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We extend the previously developed high-order accurate method for acoustic scattering to electro-

magnetic scattering, i.e., from the scalar setting to a vector setting. First, the governing Maxwell’s 
equations are reduced from their original first-order form to a system of second-order wave equa-

tions for the individual Cartesian components of electromagnetic field. In free space, these wave 
equations are uncoupled. Yet at the boundary of the scatterer, the variables that they govern 
(i.e., Cartesian field components) remain fully coupled via the boundary conditions that account 
for the specific scattering mechanism. Next, the wave equations are equivalently replaced with 
Calderon’s boundary equations with projections obtained using the method of difference poten-

tials and a compact high-order accurate scheme. The Calderon’s boundary equations are combined 
with the boundary conditions and the overall system is solved by least squares. The resulting vec-

tor methodology (electromagnetic) inherits many useful properties of the scalar one (acoustic). In 
particular, it offers sub-linear computational complexity, does not require any special treatment 
of the artificial outer boundary, and has the capacity to solve multiple similar problems at a low 
individual cost per problem. We demonstrate the performance of the new method by computing 
the scattering of a given impinging wave about a double-cone hypersonic shape.

1. Introduction

1.1. Background

In our previous work [1–3], we developed a high-order accurate numerical method that employs Calderon’s operators and 
difference potentials for computing the scattering of time-dependent acoustic waves about general shapes in three space dimensions. 
The acoustic field is governed by the second-order wave (d’Alembert) equation. The surface of the scatterer is defined via CAD and 
represented using piece-wise parameterization by splines on a set of non-overlapping patches. The method uses Cartesian grids but 
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allows for general non-conforming geometries with no deterioration of either accuracy or stability. It explicitly takes into account 
the (strong) Huygens’ principle and thus performs uniformly well over arbitrarily long computation times. Moreover, it offers the 
exact treatment of artificial outer boundaries and sub-linear computational complexity with respect to the grid dimension.

1.2. Governing equations

In the current work, we extend the method of [1–3] from acoustics to Maxwell’s equations so that its advantageous properties 
identified in Section 1.1 are preserved. We study the scattering of time-dependent electromagnetic waves in free space about three-

dimensional obstacles of a given shape with given properties of the surface. The impinging wave is assumed known. It propagates 
through free space (vacuum) and bounces off the scatterer. Our objective is to compute the scattered electromagnetic field.

The propagation is governed by the homogeneous Maxwell’s equations of electrodynamics:

1
𝑐

𝜕H

𝜕𝑡
+ curlE = 0 ,

1
𝑐

𝜕E

𝜕𝑡
− curlH = 0 ,

divH = 0,

divE = 0,
(1)

where E is the electric field, H is the magnetic field, and 𝑐 is the speed of light, see [4]. The two unsteady equations in (1) are the 
Faraday law and Ampère law. They form a first-order hyperbolic system supplemented by two steady-state equations, the Gauss law 
for magnetism and Gauss law for electricity.

By taking the divergence of each unsteady equation of (1), we obtain:

𝜕divH

𝜕𝑡
= 0 and

𝜕divE

𝜕𝑡
= 0. (2)

Equations (2) imply that as long as divH = 0 and divE = 0 at 𝑡 = 0, the fields H and E will remain solenoidal (i.e., divergence free) 
for all 𝑡 > 0. Therefore, as long as the Gauss laws hold for the initial data, they will hold for all future moments of time as well.

By taking the time derivative of the Faraday law in (1), substituting 𝜕
𝜕𝑡

curlE from the Ampère law, employing the identity 
curl curlH = −ΔH + grad divH , and using divH = 0, we arrive at the homogeneous vector wave (d’Alembert) equation for the 
magnetic field H :

1
𝑐2
𝜕2H

𝜕𝑡2
− ΔH = 0 . (3a)

A very similar argument yields the homogeneous vector wave equation for E :

1
𝑐2
𝜕2E

𝜕𝑡2
− ΔE = 0 . (3b)

The two wave equations (3a) and (3b) are independent. Moreover, if the fields E and H are represented by their Cartesian compo-

nents in ℝ3, then each of the equations (3a) or (3b) further reduces to three independent scalar wave equations for those components. 
Yet the independence holds only in free space. When electromagnetic waves interact with obstacles, the fields governed by the vector 
wave equations (3a) and (3b), as well as their individual Cartesian components, become coupled through the boundary conditions 
(Section 1.3).

Let us also emphasize that, the derivation of the wave equations (3) from Maxwell’s equations (1) explicitly takes into account that 
divH = 0 and divE = 0. Hence, every solution of Maxwell’s equations (1), which is divergence free by definition, satisfies equations 
(3). This does not mean, however, that every solution of equations (3) is automatically divergence free. Indeed, by applying the 
divergence operator to (3a) and (3b) we conclude that each of the two quantities, divH and divE , satisfies its own scalar wave 
equation:

1
𝑐2
𝜕2divH

𝜕𝑡2
− ΔdivH = 0 and

1
𝑐2
𝜕2divE

𝜕𝑡2
− ΔdivE = 0. (4)

Having divH = 0 and divE = 0 at 𝑡 = 0 is not sufficient to guarantee that divH = 0 and divE = 0 for all 𝑡 > 0, as in (2). Additional 
initial and boundary conditions are required.

1.3. Initial and boundary conditions for Maxwell’s equations in second-order form

Let Ω ⊂ ℝ3 be a bounded domain in space that we interpret as the scattering body. Its boundary 𝜕Ω is the scattering surface. 
Our goal is to solve equations (3) for the scattered field on the complementary domain ℝ3∖Ω for 𝑡 ∈ [0, 𝑇 ], where 𝑇 > 0 is the 
final moment of time which can be arbitrary. Accordingly, initial conditions need to be specified on ℝ3∖Ω at 𝑡 = 0 and boundary 
conditions need to be specified on 𝜕Ω for 𝑡 ∈ [0, 𝑇 ].

The boundary conditions on the lateral boundary Γ ≡ 𝜕Ω × [0, 𝑇 ] should account for the specific physical mechanism of scattering 
on the surface. In most cases though, scattering is accompanied by transmission. This means that the impinging wave is partially 
reflected off the scatterer back to the exterior domain ℝ3∖Ω and partially propagates inwards, i.e., into the interior domain Ω. This 
is very typical when, for example, the scattering material is a dielectric, see [5, Sections 7, 76, and 86]. Then, the transmission/scat-

tering problem cannot be solved only on ℝ3∖Ω. It rather has to be solved it its entirety, i.e., simultaneously on ℝ3∖Ω and Ω, with 
2

the appropriate interface conditions on Γ taken into account.
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If the scattering material is a conductor (metal), then the “penetration depth” of the impinging electromagnetic field into the 
material often appears small compared to the wavelength in vacuum. In that case, the exterior scattering problem can be solved 
separately, i.e., without considering the interior transmission. In doing so, the following impedance boundary condition holds on the 
surface 𝜕Ω (see [5, Section 87], as well as [6,7]):

Ê𝜏 = 𝜁Ĥ𝜏 × n . (5)

In formula (5), Ê𝜏 and Ĥ𝜏 denote the tangential components of the electric and magnetic field in the frequency domain, respectively, 
n is the interior normal to 𝜕Ω, and 𝜁 is the surface impedance, which is a complex-valued quantity that depends on the impinging 
frequency and material characteristics: electric conductivity and magnetic permeability. Boundary condition (5) holds for a broad 
range of impinging frequencies, from very long radio waves to microwaves and all the way up to infrared. In the time domain, the 
boundary condition (5) becomes nonlocal and involves a convolution product in time.

If the scattering material is a perfect electric conductor (PEC), then the electromagnetic field does not penetrate into the material 
at all. Accordingly, the surface impedance vanishes, 𝜁 = 0, and the boundary condition (5) simplifies further:

E𝜏 = 0 . (6)

Note that, the boundary condition (6) can be considered directly in the time domain. It is very important that unlike in (5), there 
is no coupling between the electric and magnetic field at the boundary. Consequently, the wave equation (3b) subject to boundary 
condition (6) can be solved separately, i.e., without having to solve for the magnetic field. Nonetheless, the individual components 
of the electric field remain coupled at the boundary by the boundary condition (6). Moreover, boundary condition (6) alone is not 
sufficient to guarantee uniqueness of the solution to the wave equation (3b). The latter has to be supplemented by another boundary 
condition on Γ, as well as the initial conditions on ℝ3∖Ω.

The overall electric field on ℝ3∖Ω is the sum of the impinging and scattered fields: E = E imp + E sc, where E imp is known and 
E sc is to be computed. With no loss of generality, the initial moment of time 𝑡 = 0 can be taken when the impinging wave first hits 
the scatterer. This implies that the initial conditions can be chosen homogeneous. Indeed, there will be no scattered field anywhere 
on ℝ3∖Ω at 𝑡 = 0. Since Maxwell’s equations (1) form a first-order system, the only physical quantity that needs to be provided at 
𝑡 = 0 is the scattered field itself: E sc = 0 (same for magnetic field if coupled). For the second-order formulation (3), the first time 
derivative also needs to be specified: 𝜕E

sc

𝜕𝑡
= 0 . This derivative is zero because the propagation speed is finite and consequently, the 

scattered field E sc is zero on ℝ3∖Ω not only at 𝑡 = 0 but at any infinitesimally small positive moment of time as well.

As both the field and its derivative 𝜕
𝜕𝑡

are equal to zero at 𝑡 = 0, the field divergence and its first derivative with respect to time are 
also zero. Yet the scalar wave equations (4) on ℝ3∖Ω × [0, 𝑇 ], subject to homogeneous initial conditions, still do not guarantee zero 
divergence everywhere. For that, we additionally need to require that the divergence be zero at the boundary. In the case where the 
electric and magnetic field fully decouple due to the PEC boundary condition (6), we require that divE = 0 on 𝜕Ω for 𝑡 ∈ [0, 𝑇 ]. In 
the case where the electric and magnetic field satisfy the impedance boundary condition (5) (rather than the simpler PEC boundary 
condition (6) for the electric field only), one needs to solve for both fields, i.e., solve both wave equations (3) simultaneously, and in 
addition to the zero divergence boundary condition for the electric field impose zero divergence boundary condition for the magnetic 
field: divH = 0 on 𝜕Ω for 𝑡 ∈ [0, 𝑇 ].

When solving for the electric field only, we assume with no loss of generality that divE imp = 0. Then, we have divE sc = 0. The 
latter relation provides an additional boundary condition to supplement (6). In turn, boundary condition (6) can be recast as

E sc
𝜏
|||Γ = −E imp

𝜏
|||Γ. (6′)

Altogether, the exterior electromagnetic scattering problem about a PEC surface consists of solving the vector wave equation (3b)

for the scattered field E sc on ℝ3∖Ω, subject to the homogeneous initial conditions, boundary condition (6′), and additional boundary 
condition divE sc = 0 on Γ = 𝜕Ω × [0, 𝑇 ]. The solution E sc is driven by the tangential component E imp

𝜏 of the impinging electric field 
that is assumed given on Γ:

1
𝑐2
𝜕2E sc

𝜕𝑡2
− ΔE sc = 0 on ℝ3∖Ω × [0, 𝑇 ], (7a)

E sc
𝜏 = −E imp

𝜏 on Γ, (7b)

divE sc = 0 on Γ, (7c)

E sc||𝑡=0 = 0 ,
𝜕E sc

𝜕𝑡

||||𝑡=0 = 0 on ℝ3∖Ω. (7d)

The unknown scattered field E sc governed by the wave equation (7a) consists of three scalar components on ℝ3. Accordingly, 
three scalar boundary conditions are required for uniqueness. The Dirichlet-type boundary condition (7b) provides only two scalar 
conditions. Indeed, if 𝝉1 and 𝝉2 are two orthogonal unit vectors tangent to the surface 𝜕Ω at a given point, then (7b) is equivalent 
to two scalar relations: E sc ⋅ 𝝉1 = −E imp ⋅ 𝝉1 and E sc ⋅ 𝝉2 = −E imp ⋅ 𝝉2. Hence, the boundary condition (7b) alone still leaves the 
problem underdetermined. It is the additional boundary condition for divergence (7c) that provides the missing third scalar relation 
at the boundary and thus enables well-posedness of the overall formulation (7). Equation (7c) is a Neumann-type boundary condition 
3

because it involves a normal derivative of the normal field component (see Section 5 for implementation detail).
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Let us also re-emphasize that in the Cartesian coordinates, the vector wave equation (7a) decouples into three scalar wave equa-

tions. However, the boundary conditions (7b)–(7c) still enforce coupling at the boundary 𝜕Ω between all three Cartesian components 
of the electric field.

