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Modeling the Earth’s Ionosphere by a Phase Screen
for the Analysis of Transionospheric SAR Imaging

Mikhail Gilman and Semyon Tsynkov

Abstract— In the problems of transionospheric synthetic
aperture radar (SAR) imaging, autofocus, and ionospheric
tomography, the Earth’s ionosphere is often represented by a
phase screen. A key advantage of the phase screen is that it
reduces the overall dimension of the model. Yet, this convenient
simplification comes at a price of introducing inaccuracies into
the modeled quantities, such as the phase of the propagating
radar signals. In this work, we develop the appropriate metrics
to quantify these inaccuracies and evaluate their role for two par-
ticular scenarios: SAR imaging through large-scale ionospheric
disturbances due to the atmospheric gravity waves (AGWs) and
SAR imaging through ionospheric turbulence.

Index Terms— Ionosphere, phase correction, phase screen,
synthetic aperture radar (SAR).

I. INTRODUCTION

THE performance of spaceborne synthetic aperture radars
(SARs) may be adversely affected by the Earth’s iono-

sphere, especially at low radar frequencies (P-band, UHF,
and VHF). If no correction is introduced into the SAR imaging
algorithm, the images appear prone to various distortions
caused by the propagation of radar signals through the Earth’s
ionosphere [1], [2], [3], [4], [5], [6], [7], [8], [9].

It is, therefore, important to have the capacity to mitigate
the ionospheric distortions of SAR images [10]. In the case
of imaging through turbulence, for example, one may use
a special autofocus algorithm [11]. In general, the mitiga-
tion of image distortions requires that certain ionospheric
quantities be known that affect the propagation of electro-
magnetic waves through the ionospheric plasma. Specifically,
this pertains to the electron number density in the iono-
sphere. To correct the image distortions, the radar needs to
reconstruct the electron number density along with pursuing
the primary objective of reconstructing the unknown ground
reflectivity [10]. (The reconstruction of ionospheric quantities
may present an independent task of its own [12], [13], [14],
[15], [16].) Accordingly, for the analysis of transionospheric
SAR reconstruction, one should have an adequate mathe-
matical model for the electron number density. The electron
number density is affected by many physical processes in the
ionosphere, including ionization, recombination, and various
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disturbances, such as the atmospheric gravity waves (AGWs),
geomagnetic storms, and ionospheric turbulence [17]. In order
to mitigate the distortions in SAR imaging at low radar
frequencies, this density should be obtained at the time and
place of image acquisition.

The electron number density is a function of three spatial
coordinates.1 As the radar signal propagates through the
ionosphere, it builds up a phase advance proportional to the
integral of this function along the signal trajectory [10], [18],
[19]. Phase screens provide a simplified description of the
ionospheric effect on SAR imaging [5], [10], [20], [21]. They
replace the gradual accumulation of the phase difference along
the signal path with a phase jump at a particular location.
Mathematically, a phase screen is a plane positioned at a
certain altitude above the Earth’s surface with a bivariate
function called the screen density defined on this plane.
At every location on the screen, the screen density represents
the electron number density collapsed vertically and attributed
to this location; see Fig. 1. For a signal traveling between the
radar antenna on the orbit and target on the ground, the value
of the screen density at the intersection point between the
signal path (ray) and the screen determines the phase jump
for this signal. A typical screen elevation mentioned in the
literature is about 350 km, which corresponds to the maximum
mean electron number density attained in the F layer of the
ionosphere. This choice of the screen elevation is not unique
though, and in our recent work [22], we have developed an
algorithm of vertical autofocus that positions the screen at the
altitude where the ionosphere is most turbulent.

One cannot expect that a 2-D phase screen model will
always account exactly for the phase perturbations due to the
electron number density, which is a function of three variables.
In particular, for all rays that intersect the screen at a certain
point, the accumulated phase is assumed the same (accurate
to an inessential geometric factor that does not depend on the
ionosphere), while for the actual 3-D ionosphere, this may
not necessarily be the case. This discrepancy could affect
the efficiency of the algorithms that rely on the phase screen
assumption, including the autofocus algorithms.

Hence, our goal is to assess the accuracy of modeling
the 3-D ionosphere by means of a 2-D phase screen in
the case where the primary application is the analysis of
transionospheric SAR imaging. We consider two different
physical origins of plasma inhomogeneities: first, the traveling
ionospheric disturbances (TIDs) due to AGWs, and second, the

1It is also a function of time, but the dependence on time is slow on the
scale of an SAR signal round-rip time between the antenna and the target.
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Fig. 1. Imaging geometry: the phase screen (yellow) and slant plane (blue). The highlighted part of the slant plane is within the “thick” ionosphere (not
shown); the width of this part is ls = hs/ cos θ ; see (22).

distortions due to small-scale ionospheric turbulence. In order
to characterize the image defocusing for each of these two
scenarios, we develop an appropriate accuracy metric and
evaluate it for the chosen ionospheric and radar parameters.
We use the geometrical optics approximation [10], [18] as the
most common approach to describe the propagation of radar
signals through the ionosphere. We also limit the analysis to
the scalar case and do not consider SAR polarimetry or any
effects related to Faraday rotation (see [10], [14], [23], [24],
[25], [26], [27], [28], [29], [30]).

Phase perturbations due to dispersive propagation in the
inhomogeneous ionosphere may manifest themselves differ-
ently on transionospheric SAR images. Image defocusing is
the most frequently mentioned effect. It is associated with
the fluctuations of the propagation phase (also called scin-
tillations). Other effects include image shifts, fluctuations of
image intensity (see [31]), and striping. A cross-range image
shift in SAR is usually associated with a perturbation phase
that is linear in the cross-range coordinate [10], [27]. A shift by
itself might not be considered a distortion, because there is no
visual degradation of the image. However, when the coefficient
at the linear term varies across the image, the shift becomes
coordinate-dependent. Then, it may complicate image coreg-
istration, with a negative impact on SAR interferometry (not
analyzed in this work).

Fluctuations of intensity in SAR images, also referred
to as amplitude scintillation, should be distinguished from
scintillations in the raw signal that passes through the iono-
sphere. Amplitude scintillation is caused by fluctuations of
the ionospheric parameters on the scale of the first Fresnel
zone [32]. For a transionospheric radar, the latter is on the
order of hundreds of meters and well within the scales of
ionospheric turbulence. At the same time, the signal processing
involves summation of the signal over the synthetic aperture
(SA). Since the length of the SA exceeds the Fresnel radius,
the fluctuations in the signal amplitude average out due to
the summation [31]. This is the reason why the level of

intensity variations in spaceborne SAR images is typically
not high, e.g., 2 dB [31]. It is also important to mention
that the physical mechanism behind amplitude scintillation is
diffraction. Hence, this effect cannot be properly described by
geometrical optics, whereas for the phase fluctuations, “the
results of geometrical optics method hold beyond the range of
its validity” [19].

Arguably, the most prominent manifestation of amplitude
scintillation in SAR images is amplitude striping (also called
streaking) (see [31], [33], [34]). SAR images obtained after the
local sunset in equatorial regions of the Earth exhibit nearly
1-D variations of intensity, with intensity gradient nearly
normal to the local meridian. Recent studies have associated
this effect with turbulence due to the equatorial plasma bubbles
(EPBs) [35], [36], [37]. These ionospheric disturbances are
highly anisotropic (essentially 1-D) and aligned with the local
magnetic field lines.

The smoothing effect of SA holds true for striping. This is
confirmed by the observation that stripes are a lot more promi-
nent in the azimuthal subband images than in full-aperture
images (see [35]). At the same time, except near the magnetic
poles, the typical sun-synchronous orbits of SAR satellites are
generally aligned with the magnetic field and, hence, with
perturbations caused by the EPBs. As a result, the entire SA
may appear within a single anisotropic Fresnel zone, thus
inhibiting the averaging. While striping presents an interesting
case of ionospheric distortions, we do not discuss it in this
work, in particular when considering the effect of turbulence.

