equations [8] (the eigenvalues are calculated
numerically using standard NAG subroutines), we have found that for all specific sets
of the parameters involved (i.e., grid sizes hx and hy and hydrodynamic parameters
M0, Re, Pr, γ) the absolute values of eigenvalues were never equal to unity except
for the case of zero wavenumber, k = 0. For k = 0, we have obtained a multiple
eigenvalue |µ(0)| = 1 (see [8]). However, even in this case, the system matrix still has a
basis composed of eigenvectors, which provides us with the reason for not considering
the polynomially growing solutions in [8]. For the system (3.11), we also have a
particular case when the eigenvalues of the system matrix become equal to unity in
absolute value. Namely, it is easy to see from (3.12) that Q0

0 =
(
A0

0
)−1

B0
0 = −I

(identity matrix). Obviously, Q0
0 has four linearly independent eigenvectors, so we do

not have polynomially growing solutions in this case either. As for other values of k
and n, a numerical check (as was done in [8]) will always be necessary to determine
whether the eigenvalues |µnr (k)| = 1 exist. If such eigenvalues do exist, a check is also
necessary to determine what their multiplicities are and if there is a basis composed
of eigenvectors. Relying on our previous experience [8], we assume that while solving
system (3.11), we can restrict ourselves by considering only the following two cases:
|µnr (k)| 6= 1 and |µnr (k)| = 1 with the full system of eigenvectors; nontrivial Jordan
blocks (of order more than one) for |µnr (k)| = 1 are excluded from consideration. Note
that if the basis composed of eigenvectors does exist for |µnr (k)| = 1, then the system
(3.11) will be treated in exactly the same way as in the case |µnr (k)| 6= 1 (the only
difference is that the stability constant becomes proportional to M).

Returning to the question of setting the boundary conditions for (3.11) at m = 0
and m = M , we require that, analogous to the continuous case (see section 2.3),
boundary conditions at m = 0 should prohibit all modes that do not decrease to the
left (i.e., as m −→ −∞) and boundary conditions at m = M should prohibit all
modes that increase to the right (i.e., as m −→ +∞). Therefore, we may represent
the desirable boundary conditions in the form of the matrix relations (compare to
(2.45))

Sn−(k)ˆ̂un0,k = 0, k = −J, . . . , J,(3.13a)

Sn+(k)ˆ̂unM,k = 0, k = −J, . . . , J,(3.13b)

where

Sn−(k) =
∏

|µnr (k)|>1

(Qn
k − µnr (k)I) ,(3.14a)

Sn+(k) =
∏

|µnr (k)|≤1

(Qn
k − µnr (k)I)(3.14b)

(compare to (2.46)).
Thus, the final formulation of the difference AP is the following. One should

solve the inhomogeneous counterpart to the system (3.6) in D0
Y on the grid N 0 (see

(3.7)), where the right-hand side f̂nm+1/2,j is specified on the grid M0 (see (3.8)),

suppf̂nm+1/2,j ⊂ Din, with periodicity boundary conditions (3.9) in the y direction
and boundary conditions (3.13a)–(3.14a) at the line m = 0 and (3.13b)–(3.14b) at
the line m = M .

To solve the difference AP, we implement the following numerical procedure.
First, apply the discrete Fourier transform (3.10) to both sides of the finite-difference
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system; then solve the system of ordinary difference equations (3.11) with the bound-
ary conditions (3.13) for each wavenumber k, k = −J, . . . , J ; and finally, restore the
solution by means of the inverse Fourier transform

ûnm,j =
k=J∑
k=−J

ˆ̂unm,ke
ikjhy

2π
Y , m = 0, . . . ,M, j = 0, . . . , 2J.(3.15)

The type of boundary conditions (3.13) (which are imposed separately for each wave-
number k) makes this choice of numerical method most relevant. An effective algo-
rithm for solving one-dimensional problems (3.11)–(3.13) is delineated in our work
[27]. We do not reproduce the corresponding results here, we only note that this
algorithm may be thought of as a version of the well-known successive substitution
technique, but without its “inverse” or “resolving” part. The computational cost of
the numerical procedure of [27] as applied to solving the problem (3.11)–(3.13) is
O(M) operations (for each k, k = −J, . . . , J).