Hereafter, we will be using a simpler “plain” notation E instead of E sc for the scattered field on ℝ3∖Ω, as long as it does not lead 
to any misunderstanding.

1.4. Solving Maxwell’s equations in first-order form vs. second-order form

Maxwell’s equations are often solved in their original first-order form (1). A popular family of numerical methods, known as 
finite-difference time-domain methods (FDTD) [8], originate from the second-order accurate staggered Yee scheme [9] proposed in 
1966. Other methods such as spectral can be applied as well, see, e.g., [10]. Various material properties can be accommodated, for 
example, dispersion [11,12].

However, the second-order form of Maxwell’s equations (3) has its own advantages. A number of publications study numerical 
solution of Maxwell’s equations in second-order form [13–17], including the scenarios with material dispersion [18–21]. Otherwise, 
the advantages of solving the second-order wave equations rather than their first-order counterparts are discussed in [22,23] for 
acoustics, [24] for elasticity, and [25] for a general framework.

First and foremost, the second-order formulation enables decoupling of Maxwell’s equations, as described in Sections 1.2 and 1.3. 
Decoupling takes place only in the volume while the fields and/or their components remain coupled at the boundary. Decoupling 
is not a model reduction and the new second-order formulation is equivalent to the original first-order one. Yet it presents a major 
simplification from the standpoint of numerical solution. The scenario where one can solve for one field without having to solve for 
the other is especially favorable. But even when solving for both fields, the capacity to time-march them independently and only 
enforce the coupling at the boundary is convenient. Decoupling between the individual Cartesian components of the fields is also 
convenient as it lets one exploit the existing wealth of schemes and solvers for the scalar wave equation. In particular, the solvers 
based on Calderon’s operators and the method of difference potentials (MDP) [26] that we have developed previously [1–3] and are 
using in this paper, offer an extra advantage for the treatment of the boundary conditions. Namely, the MDP reduces the governing 
PDEs from the domain to the boundary regardless of any boundary conditions. Therefore, the coupling between the field components 
at the boundary is easy to address by merely adding the boundary conditions (7b)–(7c) to the corresponding system of Calderon’s 
boundary equations that is otherwise derived from the three independent wave equations.

Another key advantage of the second order formulation is that, compact high-order accurate schemes for the scalar wave equation 
are relatively easy to derive, see, e.g., [27] or [28]. Both compactness and high-order accuracy are valuable properties. High-order 
accuracy is of central importance for reducing the numerical pollution [29,30]. Compactness substantially simplifies the discretization 
because compact schemes require only as many boundary conditions as the underlying PDE does. On the other hand, extension of 
the classical staggered Yee scheme [9] to high-order accuracy is not straightforward. Most high-order accurate FDTD schemes are 
not compact. They rely on wide stencils which, in turn, require additional (non-physical) boundary conditions. Even if a staggered 
high-order accurate compact discretization is built for Maxwell’s equations (1), see, e.g., [31], it still requires a rather delicate 
analysis near the boundary, because different field components are associated with different locations in space. The difference in 
spatial location for different field components is what may, in general, cause difficulties in implementing the boundary conditions 
with staggered schemes, for example, the impedance boundary condition (5). Let’s also note that, high-order accurate schemes for 
first-order Maxwell’s equations can be constructed by exploiting some approaches, such as WENO, developed for CFD, see, e.g., [32]. 
The resulting techniques prove viable even though Maxwell’s equations are not conservation laws.

1.5. Roadmap

In the rest of the paper, we present our new high-order accurate numerical algorithm for solving the second-order initial boundary 
value problem (IBVP) (7). The main novel contributions of the current work are the accurate formulation of the IBVP (7) per se, 
the approach for taking into account the vector nature of the unknown field E for numerical solution (three Cartesian components), 
as well as the technique for implementing the boundary conditions (7b) and (7c). Other components of the proposed algorithm are 
similar to what we have developed previously for the scalar setting (acoustics), see [1–3].

In Section 2, we show how to define the scattering surface using CAD and introduce a piece-wise parameterization of this sur-

face by means of high-oder splines. In Section 3, we provide a brief description of the method of difference potentials for unsteady 
problems and show how to apply it in conjunction with the (strong) Huygens’ principle, which enables a non-deteriorating perfor-

mance over arbitrarily long simulation times and guarantees a perfectly non-reflecting treatment of the artificial outer boundary. In 
Section 4, we extend the apparatus of difference potentials from the previously analyzed scalar case to the case of the vector wave 
equation (7a). In Section 5, we introduce a new collocation method for taking into account the boundary conditions (7b) and (7c). 
In Section 6, we demonstrate the performance of the proposed method by computing the electromagnetic scattering about a PEC 
sphere (Section 6.1) and about a PEC double-cone hypersonic shape (Section 6.2). Finally in Section 7, we conclude that the proposed 
4

method meets its design characteristics and also summarize the possible directions of the future work.
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2. Definition of the scattering surface

The scattering surface 𝜕Ω is a two-dimensional manifold in ℝ3. It is therefore convenient to represent it parametrically by means 
of a mapping from ℝ2 to ℝ3. If, for example, 𝜕Ω is a sphere of radius 𝑟, then one can use the standard spherical coordinates 
transformation:

𝑥 = 𝑟 sin𝜃 cos𝜑, 𝑦 = 𝑟 sin𝜃 sin𝜑, 𝑧 = 𝑟 cos𝜃 (8)

from the rectangle [0, 𝜋] × [0, 2𝜋) ∋ (𝜃, 𝜑) to the sphere, where 𝜃 is the polar angle and 𝜑 is the azimuthal angle. However, only 
a small number of relatively simple surfaces (such as spheroids or toroids) can be parameterized by means of one and the same 
coordinate transformation [33, Volume 1]. For all other surfaces, one can use a patched parametrization.

Let 𝜕Ω = 𝑃1 ∪ 𝑃2 ∪ … ∪ 𝑃𝑁𝑝
, where 𝑃𝑗 ∩ 𝑃𝑖 = ∅ for 𝑗 ≠ 𝑖. For each 𝑗 = 1, 2, … , 𝑁𝑝, the patch 𝑃𝑗 is defined by means of a 

differentiable mapping X̂𝑗 ∶ 𝑃j ↦ 𝑃𝑗 :

ℝ3 ⊃ 𝑃𝑗 ∋ x = X̂𝑗 (𝑠1, 𝑠2), where (𝑠1, 𝑠2) ∈ 𝑃𝑗 ⊂ℝ2. (9)

In formula (9), 𝑃𝑗 is a 2D reference domain and (𝑠1, 𝑠2) are the parametric coordinates. In the case of a sphere, we have 𝑁𝑝 = 1 and 
the mapping X̂1 of (9) would be given by the spherical coordinate transformation (8) so that 𝑠1 = 𝜃, 𝑠2 = 𝜑, and 𝑃1 = [0, 𝜋] × [0, 2𝜋).

In the general case where the surface is represented using CAD, it is common to define the mapping (9) with the help of splines. In 
particular, for each 𝑗 = 1, 2, … , 𝑁𝑝, one can employ the non-uniform rational B-splines (NURBS) [34] as functions of the parametric 
coordinates:

X̂𝑗 (𝑠1, 𝑠2) =
𝑛1∑
𝑖1=1

𝑛2∑
𝑖2=1

x𝑖1 ,𝑖2𝑁
(𝑖1 ,𝑑1)(𝑠1)𝑁 (𝑖2 ,𝑑2)(𝑠2). (10)

In formula (10), x𝑖1 ,𝑖2 ∈ℝ3 are the control points and 𝑁 (𝑖1 ,𝑑1)(𝑠1) and 𝑁 (𝑖2 ,𝑑2)(𝑠2) are NURBS of degree 𝑑1 and 𝑑2, respectively. The 
NURBS are defined as follows.

First, for a given coordinate 𝑠, consider a sequence of knots {𝑘1, 𝑘2, … , 𝑘𝑛+𝑑+1}, where the positive integers 𝑛 and 𝑑 are given, 
𝑛 > 𝑑, and the first and last knots are repeated 𝑑 +1 times each: 𝑘1 = 𝑘2 =… = 𝑘𝑑+1 and 𝑘𝑛+1 = 𝑘𝑛+2 =… = 𝑘𝑛+𝑑+1. Then, introduce 
the “plain” B-splines of degree 𝑑 using the Cox–de Boor recursion:

𝐵(𝑖,0)(𝑠) =

{
1, 𝑘𝑖 ⩽ 𝑠 < 𝑘𝑖+1,
0, otherwise

and

𝐵(𝑖,𝑑)(𝑠) =
𝑠− 𝑘𝑖

𝑘𝑖+𝑑 − 𝑘𝑖
𝐵(𝑖,𝑑−1)(𝑠) +

𝑘𝑖+𝑑+1 − 𝑠
𝑘𝑖+𝑑+1 − 𝑘𝑖+1

𝐵(𝑖+1,𝑑−1)(𝑠).

Finally, specify the weights {𝑤1, 𝑤2, … , 𝑤𝑛} and define a 1D NURBS:

𝑁 (𝑖,𝑑)(𝑠) =
𝑤𝑖𝐵

(𝑖,𝑑)(𝑠)∑𝑛
𝑗=1𝑤𝑗𝐵

(𝑗,𝑑)(𝑠)
. (11)

If 𝑤1 =𝑤2 =… =𝑤𝑛 = 1, then 𝑁 (𝑖,𝑑)(𝑠) = 𝐵(𝑖,𝑑)(𝑠). In formula (10), both 𝑁 (𝑖1 ,𝑑1)(𝑠1) and 𝑁 (𝑖2 ,𝑑2)(𝑠2) are defined according to (11), 
but the degrees 𝑑1 and 𝑑2, dimensions 𝑛1 and 𝑛2, as well as the knots and weights for 𝑠1 and 𝑠2, can be different.

3. Calderon’s operators, difference potentials, and Huygens’ principle

In this section, we provide a brief account of the MDP for unsteady problems and refer the reader to [1–3] for further detail.

