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ABSTRACT
Transionospheric SAR autofocus is a variational algorithm designed to circumvent the deficiencies of conventional autofocus
techniques in correcting the distortions of spaceborne SAR images due to ionospheric turbulence. It has demonstrated superior
performance in a variety of computer‐simulated imaging scenarios. In the current work, we conduct a systematic statistical
analysis of transionospheric SAR autofocus aimed at corroborating its robustness and identifying limitations and sensitivities
across a broad range of factors that affect the autofocus performance. We employ the range‐compressed domain representation
where the target reflectivity, antenna signal, and the phase screen depend only on the azimuthal coordinate. The three main
factors included in the study are the levels of turbulent perturbations, clutter, and noise. We use the normalised cross corre-
lation (NCC), integrated sidelobe ratio (ISLR), and peak desynchronisation (PD) as a‐posteriori performance metrics. A key
objective of the current analysis, beyond assessing the autofocus performance, is to identify the directions of how to further
improve the algorithm, in terms of both the quality of focusing and associated computational cost.

1 | Introduction

Autofocus is a procedure whereby an imaging system produces
crisp images without user intervention. In optical systems,
focusing is achieved by adjusting the lens. An autofocus that
adjusts the lens would typically rely on multiple acquisitions
with subsequent registration of split images and deriving the
required adjustment based on the registration data. Imaging
radars, such as synthetic aperture radar (SAR), provide a viable
supplement to optical systems when the latter suffer from their
inherent limitations. In particular, radars can obtain images
with no external illumination, as well as through the clouds or
dust. In SAR imaging, autofocus is realised via adjustment of the
signal processing procedure.

The frequencies used by satellite‐based synthetic aperture ra-
dars are in the microwave range, typically from P‐band,
0.225–0.39 GHz, to X‐band, 6.2–10.9 GHz, in the pre‐1978
NATO nomenclature (or, alternatively, between B‐band and I‐
band in the current nomenclature). In fact, there are higher
frequency radars that operate in the Ka‐band (K‐band in the
present NATO nomenclature) and even W‐band (M‐band in the
present NATO nomenclature), such as the PAMIR‐Ka and
MIRANDA‐94 systems [1]. However, these higher frequency
bands are used primarily for airborne platforms because of the
increased atmospheric attenuation of radar signals for carrier
frequencies above the X‐band (see, e.g., [[2], Chapter 12]).
Frequencies below the P‐band are problematic because of the
difficulties of deploying an antenna of the required size in space.
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The ionosphere is a layer of dilute cold plasma that starts at
approximately 90 km above the Earth surface and extends
several hundred kilometres further upwards. The propagation of
radar signals in the ionosphere becomes dispersive, which, in
turn, causes distortions of the resulting spaceborne SAR images.
The distortions can be categorised into those due to the back-
ground ionosphere and those due to the ionospheric turbulence.
While very different from optical distortions on the substance,
the former can still be mitigated efficiently via multiple acqui-
sitions (e.g., dual‐carrier probing) and registration, see refs. [3,
4] and ([5], Chapter 3). The latter are a lot more difficult to
handle. The main reason is that SAR signals propagating be-
tween the antenna and different locations on the target travel
through different regions of turbulent plasma and thus acquire
different perturbations. In this case, the corrections obtained
with the help of dual‐carrier probing appear insufficient.

A variety of SAR autofocus algorithms have been developed and
successfully deployed for correcting the distortions of SAR im-
ages due to uncertainties of antenna trajectory [6–8]. These al-
gorithms typically operate under the assumption that phase
errors are spatially invariant across the entire SAR image. As a
result, they can estimate a correction phase for a particular
antenna position by averaging the responses from all strong
scatterers, thereby mitigating the effects of noise and clutter.
However, those algorithms prove inefficient for distortions due
to the ionospheric turbulence because the aforementioned
assumption breaks down [9, 10]. Indeed, in the case of propa-
gation through ionospheric turbulence, there will be different
distortions that correspond to one and the same antenna posi-
tion but different signal travel paths connecting it to different
target locations within the beam footprint.

The effect of ionospheric turbulence on radar signals is often
referred to in the literature as scintillation phase errors (SPE).
Mitigation of image distortions due to the dispersive propaga-
tion of radar signals requires reconstruction and compensation
of the actual perturbations. If polarimetric data are available, the
perturbation function can be estimated by measuring the
Faraday rotation (FR), see, for example, [10]. In the absence of
FR or any other data about the instantaneous distribution of the
electron number density in the ionosphere, the reconstruction
has to be performed based on the received radar signals. The
insufficient capacity of conventional autofocus algorithms (such
as phase gradient autofocus (PGA) [6]) to mitigate the distor-
tions of spaceborne SAR images due to SPE is a well‐known
hard problem, see, for example, the recent survey paper [11].

In our work [9], we proposed a first viable solution to this
problem—a variational autofocus algorithm that specifically
takes into account the nature of turbulence‐induced signal
distortions, that is, their dependence on both the antenna co-
ordinates and target coordinates. In the core of the algorithm of
ref. [9], there is an optimisation problem whose solution yields
the correction for SPE. Yet the algorithm of ref. [9] is not a data‐
fitting methodology (such as full waveform inversion) as it
explicitly relies on a nonvariational SAR imaging functional for
reconstructing the unknown ground reflectivity. Compared to
the standard SAR imaging functionals (see, e.g., [12] or [5],
Chapter 2), the one we employ in ref. [9] contains an SPE
correction in a parametric form, with the parameters being

subsequently varied to achieve the best image focusing in the
course of optimisation.

The algorithm of ref. [9] uses a number of simplifying as-
sumptions, first and foremost, a ‘condensed’ representation of
the ionosphere by means of a phase screen. A justification for
using the phase screens for the analysis of transionospheric SAR
imaging is provided in our work [13], while in an earlier paper
[14] we proposed a method for choosing the phase screen
elevation. It relies on a certain type of interferometric SAR
processing and positions the screen where the ionosphere is
most turbulent. The second simplification is the use of a single
range bin for the range‐compressed domain model where the
target reflectivity, antenna signal, and phase screen density are
represented by univariate functions. This simplification is
justified by our previous finding that the ionospheric turbulence
affects the SAR imaging in azimuth much stronger than that in
range (see [5], Chapter 4 and [15]). Yet the analysis of (ref. [5],
Chapter 4) and ref. [15] did not account for ionospheric an-
isotropies due to the magnetic field of the Earth. Consequently,
the use of the range compressed formulation in the case where
the SPE is anisotropic [16] could require further justification
and may eventually prove insufficient. One possible PGA‐based
approach for compensation of distortions due to anisotropic and
spatially varying two‐dimensional SPE has been examined for
ALOS‐2 PALSAR‐2 imagery in ref. [17].

The optimisation‐based autofocus of ref. [9] has demonstrated a
robust performance for various computer‐simulated SAR im-
aging scenarios. Moreover, in the recent work [18], we have
compared it against a more advanced implementation of the
conventional autofocus that involves a two‐step processing
based on screen projection [19]. The optimisation‐based method
of ref. [9] offered a consistent advantage over [19] in the quality
of focusing.

While the performance of the optimisation‐based method of ref.
[9] has been shown superior, the number of cases investigated as
of yet is still rather limited. Therefore, the purpose of the current
study is to conduct a statistical analysis of the algorithm of ref. [9]
and corroborate its robustness, as well as identify limitations and
sensitivities, across a broad range of factors that affect its per-
formance. The rationale for using a statistical framework is that
the ionospheric turbulence is modelled stochastically and so are
the clutter and noise, which are the other two important factors
that can affect the quality of focusing. In addition to assessing the
autofocus performance, we expect that the results of the study
will provide guidance on how to further improve it, in terms of
both image quality and computational cost.