Let us now briefly describe the concept of convergence for the solutions of the
difference AP. According to section 2.3, we approximate the nonperiodic solution by
a periodic one on a finite interval −y̆ ≤ y ≤ y̆ when the period Y grows, Y −→
+∞. In its own turn, an approximate solution to the periodic problem is found
by a finite-difference method on the grid with sizes hx and hy. Therefore, we will
consider (uniform) convergence of the periodic difference solution (i.e., solution of
the difference AP) to the nonperiodic continuous solution (i.e., to the solution of the
original continuous AP) only on a finite rectangle (0, X) × (−y̆, y̆) (this rectangle
should be large enough to contain at least Γ1) rather than on the whole domain of the
difference AP. Moreover, we will consider this convergence not only when the grid size
vanishes, but also when the period Y synchronously increases; i.e., as (hx, hy, Y ) −→
(0, 0, +∞). Of course, the rate of decrease for the grid sizes hx and hy and the rate
of increase for the period Y are not independent; some estimates connecting these
rates can be found in [8]. Furthermore, some numerical experiments from [8] show
that the presented construction of the difference AP does ensure the convergence of
its solution to the solution of the continuous AP in the sense described above.

3.3. Computation of the ABCs. In accordance with section 2.1, to set the
ABCs, we need to know the following data: (ûnν ,

∂ûnν
∂ζ ); here, ζ is the normal to Γ.

When integrating the Navier–Stokes equations step by step in time, we assume that
(ûnν ,

∂ûnν
∂ζ ) is provided from inside Din; then we use these data to restore ûnν1

, which
enables us to advance the next time step. However, as we carry out our analysis in
the Fourier space, we cannot consider (ûnν ,

∂ûnν
∂ζ ) as the actual values obtained inside

the computational domain. To get (ûnν ,
∂ûnν
∂ζ ), we first have to Fourier-transform the

function (uν , ∂uν
∂ζ ). Without loss of generality, we may always think that the latter

is specified at the following nodes:

ν × {τ l | l = 0, . . . , 2L+ 1, τ(2L+ 1) = T} .(3.16)

Of course, actual discretization in time for the Navier–Stokes equations inside DT
in

should not necessarily coincide with the one used for the solution of the exterior
linearized problem (see (3.1)). However, we may always use some interpolation in
time to obtain the boundary data on the mesh (3.16) that is uniform with respect to
t. Hereafter, we simply assume that this interpolation (which is one dimensional in
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time and of sufficiently high order) has already been implemented for each node ν, if
necessary.

Another important issue related to the step by step integration in time is that the
function (uν , ∂uν

∂ζ ), which provides the boundary data, is not necessarily time-periodic
until we achieve a true oscillatory regime. However, for the purpose of constructing
the ABCs, we will propose some generalized treatment of the boundary data as be-
ing already periodic. Namely, let us formally calculate the Fourier coefficients of
(uν , ∂uν

∂ζ ),

(
ûnν ,

∂ûnν
∂ζ

)
=

1
2L+ 1

2L+1∑
l=1

(
ulν ,

∂ulν
∂ζ

)
e−inlτ

2π
T , n = −L, . . . , L.(3.17)

Then, it is well known (see, e.g., [28] by Kolmogorov and Fomin) that the time-periodic
function (

vlν ,
∂vlν
∂ζ

)
=

L∑
n=−L

(
ûnν ,

∂ûnν
∂ζ

)
einlτ

2π
T , l = 0, . . . , 2L+ 1,(3.18)

minimizes the functional ∥∥∥∥(uν ,
∂uν
∂ζ

)
−
(

vν ,
∂vν
∂ζ

)∥∥∥∥
2

(‖ · ‖2 is a usual Euclidean norm) on the class of periodic functions; i.e., (vν , ∂vν
∂ζ )

from formula (3.18) is the best periodic approximation of (uν , ∂uν
∂ζ ) in the sense of

least squares. Relying on this property, we will further use the Fourier coefficients
(3.17) as the boundary data that “drive” the ABCs (which may be referred to as the
generalized treatment of the boundary data as being time-periodic). As we integrate
the Navier–Stokes equations in time and approach the true oscillatory regime, the
“source” function (uν , ∂uν

