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Abstract For a spaceborne synthetic aperture radar (SAR) operating on low frequencies (such as P‐band),
turbulence in the Earth's ionosphere may cause significant phase perturbations of the interrogating signals.
These perturbations depend on both the antenna and target coordinates and may lead to substantial image
distortions. In our previous work, we proposed a variational approach to correcting the distortions that we called
the transionospheric SAR autofocus. It required solving a complex optimization problem but performed well in
numerical tests. As the optimization problem may be considered a hurdle, in the current work we compare the
performance of the transionospheric SAR autofocus against that of a non‐variational approach. The latter
combines partial focusing with traditional autofocus where the phase perturbations are assumed to depend only
on the antenna coordinates but not the target coordinates. In most cases, the optimization‐based SAR autofocus
produces images with better articulated peaks (i.e., peaks that are taller and narrower) as compared to those by
the alternative approach.

1. Introduction
Synthetic aperture radar (SAR) imaging relies on accurate reconstruction of the phase history of radar signals
reflected off the target. The phase history (or travel time history) is prone to perturbations of various origins. In
particular, the ionospheric turbulence is a key source of phase perturbations for spaceborne SAR instruments
(Garnier & Sølna, 2013; Gilman & Tsynkov, 2017; Gomba et al., 2015; Kim et al., 2015; Pi, 2015). If not
compensated for, these phase perturbations may lead to significant distortions of the resulting SAR images. The
mitigation of these distortions is known as SAR autofocus, the hardest part of which is estimation of the unknown
perturbation function affecting the phases of the received radar signals.

Traditional autofocus for SAR corrects the phase perturbations due to disturbances of the antenna trajectory. A
number of well‐known methods, such as the map‐drift and phase gradient autofocus (PGA), have been suc-
cessfully used for decades. However, when phase perturbations are accumulated along the signal travel path,
which is the case for transionospheric radar, these methods cannot be applied directly. The reason is that the phase
correction generated by traditional autofocus (e.g., PGA) depends only on the antenna coordinate (slow time),
whereas the signal path through the turbulent ionosphere (and hence, the accumulated phase perturbation) de-
pends on both the antenna and target coordinates. As shown in Gilman and Tsynkov (2023b) and Kim
et al. (2015), if the compensation of phase perturbations does not take into account their dependence on target
coordinates, the residual distortions of images appear significant.

The interest to autofocus algorithms for transionospheric radars is motivated in part by the upcoming launch of the
world's first satellite‐based P‐band SAR on the BIOMASS mission (Betancourt‐Payan et al., 2022; Biomass
ESA's forest mission, 2024; Heliere et al., 2014; Li et al., 2015), as well as the potential dual‐use applications of
low‐frequency SAR. A recent review paper (Ji et al., 2024) emphasizes that the defocusing of SAR images due to
the scintillation phase error (i.e., turbulent fluctuations of electron density in the ionosphere) “remains an
intractable issue that has not been well mitigated by autofocus processing.”

In our work (Gilman & Tsynkov, 2023b), we have developed a variational autofocus algorithm for transiono-
spheric SAR imaging. It seeks to enhance the image sharpness by varying the parameters of the ionospheric phase
correction built into the SAR signal processing procedure. Yet it is not equivalent to, say, the full waveform
inversion where the image itself is obtained as a result of optimization. In Gilman and Tsynkov (2023b), the image
is rather built using the conventional SAR reconstruction (matched filter and summation along the synthetic
array) augmented with the correction of the unknown phase. The best focusing is then obtained by choosing the
correction that would minimize a special sharpness‐promoting cost function applied to the image.
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The phase correction for the methodology of Gilman and Tsynkov (2023b) is defined with the help of a phase
screen. Phase screens are used routinely to model the effect of the ionosphere on the propagation of radar signals.
A phase screen is a 2D surface (plane) positioned at a certain elevation above the Earth. A bivariate screen density
function defined on the screen realizes the phase perturbations for the signals whose travel paths cross the screen.
Thus, the screen allows for the dependence of perturbations on both the antenna and target coordinates. In work
(Gilman & Tsynkov, 2023b), the screen density function represents the phase perturbations due to the ionospheric
turbulence, and Fourier amplitudes of this function serve as control variables for optimization.

Of course, any phase screen is only an approximation aimed at simplifying the analysis. It replaces the graduate
accumulation of phase perturbations along the signal travel path with a one‐time jump at the intersection of the
travel path with the screen. Therefore, the use of the phase screens for the analysis of specific ionospheric ap-
plications requires a justification. In Gilman and Tsynkov (2024), we provide a justification for employing the
phase screens in the context of transionospheric autofocus. Also, the elevation of the screen is a key parameter of
the formulation. It is often suggested that the screen be positioned in the region of the maximum electron con-
centration in the ionosphere. In Gilman and Tsynkov (2023a), we proposed a methodology (based on interfer-
ometric processing) for placing the screen where the ionosphere is most turbulent.

The transionospheric autofocus of Gilman and Tsynkov (2023b) has performed well in a variety of numerical
tests. However, the optimization problem that needs to be solved in Gilman and Tsynkov (2023b) to enable good
focusing is complex. It is non‐convex (has multiple local minima), and computing the cost function could be
numerically expensive. Therefore, one may be interested in looking for viable alternatives. It turns out though that
unlike the plethora of well established traditional autofocus techniques aimed at correcting the SAR image
distortions due to the antenna trajectory errors, very few methods have beed proposed in the literature specifically
for correcting the distortions of spaceborne SAR images due to the ionospheric turbulence. The difficulty one
needs to overcome is how to adequately take into account the dependence of phase perturbations not only on the
antenna coordinates, but also the target coordinates.

A two‐step focusing approach introduced in Ji et al. (2022) and Kim et al. (2015) aims at addressing this goal. The
first step is transfer of the data to the phase screen level (this operation is also referred to as partial focusing). It is
followed by the application of phase corrections to the transferred data by means of a conventional autofocus. The
algorithm of Kim et al. (2015) uses the Faraday rotation angle to reconstruct the screen density and hence requires
the polarimetric data. Work (Ji et al., 2022) adopts the traditional autofocus approach where the information from
multiple range bins is combined in order to improve the performance in the presence of the clutter and noise.
Neither of the two methods needs optimization, resulting in an easier numerical implementation. Yet no quan-
titative estimates of the corresponding focusing improvements were reported in either (Kim et al., 2015) or (Ji
et al., 2022).

Thus, to compare the variational autofocus of Gilman and Tsynkov (2023b) against the two‐step focusing of Ji
et al. (2022), we need to conduct some additional analysis of the latter. We do this by considering the imaging
operator of Ji et al. (2022). In particular, we find that in the absence of phase perturbations, the resolution of the
system is the same as that for the standard SAR imaging. At the same time, when the phase perturbations are
present, the two‐step procedure cannot fully compensate for them and allows for residual distortions. We present
an analytic estimate of those. Moreover, we perform a series of numerical simulations showing that the
optimization‐based method of Gilman and Tsynkov (2023b) yields better focused images than the two‐step al-
gorithm of Ji et al. (2022).