In what follows, Section II introduces the fundamentals of
propagation of radar signals through the Earth’s ionosphere
and SAR imaging, including the concept of eikonal, dis-
persion of electromagnetic waves in the ionospheric plasma,
linearized scattering about the target, and phase screen.
Sections III and IV analyze the capacity of the phase screen
to accurately represent the effect of a “thick” ionosphere
for large-scale and small-scale inhomogeneities, respectively.
Section V summarizes the results of the study.
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II. PRELIMINARIES

A. Propagation of Radar Signals Through the Earth’s
Ionosphere

The interrogating signal of an imaging radar is represented
as follows:

P(t) = A(t) exp(−iω0t)

where ω0 is the carrier frequency and A(t) is the envelope.
The most common radar waveform is a narrowband pulse.
This means that |d(ln A)/dt | ≪ ω0, and A(t) is compactly
supported: A(t) = 0 for |t | > τ/2, where ω0τ ≫ 1.

For the purpose of studying the spaceborne SAR imaging,
the Earth’s ionosphere can be considered a dilute cold plasma
[10, Sec. 3.1]. The propagation of electromagnetic waves in
this plasma is subject to temporal dispersion: the phase and
group velocities differ from the speed of light c:

vph ≈ c

(
1 +

ω2
pe

2ω2

)
, vgr ≈ c

(
1 −

ω2
pe

2ω2

)
(1)

where

ω2
pe =

4πe2

me
Ne ≪ ω2 (2)

is the electron plasma frequency (also called the Langmuir
frequency). In formulas (1) and (2), ω is the signal frequency:
|ω − ω0| ≪ ω0, me and −e are the electron mass and charge,
respectively, and Ne is the electron number density. If the
plasma is homogeneous, then the radar signal emitted by the
antenna at x and observed at the point z is given by

ux(t, z) ≈
Ã(t − |r|/vgr)

4π |r|
exp

(
−iω0(t−|r|/vph)

)
· 2(r/|r|)

(3)

see [10, Sec. 3.2], where ux can be any Cartesian component
of the electric field, r = z − x, and 2 is the antenna
radiation pattern that we drop hereafter. In turn, the notation Ã
in formula (3) pertains to the pulse envelope modified due
to the dispersive propagation.2

The Earth’s ionosphere is inhomogeneous. However, since
the radar wavelength is small compared with the scale of
inhomogeneities and the frequency is large compared with the
electron plasma frequency, one can employ geometrical optics
and generalize formula (3) to the case of an inhomogeneous
ionosphere as follows (see [10, Sec. 3.3]):

ux(t, z) ≈
Ã(t − Tgr)

4π |r|
exp

(
−iω0(t − Tph)

)
(4)

where

Tph,gr ≡ Tph,gr(x, z) = |r|

∫ 1

0

dξ

vph,gr(ξ)
(5)

are the phase/group travel times, and the values of vph,gr(ξ)

are calculated according to (1) by substituting

Ne(ξ) ≡ Ne(ξ ; x, z) = Ne
(
ξx + (1 − ξ)z

)
(6)

2For a linear frequency modulated signal (chirp), the modification Ã(t)
includes changes in the chirp rate and duration. These changes depend on the
total electron content given by (8) (see [10, Sec. 3.2]).

into formula (2). Formulas (5) and (6) mean that the
rays are assumed straight, with the justification provided
in [10, Sec. 3.3 and Appendix 4.B].

The quantity cTph is the eikonal, or phase path of the waves
(see [19, Ch. I]). The main effect of the ionosphere on the
propagating radar pulse is the perturbation of the free space
eikonal |r| that will be denoted by ϕ(x, z):

Tph(x, z) ≈
|r| − ϕ(x, z)/2

c

Tgr(x, z) ≈
|r| + ϕ(x, z)/2

c
(7)

where

ϕ(x, z) ≈
4πe2

meω
2
0

|r|

∫ 1

0
Ne(ξ) dξ︸ ︷︷ ︸

STEC

(8)

see [10, Ch. 3]. The underbraced quantity in formula (8)
is called the “slant total electron content” (STEC), which
is the electron number density integrated over the ray path.
Formula (8) shows that the perturbation of the eikonal due to
the ionospheric propagation is proportional to STEC.

B. Scattering Model, SAR Imaging, and Mitigation of
Distortions

In SAR imaging, one usually employs a linearized scattering
model called the first Born approximation [10, Sec. 2.1.1].
In this model, the source of the scattered radiation is the target
reflectivity ν(z) multiplied with the impinging field ux(t, z)

of (4). The scattered field propagates back to the antenna,
where it is received and used as data for the reconstruction
of ν(z). For free space propagation, the scattered field is given
by the Kirchhoff integral

usc
x (t, x) =

∫
ν(z)

A(t − 2|r|/c)
4π |r|

· exp
(
−iω0(t − 2|r|/c)

)
dz. (9)

The imaging is performed by compensating the two-way
propagation delay 2|r|/c for a set of consecutive antenna
locations {x j }

N
j=1 that are spread over the SA and called

the synthetic array. This procedure is referred to as matched
filtering (see [10], [38], [39]). Specifically, for the received
field given by (9), we use the following formula to build the
image I (y) that approximates the unknown reflectivity ν(z):

I (y) =
1
N

N∑
j=1

∫
usc

x j
(t, x j )A(t − 2|r′

j |/c)

· exp
(
iω0(t − 2|r′

j |/c)
)

dt. (10)

In (10), r′
j = y − x j , and the summation is conducted over

the synthetic array that corresponds to the location y (see
Section II-C for the specific details on imaging geometry).

In the case of imaging through the ionosphere, we take into
account the dispersive propagation (4). Expression (9) for the
received field is modified accordingly:

usc
x (t, x) =

∫
ν(z)

Ã(t − 2Tgr(x j , z))

4π |r|

· exp
(
−iω0(t − 2Tph(x j , z))

)
dz (11)
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and the inversion formula (10) becomes

I (y) =
1
N

N∑
j=1

∫
usc

x j
(t, x j ) Ã(t − 2Tgr(x j , y))

· exp
(
iω0(t − 2Tph(x j , y))

)
dt. (12)

While the received field (11) represents the data for inversion,
the actual inversion (12) requires the travel times Tph,gr(x j , y)

of (5) and modified envelope Ã. Hence, we have to know
the values of STEC for all signal paths between the antenna
locations x j and image points y; see (6)–(8). Thus, to build a
2-D image, we should know the values of Ne in a 3-D domain
between the orbit and the target.

In our earlier work [1], [40] (see also [10]), we have
shown that SAR imaging on two distinct carrier frequencies
allows one to reconstruct the unknown STEC and subsequently
correct the image distortions in the case of a nonturbulent
ionosphere. In general, the algorithms for the retrieval of
ionospheric quantities (see [12], [27], [28], [41]) may rely
on certain assumptions about the target [e.g., that it contains
isolated point scatterers νkδ(z−zk)] and/or redundancy of the
data. Often, a low-dimensional parametrization of the electron
number density (or STEC) is employed. The phase screen
introduced in Section II-E offers precisely that—a convenient
way of reducing the overall dimension of the model. Our
objective is to analyze the implications for the accuracy of
modeling associated with this dimension reduction.

C. Imaging in the Slant Plane and the Phase Screen

Consider the imaging geometry illustrated in Fig. 1. With
the help of range compression [22], we reduce the full SAR
imaging formulation to a formulation that involves only one
target coordinate, the cross range (also called azimuth). This
formulation proves sufficient for analyzing the effect of the
phase screen. Hence, we conduct the analysis in the “slant
plane” hereafter, with z and y being the cross-range coordinate
of the scatterer and image points, respectively. We will also
use l as the slant coordinate that is related to elevation h as
h = l cos θ , where θ is the incidence angle, i.e., the angle
between the slant plane and the vertical direction. We assume
that a “thick” ionosphere is specified by means of a bivariate
electron number density that depends on the azimuth and
altitude: Ne = Ne(z, h), but does not explicitly depend on the
range as an independent coordinate. The phase screen density
will then become a univariate function (see Section II-E).