3.1. Calderon’s operators for the scalar wave equation

The scattered field E = (𝐸𝑥, 𝐸𝑦, 𝐸𝑧) satisfies the vector wave equation (7a). Accordingly, its Cartesian components satisfy the 
scalar wave (d’Alembert) equation:

□𝑐𝐸 ≡ 1
𝑐2
𝜕2𝐸

𝜕𝑡2
− Δ𝐸 = 0, (12)

where 𝐸 can be any of 𝐸𝑥, 𝐸𝑦, or 𝐸𝑧. Let Γ𝑡 = 𝜕Ω ×[0, 𝑡], where 𝑡 ⩽ 𝑇 is the current moment of time. Let 𝝃Γ𝑡 denote a two-dimensional 

vector function on Γ𝑡, 𝝃Γ𝑡 = (𝜉0, 𝜉1). Also, for an arbitrary 𝐸 =𝐸(x , 𝑡), define its vector trace on Γ𝑡: TrΓ𝑡𝐸
def
=
(
𝐸,

𝜕𝐸

𝜕n

)||||Γ𝑡 .
The function 𝐸 =𝐸(x , 𝑡) solves the wave equation (12) on Ω1 ≡ℝ3 ⧵Ω subject to homogeneous initial conditions, cf. (7d), if and 

only if its trace 𝝃Γ𝑡 =TrΓ𝑡𝐸 satisfies the Calderon’s boundary equation with projection (BEP):
5

PΓ𝑡𝝃Γ𝑡 = 𝝃Γ𝑡 . (13)
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The projection PΓ𝑡 in (13) is defined via Calderon’s potential with density 𝝃Γ𝑡 :

PΩ1
𝝃Γ𝑡 (x , 𝑡) = ∫

Γ𝑡

{
𝜉1(y , 𝑡′)𝐺(x − y , 𝑡− 𝑡′) − 𝜉0(y , 𝑡′)

𝜕𝐺

𝜕n
(x − y , 𝑡− 𝑡′)

}
𝑑𝑡′𝑑𝑆y (14)

as its trace on Γ𝑡:

PΓ𝑡𝝃Γ𝑡
def
= TrΓ𝑡PΩ1

𝝃Γ𝑡 .

In formula (14), 𝐺(x , 𝑡) = 𝑐

2𝜋 𝜃(𝑡)𝛿(𝑐
2𝑡2 − |x |2) is the fundamental solution of the 3D d’Alembert operator □𝑐 of (12). For any 𝝃Γ𝑡 , 

the potential (14) with density 𝝃Γ𝑡 satisfies the wave equation (12) on Ω1. If, on the other hand, 𝝃Γ𝑡 is the trace of a solution 𝐸 to 
equation (12) on Ω1, then (14) becomes the classical Green’s formula.

3.2. Partition in time

Let 𝐾 be a positive integer and 𝑇0 = 𝑇 ∕𝐾 . Split Γ𝑇 into 𝐾 equal parts of length 𝑇0:

Γ𝑇 = Γ(1) ∪ Γ(2) ∪ ... ∪ Γ(𝐾), where Γ(𝑘) = 𝜕Ω× ((𝑘− 1)𝑇0, 𝑘𝑇0], (15)

and represent 𝝃Γ𝑇 as the sum of partial densities:

𝝃Γ𝑇 = 𝝃Γ(1) + 𝝃Γ(2) + ...+ 𝝃Γ(𝐾) , where 𝝃Γ(𝑘) (x , 𝑡) =

{
𝝃Γ𝑇 (x , 𝑡), (x , 𝑡) ∈ Γ(𝑘),
0 , (x , 𝑡) ∈ Γ𝑇 ∖Γ(𝑘).

Then, using the definitions of the operators (Section 3.1) and taking into account the causality, we can recast the BEP (13) for 
𝑡 = 𝑇 : PΓ𝑇 𝝃Γ𝑇 = 𝝃Γ𝑇 , as a recursive sequence:

TrΓ(𝑘)PΩ1
𝝃Γ(𝑘) +

𝑘−1∑
𝑗=1

′
TrΓ(𝑘)PΩ1

𝝃Γ(𝑗) = 𝝃Γ(𝑘) , 𝑘 = 1,… ,𝐾. (16)

For 𝑘 = 1, the second term on the left-hand side of equation (16), i.e., the primed sum from 𝑗 = 1 to 𝑘 − 1, is dropped. For the first 
term on the left-hand side of (16), we can write:

PΩ1
𝝃Γ(𝑘) (x , 𝑡) = ∫

Γ(𝑘)

{
𝜉1(y , 𝑡′)𝐺(x − y , 𝑡− 𝑡′) − 𝜉0(y , 𝑡′)

𝜕𝐺

𝜕n
(x − y , 𝑡− 𝑡′)

}
𝑑𝑡′𝑑𝑆y

= ∫
Γ𝑇0

{
𝜉1(y , 𝑡′ + (𝑘− 1)𝑇0)𝐺(x − y , 𝑡− 𝑡′) (17)

− 𝜉0(y , 𝑡′ + (𝑘− 1)𝑇0)
𝜕𝐺

𝜕n
(x − y , 𝑡− 𝑡′)

}
𝑑𝑡′𝑑𝑆y ,

where 𝑡 = 𝑡+ (𝑘 − 1)𝑇0 and 0 ⩽ 𝑡 ⩽ 𝑇0. Also, Γ𝑇0 ≡ Γ(1). Therefore, equation (16) becomes:

PΓ𝑇0
𝝃Γ(𝑘) +

𝑘−1∑
𝑗=1

′
TrΓ(𝑘)PΩ1

𝝃Γ(𝑗) = 𝝃Γ(𝑘) , 𝑘 = 1,… ,𝐾, (18)

where the operator PΓ𝑇0
=PΓ𝑡

|||𝑡=𝑇0 does not depend on 𝑘. As in equation (16), the primed sum on the left-hand side of equation (18)

is dropped for 𝑘 = 1. The first term on the left-hand side of (18) is a shorthand notation for the function on Γ(𝑘) defined in accordance 
with (17):

PΓ𝑇0
𝝃Γ(𝑘)

def
=
[
PΓ𝑇0

𝝃Γ(𝑘) (𝑡+ (𝑘− 1)𝑇0)
]
(𝑡− (𝑘− 1)𝑇0),

(𝑘− 1)𝑇0 < 𝑡 ⩽ 𝑘𝑇0, 0 ⩽ 𝑡 ⩽ 𝑇0.
(19)

Equation (18) is a recursion with respect to 𝑘. It shows that the partial density 𝝃Γ(𝑘) depends on all previous partial densities 𝝃Γ(𝑗) , 
𝑗 = 𝑘 − 1, 𝑘 − 2, … , 1. As, however, will be shown in the next section, the dependence of 𝝃Γ(𝑘) on 𝝃Γ(𝑗) , 𝑗 < 𝑘 − 1, can be truncated 
6

because the wave equation (12) satisfies the strong Huygens’ principle.
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3.3. Huygens’ principle

Consider equation (18), which holds on Γ(𝑘). For each 𝑗 on its left-hand side, we can write (cf. the first line of equation (17)):

PΩ1
𝝃Γ(𝑗) (x , 𝑡) = ∫

Γ(𝑗)

{
𝜉1(y , 𝑡′)𝐺(x − y , 𝑡− 𝑡′) − 𝜉0(y , 𝑡′)

𝜕𝐺

𝜕n
(x − y , 𝑡− 𝑡′)

}
𝑑𝑡′𝑑𝑆y . (20)

Since (x , 𝑡) ∈Γ(𝑘) and the support of the fundamental solution 𝐺 under the integral in (20) is the surface of the characteristic cone 
with the vertex (x , 𝑡), the integral may be non-zero only if this surface intersects with Γ(𝑗) . In turn, the intersection may be non-empty 
only if

𝑗𝑇0 > 𝑡−
1
𝑐

diamΩ.

For (x , 𝑡) ∈Γ(𝑘) in (20), we have 𝑡 > (𝑘 − 1)𝑇0. Then, from the previous inequality, we derive:

(𝑘− 1 − 𝑗)𝑇0 <
1
𝑐

diamΩ. (21)

Next, let us choose 𝑇0 in accordance with

𝑇0 ⩾
1
𝑐

diamΩ. (22)

In this case, the inequality (21) holds only for 𝑗 = 𝑘 − 1 and does not hold for any 𝑗 < 𝑘 − 1. Consequently, only one non-zero term 
remains in the sum on the left-hand side of (18):

PΓ𝑇0
𝝃Γ(1) = 𝝃Γ(1) , 𝑘 = 1,

PΓ𝑇0
𝝃Γ(𝑘) +TrΓ(𝑘)PΩ1

𝝃Γ(𝑘−1) = 𝝃Γ(𝑘) , 𝑘 = 2,… ,𝐾.
(23)

The fact that the fundamental solution 𝐺 of the three-dimensional d’Alembert operator differs from zero only on the surface of the 
characteristic cone is a manifestation of the strong Huygens’ principle. The interior of the cone is known as lacuna of the fundamental 
solution. It is therefore the Hugens’ principle that allows one to truncate the recursion (18) and replace it with equations (23). The 
latter indicate that under the assumption (22), the partial density 𝝃Γ(𝑘) depends only on one immediately preceding density 𝝃Γ(𝑘−1) .

Similarly to (17), we can derive from (20) for 𝑗 = 𝑘 − 1:

PΩ1
𝝃Γ(𝑘−1) (x , 𝑡) = ∫

Γ𝑇0

{
𝜉1(y , 𝑡′ + (𝑘− 2)𝑇0)𝐺(x − y , 𝑡− 𝑡′)

− 𝜉0(y , 𝑡′ + (𝑘− 2)𝑇0)
𝜕𝐺

𝜕n
(x − y , 𝑡− 𝑡′)

}
𝑑𝑡′𝑑𝑆y ,

where 𝑡 = 𝑡+ (𝑘 − 2)𝑇0 and 𝑇0 ⩽ 𝑡 ⩽ 2𝑇0. Then, we introduce another shorthand notation:

RΓ𝑇0
𝝃Γ(𝑘−1)

def
=
[
TrΓ(2)PΩ1

𝝃Γ(𝑘−1) (̃̃𝑡+ (𝑘− 2)𝑇0)
]
(𝑡− (𝑘− 2)𝑇0),

(𝑘− 1)𝑇0 < 𝑡 ⩽ 𝑘𝑇0, 0 ⩽ ̃̃𝑡 ⩽ 𝑇0,
(24)

so that similar to PΓ𝑇0
of (19), the operator RΓ𝑇0

of (24) does not depend on 𝑘. The operator RΓ𝑇0
maps a given 𝝃Γ(𝑘−1) to a density 

defined on the next partition element Γ(𝑘). Accordingly, equations (23) are recast as

PΓ𝑇0
𝝃Γ(1) = 𝝃Γ(1) , 𝑘 = 1,

PΓ𝑇0
𝝃Γ(𝑘) +RΓ𝑇0

𝝃Γ(𝑘−1) = 𝝃Γ(𝑘) , 𝑘 = 2,… ,𝐾.
(25)

Equations (25) can be interpreted as time marching along the boundary Γ𝑇 with step size 𝑇0.

Equations (25) on their own are not sufficient for determining 𝝃Γ(𝑘) , 𝑘 = 1, … , 𝐾 , because they need to be supplemented with the 
boundary conditions. We will discuss the boundary conditions in Section 5, after we have discretized equations (25) using difference 
potentials (Section 3.4) and extended them to the vector framework (Section 4).

3.4. Difference potentials and projections

The discretization of equations (25) by difference potentials [26] consists of three steps: the discretization of the densities 𝝃Γ(𝑘)
and 𝝃Γ(𝑘−1) on the surface 𝜕Ω, the discretization of the operators PΓ𝑇0

and RΓ𝑇0
on a volumetric grid near 𝜕Ω, and the combination 

of the two that allows one to solve the resulting discrete equations with respect to the unknowns on the surface while having the 
7

operators computed conveniently on a regular grid in the volume.
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For the densities 𝝃Γ(𝑘) and 𝝃Γ(𝑘−1) , we use a spectral discretization. All partial boundaries (15) are geometrically identical, they 
are merely shifted in time with respect to one another. Hence, we can introduce the same basis functions 𝜓𝑚, 𝑚 = 1, … , 𝑀 , for all 
Γ(𝑘), 𝑘 = 1, … , 𝐾 . Recall that, the scattering surface 𝜕Ω is composed of 𝑁𝑝 patches (Section 2). The basis functions 𝜓𝑚 are chosen 
independently for every patch 𝑃𝑗 , 𝑗 = 1, … , 𝑁𝑝, as functions of three variables: the parametric coordinates (𝑠1, 𝑠2) ∈ 𝑃𝑗 (see formulae 
(9)–(10)) and time 𝑡 ∈ [0, 𝑇0]. For convenience, we consider all 𝜓𝑚 defined on the entire 𝜕Ω and enumerate them consecutively 
throughout. However, each 𝜓𝑚 is non-zero only on one patch and zero on all others. On this one patch, it is taken as a combination 
of Fourier harmonics and Chebyshev polynomials (see Section 6). If there are 𝑀𝑗 basis functions that correspond to the patch 𝑃𝑗
(i.e., they are non-zero on this patch), then the total number of basis functions is 𝑀 =

∑𝑁𝑝

𝑗=1𝑀𝑗 . The choice of the dimensions 𝑀𝑗 is 
discussed in Section 6.