To guarantee that the comparison between the two methods is fair, we also need to make sure that both are applied
to the same setting. For either (Gilman & Tsynkov, 2023b) or (Ji et al., 2022), we consider a closed‐form
autofocus problem, that is, assume that no external data about the phase screen are available. As far as the
target, the two‐step focusing method relies on using multiple range bins with exactly one dominant point scatterer
in each. This is a typical requirement for the PGA [and, likewise, for its stripmap modification known as the phase
curvature autofocus (PCA)], which is an essential part of the two‐step method. In reality, however, this
assumption does not hold, in particular, due to the clutter. The effect of the latter is suppressed by combining the
phase information from multiple range bins (see (Jakowatz et al., 1996) for detail). Contrary to that, the
optimization‐based technique of Gilman and Tsynkov (2023b) does not require multiple bins and demonstrates
good performance for a single bin with several scatterers in it. Yet one more difference between these two
techniques is that they are formulated for different SAR imaging modes: stripmap versus spotlight for the
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optimization based and two‐step (also called screen projection) methods, respectively. Thus, to put both methods
on the same footing, we extend the optimization‐based approach of Gilman and Tsynkov (2023b) to work with
multiple range bins and replace PGA with PCA for the screen projection method to work with the stripmap data.
Then, the performance of each autofocus methodology is evaluated and compared to one another using the
statistics of the relevant image sharpness metrics, such as the integrated sidelobe ratio (ISLR) and height of the
peak due to a point scatterer.

The analysis in this paper is performed for the range‐compressed setting and stripmap imaging mode as described
in Gilman and Tsynkov (2023a, 2023b), see also Figure 1. Unlike in Ji et al. (2022) and Kim et al. (2015), we use
the time domain in the azimuthal direction; this makes it easier to analyze the geometry of rays in a slant plane.
The details of the problem setup are given in Section 2. Section 3 discusses the properties of the SAR imaging
operator in the presence of phase perturbations realized by means of a phase screen. We formulate the autofocus
problem with multiple range bins in Section 4. The optimization‐based approach is described in Section 5, while
the two‐step algorithm is outlined in Section 6. In Section 7, we run a series of numerical experiments to compare
the performance of the two methods. Section 8 summarizes the results of the study.

2. Governing Equations
In this section, we consider a range compressed domain associated with a single range bin. We also introduce the
corresponding slant plane, see Figure 1. The reflectivity, SAR image, and phase screen density are represented by
univariate functions (see (Gilman & Tsynkov, 2023a; Gilman & Tsynkov, 2023b) for more detail). For the
stripmap SAR imaging subject to phase distortions, the range‐compressed antenna signal u(x) is expressed via the
reflectivity in the range bin μ(z) as follows:

u(x) =∫

x+F/2

x− F/2
exp ( iπ(x − z)2/F) ⋅ exp[− iΨ(s(x, z))]wu(x − z)μ(z) dz, (1)

while the regular SAR image I1( y) is obtained from u(x) by one‐step reconstruction using a matched filter:

I1( y) =
1
F
∫

y+F/2

y− F/2
exp (− iπ(x − y)2/F) ⋅ exp[iΨrec (s(x,y))]wI(x − y)u(x) dx. (2)

Figure 1. Three‐dimensional geometry of transionospheric SAR imaging with a phase screen. Two adjacent range bins are
shown. The azimuthal coordinates y, z, and s are used as arguments of the image, scatterer reflectivity, and phase screen
density function, respectively, whereas x denotes the antenna position. Different range bins are distinguished by the index k, see
Section 4; however, since the range coordinate is not essential in this work, there is no specific notation for it. The angles and
distances are not to scale.
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The complete derivation of Equations 1 and 2 can be found in Gilman and Tsynkov (2023a), Appendix A. In
particular, the dimensionless azimuthal coordinates x, y, z, and s are normalized by the resolution size ΔA given by

ΔA = πRc/(ω0LSA). (3)

The quantity F = LSA/ΔA ≫ 1 is the dimensionless length of the synthetic aperture. Further, R is the distance
between the antenna track and the target (also called distance of closest approach), c is the speed of light, and
ω0 = 2πf0 is the radar carrier frequency. The unknown phase screen density Ψ(s), as well as the reconstruction
phase Ψrec(s), are functions of the screen coordinate s, which, in turn, is a function of the orbit and ground
coordinates:

s(x, z) = ξx + (1 − ξ)z, (4)

where ξ is the ratio of the screen and orbit altitudes such that 0 ≤ ξ ≤ 1. Hereafter, ξ is assumed known (see, for
example, (Gilman & Tsynkov, 2023a)). Finally, wu(⋅) and wI(⋅) are the window functions that will be taken the
same:

wu ≡ wI ≡ w.

In this work, we consider either rectangular or parabolic windows:

w(x) ≡ wrect(x) = {
1, if |x|≤ F/2,

0, otherwise,
(5a)

w(x) ≡ wparab(x) = wrect(x)(1 − 4
x2

F2). (5b)

The phase perturbation Ψ(s) in Equation 1 is represented by means of a finite Fourier series:

Ψ(s) = Re∑
N

n=1
an exp ( ikns + iφn) =∑

N

n=1
(pn cos(kns) + qn sin(kns)), (6)

where an > 0, kn > 0, φn, pn, and qn are real.

The L2 norm of Ψ, referred to as magnitude of perturbations, is an important parameter that determines the level of
image distortions:

as = (∑

N

n=1
a2
n)

1/2

. (7)

It depends on the ionospheric conditions, as well as the radar carrier frequency ω0. For a P‐band radar, the values
of as ≳ π correspond to a high level of image distortions (Gilman & Tsynkov, 2023b; Gilman et al., 2017). Note
that in the context of transionospheric SAR imaging, the level of ionospheric distortions is often characterized by
the quantity known as CkL, whereas in this work, the level of distortions is given by the magnitude of the
perturbation phase given by Equation 7. To obtain a relation between these two descriptions, in our earlier work
(Gilman & Tsynkov, 2023b, Appendix A) we used the Rino scintillation model, see (Rino, 1979, Formula 19),
and certain realistic values of the ionospheric parameters (Meyer et al., 2016), in particular, v = 3 and r0 = 5 km
for the spectral index and outer scale of the ionospheric turbulence, respectively. For as = 2π typical to both
(Gilman & Tsynkov, 2023b) and this publication, we found the corresponding CkL to be about 1032. This value is
relatively high, see, for example, (Secan & Bussey, 1994), but even higher values of CkL have also been reported
in the literature and used in the context of transionospheric SAR imaging, see (Carrano et al., 2012; Ji et al., 2022;
Meyer et al., 2016; Reeves et al., 2019).
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In the two‐step approach of Ji et al. (2022) and Kim et al. (2015), also called screen projection method, the
reconstruction Equation 2 is replaced with the following two:

p(s) =
1
ηF

∫

s+ηF/2

s− ηF/2
exp (− iπ(x − s)2/(ηF))w(x − s)u(x) dx, (8)