Different rays passing through a given point (z0, l0) on the
slant plane will be parameterized by the squint parameter b:

RaySgmnt(b) ≡ RaySgmnt(b; z0, l0)

def
=

{
(z, l)

∣∣∣∣ z − z0

l − l0
= b = const, 0 ≤ l ≤ R

}
(13)

where R is the distance between the antenna track and the
target area; see Fig. 1. We use the same constant b to
parametrize the STEC, see (8), for the corresponding rays:

STEC(b; z0, l0) =

∫
RaySgmnt(b;z0,l0)

Ne(z, h) dℓ (14)

where dℓ is the path length differential. Comparing (14)
with (8), we see that

ϕ(x, z) =
4πe2

meω
2
0

STEC(b; z0, l0) (15)

where the points x and z belong to the ray defined by (13)
on the chosen slant plane.

Hereafter, we assume that the target is approximately at the
broadside of the antenna, and the size of the target, as well
as that of the SA, is much smaller than the distance R; see
Fig. 1. Then

|x − z| ≈ R +
(x − z)2

2R
(16)

where x is the azimuthal position of the antenna. The pro-
cedure of range compression described in [22] allows one
to extract and, subsequently, drop the time-dependent terms
in (9)–(12) after formula (16) has been used for distances.
The resulting expression for the image in (12) takes the form

I (y) =

∫
ν(z)W (y, z) dz

where the integral with no limits is taken over R and the kernel
W (y, z) is given by

W (y, z) =
1
N

∑
x j ∈ SA(y)∩SA(z)

exp
[

2ik
y − z

R

(
x j −

y + z
2

)]
× exp

[
−ik

(
ϕ(x j , z) − ϕrec(x j , y)

)]
. (17)

In (17), k = ω0/c is the carrier wavenumber, ϕ is
the perturbation of the eikonal (7) and (8) that depends
only on the azimuthal coordinates x and z in accordance
with (13)–(15), and ϕrec is introduced with the purpose of
mitigating the distortions due to the ionospheric turbulence.
The summation range in (17) is given by the overlap of two
SAs, SA(y) and SA(z), centered at y and z, respectively,

SA(y) = {x | |x − y| ≤ LSA/2}

SA(z) = {x | |x − z| ≤ LSA/2}. (18)

The quantity LSA in (18) is the length of the SA. It is
an important parameter that determines the resolution and
sensitivity to phase distortions, as we shall see later. The
choice of LSA is discussed, e.g., in [10, Ch. 2].

Without the second exponential, formula (17) yields the
unperturbed imaging kernel

W0(y, z) ≈ sinc
(

kLSA
y − z

R

)
(19)

where sinc(x)
def
= sin(x)/x . This kernel is also called the point

spread function (PSF), because it can be considered as an
image of a point scatterer ν(z′) = δ(z′

− z). We will define the
azimuthal resolution 1A as the semiwidth of the main lobe of
the PSF:

1A =
π R

kLSA
. (20)

The true meaning of the correction term ϕrec in formula (17)
is perturbation of the eikonal along the ray path between x j

and y. Our goal, however, is to assess how accurately an
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infinitesimally thin phase screen can approximate the phase
perturbations accumulated over a finite propagation distance.
Therefore, in our subsequent analysis, we will adhere to the
scenario where the actual perturbation ϕ(x, z) is considered
due to the signal propagation in an ionosphere of a finite
thickness, see (5)–(8), while the reconstruction ϕrec(x, y) is
implemented via a phase screen. In turn, the phase screen is
realized by means of a fixed scalar ξ ∼ 0.5 and fixed univariate
function ϕS(·), such that [see (6)]

ϕrec(x, y) = QϕS
(
ξ x + (1 − ξ)y

)
. (21)

The geometric factor Q = (1 + b2)1/2 in (21) does not depend
on Ne and b is given by (13). The interpretation of Q is further
discussed after (28).

D. Spatial and Temporal Scales of the Ionosphere and the
Horizontal Scales of Inhomogeneities

A commonly used formulation for the vertical distribu-
tion of the ionospheric electron number density, called the
Chapman profile (see [42], [43]), involves three parameters:
N , hm , and hs , to define the ionospheric electron number
density Ne(h) as a function of the elevation h as follows:

Ne(h) = N ea(1−z−e−z), where a ∈ {0.5, 1}

z =
h − hm

hs
. (22)

In formula (22), N = const is the maximum density, hm is the
mean elevation of a given ionospheric layer, hs is its thickness,
a = 0.5 for the E layer, and a = 1 for the F1 and F2 layers
[42, Sec. III]. The values of hm and hs for the F2 layer
are equal to 350 and 50 km, respectively, according to [42],
whereas [43] gives hs ∼ 200 km for the “slab thickness,” i.e.,
the thickness of the ionosphere as a whole.

We will use the spatial parameters of the Chapman pro-
file (22), namely, hm and hs , to characterize the effects due
to a finite thickness of the ionosphere. Assume that the phase
screen elevation is close to hm , so that the main contribution
to the integral in (14) comes from the interval of length ls =

hs/ cos θ centered around the point where the ray intersects
the phase screen; see Fig. 1 (the corresponding part of the
slant plane is highlighted). For the rays connecting a given
point on the phase screen and all antenna positions within a
synthetic array of length LSA, let d be the maximum possible
distance in the cross-range direction between the points within
the highlighted area in Fig. 1. Obviously

d ∼ LSA
hs

H
(23)

where H is the orbit elevation. For example, with the lower
estimate for hs , i.e., hs ∼ 50 km, LSA = 50 km, and orbit
elevation H = 500 km used in [10], formula (23) yields

d = LSA
hs

H
=

hs

10
∼ 5 km. (24)

The case where the ionosphere can be linearized on the scale
of d (i.e., approximated with sufficient accuracy by the first
two terms of the Taylor expansion) will be called the large-
scale case. In the opposite case that will be referred to as

small scale, we assume that linearization is valid only for much
shorter scales, up to d∗ ≪ d .

Consider a common type of perturbations of the iono-
sphere known as the TIDs, which are a manifestation of
the AGWs [44]. For large-scale AGWs/TIDs, the character-
istic spatial and temporal scales are ≳1000 km and 0.5–3 h,
respectively, whereas for medium-scale AGWs/TIDs, those are
100–1000 km and 0.15–1 h (see [44, Sec. 1]). Both spatial
scales exceed (24) by at least two orders of magnitude. Hence,
the effect of AGWs/TIDs can be analyzed using Taylor’s
expansion of the ionospheric parameters (see Section III).

On the other hand, the value given by (24) is too large
for a comprehensive description of the ionospheric turbulence
where scales down to 70 m are observed [45], [46]. This is
a small-scale case, and we will not employ Taylor’s repre-
sentation with respect to the horizontal coordinates when we
analyze the effect of ionospheric turbulence (see Section IV).