As 𝝃Γ(𝑘) and 𝝃Γ(𝑘−1) are vector functions, we expand them with respect to 𝝍0,𝑚 = (𝜓𝑚, 0) and 𝝍1,𝑚 = (0, 𝜓𝑚):

𝝃Γ(𝑘) =
𝑀∑
𝑚=1

𝑐
(𝑘)
0,𝑚𝝍0,𝑚 + 𝑐(𝑘)1,𝑚𝝍1,𝑚, 𝝃Γ(𝑘−1) =

𝑀∑
𝑚=1

𝑐
(𝑘−1)
0,𝑚 𝝍0,𝑚 + 𝑐(𝑘−1)1,𝑚 𝝍1,𝑚. (26)

Substituting (26) into (25), we obtain:

𝑀∑
𝑚=1

𝑐
(1)
0,𝑚QΓ𝑇0

𝝍0,𝑚 + 𝑐(1)1,𝑚QΓ𝑇0
𝝍1,𝑚 = 0, 𝑘 = 1, (27a)

and

𝑀∑
𝑚=1

𝑐
(𝑘)
0,𝑚QΓ𝑇0

𝝍0,𝑚 + 𝑐(𝑘)1,𝑚QΓ𝑇0
𝝍1,𝑚 = −

𝑀∑
𝑚=1

𝑐
(𝑘−1)
0,𝑚 RΓ𝑇0

𝝍0,𝑚 + 𝑐(𝑘−1)1,𝑚 RΓ𝑇0
𝝍1,𝑚, (27b)

𝑘 = 2,… ,𝐾,

where QΓ𝑇0

def
= PΓ𝑇0

− I , and I is the identity operator. The operators QΓ𝑇0
and RΓ𝑇0

in (27) do not depend on 𝑘 and neither 
do the basis functions 𝝍0,𝑚 and 𝝍1,𝑚. As such, the boundary vector functions QΓ𝑇0

𝝍0,𝑚, QΓ𝑇0
𝝍1,𝑚, RΓ𝑇0

𝝍0,𝑚, and RΓ𝑇0
𝝍1,𝑚 are 

also 𝑘-independent. Hence, equations (27) can be thought of as a plain recursion with respect to 𝑘 = 1, 2, … , 𝐾 for the expansion 
coefficients 𝑐(𝑘)0,𝑚 and 𝑐(𝑘)1,𝑚, 𝑚 = 1, … , 𝑀 . Specifically, for 𝑘 = 1 we have equation (27a), which is a homogeneous equation for the 
unknown coefficients 𝑐(1)0,𝑚 and 𝑐(1)1,𝑚. For all subsequent 𝑘 = 2, … , 𝐾 , we have equation (27b), which is an inhomogeneous equation for 
the unknown coefficients 𝑐(𝑘)0,𝑚 and 𝑐(𝑘)1,𝑚, whereas the coefficients 𝑐(𝑘−1)0,𝑚 and 𝑐(𝑘−1)1,𝑚 determined on the previous step can be considered 
known.

Equations (27) still need to be supplemented with the boundary conditions to enable a unique solution (see Section 5). Prior to 
that, equations (27) shall be fully discretized because as of yet, the operators QΓ𝑇0

and RΓ𝑇0
still remain continuous.

To discretize QΓ𝑇0
and RΓ𝑇0

, we first replace the definition (14) of Calderon’s potential PΩ1
𝝃Γ𝑡 with an equivalent definition that 

involves no boundary integrals. For a given 𝝃Γ𝑡 , consider the initial-value problem that we will call the auxiliary problem (AP):

1
𝑐2
𝜕2𝑣

𝜕𝑡2
− Δ𝑣 =

{
□𝑐𝑤, x ∈Ω,
0, x ∈Ω1,

𝑣
|||𝑡=0 =

{
𝑤
|||𝑡=0, x ∈Ω,

0, x ∈Ω1,

𝜕𝑣

𝜕𝑡

||||𝑡=0 =
{

𝜕𝑤

𝜕𝑡

|||𝑡=0, x ∈Ω,
0, x ∈Ω1.

(28)

In formula (28), 𝑤 =𝑤(x , 𝑡) can be any sufficiently smooth function such that TrΓ𝑡𝑤 = 𝝃Γ𝑡 . Then, on the domain Ω1 =ℝ3 ⧵Ω, the 
solution 𝑣 = 𝑣(x , 𝑡) of the AP (28) coincides with Calderon’s potential (14):

𝑣(x , 𝑡) =PΩ1
𝝃Γ𝑡 (x , 𝑡), x ∈Ω1.

Consequently, to compute PΓ𝑇0
𝝃Γ𝑇0

for a given 𝝃Γ𝑇0 , see formula (19), it will be sufficient solve the AP (28) on the interval 𝑡 ∈ [0, 𝑇0]. 
Likewise, to compute RΓ𝑇0

𝝃Γ𝑇0
for a given 𝝃Γ𝑇0 , see formula (24), one should solve the AP (28) on the interval 𝑡 ∈ [0, 2𝑇0].

The AP (28) is solved by finite differences. Any appropriate scheme can be used that would be sufficiently accurate and easy/in-

expensive to implement. The grid can be simple, e.g., Cartesian, while the boundary 𝜕Ω can be non-conforming. For the simulations 
in Section 6, we use non-staggered schemes (Section 1.4), where the solution variables and residuals of the difference equations are 
attributed to the same nodes.

Moreover, since the AP does not need to be solved beyond 𝑡 = 2𝑇0, it requires no artificial boundary conditions (ABCs) [35–37]. 
The artificial outer boundary can merely be placed sufficiently far away from the compactly supported sources inside Ω so that by 
the time the computation is terminated (𝑡 = 2𝑇0), no reflections can reach Ω yet. In this sense, the partition (15) along with Huygens’ 
principle facilitate the exact treatment of the artificial outer boundary. The reflections do not affect the solution because they are 
8

not present in the region of interest rather than because they are suppressed or minimized in any particular way. We have exploited 
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this approach in the case of acoustics (scalar) [3]. In the current work, it applies to the case of electromagnetism (vector) with no 
modifications.

Let ℕ0 be the spatial discretization grid for the AP (28). This grid extends at least 2𝑇0∕𝑐 away from Ω in every direction so that 
no ABCs are required. Let ℕ+ = ℕ0 ∩ Ω and ℕ− = ℕ0 ⧵ℕ+ =ℕ0 ∩ Ω1. Let 𝑡 be the current (discrete) moment of time and ℕ0

𝑡 , ℕ
+
𝑡 and 

ℕ−
𝑡 be the corresponding space-time grids. The spatial “snapshots” of those grids are the same on every time level because the shape 

of Ω is fixed. Let 𝕊𝔫 be the stencil of the discretization scheme centered at the node 𝔫 of the grid ℕ0
𝑡 . The grid boundary is defined 

as follows:

𝛾𝑡 =
{ ⋃

𝔫∈ℕ+
𝑡

𝕊𝔫

}⋂{ ⋃
𝔫∈ℕ−

𝑡

𝕊𝔫

}
. (29)

It is a multi-layer fringe of grid nodes that straddles the continuous boundary Γ𝑡. Assume (with no loss of generality) that the stencil 
𝕊𝔫 is also fixed. Then, the grid boundary 𝛾𝑡 of (29) is the same on every time level. We will denote by 𝛾 the spatial projection of 𝛾𝑡.

Let the discrete density 𝜉𝛾𝑡 be given. It is a plain grid function defined on 𝛾𝑡 of (29). Let the auxiliary grid function 𝑤(ℎ) be equal 
to 𝜉𝛾𝑡 on 𝛾𝑡 and 0 on ℕ0

𝑡 ⧵ 𝛾𝑡. With 𝑤(ℎ) available, the AP (28) is discretized on the grid ℕ0
𝑡 :

□(ℎ)
𝑐 𝑣(ℎ) =

{
□(ℎ)
𝑐 𝑤(ℎ), 𝔫 ∈ ℕ+

𝑡 ,

0, 𝔫 ∈ ℕ−
𝑡 ,

𝑣(ℎ) =𝑤(ℎ), 𝔫 ∈ two initial time levels on ℕ+.

(30)

The difference Calderon’s projection is the trace of the solution 𝑣(ℎ) to the discrete AP (30):

P𝛾𝑡
𝜉𝛾𝑡

def
= 𝑣(ℎ)

|||𝛾𝑡 . (31)

A grid function 𝐸(ℎ) satisfies the discrete wave equation □(ℎ)
𝑐 𝐸(ℎ) = 0 on ℕ−

𝑡 subject to homogeneous initial conditions if and only if 
its trace 𝜉𝛾𝑡 =𝐸

(ℎ)|||𝛾𝑡 satisfies the difference Calderon’s boundary equation with projection [cf. equation (13)]:

P𝛾𝑡
𝜉𝛾𝑡 = 𝜉𝛾𝑡 . (32)

The discrete operators Q𝛾𝑇0
= P𝛾𝑇0

− I and R𝛾𝑇0
are defined similar to QΓ𝑇0

and RΓ𝑇0
, respectively (see formulae (19) and (24)). 

The main difference is that the surface potentials are replaced with the corresponding solutions of the difference AP (30).

In addition to the operators Q𝛾𝑇0
and R𝛾𝑇0

, we will need to introduce the extension operator Ex that maps a given continuous 
density 𝝃Γ𝑡 onto a discrete density 𝜉𝛾𝑡 :

𝜉𝛾𝑡 =Ex𝝃Γ𝑡 . (33)

Let 𝔫 ∈ 𝛾 be a grid node near the boundary 𝜕Ω, and let �̄� ∈ 𝜕Ω be the closest point to 𝔫 on the surface (foot of the normal dropped 
from 𝔫 onto 𝜕Ω). At �̄�, we have the function and its first normal derivative available: (𝜉0, 𝜉1) =

(
𝐸, 𝜕𝐸

𝜕n

)
. To obtain higher-order 

normal derivatives, we recast the governing d’Alembert equation (12) in local surface-oriented coordinates [38] defined as follows. 
If �̄� ∈ 𝑃𝑗 , then the location of the node 𝔫 is uniquely characterized by three real numbers: (𝑠1, 𝑠2) ∈ 𝑃𝑗 (see formulae (9)–(10)) and the 
distance 𝑧′ between 𝔫 and �̄�, which is positive if 𝔫 ∈Ω1 (outside 𝜕Ω) and negative if 𝔫 ∈Ω (inside 𝜕Ω). The same characterization 
(two parametric coordinates on the surface and a signed distance 𝑧′ along the normal) applies to every point in ℝ3 sufficiently close 
to 𝜕Ω. In surface-oriented coordinates (𝑠1, 𝑠2, 𝑧′), the second-order normal derivative is obtained directly from the wave equation via 
the tangential derivatives, first-order normal derivative, and second-order time derivative, while higher order normal derivatives are 
obtained by differentiating equation (12). With sufficiently many normal derivatives at hand, the value of 𝜉𝛾𝑡 at 𝔫 is reconstructed 
by Taylor’s formula. The order of the Taylor’s formula is related to the desired accuracy of approximation. If the scheme (30) is 
second-order accurate, it is sufficient to use the Taylor’s formula up to the second derivative. For a fourth-order accurate scheme, 
one should include the terms up to the fourth derivative. Further details can be found in [3, Section 4].