I2( y) =
1
ξF
K2∫

y+ξF/2

y− ξF/2
exp (− iπ( y − s)2/(ξF)) exp(iΨrec(s))w(y − s)p(s) ds, (9)

where η = 1 − ξ, and K2 is a normalization constant defined later in Equation 19. Each of the two steps given by
Equations 8 and 9 is similar to the full reconstruction given by Equation 2, but with the following modifications.
At the first step (8), also called the screen projection, the reconstruction phase Ψrec is not present and the distances
are scaled as (R, LSA) → (ηR, ηLSA), see Figure 2. It is this similarity that allows one to interpret the new
function p(s) defined by Equation 8 as “data transferred to the screen elevation” or “partially focused image,” see
(Ji et al., 2022; Kim et al., 2015). At the second step (9), the scaling of the distances is (R, LSA) → (ξR, ξLSA) and
the reconstruction phase Ψrec(s) is merged with p(s) into the “corrected signal,” exp(iΨrec(s)) p(s). The data flow
schematic for the one‐step and two‐step imaging techniques is shown in Figure 2. Further justification for using
the transforms (8) and (9) instead of the standard matched filter (2) is provided in Section 3, see Equations 17–19
and the discussion around them.

The advantage of the two‐step formulation (8)–(9) is that unlike in (2), the perturbation term in (9) is similar to
that due to the antenna trajectory errors. Hence, traditional SAR autofocus algorithms that do not require opti-
mization (such as PGA or PCA, see (Jakowatz et al., 1996; Wahl et al., 1994)) can be applied to derive Ψrec.

3. SAR Imaging Operator in the Presence of Phase Perturbations
The relation between the image I1 and reflectivity μ given by Equations 1 and 2, as well as the relation between I2
and μ expressed by Equations 1, 8, and 9, can be represented as integral operators:

Iα( y) =∫

∞

− ∞
Wα( y, z)μ(z) dz, α∈ {1, 2}, (10)

also called the imaging operators. For the simplest case of rectangular windows, see Equation 5a, the imaging
kernels Wα can be expressed as follows:

Figure 2. Data flow for the traditional one‐step SAR imaging (green block arrow, see Equation 2) and two‐step imaging that
involves screen projection (blue block arrows, see Equations 8 and 9), with the apertures for the first and second steps
highlighted. The gray upward‐pointing block arrow is common for both scenarios and corresponds to Equation 1.
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W1 =
1
F
∫
D1

exp ( iϕ1 + iϕ1,Ψ) dx, (11a)

W2 =
1

ξηF2K2∫∫
D2

exp ( iϕ2 + iϕ2,Ψ) dx dsd, (11b)

where

D1 = {x | (|x − z|≤ F/2)∩ (|x − y|≤ F/2)}, (12a)

D2 = {(x, sd) | (|x − z|≤ F/2)∩ (|x − sd|≤ ηF/2)∩ (|sd − y|≤ ξF/2)}. (12b)

In Equations 11b and 12b, we used sd instead of s to avoid confusion with s(x, z) in Equation 1.

In Equation 11, the phases ϕ1 and ϕ2 are due to the propagation terms and matched filters in Equations 1, 2, 8, and
9 and hence do not contain Ψ or Ψrec. The phase ϕ1 is represented as

ϕ1 =
2π
F
(y − z)(x −

y + z
2

). (13)

For |y − z| ≲ 1, the length of the interval D1 defined in Equation 12a is close to F, and the integration in
Equation 11a when ϕ1,Ψ = 0 (i.e., in the absence of perturbations) yields the familiar sinc expression for the
imaging kernel:

W1( y, z)|Ψ=Ψrec= 0 ≈ sinc(π( y − z)), where sinc ζ =def sinζ
ζ

. (14)

For |y − z| ≫ 1, the phase ϕ1 given by Equation 13 leads to fast oscillations under the integral in Equation 11a.
Therefore, we will have |I1|≪ 1 far away from strong scatterers.

The second term under the exponential on the right‐hand side of Equation 11a, ϕ1,Ψ, accounts for phase dis-
tortions. To estimate the residual phase distortions in the case of an ideal reconstruction, that is, when Ψrec = Ψ in
Equation 2, we introduce a dimensionless spatial scale LΨ of turbulence‐induced phase perturbations and assume
that 1 ≪ LΨ ≪ F. Then, we can approximate ϕ1,Ψ by Taylor's formula for |y − z| ≲ 1:

ϕ1,Ψ = Ψrec (s(x,y)) − Ψ(s(x, z)) = Ψ(s(x,y)) − Ψ(s(x, z))

≈ Ψʹ (s(x, z)) ⋅ (s(x,y) − s(x, z)) ≈ ηΨʹ (s(x, z)) ⋅ ( y − z).
(15)

Consequently, for the average absolute value of ϕ1,Ψ we can write:

|ϕ1,Ψ| ∼ η
as
LΨ

. (16)

Carrying out an analysis similar to Equations 13–16 for W2 given by Equation 11b would be more difficult
because of a complicated geometry of D2 in Equation 12b. We thus simplify the scenario: take
Ψ(s) = Ψrec(s) = 0, μ(z) = μ0δ(z − z0), and substitute Equation 1 into Equation 8. This yields:

pclean (sd) ≈ μ0 exp ( iπq2
/F)∫

1/2

− 1/2
exp(2iπηqx̆ − iπηξFx̆2) dx̆

≈
μ0̅̅̅̅̅̅̅̅
ξηF

√ exp(
iπq2

ξF
−

iπ
4
), (17)

where x̆ = (x − sd)/ (ηF) and q = sd − z0, |q| ≤ ξF/2. The last approximation in Equation 17 is obtained using
the method of stationary phase under the assumptions F ≫ |q| and ηF ≫ 1. Up to a constant factor of
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(ξηF)− 1/2 exp(− iπ/4), the expression on the right‐hand side of Equation 17 coincides with an unperturbed signal
due to the point scatterer μ(z) = μ0δ(z − z0) in the case of antenna at screen elevation. This signal can be ob-
tained by setting Ψ = 0 in Equation 1, replacing F with ξF and trajectory variable x with screen variable s, using
the rectangular window given by Equation 5a, and substituting μ(z) = μ0δ(z − z0):

uξ(s) =∫

s+ξF/2

s− ξF/2
exp ( iπ(s − z)2/ξF)μ0δ(z − z0) dz = μ0 exp (

iπ(s − z0)2

ξF
). (18)

Equation 18 holds for |s − z0| ≤ ξF/2. We also see that the right‐hand side of Equation 17 is an azimuthal chirp
with the rate π(ξF)− 1. Hence, the first exponential term in the integrand of Equation 9 is a correct matched filter
formulation for the “signal” pclean (sd) given by Equation 17, and by choosing the normalization factor in
Equation 11b as

K2 =
̅̅̅̅̅̅̅̅
ξηF

√
exp(iπ/4), (19)

we arrive at

W2( y, z)|Ψ=Ψrec=0≈W1( y, z)|Ψ=Ψrec=0 ≈ sinc(π( y − z)),

see Equation 14. This means, in particular, that in the absence of phase perturbations, the resolution of the two‐
step method, as formulated in Equations 8 and 9, is the same as that of the conventional reconstruction using
Equation 2.