E. Electron Number Density and Phase Screen Density

In the slant plane shown in Fig. 1, the coordinates are
azimuth and slant range. Accordingly, the screen density in
this plane becomes the function of a single auxiliary variable s.
Specifically, consider a ray between the point (x, R) on the
orbit and point (z, 0) on the ground, where both points belong
to the slant plane shown in Fig. 1. This ray intersects the phase
screen at the point (s, l), where in agreement with (6) and (21)

s = ξ x + (1 − ξ)z, l = ξ R. (25)

We define ϕS(s) of (21), the phase screen density at this point,
as the perturbation of the eikonal in formula (7) for a ray
passing through this point and having b = 0 (i.e., x = z).
We see that ϕS is related to the special case of STEC in (14)
that corresponds to b = 0. The latter quantity will be called
the “broadside TEC” (BTEC)

BTEC(s) =

∫
RaySgmnt(0;s,0)

Ne
(
s, h
)

dℓ

=
1

cos θ

∫ H

0
Ne
(
s, h
)

dh =
1

cos θ
TEC(s) (26)

so that

ϕS(s) =
4πe2

meω
2
0

BTEC(s) (27)

see (8) and (15). In formula (26), θ is the incidence angle;
see Fig. 1, and TEC is the vertical total electron content,
which is the quantity often used in geomagnetic research
and ionospheric models (see [10], [17], [47]).3 Alternatively,
we can think of a very thin layer of plasma at the elevation
h = ξ H , such that the product of its thickness d (thin) and
electron number density N (thin)

e (s, h) ≡ N (thin)
e (s) is finite:

N (thin)
e (s) · h(thin)

s = TEC(s). (28)

3There are a few caveats about using a model- or measurement-derived TEC
in (26). First, the orbits of all known SAR satellites are within the ionosphere,
though the bulk of it is still between the orbit and the ground [17]. Besides,
the last equality in (26) assumes that the ionosphere is homogeneous in the
range direction (see Section II-C). In this work, we use the available values
of the TEC to obtain rough estimates of the quantities/phenomena of interest.
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The representation (28) is helpful in clarifying the meaning
of the geometric factor Q in (21): for a ray defined by
the squint parameter b, the value of Q is the length of the
segment inside the layer relative to that for the broadside ray
(i.e., with b = 0).

Note that the phase jump due to a single crossing of the
phase screen is ω0 ·(1/2)(ϕS/c) = πϕS/λ0, whereas the phase
advance and group delay in the received field are twice that
[see (7) and (12)] due to the round-trip propagation.

III. LARGE-SCALE VARIATIONS
OF IONOSPHERIC PARAMETERS

Here, we will consider phase perturbations due to large-
scale TIDs, as specified in Section II-D. The smallest
horizontal scale LTID for the events of this type is still much
larger than most of the other relevant length scales:

hs

LTID
≲

1
3
,

hm

LTID
≲

1
3
,

LSA

LTID
≲

1
20

. (29)

This allows us to use the Maclaurin expansion with
respect to the horizontal coordinate for the electron number
density as follows:

Ne(s, h) = N0(h) + N1(h)s + N2(h)s2
+ N3(h)s3. (30)

We assume that this expansion is valid for |s| ≤ LSA, because
LSA ≪ LTID; see (29).

We will consider the imaging kernel (17) for a certain fixed
value of z. We see that |W | ∼ 1 can be achieved only if
both exponentials are not oscillating with j over the synthetic
array. Note that the first exponential is oscillating when |y −

z| ≫ 1A, where 1A is the azimuthal resolution; see (20). This
results in |W | ≪ 1.4 At the same time, for |y − z| ≲ 1A, the
expression for the second exponent can be simplified as

ϕ(x j , z) − ϕrec(x j , y) ≈ ϕ(x j , z) − ϕrec(x j , z) (31)

because 1A ≪ LTID.
Let |z| ≤ LSA/2, and suppose that the segment

RaySgmntS(z, b)
def
= RaySgmnt(b; z, 0) connects the points

(x j , R) and (z, 0); see (13). It intersects the phase screen at
the point (z +Bξ H, ξ H), where B = b/ cos θ . Next, consider
the ray segment with b = 0 that passes through the same
phase screen point, i.e., RaySgmntB(z, b)

def
= RaySgmnt(0; z +

Bξ H, 0). Then, in formula (31), the quantities ϕ(x j , z) and
ϕrec(x j , z) are obtained by integrating the electron number
density over RaySgmntS(z, b) and RaySgmntB(z, b), respec-
tively (see Section II-E), where

x j = z + BH. (32)

Let us define a new function U as follows:

U (z, b) = cos θ

(
STEC

(
RaySgmntS(z, b)

)
√

1 + b2

− BTEC
(
RaySgmntB(z, b)

))
(33)

4A notable exception is the case where the perturbation phase is linear in x ;
see (38) and (39).

so that

k
(
ϕ(x j , z) − ϕrec(x j , z)

)
= k

4πe2

meω
2
0

√
1 + b2

cos θ
U (z, b). (34)

Formulas (33) and (34) characterize the accuracy of represen-
tation of a “thick” ionosphere by means of a phase screen.

By substituting (34) with (31) into (17), we can describe the
distortions of the image as compared with the perturbation-free
case described by the kernel (19). First, using the expan-
sion (30) in (8), we obtain

U (z, b) =

∫ (
BN1(h)(h − ξ H)

+ N2(h)
[
(z + Bh)2

− (z + Bξ H)2]
+ N3(h)

[
(z + Bh)3

− (z + Bξ H)3]) dh. (35)

Different powers of B in (35) result in different types of
distortions of the imaging kernel. Introduce

U1 =

∫
N1(h)(h − ξ H) dh

U21 =

∫
N2(h)(h − ξ H) dh

U22 =

∫
N2(h)

(
h2

− (ξ H)2) dh

U3 =

∫
N3(h)

(
h3

− (ξ H)3) dh. (36)

Then, using (32), we identify a phase term in (17) that is linear
in x j :

2k
y − z

R

(
x j −

y + z
2

)
︸ ︷︷ ︸

baseline phase

− k
(
ϕ(x j , z) − ϕrec(x j , y)

)
︸ ︷︷ ︸

“thick” ionosphere and a phase screen

↓

2k
y − z

R
x j − Cx j + const(x j ) (37)

where

C = k

√
1 + b2

cos θ

4πe2

meω
2
0

[
U1 + 2z

(
U21 −

1
H cos θ

U22

)]
.

When substituted into (17), the term Cx j in (37) yields a
shift of the image in the cross-range direction. This can be
explained by associating the peak of W0(y, z) ≡ W0(y − z) at
y = z in (19) with the (y−z) factor in the baseline phase term
in (37), i.e., the first complex exponent in (17). The expression
in the bottom line of (37) can be transformed as follows:

2k
y − z

R
x j − Cx j = 2k

y − (z + zC)

R
x j (38)

where

zC =
C R
2k

=

√
1 + b2

2 cos2 θ

4πe2

meω
2
0

·

[
U1 + 2z

(
U21 −

1
H cos θ

U22

)]
(39)

see [10, Sec. 3.9.1]. Accordingly, the scatterer coordinate z in
the formula W0(y, z) = sinc

(
π(y−z)/1A

)
, see (19) and (20),

is replaced with z+zC . For example, when the target is a single
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point scatterer, i.e., ν(z′) = ν0δ(z′
− z), and all higher order

distortions can be neglected, then the resulting image, accurate
to a phase factor, will be given by I (y) ∝ W0(y, z + zC), and
hence, the maximum amplitude will be at y = z + zC .

The part of zC proportional to U1 shifts the SAR image
as a whole. While technically a distortion, such a shift does
not result in a visual degradation of the image, e.g., smear-
ing or broadening of the peaks, increase of SNR, or shape
deformations [2].

Next, we identify the leading coordinate-dependent term
proportional to B, as well as the leading terms ∝ B2 and
∝ B3 on the right-hand side of (35) as follows:

U21 = 2Bz
(
U21 −

1
H cos θ

U22

)
U22 = B2

· U22

U3 = B3
· U3. (40)

In (40), we have assumed that |N3z| ≪ |N2|, because
|z| ≤ LSA/2; see (30). The term U21 given by (40) yields a
cross-range shift of the image that depends on the cross-range
coordinate z; see (39). Hence, it amounts to a geometric dis-
tortion. The term U22 evaluated at max |B| = LSA/(2R cos θ)

yields the quadratic phase error (QPE) that characterizes the
smearing of the central lobe of the PSF, while U3 leads to the
cubic phase error (CPE) that is responsible for the asymmetry
of the PSF sidelobes (see [10], [48], [49], [50]).