The rest of the paper is structured as follows. We begin by
establishing the mathematics of SAR imaging, followed by the
theoretical development of an ionospheric phase screen model.
Next, we outline the setup for numerical experiments, detailing
the data generation process with varying levels of ionospheric
turbulence, clutter, and noise. Then we choose the cost function
for optimisation and discuss the rationale behind our choice.
We also discuss the selection and relevance of image quality
metrics for evaluating the effectiveness of the autofocus algo-
rithm, as well as the use of mutual information to assess the
dependencies between specific perturbation factors and residual
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distortions. In the second part of the paper, we exhibit the re-
sults. We demonstrate the ability of our autofocus algorithm to
generate a high quality approximation of the true ground
reflectivity under various levels of turbulence, clutter, and noise.
Namely, by minimising the cost function we can substantially
improve the quality of image focusing under increasing and
compounding levels of perturbations. Toward the end, we
summarise our findings and discuss how the results of the sta-
tistical study and mutual information insights can inform future
improvements to the autofocus algorithm, in particular, via re‐
defining the optimisation procedure.

2 | Governing Equations

The radar antenna (mounted on a satellite) transmits frequency‐
modulated pulses of microwave radiation

P(t) = A(t)exp −iω0t( ), (1)

where A(t) is narrow‐band as compared to the (angular) fre-
quency of the carrier: |dA/dt|≪ ω0|A|. After dispersive propa-
gation from the radar antenna at X to a single point scatterer at
Z0 and back, the return signal in the geometrical optics (GO)
approximation is expressed as follows:

Usc(t,X) = ν0Ã t − tgr( )exp −iω0 t − tph( )[ ], (2)

where ν0 is the scatterer reflectivity that also includes geometric
attenuation, Ã(t) is somewhat different from A(t) due to the
dispersion of waves within the signal bandwidth (see ref. [5],
Chapter 3), and the phase and group two‐way signal travel times
are given by the following:

tph,gr ≡ tph,gr X ,Z0( ) = 2∫
Z0

X

dl
vph,gr(r)

. (3)

In Equation (3), r traces the ray path between X and Z0, vph and
vgr are the local phase and group velocities of electromagnetic
pulses, and dl is the length differential along the ray. For the
Earth's ionosphere, the phase and group velocities are close to
the speed of light c:

vgr(r)
c

≈ 1 − Kne(r),
vph(r)
c

≈ 1 + Kne(r),

where Kne(r) ≡
1
2
4πe2

meω20
⋅ ne(r)≪ 1.

(4)

In formulae (4), −e and me are the electron charge and mass,
respectively, and ne(r) is the electron number density. We see
that the factor K in Equation (4) rapidly decreases as the carrier
frequency increases: K ∝ ω− 2

0 (see, e.g. [5, 20]). This helps
explain why the lower frequency spaceborne SAR systems, such
as P‐band and L‐band, are more susceptible to ionospheric
distortions and, in particular, more likely to require autofocus
for correcting the turbulence‐induced errors than higher fre-
quency systems such as X‐band.

For a distributed scatterer with reflectivity ν(Z), Formula (2) is
modified as follows:

Usc(t,X) =∬
2D beam footprint

ν(Z)Ã t − tgr(X ,Z)[ ]

× exp −iω0 t − tph(X,Z)( )[ ] d2Z.
(5)

SAR image [to be defined in Equation (14)] is an approximate
reconstruction of the unknown reflectivity ν(Z), where Usc t,X i( )

recorded for a certain set of locations X i{ } is used as data. For the
analysis in this work, the data is generated numerically via
Equation (2). We assume that the set X i{ }, called the synthetic
aperture, is spread over a segment of the antenna trajectory
(satellite orbit) with the length LSA. While LSA is a parameter of
the signal processing procedure, it is physically reasonable to set
it approximately equal to the size of the beam footprint, such that
the inversion uses the data affected by the unknown reflectivity.

The standard approach to transionospheric SAR inversion re-
quires precise knowledge of tph X i,Z( ) and tgr X i,Z( ). However, if
ne(r) is unknown, formulae (3) cannot be used directly, and the
problem becomes significantly more complicated (see ref. [5],
Chapter 3). In this work, we make several significant simplifi-
cations of the problem statement.

The first simplification aims at tph(X,Z) given by Formula (3)
and involves the concept of a phase screen. The latter replaces
the electron number density function ne(r) in Equation (4) with
a two‐dimensional representation, as if the Earth's ionosphere
were collapsed vertically into an infinitesimally thin sheet.
Figure 1 illustrates the full‐fledged three‐dimensional geometry
of spaceborne SAR imaging with a phase screen.

The second major simplification involves formulating the SAR
imaging in the range compressed domain (see ref. [14],
Appendix A for detail). Essentially, thismeans thatwe restrict the
target to a single narrow range bin parallel to the satellite orbit
where the reflectivity depends on the coordinate along this bin,
called the azimuthal coordinate, see Figure 1. The range bin is
identified by the distance R (also called the distance of closest
approach) between it and the orbit. It can be shown [14] that the
dependence ofUsc(t,X) on t can be eliminated by convolvingwith
a delayed and complex conjugated replica of the transmitted
signal P(t − 2R/c), such that the double integration over the
target in Equation (5) is reduced to the integration over the
range bin:

u(X) = ∫

1D beam footprint

ν(Z)exp iω0 tph(X ,Z) − 2R/c( )[ ]dZ, (6)

where X and Z are the scalar azimuthal coordinates of the an-
tenna and the target, respectively. As indicated in Section 1, a
key rationale for considering the range compressed formulation
is that the ionospheric turbulence has been shown to affect the
SAR imaging in azimuth a lot stronger than in range (see ref.
[5], Chapter 4 and [15]).

In Figure 1, we are showing the slant plane related to the
selected range bin. This plane is defined as containing the orbit
(approximated by a straight line) and the target (a point within
the bin). The phase screen intersects the slant plane at a straight
line on a certain elevation ξ relative to the orbit elevation, such
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that 0 < ξ < 1, see Figure 2. Hence, in the range compressed
domain, we will assume that the average phase velocity for each
ray connecting X and Z is specified via a certain univariate
dimensionless function Ψ(S), where S is the coordinate of the
intersection between this line and the ray.

The electron number density in the ionosphere ne(r) that de-
fines the phase and group velocities via Equation (4) consists of
the background electron number density and turbulent fluctu-
ations. As mentioned earlier, the effect of the background
ionosphere on spaceborne SAR imaging can be mitigated with
help of dual‐carrier probing, see refs. [3, 4] and (ref. [5], Chapter
3). Hereafter, we will be focusing on the effect of ionospheric
turbulence only. In accordance with Equation (4) and taking
into account the phase screen representation of the ionosphere,
we will use the following expression for the phase velocity:

vavgph (X,Z)
c

= 1 +
c

2Rω0
Ψ(S), (7)

where the phase screen density Ψ(S) will be thought of as rep-
resenting the turbulent fluctuations of the ionosphere. The two‐
way signal travel time will be given by

tph(X,Z) =
2|X − Z|
vavgph (X,Z)

. (8)

We will use the Pythagorean theorem to express |X − Z| via the
dimensionless coordinates x and z obtained by scaling X and Z,
respectively, to the azimuthal resolution ΔA [5, 8]:

x =
X
ΔA

, z =
Z
ΔA

, where ΔA =
πRc
ω0LSA

. (9)

FIGURE 2 | Two‐dimensional SAR geometry in a single slant plane with one‐dimensional phase screen. Corrected (purple) and uncorrected (blue)
SAR images due to a point scatterer (black arrow) and clutter are shown schematically.