To estimate ϕ2,Ψ in Equation 11b, we consider the case of y = z and introduce su = s(x, z), see Equation 4 and
Figure 3. Then, the phase ϕ2,Ψ can be expressed as

ϕ2,Ψ = Ψrec (sd) − Ψ(su),

where Ψrec (sd) and Ψ(su) come from Equations 1 and 9, respectively. Accordingly, the factor (s(x,y) − s(x, z)) in
Equation 15 is replaced with sd − su. The typical values of |sd − su| are of the order of ξηF, which is the size of
the domain of all su for a fixed sd (in Figure 3, this domain is shown by a thick horizontal blue line). Specifically,
the value of |sd − su| averaged over all (sd, su) is given by

Figure 3. The geometry of rays for the two‐step reconstruction. The red curve illustrates the screen density function Ψ(s). The
blue arrows illustrate the rays involved in the transforms Equations 1, 8, and 9 for the case of y = z. The domain of all
relevant values of su for a given sd is shown by a thick horizontal blue line. The angles and distances are not to scale.
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|sd − su| = Ks ⋅ ξηF, (20)

where Ks is a factor of order one that may also depend on ξ. For ξ = η = 0.5, it is easy to show that Ks = 1/3,
and we assume that for other realistic values of ξ this factor does not change significantly. Taking into account that
the right‐hand side of Equation 20 may exceed the valid range of arguments for the Taylor's formula used in
Equation 15, we can write:

|ϕ2,Ψ| ∼ min(
as
LΨ
KsξηF, as, 2π). (21)

For realistic magnitudes as, Equation 21 yields a significantly larger estimate of the residual phase distortions as
compared to Equation 16. In other words, even for a perfect reconstruction of the screen density, that is, for
Ψrec = Ψ, the compensation of phase perturbations in the two‐step reconstruction procedure Equations 8 and 9
appears much less accurate than that in the one‐step procedure of Equation 2. We will refer to this effect as
corruption of the screen projected data. It takes place when the signal u(x) is transferred to the screen level by
means of Equation 8, see Appendix A.

The plots in Figure 4 show several examples of SAR images I1 and I2 for various scenarios. In the case of a
perfect reconstruction, Ψrec ≡ Ψ, the peak due to a point scatterer in I1 appears sharper than that in I2 in terms of
both its width and level of sidelobes. This corroborates numerically the foregoing analysis of the residual phase
distortions. Moreover, it is well known that an uncompensated phase perturbation linear in azimuth (also called
trend or phase ramp) results in a shift of the image as a whole, see, for example, (Gilman & Tsynkov, 2017;
Jakowatz et al., 1996). Hence, the shift of the peak of I2[Ψ, Ψ] observed in the top panel of Figure 4 can be seen as

Figure 4. SAR images due to a point scatterer μ(z) = δ(z − z0). The notations Iα[Ψ, Ψ] and Iα[Ψ,0], α ∈ {1,2}, see
Equation 10, correspond to Ψrec = Ψ and Ψrec = 0, respectively, whereas Iα [0,0] ≈ sinc( y − 241) is the unperturbed
case: Ψrec = Ψ = 0, see Equation 14. The perturbation level is high: as = 2.5π. On the decibel (i.e., lower) panel, the plot for
I2[Ψ, Ψ] is shifted horizontally to make its maximum position coincide with that of I1[Ψ, Ψ]. The unit along the horizontal axis
is the resolution size ΔA, see Equation 3.
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evidence of inaccurate reconstruction of the large‐scale part of Ψrec in the two‐step alogirithm, resulting in a non‐
zero average of [Ψ(s) − Ψrec(s)]ʹ over the interval of s around s = 241.

To quantify the (detrimental) effect of signal corruption on the screen projection approach, we perform a
simulation where we vary the magnitude of phase perturbations by taking several different values of as in
Equation 7. For each specific as, we generate 10 realizations of the screen density function Ψ(s) by choosing a
random set of i.i.d. phases φn in Equation 6, all uniformly distributed on [0,2π). For each Ψ(s), we create 30
targets μ(z) with a randomly located point scatterer, and then build the images I1 and I2 using the ideal
reconstruction, that is, Ψrec = Ψ. We calculate the following three common peak metrics for the resulting images:
full width at half magnitude (FWHM), integrated sidelobe ratio (ISLR), and peak height. The plots of these
metrics averaged over all screen realizations and point scatterer locations are presented in Figure 5. We see that as
the magnitude as increases, the sharpness metrics of the peaks in I2 deteriorate more rapidly as compared to those
of I1, especially in terms of ISLR. Note that in the framework of our mathematical model, the ideal reconstruction
Ψrec = Ψ requires no autofocus as we merely set the reconstruction phase Ψrec equal to the original phase
perturbation Ψ (that cannot be assumed known in a real‐life setting). Yet the ideal reconstruction Ψrec = Ψ can be
thought of as the best possible outcome of any autofocus algorithm. Hence, we conclude that even in the best case
scenario, the image quality of I2 shall be expected to be inferior to that of I1.

4. Autofocus With Multiple Range Bins
As in practice the phase perturbation Ψ is not known, an autofocus algorithm shall be developed and implemented
that would generate a reconstruction phase Ψrec(s) ≈ Ψ(s) and thus yield a well‐focused image I1( y) or I2( y).
Different autofocus methodologies require different amounts of data. Traditional methods such as PGA and PCA
(the latter is used at the second step of the two‐step approach, see Equation 9) need multiple range bins to enable
iterative refinement and average out the effects of clutter and noise (Section 6). These methods work well when
each range bin contains a single strong point scatterer. In contrast, the optimization‐based autofocus of Gilman &
Tsynkov (2023b) works with a single range bin and arbitrary number of scatterers. To make a fair comparison
between the two methods, we have extended the optimization‐based approach to the case of multiple range bins
(see Section 5), where the reflectivity function in each bin contains exactly one strong point scatterer plus clutter.
This is a preferred scenario for the two‐step method because its second step relies on PCA.