To get an idea of the magnitude of the distortions given by
(39) and (40), we will evaluate them for an event illustrated
by [51, Fig. 3 (top-left panel)], where the maximum value
of Ne changed from N init

e ≈ 7 × 1011 m−3 to N final
e ≈

5 × 1011 m−3 in about 2 h, with the vertical TEC of about
10 TECU ≡ 10 × 1016 m−2. Since the data in [51] do not
provide the spatial scales directly, we identify this event as
a large-scale TID from its temporal scale; see Section II-D,
and assume the lower bound for the spatial scale of this kind
of TID, i.e., LTID = 103 km. To obtain a rough estimate,
we use STEC ∼ TEC/ cos θ (see footnote 3), and assume that
the variable part of the electron number density associated
with the TID behaves as follows:

Ni (s, h) ≈

{
Ni (s), |h − hm | ≤ hs/2
0, otherwise

where i = 0–3. In order to estimate the coefficients in the
expansion (30), we define N0 as |N final

e −N init
e | ∼ 2×1011 m−3

and assume a constant homogeneous background of NB =

(N final
e + N init

e )/2 ∼ 6 × 1011 m−3, so that N0/NB = 1/3.
Accordingly

N1 =
∂ Ne

∂s
∼

N0

LTID

N2 =
1
2

∂2 Ne

∂s2 ∼
1
2
N0

L2
TID

N3 =
1
6

∂3 Ne

∂s3 ∼
1
6
N0

L3
TID

. (41)

Then, taking hm ≈ ξ H , we obtain the following upper bounds
for the integrals in (36):

|U21| ≤ N2 ·
hs

2
· hs

|U22| ≤ N2 ·

[(
ξ H +

hs

2

)2
− (ξ H)2

]
· hs

|U3| ≤ N3 ·

[(
ξ H +

hs

2

)3
− (ξ H)3

]
· hs . (42)

In turn, substituting hs = 200 km and hm = ξ H = 350 km
into (42), we can estimate the left-hand sides in (40) as
follows:

|U21| ≲
4
7
|Bz| ·N2hshm

|U22| ≲
2
3
B2

·N2hsh2
m

|U3| ≲ |B|
3
·N3hsh3

m . (43)

We will use the same radar parameters as in [10, Table 1.1],
in particular, ω0 = 300 MHz, LSA = 5 × 104 m, R = 106 m,
and cos θ = 1/2. Combining (29), (34), (41), and (43), we
arrive at the following estimates:∣∣∣∣∂zC

∂z

∣∣∣∣ ≲ 5 × 10−5, QPE ≲ 0.2, CPE ≲ 10−3.

The resulting distortions are small. In particular, it is noted
in [49] that the PSF “degrades very little for phase errors less
than π/4.” Moreover, one can always choose ξ so as to cancel
at least one of the integrals in (36), thus zeroing out the leading
term of the associated distortion.

Altogether we conclude that in the case of large-scale
AGWs/TIDs, the corrections of ionospheric phase perturba-
tions of SAR signals can be accurately represented using a
phase screen.

IV. IONOSPHERIC TURBULENCE

Imaging through a turbulent ionosphere is often considered
in the stochastic framework (see [10, Ch. 4] and the references
therein). We will use the following model for the electron
number density in the turbulent ionosphere:

NT (s) = Ne(s) + µ(s), where ⟨µ⟩ = 0. (44)

In (44), s is a point on the slant plane, Ne and µ denote
the baseline (or averaged) and turbulent part of the total
density NT , respectively, and ⟨·⟩ means statistical averaging.
The intensity of turbulent fluctuations will be denoted by ⟨µ2

⟩

and can be determined from the available ionospheric models
(see [52]). Alternatively, we can evaluate ⟨µ2

⟩ via

M =

√
⟨µ2⟩

Ne
(45)

where M is considered a constant with the value between
5 × 10−3 and 10−1 (see [4]).

Introduce

vph(NT ; z, l) and vph(Ne; z, l)
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by substituting NT (z, l) and Ne(z, l) into formulas (1) and (2).
To represent the difference between the turbulent and baseline
eikonals over the same ray, it is convenient to use

β(z, l) def
=

c
vph(NT ; z, l)

−
c

vph(Ne; z, l)
. (46)

Since, in addition to the inequality in (2), we have M ≪ 1 [4],
formulas (1) and (46) yield

β(z, l) ≈
4πe2

meω
2
0
µ(z, l).

According to (44), we replace formula (8) with

ϕ = ϕNe + ϕµ ≡ ϕNe +

∫
RaySgmnt

β(z, l) dℓ

where ϕNe is the perturbation of the eikonal due to Ne, i.e.,
the baseline part of the ionospheric electron number density.
We will assume that the spatial scale of Ne is such that ϕNe can
be compensated efficiently by the phase screen; see Section III.
For this reason, we exclude ϕNe from further consideration by
redefining

ϕ =

∫
RaySgmnt

β(z, l) dℓ. (47)

Similarly to Section III, we will reduce the number of inde-
pendent variables in the second exponent ϕ(x, z) − ϕrec(x, y)

on the right-hand side of (17). As long as we are interested
in having |W | ∼ 1 rather than |W | ≪ 1, i.e., |y − z| ≲ 1A

[see (31)], we can replace the second exponent in (17) with a
bivariate function φ as follows:

ϕ(x j , z) − ϕrec(x j , y)

↓

ϕ(x j , y) − ϕrec(x j , y) = φ(x j , y). (48)

Note that a similar reduction offered by (31) is possible,
because 1A ≪ LTID. In this section, we are considering
much shorter spatial scales than LTID in Section III. Yet,
the simplification in (48) is legitimate, because the azimuthal
resolution of modern spaceborne SAR systems is ≲10 m,
whereas the smallest spatial scales of the variation of ϕ(·, z)
are on the order of the correlation length of the medium (see
[10, Appendix 4A]). A lower bound for this correlation length
is the inner scale of ionospheric turbulence. In turn, the value
of 70 m reported in [45] and [46] is indicative of the latter
(see Section II-D).

The analysis of SAR imaging through a turbulent iono-
sphere that we conducted in [2] and [10, Ch. 4] aimed
specifically at quantifying the distortions of spaceborne
SAR images. In that study, the following two parameters
have been identified as most important for image quality
(see [10, Table 1.2]).

1) Correlation length of the eikonal relative to the length
of the SA.

2) Variance of the propagation phase expressed as follows:

D2
= k2

⟨ϕ2
⟩/2. (49)

Moreover, we have shown in [10, Ch. 4] that the dependence
of ⟨ϕ2

⟩ on the azimuthal coordinate is weak, and consequently,

one can assume ⟨ϕ2
⟩ ≈ const. Yet, we will see that this

assumption does not always hold for ⟨φ2
⟩, where φ is intro-

duced in (48). In the rest of this section, we extend the analysis
of [10, Ch. 4] to the case represented by (17) and (21). In other
words, we proceed beyond the plain quantification of image
distortions due to a turbulent ionosphere and implement the
phase corrections using a phase screen.

A. Statistics of Eikonals for the Rays Passing Through a
Single Phase Screen Point

1) General Formulation and the Geometry of Rays: Con-
sider RaySgmnt(b; z0, l0), see (13), for a certain point (z0, l0)

on the phase screen. This ray probes the electron number
density NT at the points that depend on the squint parameter b,
whereas the value of ϕS in (21) corresponds to the broadside
eikonal; see also (27). The latter means that ϕrec does not
depend on NT beyond the ray with b = 0. To quantify the
difference between the actual eikonals and those modeled
by the phase screen as in (21), we will use the following
metric:

ζϕ̃(b) =
1
2

Sϕ̃(b)

⟨ϕ̃
2
(0)⟩

=
1
2

⟨|ϕ̃(b) − ϕ̃(0)|2⟩

⟨ϕ̃
2
(0)⟩

. (50)

In (50), ϕ̃(b) is the perturbation of the eikonal (47) normalized
by the factor Q = (1 + b2)1/2 [see (21)]:

ϕ̃(b) =
1
Q

ϕ(b) =
1
Q

∫
RaySgmnt(b;z0,l0)

β(z, l) dℓ

=

∫
β
(
z(l, b), l

)
dl (51)

where z(l, b) is defined via (13). The integral (51) can be
thought of as the (normalized) turbulent contribution into the
overall STEC defined similar to (14):

STEC(b; z0, l0) =

∫
RaySgmnt(b;z0,l0)

NT (z, h) dℓ.