∂ζ ) and its Fourier series (vν , ∂vν
∂ζ ) (see (3.18)) also approach

each other.
We now implement the DPM [9, 10, 11] to actually calculate the ABCs. We note

that the boundary data (ûnν ,
∂ûnν
∂ζ ) are specified on the curve Γ, which is positioned

arbitrarily with respect to coordinate lines of the grid N 0; see (3.7). Moreover, we do
not impose any restrictions on the shape of Γ itself. In our opinion, the DPM [9, 10, 11]
provides an ideal tool for treating such geometrically complicated problems.

Let us introduce the following discrete sets. We consider a six-node two-dimensional
stencil

Stm+1/2,j

= {(xm, yj), (xm, yj+1), (xm, yj−1), (xm+1, yj), (xm+1, yj+1), (xm+1, yj−1)} .

This stencil is actually a projection of the one from Figure 3.1 onto the plane t = const.
Obviously, the discretization (3.6) was obtained using Stm+1/2,j . Then, we define

Min =M0⋂Din, M =M0\Min,

Nin =
⋃

(xm+1/2, yj)∈Min

Stm+1/2,j , N =
⋃

(xm+1/2, yj)∈M
Stm+1/2,j ,

γ = N
⋂
Nin.
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- stencil

- stencil

FIG. 3.2. Grid sets. Grid N 0: continuous thin lines; grid M0: continuous thin horizontal lines
and dashed thin vertical lines; continuous boundary Γ: thick dark line; Min: grey boxes; M: grey
circles; Nin: white boxes; N : white circles; γ = N

⋂
Nin: big white circles and boxes.

Clearly, the set of grid nodes γ is located near the artificial boundary Γ; we will call
this set the grid boundary. The setsMin,M, Nin, N , and γ are shown in Figure 3.2.

Further, we will need to interpolate the grid functions from N 0 to the points
ν1 ⊂ Γ1. Let us select all those nodes κ ⊂ N 0 that should be taken into account
once constructing local interpolation formulas of sufficiently high (e.g., second) order.
All the nodes κ are obviously located not far from Γ1. Without loss of generality, we
may always assume that κ ⊂ N . We denote the operation of local interpolation from
κ ⊂ N to ν1 by Rν1κ.

Let us also introduce the set of collocation points σ ⊂ Γ and the space of eight-
component vector functions Ŵn

σ 3 ŵn
σ defined on the set σ. The elements of Ŵn

σ will
be used to calculate the density of the generalized potential. Henceforth, we will treat
ŵn
σ as vectors containing the values of ûn, v̂n, p̂n, ρ̂n and the values of the derivatives

∂ûn

∂ζ
,
∂v̂n

∂ζ
,
∂p̂n

∂ζ
,
∂ρ̂n

∂ζ

at the points σ; here, ζ is the (outward) normal to Γ. Note that the functions ŵn
σ are

the discrete approximations of (ûnΓ,
∂ûnΓ
∂ζ ) from section 2.1.
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Generally, the sizes hx and hy of the grid N 0 and the size hσ of the one-
dimensional collocation grid on the curve Γ are not independent. Some theoretical
questions concerning the correlation between the sizes of the grids N 0 and σ are delin-
eated in [9] for certain versions of the DPM algorithm. As for practical applications,
the final choice of grids is always done taking into account some previous computa-
tional results. In particular, it seems useful to conduct the computations (see [12, 13])
for the set of collocation points, which is more concentrated at the outflow part of
the external boundary in the wake region and uniformly spaced at the inflow part of
the external boundary. Moreover, sometimes the relation |σ| ∼ |γ|1/2 appears proper.
At any rate, for each specific class of problems (determined both by the geometry
of computational domain and by the parameters of fluid at infinity), one always can
make an appropriate choice of the grids N 0 and σ relying on general theory [9] and
on the numerical experience.