FIGURE 1 | Three‐dimensional SAR geometry with a phase screen.
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Assuming that LSA ≪ R, we have

|X − Z| =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2 + (X − Z)2
√

≈ R 1 +
1
2
Δ2A
R2
(x − z)2( ). (10)

The factor in front of Ψ in Equation (7) is small because the
carrier wavelength λ = 2πc/ω0 is much smaller than R. Hence,
substituting Equations (7) and (10) into Equation (8) and line-
arising the result, for the phase in Equation (6) we obtain the
following:

ω0 tph(X,Z) − 2R/c( ) ≈
π
F
(x − z)2 − Ψ(S),

where F = LSA/ΔA ≫ 1 is the dimensionless aperture length.
Using Equation (9) to transition from dimensional to dimen-
sionless function arguments in Equation (6) and retaining other
notations, we obtain the following:

u(x) =∫ν(z)exp
iπ
F
(x − z)2 − iΨ s(x, z)( )[ ]wu(x − z) dz , (11)

where according to Figure 2,

s(x, z) = ξx + (1 − ξ)z . (12)

Integration limits in Equation (11) are defined by the window
function wu that represents the beam footprint and hence has a
finite support. In this study, we will use rectangular window or
Welch (parabolic) window, both having F as the support
diameter:

wrect(x) = 1|x|≤F/2, wWelch(x) = wrect(x) 1 − 2
x
F

( )
2

[ ]. (13)

The window wWelch(x) is then normalised by its mean for use in
Equation (14).

For the signal in the form Equation (11), the following expres-
sion realises the approximate inversion w.r.t. the unknown
reflectivity ν(z) yielding the SAR image:

I y;Ψrec( ) =
1
F
∫ u(x)exp −

iπ
F
(x − y)2 + iΨrec s(x, y)( )[ ]

wI (x − y) dx ,
(14)

where y = Y/ΔA is yet another dimensionless azimuthal coor-
dinate, cf. Equation (9). The transform in Equation (14) is called
matched filtering. The case of no ionosphere, Ψrec = Ψ = 0,
corresponds to standard (i.e., undistorted) SAR imaging, where
for the rectangular windows in Equations (11) and (14), the
image of a point scatterer ν(z) = δ z − z0( ) is given by
I(y) = sinc π y − z0( )( ), where sincv = (sin v)/v. This sinc func-
tion has a peak (central lobe) of semi‐width 1 centred at y = z0
(the semi‐width is equal to ΔA in the dimensional form, see
Equation (9)). When the ionosphere is present, the best possible
reconstruction in Equation (14) is achieved for Ψrec = Ψ. Then,
as shown in ref. [9], the image of a point scatterer also has a
peak centred at y = z0 with semi‐width close to 1, see Figure 2.

However, in the context of SAR imaging, the perturbation phase
Ψ(s) is generally not known, so a reconstruction phase Ψrec(s)
different from Ψ(s) may need to be used in Equation (14).

In the absence of information about Ψ, the default option is to
use Ψrec ≡ 0; however, if Ψ(s) varies on the horizontal scale of ξF
or smaller and the magnitude of these variations is of the order
of π or larger, then the resulting uncompensated image
I init ≡ I(y; 0) may appear noticeably distorted (in particular, the
peak width may increase). The transionospheric autofocus al-
gorithm of ref. [9] starts with I init and improves it by varying
Ψrec. The focusing is successful if Ψrec approximates Ψ with
sufficient accuracy, resulting in a high‐quality image
I rec ≡ I y,Ψrec( ) where the effect of perturbations is minimised.
The choice of the window function wI in Equation (14) controls
the image sidelobes [8]; one may take wI the same as or
different from wu in Formula (11).

3 | Experimental Setup

3.1 | Definition of the Phase Screen

The Earth's ionosphere is a turbulent region where the electron
number density ne(r), see Equation (4), experiences fluctuations
characterised by inner and outer turbulence scales. Observa-
tions of free turbulence generally follow a power‐law decay with
respect to the spatial frequency, consistent with Kolmogorov's
spectra of turbulence [21, 22]. Accordingly, the function Ψ(s)
that models the effect of the ionospheric turbulence on the
signal propagation should be random. In our model, Ψ(s) in
Equation (11) is represented as a finite Fourier series:

Ψ(s) = Re∑
N

n=1
an exp ikns + iφn( )

=∑
N

n=1
pn cos kns( ) + qn sin kns( )( ),

(15)

such that

pn = an cos φn( ), qn = −an sin φn( ).

In Equation (15), N is the number of harmonics, an are the real‐
valued amplitudes of the harmonics, and kn represents the
wavenumber of the nth harmonic. To specify the spatial spec-
trum of Ψ, we first define the fundamental scale as a multiple of
the (dimensionless) synthetic aperture length: lz = ρF. The
fundamental wavenumber is k1 = 2π/lz, and each spatial fre-
quency in the spectrum of Ψ is an integer multiple of this
fundamental frequency:

kn = nk1 ≡
2π
ρF

n, n = 1, 2,…,N. (16)

Short‐ and long‐scale models correspond to ρ ≲ 1, and ρ ≳ 1,
respectively. The perturbation effects tend to decrease as ρ in-
creases, see ref. [15]. In this work, we use a medium‐scale model
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with ρ = 5/3, an arbitrary choice that establishes a baseline
scenario where autofocusing is effective. Note that the wave-
numbers kn need not necessarily be integer multiples of the
fundamental wavenumber as in Equation (16), that is, there is
no physical requirement for periodicity in Ψ. Still, we choose to
make Ψ periodic for the purposes of this study.

The randomness in Equation (15) is realised by φn that are taken
as independent uniformly distributed φn ∼ U[−π,π]( ) phase
shifts. While the amplitudes an{ }

N
n= 1 in Equation (15) adhere to

a power‐law decay to reflect the energy dissipation at higher
spatial frequencies, the randomised phases φn allow the model
to generate multiple realisations of the phase screen with
identical spectral properties.

Note that if Ψ(s) were linear in s, then for Ψrec ≡ 0 the peak due
to a point scatterer in the resulting image I init will be shifted
with respect to the position of the scatterer, see Appendix B. The
model Equation (15) with a relatively small N cannot adequately
represent a linear function. However, as ρ increases, the leading
harmonic (which has also the largest amplitude) behaves
approximately linearly on the intervals of s with the length of ξF
(see Figure 2), leading to a shift of the corresponding part of the
image. Variation of this effect over the image produces geo-
metric distortions.

The magnitude of the screen density function, later referred to
as Ψ‐magnitude, is defined as follows:

‖Ψ‖ ≡ ‖Ψ‖2 = ∑
N

n=1
|an|2( )

1/2

. (17)

A notable observation in ref. [9] was that achieving an effective
autofocus becomes more complicated as ‖Ψ‖ increases. A
comparison of autofocusing outcomes for ‖Ψ‖ = 2π and
‖Ψ‖ = 7π, see Figure 3, demonstrates the deterioration in
autofocusing efficacy for large ‖Ψ‖.

For this study, we build upon a baseline example from previous
work [9]. In particular, we use N = 6, F = 100, and ρ = 5/3 in
formulae (15) and (16). The set an{ }

6
n= 1 corresponding to

‖Ψ‖ = 2π is presented in Table 1 (it follows a quadratic power
law as in ref. [9]). For our statistical autofocus analysis, we
simulate ensembles of ionospheric phase screens by randomly
sampling the sets of phase shifts φn{ }

6
n= 1 and substituting the

result into Equation (15).