Let the range bins be indexed by k, 1 ≤ k ≤ K. We generate a set of reflectivity functions {μ(k)(z)} that give rise to
the antenna signals {u(k)(x)}. The realizations of {μ(k)(z)} and {u(k)(x)} for different values of k represent different
range bins of a SAR image, similarly to the traditional PGA (Jakowatz et al., 1996, Section 4.5). Note that in the
actual 3D geometry with a phase screen, the interrogating and reflected signals for different range bins cross the
screen at different locations, see Figure 1. However, the minimal spacing between the reference range coordinates
of those bins is of the order of the range resolution, which is much shorter than the typical spatial scale of
ionospheric turbulence. This allows us to assume one and the same Ψ(s) in the signal model (1) and, similarly, use
a single Ψrec(s) in the reconstruction algorithm (2),(4) or (8),(9) for the entire set {u(k)} . This setup is an extension
of the one in Gilman and Tsynkov (2023b) where a single range bin was considered.

Figure 5. Comparison of average peak sharpness metrics for I1 and I2 for various perturbation magnitudes. The blue and
purple curves correspond to the rectangular and parabolic windows, respectively, see Equation 2.
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To define the speckle and noise in {μ(k)(z)} and {u(k)(x)} , we first introduce nC as a complex‐valued random vector
with dimension equal to that of the discretization of quadratures in Equations 1 and 2. The real and imaginary
parts of nC are arrays of independent standard Gaussian variables, and two different realizations of nC, called
nCclutter and nCnoise, will be used to define the speckle and noise in each bin. We will denote the intensity of the clutter
and noise by aclutter ≥ 0 and anoise ≥ 0, respectively. The reflectivity in each bin is defined by

μ(k)clutter(z) = aclutter ⋅ (
d
2
)

1/2

⋅ nCclutter, (22)

μ(k)(z) = m(k)δ( z − z(k)) + μ(k)clutter(z). (23)

In Equation 22, d is the discretization grid size, whereas z(k) and m(k) in Equation 23 are the coordinate and
(complex) amplitude of the point scatterer in the k‐th range bin. This normalization aims at equalizing the
magnitudes of the antenna signals u(x) due to the clutter and due to a point scatterer is the case where the in-
tensities are equal: aclutter = |m(k)|. Altogether, the forward model for multiple bins is as follows:

u(k)signal(x) = ∫

x+F/2

x− F/2
exp ( iπ(x − z)2/F) ⋅ exp[− iΨ(s(x, z))]μ(k)(z) dz,

u(k)noise(x) = anoise ⋅ (
1
2
)

1/2

⋅max(
⃒
⃒u(k)signal(x)

⃒
⃒) ⋅ nCnoise,

u(k)(x) = u(k)signal(x) + u
(k)
noise(x).

(24)

The images I(k)1 ( y) for each bin are obtained by applying Equation 2 to u(k) of Equation 24, whereas to obtain
I(k)2 ( y), Equations 8 and 9 are applied to Equation 24 instead. Both methods require the reconstruction phase
Ψrec(s) that will be derived using one of the two autofocus approaches presented in Sections 5 and 6.

5. Optimization‐Based Autofocus
In Gilman and Tsynkov (2023b), we have developed and tested a variational autofocus methodology where the
reconstruction phase Ψrec(s) was represented as a finite Fourier sum, similar to Ψ(s) of Equation 6:

Ψrec(s) =∑
Nrec

n=1
(prec
n cos ( krecn s) + q

rec
n sin ( krecn s)). (25)

The original perturbation spectrum in Equation 6 and reconstruction spectrum in Equation 25 can be the same or
they can be different, and we have shown in Gilman and Tsynkov (2023b) that the optimization‐based autofocus
works well in either case. In this work, for simplicity, we use the same wavenumber spectra for the perturbation
and reconstruction phase: Nrec = N and krecn = kn for all n. The output of the autofocus procedure is a set of the
Fourier amplitudes: {(prec

n , qrec
n ), n = 1,… ,Nrec} ; using these values in Equation 25, we can calculate Ψrec(s) for

any value of s. Examples of such reconstruction will be presented in Figures 8 and 9.

In the variational approach of Gilman and Tsynkov (2023b), we considered a single range bin, that is, K = 1, and
employed a sharpness‐enhancing cost function CostI [I1] = − ‖I1‖

4
4 that has appeared previously in Fienup and

Miller (2003), Morrison et al. (2007), Muller and Buffington (1974), and Tippie and Fienup (2009). The control
variables for optimization were prec

n and qrec
n . A regularization term CostΨ [Ψrec] = ζ‖(Ψrec)

ʹ
‖2

2 was added to the
cost function, where the value of the weight ζ = 0.7 was chosen experimentally. For the purpose of imple-
mentation, the overall cost function Cost[I1, Ψrec] = CostI [I1] + CostΨ [Ψrec] was discretized and written as
follows:

Cost[I1, Ψrec] = − d∑
J

j=1
|I1 ( yj, Ψrec)|4 + ζ∑

Nrec

n=1
k2n((p

rec
n )

2
+ (qrec

n )
2
), (26)
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where yj are the image sampling points, 1 ≤ j < J, d is the discretization step, and prec
n and qrec

n are the coefficients
in Equation 25.

To extend the variational approach of Gilman and Tsynkov (2023b) to the case of K range bins, we replace the

first term on the right‐hand side of Equation 26 with the average of CostI [I(k)1 ] = − ‖I(k)1 ‖4
4, which yields:

CostK [{I(k)1 }, Ψrec] = −
d
K
∑
K

k=1
∑
J

j=1
|I(k)1 ( yj, Ψrec)|4 + ζ∑

Nrec

n=1
k2n((p

rec
n )

2
+ (qrec

n )
2
). (27)

The minimization of the cost function Equation 27 is performed using an interior‐point method implemented via
the MATLAB fmincon function with an explicitly specified gradient and the initial guess prec

n = qrec
n = 0 for

all n, see Equation 25. Given that in general, neither Cost[I1,Ψrec] of Equation 26 nor CostK [{I(k)1 },Ψrec] of

Equation 27 can be expected to be convex, a gradient‐based optimizer started from a single initial guess may
converge to a local minimum rather than global minimum. To mitigate this problem, the multi‐start optimization
can be employed. Several examples of using it for transionospheric autofocus can be found in Gilman and
Tsynkov (2023b).

6. Screen Projection Autofocus
For the point scatterer reflectivity function μ(z) = μ0δ(z − z0), Equations 1 and 8 lead to the expression given
by Equation 17 for the partially focused image. It is possible to eliminate the unknown z0 and μ0 from Equation 17
by differentiating with respect to s:

(∠pclean(s))
ʺ ≈

2π
ξF
= const, (28)

where ∠ denotes the complex phase, that is, argument of a complex number.