Let us now specify some ŵn
σ ∈ Ŵn

σ and implement the following procedure. First,
we smoothly interpolate ŵn

σ along Γ (i.e., along the smooth components of Γ) and
obtain the function Rŵn

σ ; here, R is an interpolation operator. Then, we drop the
normals from the nodes γ to Γ and find the values of Rŵn

σ at the foot of each normal.
Since ŵn

σ (and consequently, Rŵn
σ) contains the values of both ûn, v̂n, p̂n, ρ̂n and

their normal derivatives, and since the distance between any node γ and the curve Γ
is small (of order h), we may approximately find ûn, v̂n, p̂n, ρ̂n at the nodes γ using
the first two terms of the Taylor expansion. We will designate the entire operation
of continuation of the boundary data from σ to γ as πγσ, πγσŵn

σ = ûnγ . Note that
the above algorithm of continuation applies only to the smooth parts of Γ (where
the normal exists). In practice, however, the curve Γ is usually not smooth (see
Figure 2.1), and it is impossible to construct an appropriate normal when the node γ
is located in some neighborhood of the “corner” point of the curve. The construction
of the operator πγσ in this case is based on the existence of two linearly independent
directions along the curve, which enables us to obtain the desirable continuation
anyway.

Now, using the calculated continuation of the boundary data, ûnγ = πγσŵn
σ , we

construct the following grid function:

ûnN 0

∣∣∣
m,j

=

 ûnγ
∣∣∣
m,j

, if (xm, yj) ∈ γ,

0, if (xm, yj) ∈ N 0\γ,
(3.19)

which is defined already on the entire grid N 0; see (3.7). Then we substitute the
function ûnN 0 from the formula (3.19) into the left-hand side of the system (3.6).
Generally speaking, ûnN 0 does not satisfy equations (3.6), so we generate some nonzero
right-hand side, which we designate Ln0 ûnN 0 . Here, Ln0 is the linear operator defined
by the left-hand side of the system (3.6). (The operator Ln0 takes the functions defined
on the grid N 0 (see (3.7)) as input and generates the functions defined on the grid
M0 (see (3.8)) as a result.) Finally, we truncate the function Ln0 ûnN 0 to the setMin,
which yields

f̂nM0

∣∣∣
m+1/2,j

=

 Ln0 ûnN 0

∣∣∣
m+1/2,j

, if (xm+1/2, yj) ∈Min,

0, if (xm+1/2, yj) 6∈ Min.

(3.20)

We will use the function f̂nM0 ≡ f̂nm+1/2,j from the formula (3.20) as the right-hand side

for the difference AP; by definition, suppf̂nm+1/2,j ⊂ Din. Once we solve the difference



1650 S. V. TSYNKOV

AP with the right-hand side f̂nM0 (see (3.20)), we get the function Gn
0 f̂nM0 . Here, Gn

0

is the Green (i.e., inverse) operator of the difference AP. The function Gn
0 f̂nM0 is

defined on the grid N 0. Being considered only on the subgrid N ⊂ N 0, it is called
the difference potential with the density ûnγ , Pn

Nγû
n
γ = Gn

0 f̂nM0 |N [9, 10, 11]. Clearly,
the difference potential satisfies equations (3.6), since f̂nM0 = 0 on M; moreover, it
satisfies the boundary conditions of the difference AP. The difference potential Pn

Nγû
n
γ

is a discrete realization of the generalized potential mentioned in section 1. Later, we
will find an approximate (i.e., difference) solution to the problem (2.8)–(2.9)–(2.10)
in the form of a difference potential and then use this solution to construct the ABCs,
i.e., to obtain the missing relations between the unknowns at ν ⊂ Γ and at ν1 ⊂ Γ1.