3.2 | Discretisation and Point Scatterers

In addition to the parameters mentioned in Section 3.1, we
specify the grid discretisation size δx = 0.25 for x, y, and z in
order to calculate the quadratures in formulae (11) and (14),
and choose ξ = 0.5. The spatial domain for the target reflec-
tivity ranges from z = 0 to z = 360. Since the support of the
window functions Equation (13) used in Equations (11) and

FIGURE 3 | Comparison of two autofocusing scenarios with different perturbation levels: ‖Ψ‖ = 2π (left) and ‖Ψ‖ = 7π (right).

TABLE 1 | Parameters of the baseline amplitude spectrum of the screen density function corresponding to N = 6, F = 100, and ρ = 5/3, see
Equations (15) and (16).

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
Real amplitudes an( ) 6.0428 1.5107 0.6714 0.3776 0.2417 0.1678

Wavenumbers kn( ) 0.0377 0.0754 0.1131 0.1508 0.1885 0.2262
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(14) has the diameter of F = 100, the signal u(x) and image
I(y) are defined in the domains x ∈ [50, 310] and y ∈ [100, 260],
respectively. We specify three point scatterers, each of unit
magnitude, located at z1 = 144, z2 = 186, and z3 = 216, that is,
all three resulting peaks should show up in the SAR images.
This defines the deterministic part of the reflectivity function as
follows:

νPS(z) =∑
3

i=1
δ z − zi( ). (18)

3.3 | Clutter

Clutter refers to the unwanted backscattering that occurs near
the ‘useful’ targets. Whereas in our model, the latter are speci-
fied as high‐reflectivity point scatterers, clutter will be repre-
sented by a random grid function added to νPS given by
Equation (18). We consider νclutter(z) to be complex valued, and
the real XC( ) and imaginary YC( ) components of each point on
the target domain are independent, normally distributed with
identical variance. In order to relate the average level of
reflectivity to that of the prominent point scatterers, we use the
Rayleigh distribution where the variance of the normally
distributed real and imaginary components are

σ2 = σ2C
2
π

Such that the mean reflectivity of the clutter on the target
domain is E |XC + iYC|( ) = σC:

νclutter =
̅̅̅̅̅
δx

√
XC + iYC[ ], where XC,YC ∼N 0,

2σ2C
π

( ). (19)

In Equation (19), the length of the random vectors XC and YC is
consistent with the length of the target domain. The total target
reflectivity ν(z) in Equation (11) will then be given as follows:

ν(z) = νPS(z) + νclutter(z), (20)

with the terms of the right‐hand side of (20) defined in Equa-
tions (18) and (19). In other words, we consider the average
level of reflectivity σC ∈ [0.009, 0.177], relative to the reflectivity
of |νPS| = 1. 1

The choice for the range of the clutter intensity σ2C in Equa-
tion (19) is supported by an example from NASA/JPL UAVSAR
database. On the left panel in Figure 4, we provide an L‐band,
single look complex (SLC) SAR image showing the Los Angeles
Basin with a mixture of urban and mountainous terrain with
several bodies of water. There are well‐defined point scatterers

FIGURE 4 | An L‐band single look complex (SLC) SAR image of the San Andreas Fault/Los Angeles Basin from NASA/JPL's UAVSAR database.
The image, composed of approximately 628 million complex‐valued pixels, is linearly scaled with an intensity cutoff at the 99th percentile of pixel
magnitudes. A point in the image was selected based on yielding a prominent magnitude of reflectivity as well as there being a mixture of
different terrains in the row and column slices: urban, mountainous, and bodies of water. For the row and column slices, the mean amplitude
of clutter relative to the most prominent point scatter is 0.019 and 0.033, respectively. Acquisition details: NASA UAVSAR, L‐band
(λ = 23.84cm), polarisation: HH, flight line ID: 26,524.
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in this image. We find high intensity point scatterers in the
image, take the corresponding column and row slices, and plot
the intensities along these slices on the right panels in the same
figure. These plots show that 0.177 is a reasonable upper bound
level of average clutter reflectivity. Note that typically, long‐
wavelength radar missions are designed for forest and ice ap-
plications where point scatterers are not abundant.

3.4 | Noise

Noise represents the inherent randomness that distorts the
waveform, originating from instrumental limitations, environ-
mental factors, and interference from external signals. For
consistency in comparing the sensitivity of clutter and noise, we
chose a range of noise levels as σN ∈ [0.009, 0.177]. Here, σN
denotes the expected level of noise as a fraction of the maximum
magnitude of the useful signal uclean(x). Similar to Section 3.3,
we generate independent normal random vectors with zero
mean and variance σ2 = σ2N(2/π).

XN,YN ∼N 0,
2σ2N
π

( ) (21)

of appropriate length and define

unoise(x) =maxx |uclean(x)|( ) ⋅ XN + i YN[ ], (22)

where the noise‐free signal uclean(x) is the output of Equa-
tion (11). The total signal u(x) to be substituted into Equa-
tion (14) is calculated as follows:

u(x) = uclean(x) + unoise(x). (23)

3.5 | Cost Function

Our autofocus algorithm seeks to minimise the following cost
function:

Cost prec,qrec( ) = −δx∑
i
|I yi;Ψrec ⋅ ;prec,qrec( )( )|4

+ζ ∑
N

n=1
k2n precn( )

2
+ qrecn( )

2
)( ).

(24)

The first term of the cost function is built using the fourth
power of the ℓ4 norm of the SAR image. Its minimisation leads

to sharpening of the peaks [23, 24], whereas the scaling with
δx provides consistency for different grid sizes. The second
term, weighted by the constant ζ , serves as a regularisation: it
penalises high‐amplitude oscillations of Ψ on small spatial
scales. The vectors prec and qrec composed of the Fourier
amplitudes precn and qrecn , see Equation (15), serve as the control
variables. The value of ζ = 0.6 was chosen based on the
consistency and quality of the focused images compared to the
true images in the corresponding scenarios, see the discussion
around Figure 5.

3.6 | Optimisation Process

Our goal is to produce a SAR image I rec ≡ I y;Ψrec( ) that would
yield the best possible approximation of the ideal reconstruction
image I(y;Ψ). We hypothesise that this can be achieved by
minimising the cost function (24). For a given reflectivity
function ν(z) and fixed noise level, the value of |I(y, ⋅)| given by
Equations (11), (14), and (22) is bounded for every y, while the
second term on the right hand side of Equation (24) is positive
semidefinite. Thus, Cost prec,qrec( ) is bounded from below.
Moreover, smoothness of the cost function with respect to the
control variables can be seen from the analytic form of Equa-
tions (14), (15), and (24), see also Appendix (A). Hence, the
gradient descent is guaranteed to converge to a local minimum.

To perform the optimisation, we employ a gradient‐based
method to minimise the cost function specified in (24). The
calculation of the gradient is detailed in Appendix A. We use the
Python implementation of Broyden‐Fletcher‐Goldfarb‐Shanno
(BFGS) quasi‐Newton method. This method is a popular
choice for multidimensional minimisation problems because it
approximates the Hessian matrix of the cost function without
directly computing the second derivatives. We specify the
stopping condition in the BFGS implementation of scipy.
optimise.minimise as ‖∇ Cost‖ < 0.001.

4 | Outline of the Study

In this work, we conduct a statistical study of the effectiveness
of SAR autofocus [9] when applied to a phase‐perturbed signal
with perturbations induced by ionospheric effects. We vary
three parameters independently to observe their individual
impacts:

FIGURE 5 | Comparison of NCC versus ‖Ψ‖ for regularisation weights ζ = 0, 0.6, and 2. The middle panel (ζ = 0.6) corresponds to
Figure 6.
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� The magnitude of phase perturbation (Ψ‐magnitude) given
by Equation (17).

� The average reflectivity of the ground clutter, σC, see
Equation (19).

� The mean level of the antenna noise, σN, see Equation (21).