Having introduced the AP (28) and its discretization (30), and having constructed the difference BEP (32) and extension operator 
(33), we can obtain a discrete counterpart to (27):

𝑀∑
𝑚=1

𝑐
(1)
0,𝑚Q𝛾𝑇0

Ex𝝍0,𝑚 + 𝑐(1)1,𝑚Q𝛾𝑇0
Ex𝝍1,𝑚 = 0, 𝑘 = 1, (34a)

𝑀∑
𝑚=1

𝑐
(𝑘)
0,𝑚Q𝛾𝑇0

Ex𝝍0,𝑚 + 𝑐(𝑘)1,𝑚Q𝛾𝑇0
Ex𝝍1,𝑚 =

−
𝑀∑
𝑚=1

𝑐
(𝑘−1)
0,𝑚 R𝛾𝑇0

Ex𝝍0,𝑚 + 𝑐(𝑘−1)1,𝑚 R𝛾𝑇0
Ex𝝍1,𝑚, 𝑘 = 2,… ,𝐾. (34b)
9

Equations (34) are convenient to recast in matrix notation:
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Q (0)
𝛾𝑇0

c
(1)
0 +Q (1)

𝛾𝑇0
c
(1)
1 = 0 , 𝑘 = 1, (35a)

Q (0)
𝛾𝑇0

c
(𝑘)
0 +Q (1)

𝛾𝑇0
c
(𝑘)
1 = −R(0)

𝛾𝑇0
c
(𝑘−1)
0 −R(1)

𝛾𝑇0
c
(𝑘−1)
1 , 𝑘 = 2,… ,𝐾, (35b)

where

c
(𝑘)
0 = [𝑐(𝑘)0,1 , 𝑐

(𝑘)
0,2 ,… , 𝑐

(𝑘)
0,𝑀 ]𝑇 , c

(𝑘)
1 = [𝑐(𝑘)1,1 , 𝑐

(𝑘)
1,2 ,… , 𝑐

(𝑘)
1,𝑀 ]𝑇 , (36)

and

Q (0)
𝛾𝑇0

= [Q𝛾𝑇0
Ex𝝍0,1,Q𝛾𝑇0

Ex𝝍0,2,… ,Q𝛾𝑇0
Ex𝝍0,𝑀 ]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
matrix of 𝑀 columns

(37)

The remaining three matrices in (35), Q (1)
𝛾𝑇0

, R(0)
𝛾𝑇0

, and R(1)
𝛾𝑇0

, are constructed similar to (37). Each has the dimension of |𝛾𝑇0 | ×𝑀 , 

where |𝛾𝑇0 | is the number of nodes in 𝛾𝑇0 . We emphasize that, while the matrices (operators) Q (0)
𝛾𝑇0

, Q (1)
𝛾𝑇0

, R(0)
𝛾𝑇0

, and R(1)
𝛾𝑇0

are derived 
from the difference projection P𝛾𝑡

of (31) that operates in the space of grid functions at the discrete boundary 𝛾𝑡, the unknowns in 
equations (35) are the coefficients of the spectral expansion (26) defined on the continuous boundary Γ𝑡. Equations (35) represent a 
recursion for the coefficients (36) with respect to 𝑘 = 1, 2, … , 𝐾 in a fully discrete framework.

4. Boundary equations with projections for vector unknowns

Equations (35) reduce the scalar wave equation (12) from the domain to the boundary. They are derived using the spectral 
discretization (26), finite-difference scheme (30), discrete BEP (32), and extension (33). It is important that no boundary conditions 
contribute to equations (35) at all. Boundary conditions will be taken into account separately (Section 5).

Consequently, an independent system of equations (35) can be written for each of the three Cartesian components of the electric 
field, 𝐸𝑥, 𝐸𝑦, and 𝐸𝑧, because each of these components satisfies the d’Alembert equation (12) on Ω1 independently of the others. 
Moreover, as long as we use the same discretization for all three field components (same basis functions at the boundary, same 
volumetric grid and difference scheme, and same extension), the resulting boundary equations will be identical. They will merely 
need to be juxtaposed to form a system of boundary equations for the overall vector field E = (𝐸𝑥, 𝐸𝑦, 𝐸𝑧).

Let us introduce the vectors of coefficients similar to (36) for each of the three field components: c(𝑘)0,𝑥 and c(𝑘)1,𝑥 for 𝐸𝑥, c(𝑘)0,𝑦 and 
c
(𝑘)
1,𝑦 for 𝐸𝑦, and c(𝑘)0,𝑧 and c(𝑘)1,𝑧 for 𝐸𝑧. Let us also build the combined 3𝑀 -dimensional vectors (for every 𝑘 = 1, 2, … , 𝐾):

𝔠(𝑘)0 =

⎡⎢⎢⎢⎢⎣
c
(𝑘)
0,𝑥

c
(𝑘)
0,𝑦

c
(𝑘)
0,𝑧

⎤⎥⎥⎥⎥⎦
and 𝔠(𝑘)1 =

⎡⎢⎢⎢⎢⎣
c
(𝑘)
1,𝑥

c
(𝑘)
1,𝑦

c
(𝑘)
1,𝑧

⎤⎥⎥⎥⎥⎦
, (38)

as well as the combined block-diagonal operators of dimension 3|𝛾𝑇0 | × 3𝑀 :

𝔔(0)
𝛾𝑇0

=

⎡⎢⎢⎢⎢⎢⎣

Q
(0)
𝛾𝑇0

Q
(0)
𝛾𝑇0

Q
(0)
𝛾𝑇0

⎤⎥⎥⎥⎥⎥⎦
, 𝔔(1)

𝛾𝑇0
=

⎡⎢⎢⎢⎢⎢⎢⎣

Q
(1)
𝛾𝑇0

Q
(1)
𝛾𝑇0

Q
(1)
𝛾𝑇0

⎤⎥⎥⎥⎥⎥⎥⎦
,

ℜ(0)
𝛾𝑇0

=

⎡⎢⎢⎢⎢⎢⎢⎣

R
(0)
𝛾𝑇0

R
(0)
𝛾𝑇0

R
(0)
𝛾𝑇0

⎤⎥⎥⎥⎥⎥⎥⎦
, ℜ(1)

𝛾𝑇0
=

⎡⎢⎢⎢⎢⎢⎢⎣

R
(1)
𝛾𝑇0

R
(1)
𝛾𝑇0

R
(1)
𝛾𝑇0

⎤⎥⎥⎥⎥⎥⎥⎦
.

(39)

Note that, the combined operators (39) do not require any extra computations beyond those needed for the individual columns of 
the single-component matrices Q (0)

𝛾𝑇0
, Q (1)

𝛾𝑇0
, R(0)

𝛾𝑇0
, and R(1)

𝛾𝑇0
, see (37). Each column requires one solution of the AP (30). Then, the 

resulting single-component matrices become blocks in (39) with no additional computations necessary.

Given the definitions (38) and (39), we derive from (35):

𝔔(0)
𝛾𝑇0

𝔠(1)0 +𝔔(1)
𝛾𝑇0

𝔠(1)1 = 0 , 𝑘 = 1, (40a)

𝔔(0) 𝔠(𝑘) +𝔔(1) 𝔠(𝑘) = −ℜ(0) 𝔠(𝑘−1) −ℜ(1) 𝔠(𝑘−1), 𝑘 = 2,… ,𝐾. (40b)
10

𝛾𝑇0 0 𝛾𝑇0 1 𝛾𝑇0 0 𝛾𝑇0 1
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Equations (40) extend the recursion (35) from the case of a scalar unknown to the case of a 3D vector unknown. As before, the 
update for every 𝑘 reduces to taking the previously determined coefficients as data for the next step, while all the operators remain 
𝑘-independent. Of course, with no boundary conditions the solution to equations (40) is not unique. Moreover, the equations for 
different field components are still uncoupled (different blocks in (39)). In Section 5, we describe the implementation of the boundary 
conditions (7b)–(7c).

5. Collocation method for the boundary conditions

The boundary conditions (7b)–(7c) involve the values of the solution itself, as well as its first-order derivatives in space, at the 
scattering surface 𝜕Ω. Hence, one can think of these boundary conditions as of relations between the boundary traces of the field 
components, TrΓ(𝑘)𝐸𝑥, TrΓ(𝑘)𝐸𝑦, and TrΓ(𝑘)𝐸𝑧, as the solution is computed in time increments of length 𝑇0 (see equations (27)). 
These relations will not depend on 𝑘, because nothing but the data E imp in the boundary conditions (7b)–(7c) depends on time.

Boundary conditions (7b)–(7c) can be implemented in different coordinate systems. In this work, we choose a local surface-

oriented frame of reference, as outlined in Section 3.4 after formula (33). The rationale is that, the impinging field (input data) is 
specified on the surface 𝜕Ω and surface-oriented coordinates appear very convenient for computing the divergence in (7c). Also, the 
normal to the surface automatically coincides with the third axis of this coordinate system. On the other hand, as the impinging 
field is given by its Cartesian components, a transformation needs to be known between the Cartesian components of a vector and 
components of the same vector in surface-oriented coordinates.

Consider a 3 ×3 transformation matrix T between the Cartesian components of a vector E and its components in the local frame:

⎡⎢⎢⎣
𝐸𝑠1
𝐸𝑠2
𝐸𝑧′

⎤⎥⎥⎦ =T

⎡⎢⎢⎣
𝐸𝑥
𝐸𝑦
𝐸𝑧

⎤⎥⎥⎦ .
The matrix T is defined on the scattering surface and depends on the specific location 𝜕Ω ∋ �̄� = (𝑠1, 𝑠2, 𝑧′ = 0).1 Then, boundary 
condition (7b) for the tangential components of the scattered field reads:

𝐸𝑠𝑖 = −𝐸imp
𝑠𝑖

= −[TE imp]𝑠𝑖 = −T𝑠𝑖𝑗
𝐸

imp

𝑗
, 𝑖 = 1,2, (41)

where 𝑗 = 𝑥, 𝑦, 𝑧. Hereafter, summation over the repeated indices is assumed.

Boundary condition (7c) in the local frame of reference is

divE = 𝜕𝑖𝐸𝑖 + Γ𝑗
𝑗𝑖
𝐸𝑖 = 0,

where 𝜕𝑖 denotes 𝜕∕𝜕𝑠1, 𝜕∕𝜕𝑠2, and 𝜕∕𝜕𝑧′, the contravariant components 𝐸𝑖 of the scattered field E are 𝐸𝑠1 , 𝐸𝑠2 , and 𝐸𝑧′ , and Γ𝑗
𝑗𝑖

are the Christoffel coefficients convoluted over the repeated indices. Since the tangential components 𝐸𝑠𝑖 are specified by (41), their 
derivatives 𝜕𝐸𝑠𝑖∕𝜕𝑠𝑖 = −𝜕𝐸imp

𝑠𝑖
∕𝜕𝑠𝑖, 𝑖 = 1, 2, can be considered given on 𝜕Ω. Hence, we have:

𝜕𝐸𝑧′

𝜕𝑧′
+ Γ𝑗

𝑗𝑧′
𝐸𝑧′ =

2∑
𝑖=1

(
𝜕𝐸

imp
𝑠𝑖

𝜕𝑠𝑖
+ Γ𝑗

𝑗𝑠𝑖
𝐸imp
𝑠𝑖

)
, (42)

where all the unknown quantities are gathered on the left-hand side of (42), while the right-hand side of (42) is known.