In Section IV-B, we will associate the numerator of the
right-hand side of (50) with the second exponent in (17).

For simplicity, assume that the baseline ionosphere
described by Ne is horizontally homogeneous. Under the
assumption (45) and with the normalization as in (51), we have

⟨ϕ̃
2
(b)⟩ = const(b).

The quantity Sϕ̃ introduced in (50) is called the structure
function. It is related to the autocorrelation function Rϕ̃ via

Sϕ̃(b) = 2⟨ϕ̃
2
⟩ − 2⟨ϕ̃(0)ϕ̃(b)⟩

= 2⟨ϕ̃
2
⟩

(
1 −

⟨ϕ̃(0)ϕ̃(b)⟩

⟨ϕ̃
2
⟩

)
= 2⟨ϕ̃

2
⟩
(
1 − Rϕ̃(b)

)
(52)

where

Rϕ̃(b) =
⟨ϕ̃(0)ϕ̃(b)⟩

⟨ϕ̃
2
⟩

=
1

⟨ϕ̃
2
⟩

(
4πe2

meω
2
0

)2

·

∫ R

0
dl ′
∫ R

0
dl ′′

〈
µ
(
0, l ′
)
µ
(
z(l ′′, b), l ′′

)〉
. (53)
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Fig. 2. Geometry of the rays in the slant plane for two different values of the squint parameter b, given the correlation radius r0 and thickness of the
ionosphere hs = ls cos θ (see Fig. 1). Angles are not to scale.

Unlike in Section III, in this section, we are considering
much shorter horizontal scales of ionospheric perturbations
than those given by (24). Hence, the polynomial approxima-
tion (30) cannot be used to represent the integrand in (53).
Instead, we make the following assumption about the autocor-
relation function of the turbulent fluctuations (see [10, Ch. 4]):〈

µ(z′, l ′)µ(z′′, l ′′)
〉

= VR

(
l ′ + l ′′

2

)
Vr (r) (54)

where

r =

√
|z′′ − z′|2 + |l ′′ − l ′|2.

We assume that Vr accounts for the short-range nature of the
fluctuations and, thus, decays rapidly on the scale of r0 ≪ hs ,
where the constant r0 is called the correlation radius of the
medium. Similarly to [10] (see also [53]), it can be shown
that in this case

⟨ϕ̃(0)ϕ̃(b)⟩ ≈

(
4πe2

me

)2

R ·

∫ 1

0
VR(u R)Vρ

(
|b(u − ξ)|R

)
du

where ξ is the relative screen elevation, see (25), and

Vρ(ρ) =

∫
∞

−∞

Vr
(√

ρ2 + s2
)

ds. (55)

Introduce

J (b) =

∫ 1

0
VR(u R)

[
Vρ(0) − Vρ

(
|b(u − ξ)|R

)]
du

J0 = Vρ(0)

∫ 1

0
VR(u R) du. (56)

Then, from formulas (50) and (52), we can find

ζϕ̃(b) =
1
2

Sϕ̃(b)

⟨ϕ̃
2
(0)⟩

= 1 − Rϕ̃(b) =
J (b)

J0
. (57)

The effect of the ionosphere of a finite thickness as
compared with the representation by a phase screen is char-
acterized by formula (57). We will evaluate this effect for
two limiting cases illustrated in Fig. 2. These cases are
discriminated by the value of the squint angle:

|b| ≶ bs, where bs =
r0

ls
=

r0

hs/ cos θ
. (58)

The first case, given by |b| ≲ bs , corresponds to small squints,
such that the ionospheric disturbances on the rays passing
through the point (x0, l0) are highly correlated, i.e., ζϕ̃(b) =

1 − Rϕ̃(b) ≪ 1 [Fig. 2 (blue line)]. The second case is that
of large squints (|b| ≫ bs , the purple line) where significant
parts of the rays are decorrelated, resulting in ζϕ̃(b) ∼ 1.

2) Case of a Small Squint: The function Vρ(ρ) given
by (55) inherits the general behavior of the short-range correla-
tion function Vr (r). It attains its maximum value at ρ = 0 and
then decreases rapidly for the values of its argument ρ that
exceed r0. We can, therefore, see that for all sufficiently small
|b| < bs , the quantity Vρ(0) − Vρ

(
|b(u − ξ)|R

)
under the

first integral in (56) is also small, because for the second
argument, we have |b(u − ξ)|R < r0 regardless of the value
of u. Consequently, we can write

Vρ(0) − Vρ

(
|b(u − ξ)|R

)
Vρ(0)

≪ 1 (59)

which allows us to suggest that for all sufficiently small
|b| < bs , the quantity ζϕ̃(b) defined by (57) via (56) is small,
and hence, the ionospheric disturbances on the broadside and
squinted rays are strongly correlated; see Fig. 2.

The specific calculations supporting this conclusion are con-
ducted in the Appendix, where we find the leading terms of the
asymptotic expansion of ζϕ̃(b) as b/bs → 0 for two commonly
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used models of ionospheric turbulence: Gaussian turbulence
and Kolmogorov turbulence. The resulting expressions are as
follows [see (90) and (96)]:

ζϕ̃,G(b) = QG(b/bs)
2 and ζϕ̃,K (b) = QK (|b|/bs)

2γ . (60)

In (60), QG ∼ 1 and QK ∼ 1 are constants calculated from
the profiles VR and Vr , see (54), and γ = 5/6, see (94). For
|b| ≪ bs , each of the expressions in (60) yields

ζϕ̃(b) ≪ 1. (61)

3) Case of a Large Squint: Now, we turn to the case oppo-
site to that of Section IV-A2, namely, |b| > bs , as illustrated
by the purple ray in Fig. 2. For the integrals in (56), the thick
segments indicate the intervals of the values of u, where the
expression on the left-hand side of (59) is not small for the
corresponding value of b. This means that ζϕ̃(b) = 1 − Rϕ̃(b)

is not small either.
The effect of a finite thickness of the ionosphere is still given

by formulas (56) and (57). However, the analytic integration
in (56) appears problematic without further simplifications.
To obtain a rough estimate, we will take VR(u R) = const
for |u R − l0| cos θ ≤ hs/2, cf. (42). We also replace Vρ with
the indicator function

Vρ(ρ)

Vρ(0)
=

{
1, if |ρ| ≤ r0

0, otherwise.
(62)

Note that the representation (62) is meaningful for both
the Gaussian (Appendix A) and Kolmogorov (Appendix B)
turbulence models (see [10, Appendix 4.A]). With these sim-
plifications, the fraction J (b)/J0 on the right-hand side of (57)
can be interpreted as the ratio of the length of two thick
purple segments, see Fig. 2, to the overall length of the ray
within the ionospheric layer (i.e., thick and thin solid segments
combined). Note that with the model (62), the decorrelated
segments exist only for |b| ≳ r0/ ls = bs . Using the similarity
of the triangles, we can obtain

ζϕ̃(b) ∼ 1 −
r0

bls
≡ 1 −

bs

|b|
. (63)

As the thickness of the ionosphere increases and/or the squint
of the ray becomes larger, the value of ζϕ̃(b) given by (63)
for b ̸= 0 increases and approaches one, as expected.

According to the definition of the metric ζϕ̃ in (50),
ζϕ̃(b) ∼ 1 means that when |b| ≳ bs , the differences between
the perturbations of the eikonal modeled by the phase screen
and the ionosphere having a finite thickness are, on average,
significant (i.e., comparable to the magnitude of the baseline
perturbations).