These three parameters were chosen because they represent and
control the key sources of stochasticity in the formulation, as
detailed in Section 3. Variations in the phase shifts, clutter
reflectivity, and noise introduce randomness into the system,
which in turn influences the values of metrics that assess the
quality of the focused image. By modelling these sources of
stochasticity, we can evaluate the robustness of the autofocus
algorithm.

5 | Results

5.1 | Quality of Focusing Versus Level of
Perturbations

We employed the normalised cross‐correlation (NCC) of image
magnitude as a primary metric to quantitatively assess the
similarity between the autofocused and true images. We calcu-
late NCC using the following formula:

Here, mean |I rec|( ) and mean(|I |) represent the magnitudes of
the reconstructed, that is, autofocused image I rec ≡ I y;Ψrec( )

and ‘true’ image I ≡ I(y;Ψ), respectively, averaged over the
spatial coordinates. Since the cost function (24) is almost
insensitive to a shift of the image as a whole, the NCC is eval-
uated at its maximum over the allowable interval of shifts of the
reconstructed image. In particular, we allow the shift v in
Equation (25) to vary in the interval [− μ, μ] and set μ = 10 to
account for the cases where I rec closely resembles a shifted
version of I . In our tests, the shifts of the peaks in I rec are
consistently within this range, ensuring (1 − NCC)≪ 1 for
highly coherent, albeit shifted images.

In our first set of numerical experiments, we choose 10 equi-
distant values of Ψ‐magnitude, see Equation (17), between π/5
to 2π. This range covers a significant part of observable levels of
ionospheric perturbation, see (ref. [9], Appendix A). For each of
these 10 values of ‖Ψ‖, we generate 100 realisations of the
screen density function Ψ(s) according to a procedure described
in Section 3.1. The variability in the autofocus performance
originates from the difference between the realisations of Ψ(s)
defined by the sets of phase shifts φn, n = 1,…, 6{ } via

Formula (15). Other simulation parameters correspond to the
baseline scenario described in Section 3.1.

Table 2 and Figure 6 provide an overview of the results of this
simulation. For a baseline level of clutter σC = 0.089 and noise
σN = 0.044, we see that the autofocus algorithm maintains a
certain degree of robustness across all perturbation levels. The
overall median NCC across all levels of ionospheric turbulence,
|Ψ|, is 0.82. For realisations where |Ψ| ≤ π, the median NCC is
0.82, whereas for |Ψ| > π, it slightly decreases to 0.81. The highest
autofocusing performance achieved an NCC of 0.94 at |Ψ| = 4π

5 ,
while the lowest performance yielded an NCC of 0.45 at
|Ψ| = 2π. Figure 6 further illustrates the statistics of the opti-
misation outcomes by showing the quartile values for each level
of Ψ‐magnitude. Although the median NCC remains stable
across different turbulence levels, the variance inNCCnoticeably
increases with higher ionospheric turbulence. Several outliers
with relatively low values of NCC will be analysed in Section 5.2.

The increasing share of lower NCC values for larger magnitudes
of Ψ observed in Figure 6 indicates a deterioration of focusing
capacity of the autofocus algorithm. This behaviour is expected
for higher levels of turbulence. Yet what we also see in Figure 6
is a slight degradation of focusing toward lower values of ‖Ψ‖, as
manifested by the decrease of the median NCC accompanied by
the decrease of variance (the latter showing a tighter grouping of
the results). We attribute this behaviour to the effect of clutter

which still pertains even for low levels of turbulence. Indeed, for
the ultimate scenario with no perturbations at all, Ψ = 0, we
would expect to reconstruct Ψrec = 0. This is obvious, because if
there is no turbulence, then there are no turbulence‐induced
distortions, and no improvement of focusing is needed. Like-
wise, for low magnitudes of Ψ, we would expect the recon-
structed screen density Ψrec to be commensurately small.
However, a fixed level of clutter (and noise) affects the resulting
optimal solution, because the algorithm essentially tries to focus
up the areas of clutter and noise. Yet with clutter being a high‐
frequency phenomenon and Ψ and Ψrec represented on much
lower frequencies, convergence of the optimiser in this low‐
frequency subspace does not ameliorate the clutter but makes
the focusing slightly worse, because ideally little to no correc-
tion would be required.

In addition, we have investigated how the penalty weight ζ in
the definition of the cost function (24) affects the behaviour of
NCC as a function of ‖Ψ‖. The penalty term promotes the
decrease of the amplitudes of individual harmonics in the
spectrum of Ψrec with the increase of their frequency; however,
this term also favours small over large values of ‖Ψrec‖ in

NCC I , I rec;μ( ) = max
v∈[−μ,μ]

∑
i
|I yi( )| −mean(|I |)( ) |I rec yi − v( )| −mean |I rec|( )( )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑
j
|I yj( )| −mean(|I |)( )

2
∑
k
|I rec yk − v( )| −mean |I rec|( )( )

2
√ . (25)
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general. Hence, with no penalty (ζ = 0) we observe a more
stable behaviour of the median NCC for higher ‖Ψ‖ yet with a
considerable variance, and a somewhat stronger deterioration
for lower ‖Ψ‖, see the left panel in Figure 5. On the other
hand, for high penalty (ζ = 2) the dependence of NCC on ‖Ψ‖
basically becomes monotonic, but the degradation of perfor-
mance for higher ‖Ψ‖ appears more substantial, see the right
panel in Figure 5. The middle panel in Figure 5 (ζ = 0.6)
corresponds to Figure 6. It strikes an efficient balance,
showing solid performance with a fairly low variance for all
levels of Ψ magnitude. The value of ζ = 0.6 is used in all
subsequent simulations.

Figures 7 and 8 show the impact of clutter and noise varying in
the range from 0.009 to 0.177 on NCC. While ionospheric

turbulence and clutter are distinct phenomena—thus making
direct comparisons challenging—our analysis employs realistic,
predetermined levels for both. At higher clutter levels, we
observe a more pronounced decline in the median NCC in
Figure 7 as compared to the modest declines caused by large Ψ‐
magnitudes in Figure 6. The median NCC drops from 0.85 for
low clutter σC ≤ 0.1( ) to 0.59 for high clutter σC > 0.1( ). Notably,
26% of low‐clutter cases achieve NCC ≥0.9, whereas only 1.1% of
the high‐clutter cases do, and over 87% of the high‐clutter cases
fall below 0.8. The best NCC of 0.98 occurs at σC = 0.08, while
the worst is 0.30 at σC = 0.17. This suggests that while autofo-
cusing effectively reconstructs scatterer intensities and posi-
tions, increased clutter degrades correlation due to additional
reflectivity in the off‐peak areas.

On the other hand, Figure 8 shows that the autofocus algo-
rithm is notably more robust in the presence of high noise
levels σN( ), with a median NCC of 0.92, compared to its
sensitivity to ionospheric turbulence and clutter. The best
performance reaches an NCC of 0.97, while the worst drops
to 0.76. Only 2 scenarios fall below NCC = 0.8, indicating that
noise has a minimal impact on image quality compared to
clutter. This is not surprizing because noise (22) is modelled
as an additive zero‐mean Gaussian term to the antenna signal
u(x), and due to the integration in Equation (14), its influence
is averaged out.

5.2 | Worst‐Case Scenarios and Additional
Distortion Metrics

One of the rhombus‐shaped dots at ‖Ψ‖ = 2π in Figure 6
indicates an outlier with NCC ≈ 0.45. Figure 9 visualises this
worst‐case scenario, demonstrating that the autofocus algo-
rithm may degrade the image quality with regard to the peak
locations and NCC despite yielding a lower cost function. Our
autofocused image, I rec, shows a narrowing of peaks, but there

FIGURE 6 | Normalised cross‐correlation (NCC) across 100 realisations for each of 10 equally spaced bins of Ψ‐magnitude visualised using box
plots. Each coloured box represents the middle 50% of the data (also called the interquartile range, or IQR), with whiskers extending to the
most extreme data points within 1.5 times the IQR from the quartiles. Outliers are shown as individual rhombus‐shaped points outside of
these bounds, see Section 5.2. The nonmonotonic behaviour of NCC is analysed in Figure 5 and the associated discussion.