When Ψ ≠ 0, the equality in Equation 28 is no longer guaranteed. However, one can introduce a correction by
extending the analogy between the unperturbed screen projected data given by Equation 17 and signal at screen
elevation, see Equation 18, to the case where the perturbation Ψ is present. Namely, with Ψ ≠ 0 the signal right
above the screen elevation, that is, at ξ + 0, would become (cf. Equation 18):

uξ(s) = ∫

s+ξF/2

s− ξF/2
exp ( iπ(s − z)2/ξF) exp(− iΨ(s))μ0δ(z − z0) dz

= μ0[exp (
iπ(s − z0)2

ξF
) exp(− iΨ(s))] for |s − z0|≤ ξF/2.

(29)

Taking the complex phase in Equation 29 and differentiating twice w.r.t. s, we obtain:

(∠uξ(s))ʺ =
2π
ξF
− (Ψ(s))ʺ . (30)

As, however, uξ(s) is not available, we replace it with the partially focused image p(s) of Equation 8.
(Approximation of uξ(s) by p(s) involves corruption of the screen projected data, as analyzed in Appendix A.)
Then, one can define the phase correction as

(Ψrec(s))ʺ =
2π
ξF
− (∠p(s))ʺ . (31)

We can integrate Equation 31 twice and substitute the resulting Ψrec(s) into the second part (9) of the two‐step
reconstruction algorithm.
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Instead of obtaining Ψrec from Equation 31 for a single chosen range bin, one can apply any established autofocus
technique to the image (9), for example, map drift (Jakowatz et al., 1996) or phase curvature autofocus (PCA)
(Wahl et al., 1994). This can be done when data from multiple range bins are available because most autofocus
algorithms use it to enable iterative refinement and average out the effects of clutter and noise in each individual
bin. Our implementation of PCA is as follows.

1. A uniform discretization grid sm is introduced for the screen coordinate swith size Δs on the order of or smaller
than azimuthal resolution:

sm+1 − sm = Δs ≲ 1.

2. A partially focused image p(k) (sm) is obtained for each range bin k, 1 ≤ k ≤ K, by applying Equation 8 to
Equation 24.

3. A relative signal magnitude threshold Qp is introduced, 0 < Qp < 1.
4. Domains of strong signal S

(k) are defined for each range bin k:

S
(k)
= {sm ||p(k) (sm+l)|≥ Qpmaxm|p(k) (sm)| for l∈ {− 1,0,1}}. (32)

In Equation 32, we require that the magnitude of the screen‐projected signal p(k) be sufficiently high at the grid
node sm and its two immediate neighbors, sm − 1 and sm+ 1.

5. For each m, let Km=
def{k|sm ∈ S

(k)
}.Then, we build three vectors pam, pbm, and pcm for each m by stacking

p(k) (sm − 1), p(k) (sm), and p(k) (sm+ 1) , respectively, for all k ∈ Km.
6. Second derivatives on the grid are convenient to approximate by central differences:

(∠p(sm))ʺ ≈
∠p(sm− 1) − 2∠p(sm) + ∠p(sm+1)

(Δs)2
. (33)

To approximate the entire Equation 31, we use the redundant data pam, pbm, pcm:

(Ψrec (sm))
ʺ ≈

2π
ξF
−

∠( (pam ◦ pcm) ⋅ (pbm ◦ pbm))
(Δs)2

, (34)

where ◦ denotes the Hadamard product of two vectors (component‐wise), p∗ is the complex conjugate of a vector
p, and ⋅ is the conventional dot product of complex‐valued vectors. To delineate Equation 34, we first notice that
the subtrahend on the right‐hand side of this equation can be expressed as follows:

∠( (pam ◦ pcm) ⋅ (pbm ◦ pbm))
(Δs)2

=
1

(Δs)2
∠[ ∑

k∈Km

p(k) (sm− 1) p(k) (sm+1) ( p̄(k) (sm))
2
]. (35)

The complex phase of each individual term in the sum on the right‐hand side of Equation 35 coincides with
Equation 33:

1
(Δs)2

∠(p(k) (sm− 1) p(k) (sm+1) ( p̄(k) (sm))
2
) =

∠p(k) (sm− 1) + ∠p(k) (sm+1) − 2∠p(k) (sm)
(Δs)2

.

Yet the overall complex phase on the right‐hand side of Equation 35 is not obtained as the average of individual
phases. Instead, we first average the redundant complex‐valued data by computing the full sum in Equation 35 and
then take the argument of the result. It is in this sense that the data redundancy brought into Equation 34 by the
vectors pam, pbm, and pcm lets one combine the approximations to (Ψrec (sm))

ʺ from different range bins. This is
similar to PGA that averages (∠p(s))́ over multiple bins (Jakowatz et al., 1996, eqs. (4.39), (F.13)).
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7. Rather than integrating the right‐hand side of Equation 34 twice, we derive Ψrec using a different approach
suggested by the Fourier representation in (25). We divide the Fourier transform of the right‐hand side of
Equation 34 by − k2n and take the inverse transform.

8. The screen projected data are updated in all bins using the output of step 7. Namely,

p(k)r+1 (sm) = p
(k)
r (sm) exp ( iΨrec

r (sm)),

where r is the iteration number.

We initialize the iteration by taking Ψrec
0 ≡ 0 and p(k)0 (sm) given by Equation 8 with u(k)(x) of Equation 24

substituted for u(x). Then, steps 5 through 8 are performed repeatedly for r = 0,1,2,… In our simulations, we
observed little improvement in the focusing quality after the first iteration. For this reason, we did not use any
stopping criteria and performed a fixed number of iterations instead — repeated the steps 5 through 8 10 times.

Note that once Ψrec has been obtained, it can also be used in the one‐step reconstruction (2). However, since the
focusing has been performed using the corrupted data {p(k)(s)} (see the discussion toward the end of Section 3,
around Figures 3 and 5), we can expect that the resulting reconstruction phase Ψrec(s) and corresponding images
will inherit the corruption.