Having calculated the difference potential on γ, we can then construct the operator
Pn
γ as the trace of the potential, Pn

γ ûnγ
def
= Pn

Nγû
n
γ |γ ; this operator is generally the

key element of any DPM-based approach. Actually, Pn
γ is a difference boundary

projection,
(
Pn
γ

)2 = Pn
γ [9, 10, 11], which substitutes Pn

Γ (see section 2.1, equation
(2.11)) into practical computations.

We now formulate the main result of the DPM theory [9, 10, 11]. Consider the
entire space of grid functions ûnγ defined on γ. Those and only those elements of this
space that satisfy the equation

Pn
γ ûnγ = ûnγ(3.21)

can be complemented to N so that the complement solves the system (3.6) with
boundary conditions (3.9), (3.13). The projection Pn

γ can be thought of as a discrete
analogue of the Calderon boundary pseudodifferential operators [20].

Thus, equation (3.21) provides for an exhaustive classification of all those and
only those grid densities ûnγ that are traces of some solution to (3.6)–(3.9)–(3.13) on
N . Therefore, we have equivalently replaced the linear system (3.6) on N , along
with the boundary conditions (3.9), (3.13), by the boundary equation with projection
(3.21). Consequently, we can now specify the proper boundary data (see (2.10)) for
the discrete counterpart of the problem (2.8)–(2.9)–(2.10). Namely, let (ûnν ,

∂ûnν
∂ζ ) be

provided from inside Din. We interpolate this function along Γ to the set of collocation
points σ, ŵn

σ = Rσν(ûnν ,
∂ûnν
∂ζ ), and then continue ŵn

σ to γ using the operator πγσ.
Finally, we apply Pn

γ . In accordance with the main result formulated above, the grid
function

v̂nγ = Pn
γπγσRσν

(
ûnν ,

∂ûnν
∂ζ

)
(3.22)

admits the complement to N that solves (3.6)–(3.9)–(3.13).
We now proceed to the second stage of constructing the ABCs. Instead of the

problem (2.8)–(2.9)–(2.10), we will consider its discrete counterpart: to solve (3.6) on
N with external boundary conditions (3.9)–(3.13) and with boundary condition

ûnγ = v̂nγ(3.23)

at γ; v̂nγ in equality (3.23) comes from (3.22). The solvability of the problem (3.6)–
(3.9)–(3.13)–(3.23) is guaranteed by the special type of boundary data provided in
the formula (3.22).

To actually find the solution to the problem (3.6)–(3.9)–(3.13)–(3.23), we calculate
the difference potential Pn

Nγ v̂
n
γ with the density v̂nγ from the formula (3.22), which
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requires solving the AP. Since we eventually need to know this solution only on ν1, it
is sufficient to calculate the potential only at κ and then interpolate: ûnν1

= Pn
ν1γ v̂

n
γ =

Rν1κP
n
κγ v̂

n
γ . Finally, we obtain

ûnν1
= Rν1NPn

NγP
n
γπγσRσν

(
ûnν ,

∂ûnν
∂ζ

)
.(3.24)

In fact, it is possible to show that for the actual computations the operator Pn
γ can

be eliminated from the sequence of operators in the formula (3.24) (which combines
two stages in calculating the ABCs into one). Indeed, it is proven in [9] that for any
grid density v̂nγ : Pn

NγP
n
γ v̂nγ = Pn

Nγ v̂
n
γ . Therefore,

ûnν1
= Rν1NPn

NγπγσRσν

(
ûnν ,

∂ûnν
∂ζ

)
def
= T̂n

(
ûnν ,

∂ûnν
∂ζ

)
.(3.25)

Equality (3.25) provides the missing relations between the unknowns at ν and at ν1 in
the Fourier space; these relations are based on the solution to the linearized exterior
problem. We emphasize that to obtain (3.25) we need to calculate the solution to the
difference AP only at κ, i.e., on some neighborhood of Din. Therefore, the consider-
ation of convergence only on a fixed interval −y̆ ≤ y ≤ y̆ (as stated in section 2.3) is
now justified.