B. Statistics of Eikonals for the Rays Associated With a
Single Image Point

In Section IV-A, we considered the statistics of eikonals
for the rays passing through one and the same point on the
phase screen. We have used the parameter ζϕ̃(b), see (50),
as a measure of decorrelation between the normalized eikonals
ϕ̃ for the ray with the squint parameter b and that for the
corresponding broadside ray. For the analysis of imaging with

the correction term, we will need to obtain the statistical
properties of the sum (17). That, in turn, requires knowing the
statistics of the variable φ(x, y) defined in (48) as follows:

φ(x, y) = ϕ(x, y) − ϕrec(x, y)

where y is the image coordinate.
When the correction term is implemented using a phase

screen, see (17) with (21), we identify ϕ(x, y) and ϕrec(x, y)

with ϕ̃(b) and ϕ̃(0) in (50), respectively, given that

z0 = s(x, y) = ξ x + (1 − ξ)y and l0 = ξ R

see also (21), (27), and (51). We will express the statistics
of φ(x, y) via the results of Section IV-A with

b =
x − y

R
(64)

see Fig. 1. In doing so, we will ignore the difference between
ϕ(b) and ϕ̃(b), see (51), since |b| ≤ LSA/(2R) and typically
LSA ≪ R, which results in (1 + b2)1/2

−1 ≪ 1. Thus, similar
to ζϕ̃(b) in (50), we introduce ζ(x, y) as follows:〈(

φ(x, y)
)2〉

=
〈(

ϕ(x, y) − ϕrec(x, y)
)2〉

= 2⟨ϕ2
⟩ζ(x, y). (65)

Note that while some antenna coordinates x j in the sum
in (17) correspond to the small-squint case, others may yield
the rays with large squint if the SA is large enough. In order
to analyze the resulting sum, we have to combine the approx-
imations (60), (61), and (63). Given that (63) is a rough
estimate, and taking into account that the parameter bs = r0/ ls

characterizes both the size of the domain where inequality (61)
holds and the scale of the argument b in (63), we perform a
further simplification and present the unifying approximation
to ζϕ̃(x, y) in the following form:

ζ(x, y) ≈ ζb(b) =

{
0, if |b| ≤ bs

1 − bs/|b|, otherwise
(66)

where b is related to x and y by (64).
To calculate the statistical characteristics of the imaging

kernel (17), we use the central limit theorem and also employ
the clustering approximation introduced in [54] (see also [2],
[10, Sec. 4.3], [53]). According to the central limit theorem,
each perturbation ϕ = ϕ(x, y) can be considered a Gaussian
random variable with zero mean [19, Ch. I], because the inte-
gration path (ray) crosses through many identically distributed
turbulent inhomogeneities. In addition, we assume that the
synthetic array is partitioned into a set of nonintersecting
clusters, such that the eikonals ϕ that belong to the same
cluster are strongly correlated and thus (nearly) identical,
while those that belong to different clusters are uncorrelated
and, therefore, independent. The same assumptions extend to
the reconstruction term ϕrec defined via (21) and (27) and,
accordingly, the difference φ = ϕ − ϕrec in (17). The length
of the cluster Lc and the cluster index m for the antenna
location x j will be defined as follows:

Lc =
r0

ξ
, m =

[
x j − y

Lc

]
(67)
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Fig. 3. Approximate approach for computing the eikonal correlation function using clusters; see (68) and (70). To illustrate the idea, we show the total
number of clusters as equal to 5, with the cluster indices from m = −2 to m = 2. The small black bars indicate the cluster boundaries, i.e., x±

m given by (73)
(assuming that |y − z| ≪ Lc), while the filled circles between them correspond to x(y, m); see (71). Angles are not to scale.

where [·] denotes rounding to the nearest integer; see Fig. 3.
Using m and m ′ as cluster indices corresponding to the antenna
locations x j and x j ′ , respectively, we, thus, have

1
2

k2
⟨φ(x j , y)φ(x j ′ , y)⟩ =

1
2

k2
⟨φ(x j , y)2

⟩δmm ′

def
= D2

mδmm ′ (68)

where

D2
m = 2D2ζb

(
Lc

R
m
)

(69)

see (49) and (64)–(67).
In Section IV-C, we analyze the SAR imaging with

kernel (17), where the statistics of phase perturbations are
described by (65)–(69).

C. Imaging Through a Turbulent Ionosphere With
Corrections Realized by a Phase Screen

The clustering assumption of Section IV-B allows us to split
the sum in (17) into clusterwise terms Vm and factor out the
random exponentials containing φm , with m being the cluster
index:

W (y, z) =

∑
m

Vm(y, z) =

∑
m

Um(y, z) exp(−ikφm) (70)

where, according to (67)

φm = ϕ
(
x(y, m), y

)
− ϕrec(x(y, m), y

)
(71)

and x(y, m) = y+mLc. In (70), the terms Um are deterministic
and can be written as follows:

Um =
1
N

∑
x−

m ≤x j <x+
m

exp
[

2ik
y − z

R

(
x j −

y + z
2

)]
(72)

where the cluster boundaries are given by

x−

m =
y + z

2
+

(
m −

1
2

)
Lc, x+

m =
y + z

2
+

(
m +

1
2

)
Lc.

(73)

Assuming that the distance between the successive antenna
positions is sufficiently small, we approximate the sum in (72)
by an integral and obtain

Um =
Lc

LSA
exp(2imη)

sin η

η
≡

Lc

LSA
exp(2imη) sinc η (74)

where

η =
kLc(y − z)

R
. (75)

Note that the width of the main lobe of the sinc function in (74)
corresponds to unperturbed imaging with LSA = Lc; see (19)
and (20).

Proceeding to the statistical characteristics of W (y, z) given
by (70), we make use of the fact that φm for different values of
m are independent and Gaussian; see (68) and the preceding
discussion. With the help of (68) and (74), we obtain the
following expressions for the mean of W (y, z):

⟨W (y, z)⟩ =

∑
m

⟨Vm(y, z)⟩

=

∑
m

Um(y, z)⟨exp(−ikφm)⟩

=

∑
m

Um(y, z) exp
(
−D2

m

)
=

Lc

LSA
sinc η

∑
m

exp(2imη) exp
(
−D2

m

)
(76)

while for the variance of W (y, z), we have

Var W (η) =
〈
|W (y, z) − ⟨W (y, z)⟩|2

〉
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=

∑
m

〈
|Vm(y, z) − ⟨Vm(y, z)⟩|2

〉
=

∑
m

|Um(y, z)|2
〈
| exp(−ikφm)−⟨exp(−ikφm)⟩|2

〉
=

(
Lc

LSA
sinc η

)2∑
m

[
1 − exp

(
−2D2

m

)]
(77)

see [54]. It can be shown that as D2
→ 0, the mean PSF given

by (76) converges to the unperturbed expression (19), i.e.,

⟨W (η)⟩ → Wlim(η) = sinc
(

LSA

Lc
η

)
≡ sinc

(
kLSA(y − z)

R

)
(78)

while the variance given by (77) vanishes.
A commonly used metric for assessing the sharpness of the

image due to a point scatterer is the integrated sidelobe ratio
(ISLR). We will define it here using the operators Peak[·] and
SL[·] that single out the peak and sidelobes, respectively, in the
PSF. For the deterministic PSF Wlim given by (78), we assign
the peak boundary to the first zero of the sinc function:

η0 = π Lc/LSA (79)

so that

Peak[Wlim](η) =

{
Wlim(η), if |η| ≤ η0

0, otherwise

SL[Wlim](η) =

{
Wlim(η), if |η| > η0

0, otherwise.
(80)

ISLR is then defined as in [48, Sec. 2.8]:

ISLR(W ) = 10 log10

∥∥SL[W ]
∥∥2∥∥Peak[W ]
∥∥2 (81)

where ∥∥F
∥∥2

≡
∥∥F(η)

∥∥2
=

∫
∞

−∞

|F(η)|2 dη

which yields ISLR(Wlim) ≈ −9.68 dB (see [10, footnote 16,
p. 260]). Other considerations can be employed to identify
the peak, thus affecting the value of ISLR. For example,
if we define η0 in (80) using the so-called “3-dB rule,” see
[48, Sec. 2.3.4], i.e., implicitly by |W (η0)| = |W (0)| ×

10−0.3
≈ |W (0)|×0.5; then, we obtain ISLR(Wlim) ≈ −13 dB.