TABLE 2 | Rows 2 to 11 correspond to 10 equidistant levels of
Ψ‐magnitude ranging from π/5 to 2π. Columns 2 through 4 represent
the number of realisations (out of 100 for each level) where an NCC
value above or equal to the specified threshold has been achieved.

Ψ
magnitude

Cases (NCC
≥ 0.85)

Cases (NCC
≥ 0.8)

Cases (NCC
≥ 0.75)

π/5 0 36 100

2π/5 2 59 100

3π/5 10 92 100

4π/5 36 96 100

π 54 88 100

6π/5 41 81 100

7π/5 36 76 97

8π/5 27 54 80

9π/5 24 46 68

2π 19 35 53
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is a notable decline in image quality from the initial image,
I init, to I rec. We employ a multi‐start global optimisation
scheme which sends out 384 optimisation agents in a con-
strained search domain, and each agent locally optimises to its
minimum based on its initial placement; from all workers, we
select the lowest one as our multi‐start global minimum. In
Figure 9, we see an image improvement from the multi‐start,
autofocused image, Imulti, compared to I init and I rec. This
provides evidence that the zero‐initialised, single optimiser
which generates I rec and the bulk of the figures and data in
this paper, can converge to suboptimal (local) minima where
the autofocused image quality is not significantly improved as
compared to that of I init.

However, we can see that the displacement of the peaks in Imulti

does not amount to a shift of the image as a whole because one
of the peaks is shifted in the direction opposite to that of the
other two peaks. Although the peaks in the resulting image are
sharp and their heights are on par with those of the true image,
we still consider such image as geometrically distorted, with one

part stretched and another compressed compared to the ground
truth. For this reason, we consider this behaviour of NCC as a
distortion metric appropriate.

To quantitatively assess the geometrical distortion described
above, we introduce the concept of peak desynchronisation (PD)
as a measure of variation in the peak shifts between the auto-
focused and true images:

PD I , I rec( ) = std yrecp − yp∣p = 1,…,Npeaks{ }( ), (26)

where std denotes standard deviation, yp and yrecp are the ordered
peak locations in I and I rec, respectively, and Npeaks is the total
number of peaks (in this case, Npeaks = 3). Such a metric reflects
the degree of nonuniformity in the image shift induced by the
phase screen. A PD value of zero indicates a perfect shift of the
set of peaks as a whole, including the case of no shift at all.

Figure 10 presents a close‐up of the worst‐case scenario in
Figure 7. Unlike in Figure 9, we see a significant increase of

FIGURE 8 | Same as in Figure 6, but for varying levels of σN.

FIGURE 7 | Same as in Figure 6, but for varying levels of σC.
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sidelobes in the focused image and reduction of peak heights
in addition to PD. In order to quantify this kind of distor-
tions, we compute the integrated sidelobe ratio (ISLR) that

characterises peak prominence relative to sidelobes. ISLR is
calculated according to the following formula (ref. [8], Sec-
tion 2.8):

FIGURE 9 | The worst‐case scenario for Figure 6. The single optimiser initialised at zero amplitudes (magenta) fails to improve image quality,
reducing NCC to 0.45 and increasing PD to 2.21, despite improving ISLR given by (27) from −1.45 dB to −3.11 dB. In contrast, the multi‐start
method (grey dashes) produces an image that is very close to the true image (black), achieving an NCC of 0.79, ISLR of −4.03 dB, and
significantly reduced PD of 0.51.

FIGURE 10 | The worst‐case scenario for Figure 7. Both the single optimiser initialised at zero amplitudes (I rec, magenta) and the multi‐start
optimiser (Imulti, grey dashes) failed to recover the true image (I , black), despite converging to cost function minima. While peak sharpening
is observed (ISLR improves from 2.58 to 1.47 dB for I rec), severe peak desynchronisation (PD increases to 2.83) undermines autofocus
performance. The high sidelobe energy in I (ISLR = 1.71 dB) highlights the challenge clutter poses for autofocus, with the sidelobes
containing as much energy as the main peaks.
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ISLR = 10log10
Esidelobes
Epeaks

( ), (27)

where

Epeaks =∑

Npeaks

p
∫

y:|y−yp|≤1{ }

|I rec(y)|2 dy,

Esidelobes = ∑

Npeaks

p
∫

y:|y−yp|≤μpeak{ }

|I rec(y)|2 dy

⎛

⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎠

− Epeaks

(28)

In Equation (28), we use μpeak = 20, which is smaller than the
distance between the peaks. We observe that unlike in Figure 9,
the ISLR value calculated for the reconstructed image is
significantly higher than that of the true image. This degrada-
tion in image quality may be attributed to the optimiser that,
always initialised at zero amplitudes, may settle at a local rather
than global minimum of the cost function. We see that this is
actually the case in Figure 10, as well as in Figure 9.

Different metrics of focusing quality used in this work comple-
ment each other and are sensitive to different kinds of image
distortions. As an example, Figure 11 illustrates the behaviour of
PD and NCC for different levels of clutter. We see that a decrease
in PD is not always equivalent to an increase in NCC. This figure
also contrasts the true perturbation Ψ(s)with Ψrec(s) obtained via
the cost minimisation, and we observe an increase of discrepancy
between the two with the increase of clutter level σC.

Let us also note that while the performance metrics such as PD
defined by Equation (26) or ISLR defined by Equations (27)–(28)
are very useful in that they help distinguish between efficient
and inefficient focusing, they cannot be easily incorporated into
the optimisation cost function. Indeed, the peak location can be
a discontinuous function of the control variables prec,qrec( ).
Therefore, smoothness of a peak‐related cost function could not
be guaranteed, which would make solving the resulting opti-
misation problem a lot more difficult. As such, we use the
sparsity promoting yet smooth cost function (24) for optimisa-
tion and employ the peak‐related metrics in the capacity of a
posteriori performance indicators.

5.3 | Parameter Importance Ranking

Figure 11 suggests that besides the level of perturbations, other
factors may significantly affect the quality of focusing. In addi-
tion to the levels of clutter and perturbation, we are interested in
evaluating the effect of noise, as well as the phase shifts of in-
dividual harmonics in the Fourier representation of the screen
density function, see Equation (15). Direct comparison of the
effects of these parameters on NCC can be challenging because
high levels of clutter lead to NCC degradation, even with a
perfect reconstruction of the peaks. For this reason, in order to
assess the impact of various factors on distortions in recon-
structed images, we performed a mutual information (MI)
analysis with peak desynchronisation (PD) as the primary
distortion metric.

FIGURE 11 | Comparison of two primary factors affecting NCC: shifts of the peaks and the level of clutter. The three columns correspond to NCC
levels of approximately 0.9, 0.7, and 0.5, respectively. The top row shows that as the peak locations of I rec deviate from those in I and the clutter
level increases, the NCC metric declines. The red dotted line represents the value of peak desynchronisation (PD). The bottom row displays
the resulting phase screen density Ψrec in comparison to the true phase screen density Ψ.
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Mutual information MI(X,Y) measures the reduction in un-
certainty of one random variable, Y , given knowledge of another
variable, X [25]. The underlying concept for MI is entropy H(Y)
defined as follows:

H(Y) = −∑
y∈Y

p(y)log p(y), (29)

where p(⋅) represents the probability measure of Y . While H(Y)
quantifies the uncertainty of Y , MI(X,Y) describes the reduction
of this uncertainty due to knowledge of X:

MI(X,Y) =H(Y) −H(Y |X) = ∑
x∈X,y∈Y

p(x, y)log
p(x, y)
p(x)p(y)
( ). (30)

This metric vanishes, that is, MI(X,Y) = 0, when X and Y are
independent such that p(x, y) = p(x)p(y), indicating no gain of
information about Y due to the knowledge of X. For the opposite
extreme, MI(X,Y) reaches H(Y) when X = Y , indicating total
predictability. In our study, a high value of MI Xi, PD( )/H(PD) for
a given factor Xi signifies a greater reduction in uncertainty about
PD, pointing to that factor's influence on PD.