We also note that the entire algorithm becomes most convenient from a practical
standpoint if we calculate the matrix representation of the operator T̂n from (3.25).
To do that, we choose some basis in Ŵn

σ , e.g., the simplest one, composed of the vec-
tors like (0, . . . , 0, 1, 0, . . . , 0) and implement the entire procedure described above.
More precisely, we calculate ûnν1

= Rν1κP
n
κγπγσŵn

σ for each basis vector ŵn
σ . In so

doing, we obtain the matrix of Rν1κP
n
κγπγσ (each column will be the response to a

specific basic function ŵn
σ) and then, multiplying the above matrix from the right

by the interpolation matrix Rσν , we finally obtain the matrix representation of T̂n.
(Note that we do not start from basis functions on the nodes ν since the number of
nodes σ is usually much less than the number of nodes ν.) Clearly, the computation
of each column of the matrix Rν1κP

n
κγπγσ requires solving the difference AP once

per basis vector, which, in turn, involves the direct (3.10b) and inverse (3.15) Fourier
transforms and the solution of (3.11)–(3.13) for each wavenumber k, k = −J, . . . , J .
Either Fourier transform will require here only O(M · J), rather than O(M · J2) op-
erations (for definitions of M and J , see (3.1)). Indeed, the support of the right-hand
side f̂nM0 is actually concentrated near Γ since ûnN 0 differs from zero only on γ and the
operator Ln0 is local. Therefore, while calculating the direct Fourier transform (3.10b)
for each m, m = 0, . . . ,M − 1, only a few values f̂nm+1/2,j differ from zero and conse-
quently, the total cost of this computation is O(M ·J) operations. Analogously, while
calculating the inverse Fourier transform (3.15) for each m, m = 0, . . . ,M , we need
to know ûnm,j only for a few selected values of j since all other (xm, yj) do not belong
to κ. Therefore, the total cost of this computation is O(M · J) operations as well.
Finally, the solution of (3.11)–(3.13) for each wavenumber k, k = −J, . . . , J , costs
O(M) operations (see section 3.2). Adding all these quantities, we obtain a total of
O(M · J) operations for the computation of each column of the matrix Rν1κP

n
κγπγσ.

We see that though the entire algorithm requires repeated solution of the difference
AP, this solution may be obtained by means of an efficient procedure, which makes
the total expense for calculating the ABCs quite acceptable.

Recall that our final goal is to express the values of physical variables at ν1,
uν1 ≡ (uν1 , vν1 , pν1 , ρν1), in terms of (uν , ∂uν

∂ζ ). Choosing the same discretization in
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time as (3.16) and implementing the inverse Fourier transform (see (3.18)), we obtain
from (3.25)

ulν1
=

n=L∑
n=−L

T̂n

(
ûnν ,

∂ûnν
∂ζ

)
einlτ

2π
T , l = 0, . . . , 2L+ 1.(3.26)

Then, substituting (3.17) into (3.26) and changing the summation order, we get

ulν1
=

n=L∑
n=−L

T̂neinlτ
2π
T

1
2L+ 1

2L+1∑
s=1

(
usν ,

∂usν
∂ζ

)
e−insτ

2π
T

=
1

2L+ 1

n=L∑
n=−L

2L+1∑
s=1

T̂neinlτ
2π
T

(
usν ,

∂usν
∂ζ

)
e−insτ

2π
T

=
2L+1∑
s=1

(
1

2L+ 1

n=L∑
n=−L

ein(l−s)τ 2π
T T̂n

)(
usν ,

∂usν
∂ζ

)
.

Finally, designating

Tl,s =

(
1

2L+ 1

n=L∑
n=−L

ein(l−s)τ 2π
T T̂n

)
, l = 0, . . . , 2L+ 1,

we obtain

ulν1
=

2L+1∑
s=1

Tl,s

(
usν ,

∂usν
∂ζ

)
, l = 0, . . . , 2L+ 1.(3.27)