Using (41) and a similar relation for the normal component of the field, 𝐸𝑧′ = [TE ]𝑧′ , we derive from (42):

(
𝜕

𝜕𝑧′
+ Γ𝑗

𝑗𝑧′

)
[TE ]𝑧′ =

2∑
𝑖=1

(
𝜕

𝜕𝑠𝑖
+ Γ𝑗

𝑗𝑠𝑖

)
[TE imp]𝑠𝑖 . (43)

The derivatives of the Cartesian components of the field with respect to the local coordinates in (43) are computed by the chain 
rule, e.g., 𝜕𝐸𝑥

𝜕𝑠𝑖
= 𝜕𝐸𝑥

𝜕𝑥

𝜕𝑥

𝜕𝑠𝑖
+ 𝜕𝐸𝑥

𝜕𝑦

𝜕𝑦

𝜕𝑠𝑖
+ 𝜕𝐸𝑥

𝜕𝑧

𝜕𝑧

𝜕𝑠𝑖
, where 𝜕𝑥

𝜕𝑠𝑖
, etc., are known from the mapping (10). In addition, formula (43) implies 

differentiation not only of the fields but also the transformation matrix T = T (𝑠1, 𝑠2, 𝑧′). The corresponding derivatives are to be 
evaluated at (𝑠1, 𝑠2, 𝑧′ = 0), i.e., on the surface 𝜕Ω.

Equations (41) and (43) represent the boundary conditions (7b)–(7c) at any location on the surface of the scatterer. We apply 
these equations at a chosen set of collocation points. Consider one such point on the patch 𝑃𝑗 with the parametric coordinates 
(𝑠1, 𝑠2) ∈ 𝑃𝑗 , see formulae (9)–(10). Let also (𝑘 − 1)𝑇0 < 𝑡 ⩽ 𝑘𝑇0 be the current moment of time. Define the following matrix of 
dimension 3 × 3𝑀 :
11

1 This matrix is the inverse of the matrix that relates the basis vectors in the two coordinate systems: [𝝉1, 𝝉2, n] = [e𝑥, e𝑦, e𝑧]T−1 .
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𝚿 =𝚿(𝑠1, 𝑠2, 𝑡)

=
⎡⎢⎢⎢⎣
𝜓1( ⋅ ) ⋯ 𝜓𝑀 ( ⋅ )

𝜓1( ⋅ ) ⋯ 𝜓𝑀 ( ⋅ )
𝜓1( ⋅ ) ⋯ 𝜓𝑀 ( ⋅ )

⎤⎥⎥⎥⎦
||||||||(𝑠1 ,𝑠2 ,𝑡−(𝑘−1)𝑇0)

,
(44)

where 𝜓1, … , 𝜓𝑀 are the basis functions, see Section 3.4. Then, using formulae (26) and (38), we can represent the electric field 
E = (𝐸𝑥, 𝐸𝑦, 𝐸𝑧) and its normal derivative at (𝑠1, 𝑠2, 𝑡) as

E =𝚿𝔠(𝑘)0 ,
𝜕

𝜕𝑧′
E =𝚿𝔠(𝑘)1 . (45)

Formulae (41), (44), and (45) allow us to recast the boundary condition (7b) for the two tangential components of the scattered field 
at (𝑠1, 𝑠2, 𝑡) as follows:

𝔟(0)𝑠𝑖 𝔠
(𝑘)
0 = −[TE imp(𝑠1, 𝑠2, 𝑡)]𝑠𝑖 , 𝑖 = 1,2, (46)

where E imp(𝑠1, 𝑠2, 𝑡) is known and 𝔟(0)𝑠𝑖 ≡ [T𝚿]𝑠𝑖 is a 1 × 3𝑀 row vector equal to the row # 𝑖 of the 3 × 3𝑀 matrix T𝚿 that 
corresponds to the local coordinate 𝑠𝑖.

Equations (46) hold at a specific collocation point (𝑠1, 𝑠2) ∈ 𝑃𝑗 and moment of time (𝑘 − 1)𝑇0 < 𝑡 ⩽ 𝑘𝑇0. Similar equations can be 
obtained for all chosen collocation points and moments of time. Combining the resulting equations, i.e., literally “stacking” them on 
top of one another, we arrive at two sets of equations for 𝔠(𝑘)0 as per the two independent tangential directions of the local frame of 
reference:

𝔅(0)
𝑠𝑖
𝔠(𝑘)0 =

{
− [TE imp(𝑠1, 𝑠2, 𝑡)]𝑠𝑖

}
collocation
points/times

(47)

where 𝔅(0)
𝑠𝑖

is composed of the rows 𝔟(0)𝑠𝑖 for all collocation points/times. The notation on the right-hand side of equation (47) implies 
that the data shall be taken at the corresponding collocation points and moments of time.

Likewise, equations (43)–(45) lead to the following relations for the coefficients 𝔠(𝑘)0 , 𝔠(𝑘)1 :

[𝔅(1)
𝑧′

+ 𝚪𝑗
𝑗𝑧′

𝔅(0)
𝑧′
]𝔠(𝑘)0 +𝔅(0)

𝑧′
𝔠(𝑘)1 =

{ 2∑
𝑖=1

(
𝜕

𝜕𝑠𝑖
+ Γ𝑗

𝑗𝑠𝑖

)
[TE imp]𝑠𝑖

}
collocation
points/times

(48)

where 𝔅(0)
𝑧′

and 𝔅(1)
𝑧′

consist of the row vectors 𝔟(0)
𝑧′

≡ [T𝚿]𝑧′ and 𝔟(1)
𝑧′

≡ [ 𝜕T
𝜕𝑧′

𝚿]𝑧′ for all the collocation points/times, respectively. 
Note that, the Christoffel coefficients depend on the location is space. Accordingly, the quantities Γ𝑗

𝑗𝑠𝑖
on the right-hand side of 

equation (48) shall be attributed to specific collocation points. On the left-hand side of equation (48), 𝚪𝑗
𝑗𝑧′

represents a diagonal 
matrix of appropriate dimension with location-specific coefficients Γ𝑗

𝑗𝑧′
as entrees.

We emphasize that the matrix T depends only on the location in space, while the matrix 𝚿 depends on the location in space 
and the moment of time within the interval [0, 𝑇0], but does not depend on 𝑘 (see formula (44) and recall that the basis functions in 
Section 3.4 were defined on the time interval [0, 𝑇0]). Consequently, the operators 𝔅(0)

𝑠𝑖
, 𝔅(0)

𝑧′
, and 𝔅(1)

𝑧′
in equations (47)–(48) do not 

depend on 𝑘 either.

The choice of the collocation points and times presents a separate question. Many strategies can be explored. In the current work, 
the collocation points coincide with the points �̄� ∈ 𝜕Ω used for constructing the extension operator (33), i.e., with the feet of the 
normals dropped from the nodes 𝔫 ∈ 𝛾 onto 𝜕Ω. The collocation times coincide with the discretization levels of the finite-difference 
scheme (Section 3.4). Then, the overall number of equations in three sets (47)–(48) that represent the boundary conditions (7b)–(7c)

on Γ(𝑘) is 3|𝛾𝑇0 |. Moreover, let’s note that all time-independent constructs such as T , the differentiated matrices 𝜕

𝜕𝑠𝑖
T , 𝜕

𝜕𝑧′
T , the 

Christoffel symbols, etc., need to be computed at the collocation points ahead of time and only once, when building the geometric 
model and computational grid. Technically, this computation relies on a computer algebra system.

The boundary conditions (47)–(48) supplement the recursion (40):

⎡⎢⎢⎢⎢⎢⎢⎢

𝔔(0)
𝛾𝑇0

𝔔(1)
𝛾𝑇0

𝔅(0)
𝑠1

0

𝔅(0)
𝑠2

0

⎤⎥⎥⎥⎥⎥⎥⎥
[
𝔠(𝑘)0
𝔠(𝑘)1

]
=

[
−ℜ(0)

𝛾𝑇0
𝔠(𝑘−1)0 −ℜ(1)

𝛾𝑇0
𝔠(𝑘−1)1

𝔡(𝑘)

]
, (49)
12

⎢⎣𝔅(1)
𝑧′

+ 𝚪𝑗
𝑗𝑧′

𝔅(0)
𝑧′

𝔅(0)
𝑧′
⎥⎦
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where the vector 𝔡(𝑘) represents the combined data from the right-hand sides of equations (47) and (48). The three bottom rows 
of blocks in the matrix on the left-hand side of equation (49) correspond to the boundary conditions (7b)–(7c) and thus render the 
coupling between the Cartesian components of the electric field E at the surface of the scatterer.

Equation (49) shall be solved in the sense of least squares. As the matrix on the left-hand side of equation (49) does not depend 
on 𝑘, it can be QR-factorized ahead of time so that the final form of the time-marching algorithm with respect to 𝑘 becomes:[

𝔠(𝑘)0
𝔠(𝑘)1

]
= −−1


∗

[
ℜ(0)
𝛾𝑇0

ℜ(1)
𝛾𝑇0

0

0 0 I

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

transition matrix

⎡⎢⎢⎣
𝔠(𝑘−1)0
𝔠(𝑘−1)1
𝔡(𝑘)

⎤⎥⎥⎦ . (50)

The transition matrix on the right-hand side of equation (50) is obtained via QR-factorization of the matrix on the left-hand side 
of equation (49). We compute the factorization using the Math Kernel Library (MKL) from Intel®. This library is optimized for the 
architecture and renders internal parallelization. For the specific dimensions used for simulations in Section 6, the computational 
cost of QR-factorization appears negligible on our 32-core Dell PowerEdge server with two Intel® Xeon® CPU E5-2698 v3 2.30 GHz 
processors and 512 Gb of RAM.

6. Numerical simulations

For each of our test cases (see Sections 6.1 and 6.2), we first need to choose the basis 𝜓𝑚, 𝑚 = 1, … , 𝑀 , for the spectral expansion 
(26) at the space-time boundary Γ𝑡, as well as the finite-difference grid. The overall error of numerical solution is affected by both 
the error at the boundary and the error on the grid. For large dimensions of the basis 𝑀 the spectral expansion error at the boundary 
is small and the finite-difference error dominates, while for moderate 𝑀 ’s and sufficiently fine grids it is the other way around.

Therefore, an efficient strategy for choosing the dimension 𝑀 is to analyze the accuracy of representing the boundary data, i.e., 
the impinging field (see formulae (7b)–(7c) and (41), (43)) in the form of an expansion w.r.t. the basis {𝜓𝑚}. Indeed, the accuracy 
of representing the actual solution is expected to be the same. Then, on fine grids the error at the boundary will be dominant while 
on a sequence of coarser grids one will be able to observe the grid convergence until the finite-difference error reaches the level of 
the boundary error.

6.1. Sphere

Consider a unit PEC sphere centered at the origin and illuminated by a plane EM wave with the electric component E imp =
e𝑥 cos(kx − 𝜔𝑡). The incident field propagates along the 𝑧-axis, k = 𝑘e𝑧, and is linearly polarized along the 𝑥-axis. A series solution 
for the scattered field is known and expressed using vector spherical harmonics (see, e.g., [33, Chapter 13]). Taking sufficiently 
many terms in the series, we obtain a reference solution that the numerical results can be compared against. The domain where the 
scattered field is sought for is a cube [−1.5, 1.5]3 that contains the scatterer (unit sphere). A larger computational domain for solving 
the auxiliary problem (28) is a cube [−4.7, 4.7]3 truncated by the simplest homogeneous boundary conditions. The size of this domain 
is chosen so that the signal reflected from its boundaries won’t reach the domain of interest [−1.5, 1.5]3 during the interval of time 
when the AP is solved. The computational domain is discretized by a 77 ×77 ×77 uniform Cartesian grid with size ℎ𝑥 = ℎ𝑦 = ℎ𝑧 such 
that the diameter of the sphere is 14 cells. This grid is partially visualized in Fig. 3. It will subsequently be referred to as Grid 1x. 
The time step for integration is chosen as ℎ𝑡 = ℎ𝑥∕3. A twice as fine grid in both space and time will be called Grid 2x and used for 
studying the convergence.