For this study, we generated 5000 instances of the optimisation
problem via Latin hypercube sampling, with all nine input
factors (turbulence intensity, clutter, noise, and phase shifts of
the six harmonics) varying simultaneously. MI was estimated
using 250 nearest neighbours (or 5% of the total number of
realisations) to approximate the probabilities p Xi( ) and p(PD)
and, consequently, their joint probability p Xi,PD( ). This choice
of a relatively large subsample size is due to the high unex-
plained variance between the values of the input factors and
PD: while introducing a higher bias, it reduced variance and
provided stable MI estimates across larger bin sizes (e.g., MI
results were consistent with those for 200 and 300 nearest
neighbours).

The ranges of the stochastic parameters were chosen as follows:
‖Ψ‖ ∈ [π/5, 2π], σC ∈ [0.009, 0.177], and σN ∈ [0.009, 0.177].
Figure 12 shows that the average clutter reflectivity σC( ) and
the phase shift of the longest harmonic φ1( ) have the largest
influence on PD. In this experiment, H(PD) ≈ 1.64, whereas
MI σC,PD( ) ≈ 0.169, MI φ1,PD( ) ≈ 0.01, and MI(‖Ψ‖,PD) ≈ 0.005.

We have

MI σC, PD( )

H(PD)
≈
0.169
1.64

≈ 0.1.

In other words, only about 10% of the uncertainty of PD is
explained by σC and another 0.9% of the uncertainty is explained
by the leading phase shift and ‖Ψ‖. These findings suggest that
among the parameters we analysed, there is no single one that
can be used to predict the level of residual distortions. In other
words, the resulting quality of focusing is determined by the
combination of these and probably other parameters, such as
the particular realisation of clutter reflectivity. This underlines
the importance of statistical approach to the problem.

5.4 | Assessing Image Improvement due to
Autofocus

The core assumption about the cost function defined in
Equation (24) is that its minimisation leads to an image with
sharp peaks that closely resembles the true image. To
demonstrate the improvement of image quality with respect to
the initial guess of zero amplitudes for Ψrec, we plot the dif-
ferences in quality metrics between the uncorrected (i.e.,
initial) and autofocused images, denoted by ΔNCC, ΔISLR, and
ΔPD, against the corresponding changes in the cost function.
In this study, we generate 1000 realisations of Ψ(s) according to
Equation (15) at fixed levels of νclutter(z), see Equation (19). The
noise vector, νnoise(x), is kept unchanged from the baseline
realisation due to its insignificant impact on the success of
autofocus, thus allowing us to focus on isolating the effects of
‖Ψ‖ and σC.

Different rows in Figure 13 present this analysis for different
clutter intensities by scaling νclutter to σC = 0.0, σC = 0.09, and
σC = 0.18 for the top, middle, and bottom rows, respectively.

Different columns in Figure 13 demonstrate the focusing effect in
terms of a change in the value of one image quality metric. We
associate the improvement of image quality with ΔNCC > 0,
ΔISLR < 0, and ΔPD < 0, and draw a horizontal red line at the
corresponding threshold. To further illustrate the impact of Ψ‐

FIGURE 12 | Feature importance analysis based on the concept of mutual information, with the peak desynchronisation (PD) as the metric.
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magnitude on the focusing outcome, each scatter point is colour‐
coded from blue to red according to the value of ‖Ψ‖. Note that
there are instances where certain quality metrics worsen, exem-
plified by Figure 10 where ISLR improves, but NCC and PD
degrade. Table 3 presents a summary of the behaviour of indi-
vidualmetrics for different values of clutter, aswell as the number
of cases where all metrics improve simultaneously.

Returning to Figure 13, we make an observation that for small
values ofΨ‐magnitude (blue circles), the changes in allmetrics, as
well as in the cost value, are smaller that those for high Ψ‐
magnitude (red circles). This can be expected because the smaller
the phase perturbation, the lower the potential gain from

compensating it. At the same time, for high clutter we observe a
significant number of cases with a moderate worsening of NCC
and PD due to focusing. The latter may be explained by the low
sensitivity of the cost function (24) to the geometric distortions, as
it was already mentioned in Section 5.1.

On the contrary, high values of Ψ‐magnitude result in a low‐
quality I init due to the initial guess at Ψrec = 0, leaving a sig-
nificant room for improvement in terms of the metric and cost
values. A significant number of cases with ΔNCC < 0 and
ΔPD > 0 for σC = 0.18 may indicate a higher probability of
failure of the optimisation process where a local rather than
global minimum of the cost function has been reached.

FIGURE 13 | Scatter plots depicting changes in each image quality metric versus the change of the cost value due to optimisation, with blue to red
colours indicating increasing Ψ‐magnitude in the range from π/5 to 2π.

TABLE 3 | The number of observed improvements out of 1000 realisations for each quality metric across different clutter levels.

Clutter σC( ) ΔNCC > 0 ΔISLR < 0 ΔPD < 0 All metrics improve All metrics deteriorate
0 976 968 896 873 0

0.09 730 999 708 673 0

0.18 346 989 435 299 8

15 of 18
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Among the three metrics analysed, ISLR is found to exhibit the
highest correlation with the cost, as specified by the values of
the correlation coefficient r. This is not surprizing because
similarly to ISLR, the cost function is associated with the peak
sharpness [23, 24]. Interestingly, a very high correlation
(r > 0.75) is also observed for all values of clutter where two
other metrics demonstrate a significant spread for a fixed value
of ΔCost. At the same time, the ISLR gain for high‐clutter setups
is consistently lower than that for low clutter, unlike the gain in
the cost. Note that usage of ISLR in the cost function is prob-
lematic due to its nonsmooth dependence on the control vari-
ables [9].

6 | Conclusions

We have developed a methodology for statistical assessment of
the effectiveness of transionospheric SAR autofocus via nu-
merical simulation. The optimisation‐based autofocus algorithm
developed in ref. [9] has been analysed and its effectiveness
evaluated for a range of input parameters. Effectiveness, sensi-
tivity, and weaknesses of various metrics of image quality have
been explored.

In particular, we have observed that for long‐wavelength
spaceborne SAR, the optimisation‐based autofocus demon-
strates satisfactory performance in a significant majority of cases
for all reasonable levels of phase perturbations due to the
ionospheric turbulence. We have established that the focusing
outcomes may have a significant spread in terms of the final
values of image quality metrics, and the quality of the individual
focused image cannot be reliably predicted using the value of a
single parameter. Statistically, the most problematic are the
scenes with high level of clutter where the gradient‐based
optimiser may fail to converge to the global minimum of the
specified cost function.

Further directions of research may include the following.

� Convergence of the gradient‐based optimiser to local
minima that hampers autofocus performance warrants
further analysis and adoption of robust global minimisation
procedures based on methods such as multi‐start, swarm,
genetic algorithms, etc.

� Further refinement and customisation of the optimisation
problem, including the use of additional cost functions
(e.g., based on total variation), as well as convexification.