7. Numerical Simulations
In this section, we conduct a statistical analysis of the autofocus performance for the optimization‐based and
screen projection approaches described in Sections 5 and 6, respectively. We generate a set of reflectivity
functions {μ(k)}, 1 ≤ k ≤ 250, each representing a single range bin. Each μ(k) contains clutter and a single point
scatterer at a random location, see Equation 23. We also generate a set of phase screens Ψ(m)(s), 1 ≤ m ≤ 30, by
taking random i.i.d. φn for all n in Equation 6. The Fourier amplitudes of each phase screen are scaled to achieve a
predefined value of as, see Equation 7. Then the resulting set of phase screens is combined with the set of
reflectivities {μ(k)}, where the level of clutter in Equation 23 is also scaled to a predefined value. When calculating
the antenna signal using Equation 24, the noise level is taken equal to that of clutter. This way, we obtain a set of
antenna signals U = {u(k) ( x;Ψ(m))} parametrized by the values of as and aclutter = anoise, that is,
U = U (aclutter,as). Hence, for each pair (aclutter,as), the set U (aclutter,as) contains 30 × 250 simulated antenna
signals u(x). Other parameters of the simulation setup are as follows: ξ = 0.5, F = 100, N = Nrec = 6,
k1 = 1.5 ⋅ (2π/F), kn = nk1, an = (k1/ kn)2a1, see (Gilman & Tsynkov, 2023b) for more details (see also a short
discussion following (7) regarding the CkL‐based characterization of the turbulence level).

For each u(k) ( x;Ψ(m)), we calculate the one‐dimensional images using the optimization‐based and screen pro-
jection autofocus, as well as the perfect reconstruction, that is, Ψrec ≡ Ψ(m). In each image we locate the peak due
to the point scatterer and, similarly to Figure 5, extract three peak metrics: FWHM, ISLR, and peak height. These
metrics, averaged over U (aclutter, as), are used in Figure 6 to compare the performance of the two focusing al-
gorithms. Each colored panel in Figure 6 consists of 5 × 6 colored tiles, where each tile represents a certain pair
of values (aclutter,as). The value of the metric averaged over U (aclutter,as) is shown using the color scale next to
the panel. The top and middle row of panels correspond to the optimization‐based and screen projection algo-
rithms, respectively, while the bottom row shows a signed difference between the two. The optimization‐based
algorithm yields smaller values of FWHM and ISLR and larger peak heights compared to the screen projection,
which indicates its overall superior performance.

Similar graphics can be used to assess the performance of the focusing algorithms individually. To do so for the
optimization‐based method, we replace the second row in Figure 6 with the one that corresponds to the exact
reconstruction of Ψ(s) in (2), that is, I1[Ψ, Ψ]. The result is shown in Figure 7 where we see that the color scale
values in the third row of panels turn positive, meaning that the performance of the optimization‐based approach
is inferior to the perfect reconstruction (as one could expect). Yet we observe a significantly smaller differences in
performance metrics in this plot as compared to Figure 6, especially for as ≤ 0.8π (see the fourth row of panels in
Figure 7).
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Another way to characterize the focusing performance is to analyze the worst case scenarios rather than consider
averages over U (aclutter, as). For example, the largest performance decrease of optimization‐based autofocus as
compared to perfect reconstruction (i.e., Ψrec = Ψ) in the case of U (0.2,0.8π) is 0.006 for FWHM, 0.06 for
ISLR, and 0.001 for peak height. These values are very small and indicate that at this level of perturbations and
clutter the optimization algorithm still works well even if there could be local minima of CostK (see (Gilman &
Tsynkov, 2023b) for more detail). The corresponding focusing deterioration by the screen projection algorithm is
1.3 for FWHM, 3.0 for ISLR, and 0.1 for peak height. These values are significantly larger. In Figure 8, we are
showing an example of reconstruction using the two autofocus techniques. This case corresponds to the largest
deterioration of ISLR demonstrated by I1 [Ψ, ΨSP] over the set U (0.2,0.8π).

Altogether, the optimization‐based autofocus yields a much better quality of focusing than the screen projection
does, at least for as ≲ 0.8π. However, for higher amplitudes of perturbations a simple gradient‐based optimizer can
converge to a local rather than global minimum of CostK . One such example from U (0.12,2π) (i.e., as = 2π) is
shown in Figure 9. In this case, the screen projection autofocus outperforms optimization, at least in terms of how
the phase screen density is reconstructed. This apparently implies that replacing the single‐bin cost function (26)
with the multi‐bin cost function (27) does not eliminate the problem of local minima (Gilman & Tsynkov, 2023b).
Local minima are a manifestation of non‐convexity of the cost function. In Gilman & Tsynkov (2023b), we have
shown that this issue can be mitigated substantially by multi‐start optimization, but with a considerable increase in
computational expense. In the future, we plan to look into employing other, more efficient optimization strategies
for the cost functions given by Equations 26 and 27.

8. Conclusions
We have evaluated and compared the performance of transionospheric SAR autofocus for two different methods.
The first method is an extension of the optimization‐based procedure developed in our earlier work (Gilman &
Tsynkov, 2023b) to the case of multiple range bins. The second approach, proposed in Ji et al. (2022), is a screen

Figure 6. Autofocus performance metrics averaged over U (aclutter,as) as functions of aclutter (the x‐axis) and as (y‐axis), see
Equations 7 and 22, respectively. Left column of panels: FWHM, center column: ISLR, right column: peak height. Top row
of panels: optimization‐based focusing (ΨOptim); middle row: screen projection focusing (ΨSP); bottom row: signed
difference between the top and middle rows, with the sign as indicated in the panel titles. Note that the negative sign is taken for
the bottom right panel because the deterioration of the image is accompanied by the increate in FWHM and ISLR and decrease
in the peak height, so this sign choice makes the color patterns in the bottom row consistent.
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projection method where the phase curvature autofocus (PCA) is applied to the antenna signal migrated to the
phase screen elevation. The screen projection method that does not involve optimization was considered an
alternative to the variational autofocus, where the computational cost of solving the optimization problem could
be rather high, especially when one uses the multi‐start optimization to mitigate the non‐convexity. The autofocus
performance has been evaluated statistically for a range of simulated target reflectivities and phase screen density
functions, with perfect reconstruction of phase perturbations being a baseline. Our findings can be summarized as
follows.

1. Migration of the antenna signal to phase screen elevation corrupts the data so that even with perfect recon-
struction of phase perturbations, the quality of the images obtained using the screen projection method is
degraded. This effect rapidly intensifies as the magnitude of perturbations increases.

2. For low and moderate levels of phase perturbations (as ≲ 0.8π) , the optimization‐based autofocus performs
on par with perfect reconstruction of phase perturbations. Its performance is superior to that of the screen
projection method.

3. For higher levels of phase perturbations, the performance of both methods deteriorates.
4. The problem of non‐convexity of the cost function in optimization‐based autofocus observed in Gilman &

Tsynkov (2023b) for a single range bin persists for multiple range bins.

In the future, we will try and improve the performance of both methods analyzed in this study. Note that the
iterative focusing procedure used for the screen projection method, see Section 6, is applied to the migrated data
that is subject to a significant corruption, as per Equation 21. The same migrated (and corrupted) data is used on

Figure 7. Same as Figure 6, but with exact reconstruction of Ψ instead of the screen projection autofocus in the second row.
The fourth row is a zoom‐in on the third row for 0 ≤ as/π ≤ 0.8.
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Figure 8. The worst‐case scenario for the screen projection autofocus and as = 0.8π. Top plot: zoom‐ins to the peaks of I( y)
due to a point scatterer; the notations in the legend are similar to those in Figure 4. Bottom plot: the corresponding phase
screen density functions Ψrec(s) used to produce the images in the top plot. As in Figure 4, the unit along the horizontal axis is
the resolution size ΔA given by Equation 3. The horizontal scales are different on the top and bottom plots.