We use two schemes for solving the AP (28): the standard second-order central difference explicit scheme and a fourth-order 
compact implicit scheme of [27] on the 3 × 3 × 3 × 3 space-time stencil. The fourth-order scheme first introduces the discretization 
in time:

Δ𝑢𝑛+1 − 𝑢𝑛+1

𝜃𝜏2𝑐2
= 2

(
Δ𝑢𝑛 − 𝑢𝑛

𝜃𝜏2𝑐2

)
−
(
Δ𝑢𝑛−1 − 𝑢𝑛−1

𝜃𝜏2𝑐2

)
− 1
𝜃
Δ𝑢𝑛, (51)

where 𝜃 = 1
12 . Equation (51) is a modified Helmholtz equation Δ𝑢𝑛+1 − 𝜅2𝑢𝑛+1 = 𝑓𝑛+1 on the upper time level. It is discretized by 

fourth-order compact finite differences in space [27].

The sphere does not require multiple patches. It is parameterized in its entirety according to (8) so that 𝑠1 = 𝜃 and 𝑠2 = 𝜑. The 
basis functions introduced in Section 3.4 for the spectral representation of the field (26) are taken as products of spherical harmonics 
𝑌𝑙𝑚(𝜃, 𝜑) and Chebyshev polynomials 𝑇𝑛(𝑡): 𝜓𝑖 = 𝜓𝑖(𝜃, 𝜑, 𝑡) = 𝑌𝑙𝑚(𝜃, 𝜑)𝑇𝑛(𝑡), 𝑖 = 1, ..., 𝑀 . The choice of the dimension 𝑀 in the case 
of a sphere is discussed in detail in our earlier work [2], see, in particular [2, Tables 5 and 6], and the same considerations apply 
here without any change.

In Fig. 1 and Table 1, we demonstrate the stability and convergence of computations over a long simulation time, on the order 
of 1000 × diameter of the sphere

propagation speed
. The impinging wavelength is approximately equal to the radius of the sphere, 𝜆 ≈ 1. The number of 

spherical harmonics is 𝐿max = 7 and the number of Chebyshev polynomials is 𝑁max = 6, so the dimension of the basis is 𝑀 =
(1 +𝐿max)2(1 +𝑁max) = 448. Fig. 1 and Table 1 show that the numerical solution converges to the reference solution with the design 
13

second-order rate.
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Fig. 1. log2 ‖relative error‖∞ vs. time, second-order accurate central scheme.

Table 1

Average relative error and convergence rate, second-order accurate 
central scheme.

Grid 𝐸𝑥 𝐸𝑦 𝐸𝑧
Error Rate Error Rate Error Rate

1x 0.0641 – 0.0379 – 0.0851 –

2x 0.0162 3.95 0.00998 3.80 0.0225 3.78

Fig. 2. log2 ‖relative error‖∞ vs. time, fourth-order accurate compact scheme.

Table 2

Average relative error and convergence rate, fourth-order accurate com-

pact scheme.

Grid 𝐸𝑥 𝐸𝑦 𝐸𝑧
Error Rate Error Rate Error Rate

1x 0.0283 – 0.0209 – 0.0378 –

2x 0.00181 15.6 0.00139 15.1 0.00227 16.6

Fig. 2 and Table 2 are counterparts to Fig. 1 and Table 1, respectively, but for the fourth-order accurate scheme. Stability and the 
design convergence rate can be observed.

Finally, in Fig. 3 we present several cross-sections of the field for a fixed moment of time. Compared to the simulations of Figs. 1

and 2 (and Tables 1 and 2), the wavelength is twice as short, 𝜆 ≈ 1∕2, and a larger basis is used: 𝐿max = 11, 𝑁max = 8.

6.2. Double-cone hypersonic shape

6.2.1. Setup

Consider a double-cone shape shown in Fig. 4. Shapes of this type are often used for hypersonic CFD simulations [39]. We will 
compute the EM scattering about this shape. The double-cone shown in Fig. 4 has been created using the Rhinoceros 3D© CAD 
software. The bounding box in Fig. 4(a) is the domain where the scattered field is to be computed.

To construct a spline-defined double-cone shown in Fig. 4, we use the topologically quadrilateral 2D NURBS patches parametrized 
by two variables (see equations (9)–(10)). The patches are made periodic in one direction by matching the corresponding opposite 
edges. In general, the way the patches are created, manipulated, and assembled into the final object is case-specific, relies on 
the capabilities of the CAD software, and requires a lot of technical details. Specifically in the double-cone case, we first define 
14

a generatrix composed of straight segments and then revolve it about the axis of symmetry using CAD. The resulting surface is 



Journal of Computational Physics 498 (2024) 112705S. Petropavlovsky, S. Tsynkov and E. Turkel

Fig. 3. Cross-sections of the scattered field for a fixed moment of time.

Fig. 4. Hypersonic double-cone scattering shape. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

a 2D piecewise NURBS that employs first-order splines in the longitudinal direction (the generatrix is piecewise linear) and fifth-

order splines in the other, periodic direction. The overall surface is split into patches # 1, 2, and 3 by isolines (lines for which the 
parametric variable aligned with the main axis of the object is constant) at the knots of the piecewise linear generatrix. Then, the 
opening at the base of the cylindrical patch (patch # 3) is capped by a regular planar quadrilateral patch. The CAD software trims it 
at the intersection curve with the hull (a circle) leaving what we see in Fig. 4 as patch # 4. Trimming means dividing the domain of 
parameters into the active and inactive parts of the quadrilateral. The inactive part is visually removed but mathematically the patch 
remains a rectangle. In Fig. 4(b), the four patches that define the double-cone are identified by color.

There is also a planar cap at the tip of the front cone (patch # 1). This cone is truncated intentionally to avoid a potential 
singularity in the surface representation at the vertex, which may render the Taylor-based extension Ex inaccurate if a node from 𝛾
is projected onto the vertex of very close to it. As a simple remedy, we extend the boundary data from the surface points located a 
little further away from the vertex, which yields an oblique extension, see Fig. 4(c). Hence, the front planar cap merely makes the 
overall hull closed (“waterproof”), which is important, e.g., for distinguishing between the interior and exterior points with the help 
of CAD algorithms. This cap is not used for building the extension Ex .

Instead of a piecewise linear generatrix, we could have employed a smooth one thus obtaining a smoother shape with no sharp 
edges between the patches. In this case, however, the curvature of the surface would be high in the transition areas between the 
patches, i.e., near the current edges (see Fig. 4). That, in turn, might slow down the convergence of the spectral expansions at the 
boundary (see equations (26)), which effectively implies that more basis functions are needed. On the other hand, the algorithm of 
difference potentials involves no special treatment in the areas near the interfaces between the patches. This is true even in the case 
of sharp edges, like in Fig. 4.

No analytic solution is known for the scattering about the shape shown in Fig. 4. We therefore compute two different cases. The 
first one corresponds to an “engineered” reference solution that allows us to explicitly evaluate the error. The second one presents a 
15

more realistic scenario where an impinging plane wave is scattered about the double-cone.
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Table 3

The error of spectral representation of the plane wave boundary data as it decreases when the 
basis dimension is successively doubled. Basis1 = [1, 3, 4, 2] × [4, 2, 2, 2] × 8, where the notation is 
[𝑛(1)1 , ..., 𝑛

(4)
1 ] × [𝑛(1)2 , ..., 𝑛

(4)
2 ] × 𝑛3 . Basis2 = 2 × Basis1. Basis3 = 2 × Basis2.

Patch # Basis 1 Basis 2 Basis 3

error 𝑢|Γ error
𝜕𝑢

𝜕𝑛

|||Γ error 𝑢|Γ error
𝜕𝑢

𝜕𝑛

|||Γ error 𝑢|Γ error
𝜕𝑢

𝜕𝑛

|||Γ
1 2.1 ⋅ 10−1 3.2 ⋅ 10−1 2.3 ⋅ 10−2 3.3 ⋅ 10−2 3.0 ⋅ 10−4 7.7 ⋅ 10−4
2 5.1 ⋅ 10−2 1.0 ⋅ 10−1 7.2 ⋅ 10−3 4.5 ⋅ 10−3 6.2 ⋅ 10−7 2.4 ⋅ 10−6
3 1.2 ⋅ 10−1 1.5 ⋅ 10−1 3.0 ⋅ 10−4 8.2 ⋅ 10−4 2.0 ⋅ 10−6 1.2 ⋅ 10−6
4 0.9 ⋅ 10−1 1.1 ⋅ 10−1 2.6 ⋅ 10−4 3.3 ⋅ 10−4 1.4 ⋅ 10−11 2.0 ⋅ 10−11

Fig. 5. A plane wave impinging on the double-cone at 45◦ with respect to its main axis. 𝐷∕𝜆 ≈ 4.25, where 𝐷 is the diameter and 𝜆 is the wavelength.

Table 4

Patch 1.

𝐷∕𝜆 𝑛
(1)
1 𝑛

(1)
2 𝑛3 # APs error 𝑢 error

𝜕𝑢

𝜕𝑛

≈ 1.5 1 4 8 135 0.21 0.32

≈ 2 2 2 10 165 0.09 0.09

≈ 2.75 5 3 12 572 0.17 0.04

≈ 4.25 8 5 16 1734 0.08 0.03

To engineer the reference solution, we place an artificial point dipole oriented along the 𝑧-axis inside the double-cone. The trace 
of the field radiated by this dipole (tangential components) is taken as boundary data on the surface of the double-cone. Then, the 
reference solution outside the shape is the dipole field itself:

𝐸𝑟 = 2cos𝜃
( 1
𝑟2

− 𝑖𝑘

𝑟

)
Π0, 𝐸𝜃 = sin𝜃

( 1
𝑟2

− 𝑖𝑘

𝑟
− 𝑘2

)
Π0, Π0 =

1
𝑟
𝑒𝑖𝑘𝑟−𝑖𝜔𝑡. (52)

For the scattering of a plane wave, the important parameters are the angle of incidence and the frequency. We first use the 
boundary data due to the impinging plane wave for analyzing the error of the spectral expansion at the boundary and choosing 
the dimension of the basis 𝑀 . For patches 1, 2, and 3, the basis on the surface employs the trigonometric functions, 1, cos𝑠1, 
sin 𝑠1, cos2𝑠1, sin 2𝑠1, ..., cos𝑛(𝑝)1 𝑠1, sin𝑛(𝑝)1 𝑠1 in the periodic direction and Chebyshev polynomials, 𝑇0(𝑠2), 𝑇1(𝑠2), ..., 𝑇𝑛(𝑝)2

(𝑠2) in the 
longitudinal direction (that of generatrices). Patch 4 (back base in Fig. 4(b)) is a trimmed plane where Chebyshev’s polynomials 
are used in both directions. For the results in this section, we will be using the following notation for the dimension of the basis: 
[𝑛(1)1 , ..., 𝑛(4)1 ] × [𝑛(1)2 , ..., 𝑛(4)2 ], where the numbers 𝑛(𝑝)1 and 𝑛(𝑝)2 define the basis dimension on patch # 𝑝 in the directions 𝑠1 and 𝑠2, 
respectively. The basis in time consists of the Chebyshev’s polynomials, 𝑇0(𝑡), 𝑇1(𝑡),...,𝑇𝑛3 (𝑡).