Equality (3.27), which is a specification of (2.11), provides the missing boundary
relations between the values of the unknowns at ΓT and at ΓT1 (in the discrete for-
mulation). Therefore, equality (3.27) is actually the ABCs we were aiming to obtain.
We additionally note that equality (3.27) can be simplified for the case of integrating
the Navier–Stokes equations step by step in time inside Din. Indeed, in doing so, we
actually need to know uν1 only on the upper time level, i.e., for t = T (see above),
which corresponds to l = 2L + 1 or to l = 0 because of the periodicity. Substituting
l = 0 into (3.27), we obtain

uν1

∣∣∣
t=T

=
2L+1∑
s=1

T0,s
(

usν ,
∂usν
∂ζ

)
.(3.28)

Equality (3.28) is the desired global ABC for implementation together with the step
by step integration procedure in time. Indeed, (3.28) expresses the values of u, v,
p, and ρ (perturbations) at the outermost coordinate row ν1 on the upper time level
t = T as a function of the prescribed data (uν , ∂uν

∂ζ )|ΓT through the time-periodic
solution of the linearized thin-layer equations with the free-stream boundary condition
at infinity. We note that the matrices of operators T0,s are calculated explicitly and
therefore, practical implementation of ABCs (3.28) is reduced to several matrix–vector
multiplications. We also note that this practical implementation may preliminarily
require some interpolation in time at the nodes ν. If we use an explicit scheme for
integrating the Navier–Stokes equations inside Din, then we directly implement (3.28)
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at each time step for determining the missing values of the unknowns at the outermost
coordinate row of the grid on the upper time level. If the scheme inside Din is implicit,
then we include the relations (3.28) into the system of equations we solve on the upper
time level, treating all T0,s(usν ,

∂usν
∂ζ ) for s < 2L+ 1 as forcing terms.

4. Concluding remarks. We have constructed the DPM-based nonlocal ABCs
for computation of oscillating external flows, specifically, compressible viscous fluid
flows past finite bodies. The ABCs are developed using the difference potentials
[9, 10, 11] for the thin layer governing equations linearized in the far field. To justify
the constructions of difference potentials, we provide some results on solvability of
the linearized thin-layer equations. The nonlocal nature of the ABCs proposed above
arises from their closeness to the exact boundary conditions. In spite of this nonlocal
nature, the DPM-based ABCs apply to artificial boundaries of irregular shape with
equal ease, which is very important for applications.

In comparison with our previous work [8, 12, 13], the ABCs proposed above
have two major differences. Foremost is the fact that, in this paper, we study time-
periodic rather than steady-state problems, which is an extension from the standpoint
of physics. From the standpoint of numerics, the algorithm described above also differs
markedly from the previous versions of the DPM-based ABCs. The latter difference
remains even if we apply this algorithm to a steady-state problem, which formally
means letting n = 0, ωn = 0 everywhere starting from (2.8) and, therefore, results in
retaining only one term that corresponds to s = 2L+ 1 in (3.28):

uν1 = T
(

uν ,
∂uν
∂ζ

)
(4.1)

(the superscripts are omitted). The difference between boundary conditions (4.1) and
the ABCs from [8, 12, 13] is that (4.1) is based on the thin-layer equations and the
direct implementation of the projection Pn

γ from (3.21) (for n = 0), whereas in [8, 12,
13] we substitute uγ = πγσRσν(uν , ∂uν

∂ζ ) into the boundary equation with projection
obtained for the central-difference discretization of the linearized full Navier–Stokes
equations and solve the resulting equation (by means of a certain variational approach)
with respect to ∂uν

∂ζ , assuming that uν is known. This operation is analogous to
computation of the Dirichlet-to-Neumann maps or Poincaré–Steklov operators. In so
doing, we obtain (see [8, 12, 13]) the ABCs in the form

uν1 = T′uν .(4.2)

Boundary conditions (4.2) are slightly less cumbersome than (4.1) in numerical im-
plementation. On the other hand, usage of the thin-layer rather than the full Navier–
Stokes equations enables lowering the order of the system in the streamwise direction
and therefore makes the computation of the ABCs (4.1) much cheaper than the com-
putation of the ABCs (4.2). (Indeed, the matrices An

k and Bn
k in (3.11), (3.12) are of

order 4, whereas the same matrices constructed for the full Navier–Stokes equations
[8] are of order 8.) Elimination of the resolving stage (Dirichlet-to-Neumann) also
contributes essentially to the reduction of the cost of ABCs.