Figure 9. Similar to Figure 8: the worst‐case scenario for the optimization‐based autofocus and as = 2π.
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every iteration. We will see whether the migration procedure can be adjusted to take into account the current
approximation of the phase screen density function, thus reducing the corruption of the migrated data with it-
erations and improving the method's overall performance. The main obstacle to such a development is that unlike
in the full waveform inversion (see, e.g., (Churchill & Gelb, 2022)), the result of focusing is the image I( y) rather
than reflectivity function μ(z), and hence, Equation 1 cannot be used directly to provide phase corrections for the
data u(x).

For the optimization‐based autofocus, we will explore modifications to the cost function, as well as different
global optimization methods such as multi‐start or genetic algorithms (MATLAB Global Optimization
Toolbox, 2021). We will also extend the statistical approach adopted in this paper to explore the effect of other
factors such as the wavenumber spectrum of perturbations and parameters of the simulated reflectivity functions.
Some benefits could also be obtained by combining the two methods analyzed in this work. For example, we plan
to check whether the screen projection method can provide a useful “initial guess” for the optimization‐based
method.

The main goal of this study is to compare two different autofocus methods. To render the comparison in a most
efficient way, we make several assumptions that may limit the applicability of our results to other situations. First,
even though multiple range bins provide the data in this work, the reconstructed phase screen still remains one‐
dimensional. Potentially, two‐dimensional phase screens can be obtained as an outcome of autofocus. However,
in that case the algorithms should take into account the exact arrangement of the bins and range cell migration
(Cumming & Wong, 2005). Hence, the results of this work are not directly applicable to the analysis of efficiency
of phase screen reconstruction. Another limitation comes from the target model that includes isolated point
scatterers, whereas low‐frequency SAR missions are typically designed for forest and ice applications and we
may expect that point‐like scatterers in such images will be relatively rare. Hence, the focusing success rates
reported in this paper cannot be immediately used to predict the expected accuracy of reconstruction of the phase
screen or any other ionospheric quantities. Lifting these limitations is yet another future objective.

Appendix A: Screen Level Signal Versus Partially Focused Image
In this section, we analyze the effect of corruption of the screen projected data, see Figure 3 and the accompanying
discussion. We depart from Equation 18 describing the signal uξ(s) that corresponds to the case of no pertur-
bations and antenna trajectory at screen elevation. Introducing the perturbation Ψ and taking a single point
scatterer μ(z) = μ0δ(z − z0) as the target, we obtain a new expression for the signal:

uξ(s) = μ0 exp (
iπ(s − z0)2

ξF
) exp(− iΨ(s)) ⋅ 1|s− z0|≤ ξF/2, (A1)

where 1|s − z0|≤ ξF/2 is the characteristic function of the interval z0 − ξF/2 ≤ s ≤ z0 + ξF/2. Our goal is to
compare Equation A1 with the partially focused image p(s) given by Equation 8.

By defining s(x) ≡ s(x, z0), see Equation 4, we can derive the following relation between uξ(s) and the antenna
signal u(x) due to the same reflectivity function μ(z) = μ0δ(z − z0):

u(x) = uξ (s(x)) exp (
iπη(x − z0)2

F
) ⋅ 1|x− z0 |≤F/2, (A2)

where η = 1 − ξ. To avoid confusion, hereafter we will use the variable r as the argument of p. Substituting
Equation A2 into Equation 8 and dropping inessential constant factors, we obtain

p(r)∝∫

r+ηF/2

r− ηF/2
uξ (s(x)) exp (

iπη(x − z0)2

F
) exp (

− iπ[x − r]2

ηF
) ⋅ 1|x− z0|≤F/2 dx. (A3)

Defining x(s) as an inverse to s(x), substituting Equation A1 into Equation A3, and making a change of the
integration variable, we arrive at

Radio Science 10.1029/2024RS008168

GILMAN AND TSYNKOV 17 of 19

 1944799x, 2025, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024R

S008168, W
iley O

nline L
ibrary on [22/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



p(r)∝ ∫ exp (
iπ(s − z0)2

ξF
) exp(− iΨ(s)) ⋅ 1|s− z0 |≤ ξF/2

exp (
iπη[x(s) − z0]2

F
) exp (

− iπ[x(s) − r]2

ηF
) ⋅ 1|x(s)− z0 |≤F/2 ds,

(A4)

where the integration limits are defined by the characteristic functions 1|s − z0 |≤ ξF/2 and 1|x(s) − z0 |≤F/2 in the
integrand.

In the absence of perturbations, the coordinate‐dependent part of p(r) is given by Equation 17:

pclean(r)∝ exp (
iπ(r − z0)2

ξF
). (A5)

We would like to see how the phase in Equation A5 is perturbed due to Ψ(s). To do so, we multiply Equation A4
with the complex conjugate of Equation A5, which yields:

q(r) ≡ p(r)exp(−
iπ(r − z0)2

ξF
)

∝ ∫ exp(− iΨ(s)) exp(iΦ) ⋅ 1|s− z0|≤ ξF/2 ⋅ 1|x(s)− z0|≤F/2 ds.
(A6)

The general expression for the phase term Φ in Equation A6 is cumbersome. We will calculate it for a particular
case of ξ = η = 1/2, that is, when the phase screen is at half of the orbit elevation. Introducing

r̃ = r − z0, s̃ = s − z0,

we can show that

Φ
⃒
⃒
⃒
ξ=1/2

= − 4
π
F
(r̃ − s̃)2. (A7)

Combining Equations A6 and A7 and noticing that r̃ − s̃ = r − s, we obtain

q(r)
⃒
⃒
⃒
ξ=1/2

∝∫ exp(− iΨ(s))K(r, s) ds, (A8)

where

K(r, s) = exp(− 4i
π(r − s)2

F
) ⋅ 1|s− z0 |≤ ξF/2 ⋅ 1|x(s)− z0 |≤F/2. (A9)

From Equation A8, we see that unlike in Equation A1, the perturbation of the partially focused image, that is, q(s),
is not equivalent to the complex exponential exp(− iΨ(s)). It is rather obtained from the latter via convolution with
the kernel Equation A9. It is this convolution that defines corruption of the screen projected data. Its subsequent
analysis based on Equations A6, A8, and A9 may help one obtain a more accurate estimate of phase distortions
compared to that given by Equation 21, but this analysis is beyond the scope of the current work.

Data Availability Statement
Data were neither used nor created for this research.
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