� Extended analysis of external factors affecting the perfor-
mance, including the spatial spectrum of turbulence. In
particular, the true Kolmogorov's spectrum can be used.

� Alternative ways of representing the perturbation and
reconstruction screen density function, e.g., splines or
wavelets.

� Incorporation of more sophisticated reflectivity models
such as extended targets and textured background.

� Analysis of two‐dimensional targets and phase screens, as
well as modelling of a ‘thick’ ionosphere, e.g., by means of
multiple phase screens.

� Studying the efficiency of the proposed autofocus proced-
ure under generalised anisotropy of SPE in two‐
dimensional settings.

� Use of additional techniques that would emphasise the
contribution from bright point scatterers and de‐emphasise
clutter and noise (e.g., compressive sensing).

� Utilising optimisation priors, for example, in the form of
prior images with identifiable point or persistent scatterers
[26] and maps of the imaged area.
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Endnotes
1 Due to the Rayleigh modelling of the complex clutter vectors in this
study, the clutter range considered is scaled to

̅̅̅
π

√

2 [0.01, 0.2] to remain
consistent with the clutter modelling in [9].
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Appendix A: Gradient of the Cost Function

We start by rewriting Formula (24) for the cost function:

Cost prec,qrec( ) = −δx∑
M

i=1
|I yi;Ψrec ⋅ ;prec,qrec( )( )|4

+ζ ∑
Nrec

n=1
k2n precn( )

2
+ qrecn( )

2
)( ),

(A1)

where M = | yi{ }| is the cardinality of the spatial domain of the image.
The control variables are the components of the vectors prec and qrec,
that is, the Fourier amplitudes precn and qrecn for n = 1,…,Nrec.

Using the shortcut notation Ii = I yi;Ψrec ⋅ ;prec,qrec( )( ), we present the
expressions for the partial derivatives of the cost function (A1) with
respect to the Fourier amplitudes corresponding to the nth harmonic:

∂
∂precn

Cost prec,qrec( ) = −δx∑
M

i=1

∂
∂precn

|Ii|2( )
2
+ 2ζk2np

rec
n ,

∂
∂qrecn

Cost prec,qrec( ) = −δx∑
M

i=1

∂
∂qrecn

|Ii|2( )
2
+ 2ζk2nq

rec
n .

(A2)

The partial derivatives in Equation (A2) can be expressed as follows:

∂
∂precn

|Ii|2( )
2
= 2|Ii|2 Ii

∂Ii
∂precn

+ Ii
∂Ii

∂precn
( ),

∂
∂qrecn

|Ii|2( )
2

= 2|Ii|2 Ii
∂Ii

∂qrecn
+ Ii

∂Ii
∂qrecn

( ),

(A3)

where the overbar denotes complex conjugate.

In turn, the partial derivatives of Ii in Equation (A3) can be found from
Formula (14) recast as

Ii =
1
F
∫ u(x)exp −

iπ
F
x − yi( )

2 + iΨrec s x, yi( );prec,qrec( )[ ]wI x − yi( ) dx

≡ ∫Ki(x)exp iΨrec s x, yi( );prec,qrec( )[ ] dx,

Ii =
1
F
∫ u(x) exp

iπ
F
x − yi( )

2 − iΨrec s x, yi( );prec,qrec( )[ ]wI x − yi( ) dx

≡ ∫Ki(x)exp −iΨrec s x, yi( );prec,qrec( )[ ] dx,

where

Ki(x) =
1
F
u(x)exp −

iπ
F
x − yi( )

2
[ ]wI x − yi( ).

Accordingly,

∂Ii
∂precn

= i∫Ki(x)exp iΨrec s x, yi( );prec,qrec( )[ ]
∂Ψrec s x, yi( );prec,qrec( )

∂precn
dx,

∂Ii
∂precn

= −i∫Ki(x)exp −iΨrec s x, yi( );prec,qrec( )[ ]
∂Ψrec s x, yi( );prec,qrec( )

∂precn
dx.

(A4)
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Two other partial derivatives in Equation (A3) are obtained by replacing
∂/∂precn with ∂/∂qrecn in Equation (A4).

Further, the counterpart to Formula (15) for Ψrec has the following form:

Ψrec s x, yi( );prec,qrec( ) =∑
Nrec

n=1
precn cos kns x, yi( )( ) + qrecn cos kns x, yi( )( )[ ],

and hence,

∂Ψrec s x, yi( );prec,qrec( )

∂precn
= cos kns x, yi( )( ).

∂Ψrec s x, yi( );prec,qrec( )

∂qrecn
= sin kns x, yi( )( ).

(A5)

Substituting Equations (A3)–(A5) into Equation (A2), we obtain ex-
pressions for the components of the cost function gradient required by
the optimiser.

Appendix B: Shift of the Image Due to Linear Phase

We demonstrate that the perturbation Ψ(s(x, z)) that is linear in the
screen coordinate results in an azimuthal shift of the image that is
proportional to the slope of Ψ. Consider a single point scatterer
ν(z) = δ(z), where δ(z) is the Dirac delta function. We define
Ψ(s(x, z)) = ms, with m ∈ R, where s(x, z) = ξx + (1 − ξ)z for some
relative screen elevation ξ ∈ [0, 1]. Substituting the signal definition
from Equation (11) into the expression for SAR image in Equation (14)
and using the rectangular window wrect, see Equation (13), we obtain

I(y) = ∬ wrect(x − y)wrect(x − z)exp i
π
F
(x − z)2 − (x − y)2[ ]( )

exp −im ξx + (1 − ξ)z[ ]( )δ(z) dz dx

=∫wrect(x − y)wrect(x)exp i
π
F
x2 − (x − y)2[ ]( )exp(−imξx) dx

(A6)

Similarly to Equations (11) and (14), the product of the characteristic
functions in Equation (A6) restricts the integration domain. For a given
y ∈ R, the integration bounds are x ∈ [L(y),U(y)], where:

L(y) =max −
F
2
, y −

F
2

( ), U(y) =min
F
2
, y +

F
2

( ). (A7)

To ensure L(y) ≤ U(y), we restrict the image domain to |y| ≤ F. Outside
of it, we get I (y) ≡ 0 because the supports of the window functions in
Equation (A6) do not intersect.

The exponential in Equation (A6) can be factored as:

exp i
π
F
2xy − y2( ) − imξx( ) = exp −i

π
F
y2( )exp i

2πx
F

y −
Fmξ
2π

( )[ ] (A8)

Defining

ỹ = y −
Fmξ
2π

, (A9)

We transform Equation (A6) into

I(y) = exp −i
π
F
y2( )∫

U(y)

L(y)
exp i

2πxỹ
F

( )dx. (A10)

In order to simplify Equation (A10), we centre the integration interval
by introducing the midpoint M(y) = 1

2 (L(y) + U(y)) = y
2 and width

F̃(y) = U(y) − L(y) = F − |y|. Introducing x̃ such that x = M(y) + x̃

and x̃ ∈ − F̃(y)/2, F̃(y)/2[ ], we obtain:

I (y) = exp −i
π
F
y2( )exp i

2πM(y)ỹ
F

( )∫

F̃(y)/2

−F̃(y)/2
exp i

2πxỹ
F

( )dx̃

= exp −i
π
F
y2( )exp −i2πM(y)ỹ( )F̃(y)sinc π

F̃(y)
F
ỹ( ),

(A11)

where sinc(x) = sin(x)/x. From Equations (A9) and (A11), it can be seen
that the central peak of |I(y)| corresponds to ỹ = 0, that is, y = Fmξ

2π .
Given that the point scatterer ν(z) = δ(z) is located at z = 0, this for-
mula yields the expression for the shift magnitude due to a linear phase
screen density function Ψ(s) = ms.
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