The questions related to the direct implementation of boundary projections for
setting the ABCs are discussed in our work [29]. Here, we only present some nu-
merical results that show high efficacy of boundary conditions (4.1) for viscous flow
computations. Namely, we use the code [14, 15] to calculate a transonic turbulent
flow over the airfoil RAE2822 under the nonzero angle of attack α; our treatment
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TABLE 4.1
Comparison with the point-vortex (p.-v.) model for RAE 2822 airfoil; M0 = 0.73; Re0 =

6.5 · 106; α = 2.79◦.

“Average radius” of Din 2.5 chords 50 chords
Grid 320× 64 320× 64 640× 128

Type of ABCs p.-v. (4.1) p.-v. (4.1) p.-v. (4.1)
Cl 0.8688 0.8557 0.8504 0.8492 0.8603 0.8593

Relative error 2.15% 0.42% 1.15% 1.17% 0% 0%
Cd × 10 0.1123 0.1252 0.1260 0.1265 0.1255 0.1260

Relative error 10.5% 0.63% 0.40% 0.39% 0% 0%

of turbulence in the far field is based on the concept of effective viscosity and is de-
scribed in [13]. Standard external boundary conditions that are incorporated in the
code [14, 15] are based on the extrapolation of physical and/or characteristic variables
with point-vortex enhancement. The results obtained using these standard boundary
conditions are compared in Table 4.1 with the ones provided by the ABCs (4.1).

Specifically, in Table 4.1 we present the calculated values of the wave lift Cl and
wave drag Cd coefficients. For a fine (640× 128) grid on the big (50 chords) domain,
both types of ABCs produce very close results; the corresponding values are chosen
as references for calculating relative errors. For a coarser (320× 64) grid on the same
big domain, both types of ABCs also perform closely to one another; the discrepancy
in the results between the two grids is most likely accounted for by the fact that the
coarser grid is very strongly stretched. However, for the small computational domain
boundary conditions, (4.1) provide much better results than the point-vortex model
does. Moreover, for a 320× 64 grid on the small domain the results obtained on the
basis of ABCs (4.1) are clearly better than the ones obtained on the big domain for the
same dimension of the grid and for both types of ABCs. This seems reasonable since
on one hand the algorithm with boundary conditions (4.1) appears weakly sensitive to
the size of Din, and on the other hand the grid on the small domain is less stretched.
Generally, the DPM-based ABCs enable one to maintain high accuracy for much
smaller computational domains than standard boundary conditions do. Some other
experiments show that the DPM-based ABCs may also improve the robustness of the
entire algorithm.

The computational results presented above correspond to the steady-state case.
However, the difference between the steady-state and the time-periodic formulations
basically lies only in the number of the frequencies ωn involved (one/more than one)
and in the actual values of these frequencies (equal to zero/not equal to zero). Since
for all frequencies the algorithm for calculating T̂n from (3.25) is the same as the one
used for calculating T from (4.1), we expect the ABCs (3.28) to perform for the time-
periodic case not worse than boundary conditions (4.1) perform for the steady-state
problems.

We also note that we have described the algorithm for calculating the ABCs only
for a particular class of methods used for integrating the Navier–Stokes equations
inside Din, namely, for such methods that the knowledge of missing relations between
only two external coordinate rows of the grid (ν and ν1) is sufficient for closing the
discrete system inside the computational domain. Obviously, once the method used
inside Din is of higher (than the second) order, the consideration of only two curves,
Γ and Γ1, might be insufficient. However, we always can assume that the “linear
region” Dex contains more than one curve, e.g., Γ1 and Γ2 instead of only Γ1, and
can treat this case in the same way as described above. Moreover, one can use higher
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order schemes for solving the linearized exterior problem as well. Such modifications
may extend the possible range of applications for the technique described above by
including, for example, some computational problems of aeroacoustics.
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