In Table 3, we analyze the effect of varying the dimension of the basis on the surface of the double-cone scatterer. Depending on 
the patch, the error of the spectral expansion drops by a factor of 10 to 1000 as the dimension is doubled. Fig. 5 shows the impinging 
field to be expanded on the surface and the respective error.

In Tables 4–7, we investigate what dimension of the basis is required to keep the spectral representation error approximately 
constant while increasing the frequency of the impinging field. The diameter of the double-cone is denoted by 𝐷, and 𝜆 is the 
wavelength. The number of APs (30) to be solved due to patch 𝑝 is #APs = (2𝑛(𝑝)1 + 1)(𝑛(𝑝)2 + 1)(𝑛3 + 1).

Given that the length of the double-cone is 11 units while its full diameter is 𝐷 = 18 units, the computational domain for the AP 
(28) is taken as [−25, 25] × [−30, 30] × [−30, 30] to guarantee that no reflections will contaminate the solution. A coarse grid (Grid 
1x) of 46 × 58 × 58 nodes on the computational domain is partially shown in Fig. 8. A finer grid (Grid 2x) contains twice as many 
16

nodes in each direction.
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Table 5

Patch 2.

𝐷∕𝜆 𝑛
(2)
1 𝑛

(2)
2 𝑛3 # APs error 𝑢 error

𝜕𝑢

𝜕𝑛

≈ 1.5 3 2 8 189 0.05 0.10

≈ 2 5 3 10 484 0.10 0.09

≈ 2.75 6 4 12 845 0.20 0.22

≈ 4.25 10 10 16 3927 0.20 0.08

Table 6

Patch 3.

𝐷∕𝜆 𝑛
(3)
1 𝑛

(3)
2 𝑛3 # APs error 𝑢 error

𝜕𝑢

𝜕𝑛

≈ 1.5 4 2 8 243 0.12 0.15

≈ 2 5 3 10 484 0.18 0.19

≈ 2.75 7 3 12 780 0.19 0.17

≈ 4.25 11 9 16 3910 0.09 0.08

Table 7

Patch 4.

𝐷∕𝜆 𝑛
(4)
1 𝑛

(4)
2 𝑛3 # APs error 𝑢 error

𝜕𝑢

𝜕𝑛

≈ 1.5 2 2 8 81 0.09 0.11

≈ 2 3 1 10 88 0.04 0.07

≈ 2.75 4 2 12 195 0.09 0.04

≈ 4.25 6 2 16 357 0.06 0.03

Fig. 6. log2 ‖relative error‖∞ vs. time, second-order accurate central scheme.

Table 8

Average errors and convergence rates for the second-order accu-

rate central scheme. Basis dimension on the surface is [4, 4, 4, 6] ×
[4, 4, 3, 7] for Grid 1x and [6, 6, 4, 7] × [7, 5, 5, 8] for Grid 2x. Basis di-

mension in time is 𝑛3 = 7.

Grid 𝐸𝑥 𝐸𝑦 𝐸𝑧
Error Rate Error Rate Error Rate

1x 0.242 – 0.259 – 0.191 –

2x 0.0631 3.83 0.0691 3.75 0.0492 3.88

6.2.2. Results

In the case of a reference solution (52), the error histories for 𝜆 ≈ 12 over a long simulation time (∼ 1000 × diameter of double-cone

propagation speed
) are 

shown in Fig. 6. Table 8 summarizes the average errors and convergence rates. Long-term stability and the design rate of convergence 
of the algorithm are observed.

Similar computations have been conducted using the fourth-order compact scheme (51) (see [27] for detail) on two grids, Grid 
1x of dimension 78 × 90 × 90 and Grid 2x of twice as fine dimension. The results are presented in Fig. 7 and Table 9.

While the embedded dipole allows us to obtain the reference solution (52) and thus corroborate the convergence of the algorithm, 
it does not lead to a realistic scattering problem. Therefore, we also compute the scattering of a plane wave about the double-cone 
shown in Fig. 4. In Fig. 8, we present a snapshot of the resulting scattered field. The plane wave E imp = E0 cos(kx − 𝜔𝑡) is linearly 
polarized along E0 = (−0.5, −0.5, 1)∕

√
3∕2 while its propagation direction defined by the wave vector k = 𝜔∕𝑐 ⋅ (1, 1, 1)∕

√
3 is 

orthogonal to E0. The wavelength in this case is the same as before, 𝜆 ≈ 12, i.e., 𝐷∕𝜆 ≈ 1.5.

We also note that, while the algorithm of difference potentials requires no adjustments for sharp edges between the patches 
17

(see Fig. 4), the solution itself may develop singularities at those edges. These singularities have nothing to do with any particular 
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Fig. 7. log2 ‖relative error‖∞ vs. time, fourth-order accurate compact scheme.

Table 9

Average errors and convergence rates for the fourth-order accurate 
compact scheme. Basis dimension on the surface is [6, 6, 4, 11] ×
[8, 5, 5, 11]. Basis dimension in time is 𝑛3 = 11.

Grid 𝐸𝑥 𝐸𝑦 𝐸𝑧
Error Rate Error Rate Error Rate

1x 0.325 – 0.091 – 0.079 –

2x 0.021 15.63 0.0063 14.44 0.0053 14.91

Fig. 8. Cross-sections of the scattered field at a fixed moment of time as a plane wave impinges on the double-cone.

computational procedure. They rather characterize the solution of the differential equation per se and unless properly regularized, 
may slow down the finite-difference convergence (see, e.g., our earlier work on the Helmholtz equation [40]). In the current work, 
we do not propose any special treatment for these singularities. Indeed, a regularization would require knowing the asymptotic form 
of the solution near the singularity, which does not seem realistic in the case of a 3D scatterer of an arbitrary shape. We rather employ 
the MDP (enhanced by Huygens’ principle) “as is” and expect that the rate of its grid convergence may be affected by singularities in 
the solution if they are sufficiently strong. On the other hand, the design rate of grid convergence demonstrated in Fig. 6 and Table 8

for a second-order accurate scheme and Fig. 7 and Table 9 for a fourth-order accurate scheme applies to the backward engineered 
test solution (52) which is not singular anywhere outside the scatterer including its boundary.

6.2.3. Computational cost

For the engineered reference solution (52) computed by means of a second-order accurate central difference scheme, the cost of 
one update of the spectral expansion coefficients at the boundary in accordance with equation (50) is 0.53 ⋅ 10−2 seconds on grid 1x 
and 4.2 ⋅ 10−2 seconds on grid 2x (on the same Dell PowerEdge server as described at the end of Section 5). The rate is 7.92. This cost 
still depends on the grid because the number of collocation points used for approximating the boundary conditions in the current 
implementation is equal to |𝛾𝑇0 |, see Section 5. In fact, the collocation points can be chosen independently of the grid and in that 
case the cost of the update (50) will also become grid independent, similar to what it was in our previous work [2,3] where we 
have used a Galerkin approximation of the boundary conditions. The cost of computing the solution on the entire domain at a given 
moment of time is 0.14 seconds on grid 1x and 1.12 seconds on grid 2x, so that the rate is 8.0. For the fourth-order accurate compact 
scheme (51), the corresponding costs of the update (50) are 0.76 ⋅ 10−2 seconds on grid 1x and 5.8 ⋅ 10−2 seconds on grid 2x with 
18

the rate of 7.6, while the costs of computing the solution are 0.15 seconds on grid 1x and 1.15 seconds on grid 2x, with the rate of 
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7.7. As all the rates are close to 8, we conclude that when the grid dimension is doubled, all costs scale roughly as 23 rather than 24, 
which would have been the case for the conventional volumetric time-marching.

7. Conclusions

Our numerical experiments fully corroborate the design properties of the proposed algorithm for solving the second-order 
Maxwell’s equations. The algorithm provides high-order accuracy for general 3D geometries on Cartesian grids, demonstrates stability 
over arbitrarily long simulation times, and requires no special treatment of artificial outer boundaries.

The MDP reduces the problem from the domain to its boundary so that the time marching (50) is conducted along the boundary 
only. As the discrete Calderon’s operators are precomputed ahead of time, multiple similar problems can be solved efficiently. In 
particular, changing the boundary conditions in Sections 6.1 and 6.2 does not require the new operators, only the data vectors 𝔡(𝑘)
on the right-hand side of (50) need to be updated. Computing the operators requires multiple solves of the AP (28) over a short 
interval of time 2𝑇0. These solves are fully independent and efficiently implemented in parallel.

The dimension of the transition matrix on the right-hand side of (50) depends on the dimension of the spectral basis (26), as well 
as that of the collocation set used for approximating the boundary conditions (see Section 5). Fundamentally, this dimension does not 
have to depend on the grid, which would make the complexity of the time marching (50) fully grid-independent. This, in particular, 
is the case in [3], where we have used a Galerkin approach for implementing the boundary conditions. In this work, however, the 
collocation points on the surface 𝜕Ω are projections of the nodes from the grid boundary 𝛾 . Thus, the dimension of the collocation 
set still depends on the grid. In the future, we will consider other, more economical, strategies for defining the collocation set and 
making it grid-independent.

Long time stability of the proposed method has been consistently observed in all of our numerical experiments. We attribute it 
to the use of the strong Huygens’ principle as a key component of the current algorithm (Section 3.3). In our earlier work [41], we 
proved a temporally uniform error bound in the case were we applied Huygens’ principle to stabilizing the long time behavior of the 
various ABCs and PMLs (see also [42]). To extend the argument of [41, Section 7] to the problem analyzed in this paper, and thus 
rigorously establish the convergence seen in Figs. 1–2 and 6–7, a few additional steps are required. First, the proof of well-posedness 
of the boundary equations with projections given in [26, Part II, Section 1.2] will need to be adjusted to accommodate equation (13)

and then (25). Then, the results originally due to Reznik (see [43,44] and also [26, Part III, Section 1.6]) on approximation of surface 
potentials of elliptic operators by difference potentials will need to be extended to the case of a wave equation considered on a finite 
non-increasing time interval (of duration 2𝑇0). These theoretical developments will be a part of our future effort.

On the practical side of things, the potential extensions of the proposed method include the accommodation of additional geome-

tries, use of the impedance boundary condition (5) rather than simplified PEC boundary condition (6), numerical solution of the true 
transmission/scattering problems, as well as the analysis of EM propagation in continuous media rather than only vacuum, which 
may involve variable speed 𝑐 and/or source terms in the equations (charges and currents).

In the case of the impedance boundary condition, one needs to solve for both the electric and magnetic field. Then, the magnetic 
wave equation (3a) is discretized and replaced with the same recursive algorithm at the boundary as the electric wave equation (3b), 
see Sections 3 and 4. The impedance boundary condition (5) couples the tangential components of H and E and replaces the PEC 
condition (6), while the zero divergence condition on Γ has to hold for both H and E . No ABCs are needed for either E or H , 
because both wave equations (3) are Huygens’. The rationale is the same as discussed in Section 3.4.

To solve a full transmission/scattering problem, one shall build two MDP algorithms, one for the scattered EM field (exterior) 
and the other for the transmitted field (interior). The transmitted and scattered fields H and E are coupled at the boundary by the 
condition of continuity of their tangential components across the interface [5], while the divergence conditions are required to hold 
independently for each of the fields on each side of the interface. As before, no ABCs are needed for the exterior fields H and E . 
To that end, we note that classical ABCs for Maxwell’s equations, such as the Silver-Muller boundary conditions [36,37], couple the 
fields H and E at the artificial outer boundary. Our approach does not require any ABCs and thus allows one to avoid this coupling.

Of additional interest may be combined fluid/EM computations where the flow solver would determine the configuration of the 
plasma sheath around a hypersonic shape such as the one shown in Fig. 4 while the EM solver would subsequently compute the 
scattering of a given signal about the plasma layer. Another interesting application may be EM propagation through a human body.
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