In the case where the magnitude of phase fluctuations
is large, defining the peak boundary with the help of the
unperturbed PSF as in (80) and computing the ISLR according
to (81) are no longer sufficient. We, therefore, modify the
definitions in (79)–(81) to accommodate a large variance of W .
First, we introduce a new deterministic function

WS(η) = max
(
|⟨W (η)⟩|, [Var W (η)]1/2) (82)

(note that unlike W (η), function WS(η) is always nonnegative).
Then, we redefine the peak boundary as the transition point
where the variance becomes equal to the mean PSF squared:

η0S = min{|η| | WS(η) = [Var W (η)]1/2
}. (83)

For η0S defined by (83), we always have η0S ≤ η0 where η0 is
the peak boundary for the deterministic case; see (79) and
Fig. 4. In turn, WS and η0S replace Wlim and η0 in (80), yielding
the statistical versions of the corresponding operators

PeakS[W ](η) =

{
WS(η), if |η| ≤ η0S

0, otherwise

SLS[W ](η) =

{
WS(η), if |η| > η0S

0, otherwise.

Finally, the statistical version of ISLR is defined similar to (81)
with these new operators:

ISLRS(W ) = 10 log10

∥∥SLS[W ]
∥∥2∥∥PeakS[W ]
∥∥2 . (84)

While the mean and variance of W are declared as the
functions of η in (76) and (77), they also depend on many other
parameters, such as the turbulence level D2 and the number
of clusters in the SA nc = LSA/Lc. This means that WS given
by (82) depends on the same parameters, and so do all the
quantities derived from WS , including ISLRS in (84).

Fig. 4 displays the mean and variance of the PSF given
by (70) for two distinct values of D2 with nc = 9. For D2

=

0.1, we have ⟨W (η)⟩ ≈ Wlim(η) and ISLRS(W ) ≈ −7.81 dB;
the latter value is comparable to the aforementioned unper-
turbed case characterized by ISLR(Wlim) = −9.68 dB. The
situation is different for D2

= 0.8 where the peak of ⟨W ⟩ is
noticeably lower and variance higher than in the deterministic
case. Accordingly, we have ISLRS(W ) ≈ 0.90 dB, which is a
significantly higher value than that for D2

= 0.1.
Fig. 5 presents the plots of ISLRS versus D2 and nc.

We see that a combination of high level of perturbations
and large SA (i.e., k2

⟨ϕ2
⟩ ∼ 1 and nc = LSA/Lc ≫ 1)

results in a high level of sidelobes, leading to a poor imaging
performance. Indeed, while for the cluster with m = 0, the
distortions can be essentially eliminated by the proper choice
of the screen density function ϕS , see (66) and (69), the
off-center clusters are characterized by larger values of |b|

and, hence, will be affected by the phase perturbations; see
Figs. 2 and 3. Revisiting formula (17), we can see that in
the perturbation-free case, the dependence of W on (y − z)
is realized via the first complex exponential under the sum.
If the perturbations are present and k2

⟨φ2
⟩ ∼ π , then there

is also the second complex exponential that is random and
spread over the entire unit circle. This destroys the information
about (y − z) present in the first exponent. Hence, the terms in
the sum in (17) with k2

⟨φ2
⟩ ∼ π are harmful rather than useful

for imaging, because they contribute noise without improving
the resolution. In practical settings, it will then be reasonable
to throw away the outermost terms in the sum in (12), thus
reducing the range of m in (70). Using an appropriate metric,
such as ISLRS , we can determine the optimal length of the
SA given the characteristics of perturbations (i.e., D2 and r0)
and the desired level of sidelobes. For example, if we set the
upper bound of admissible ISLRS at −5 dB, then we can
use an SA containing seven clusters as long as D2

≤ 0.3,
as indicated by the purple curves on both panels in Fig. 5.
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Fig. 4. Left panels: plots of mean and variance of W (η) given by (70), with η defined in (75). Right panels: zoomed-in views to the central part of the
corresponding left panels. The blue, purple, red, and black lines correspond to formulas (76), (77), (79), and (83), respectively.

Fig. 5. Plots of ISLRS versus D2 and nc (top and bottom panels, respectively).

If the value of D2 is higher, say D2
= 0.7, then we should

trim the SA down to five clusters (red curves). The increase
of the resolution size resulting from this adjustment, see (20),

represents a compromise between the resolution and level
of sidelobes in the imaging kernel in the presence of phase
noise.
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V. CONCLUSION

For the phase perturbations of radar signals propagating
through the Earth’s ionosphere, we have studied the efficiency
of having a finite-thickness ionosphere represented by means
of an infinitesimally thin phase screen. We judged the effi-
ciency in the framework of spaceborne SAR imaging, as the
phase screen model was applied to compensate the phase per-
turbations due to the ionosphere. The resulting image quality
was assessed by analyzing the properties of the imaging kernel
(the PSF).

For the case of large-scale perturbations considered in
Section III, we have found that an efficient compensation of
distortions is achievable; i.e., with a proper choice of the phase
screen parameters, the resulting image will have very small
distortions.

For the opposite case of small-scale perturbations due to
the ionospheric turbulence, see Section IV, our findings are
different. We have shown that a high level of phase distortions
imposes an effective upper limit on the length of the useful
part of SA for the corrected image given by formula (12). The
optimal length of the SA can be determined by the balance
between the improvement of resolution, see (79), and increase
of noise due to decorrelation between the actual eikonals
and those represented by the phase screen as the SA length
increases; see formulas (66)–(69).

For the analysis in this work, we used a mathematical model
of the ionosphere. Next, one could ask how accurately a phase
screen will represent the perturbations of SAR signals due
to the propagation through a real ionosphere. The pertinent
accuracy can be assessed by analyzing the distortions of
the true ionospheric PSF. The latter, in turn, is obtained by
imaging a bright point scatterer, such as a corner reflector.
An example of the corresponding study has been reported
in [55] and [56].

However, the very definition of a phase screen for the
actual ionosphere requires attention. One cannot use formula
(47) for the turbulent contribution to the eikonal, because the
turbulent part of the electron number density µ cannot be
considered known. Indeed, while several methods are available
for obtaining the part of the TEC due to the mean electron
number density Ne (in particular, dual-carrier probing, see [1],
[10, Ch. 3], [40], [54]), those methods do not apply to µ.

In this paper, we do not discuss how to construct a phase
screen in the case of an unknown ionosphere. We rather assess
the accuracy of representing the corrections to SAR imaging
functional by means of a phase screen if the ionosphere is
known. Thus, we identify the scenarios where the use of the
phase screens is justified. These scenarios are characterized
in terms of the relevant parameters of the SAR instrument
and the ionosphere and apply to the real ionosphere as well.
Subsequently, a phase screen for correcting the ionospheric
perturbations can actually be built with the help of special
algorithms, such as the transionospheric autofocus [11] (see
also [22]).

One of the potential extensions of this work is the concept
of a vector-valued phase screen. Besides the value of the
broadside eikonal at each point, see (27), this vector may
contain values that encode the vertical structure of the plasma

layer, e.g., the vertical and/or mixed derivatives of the electron
number density. This model may be considered as an alterna-
tive to a representation of the ionosphere using multiple phase
screens.

Other extensions may include replacing the geometrical
optics with a more versatile electromagnetic model, e.g., the
parabolic wave equation (PWE) [19], [32], that would, in par-
ticular, be capable of describing the amplitude scintillation.
Examples of using the phase screens with PWE can be found,
e.g., in [57] and [58]. Such constructs open a pathway to
analyzing the effect of azimuthal striping (see Section I).
Yet to do so, one will also need to take into account the
inhomogeneity of the medium across the slant plane. Hence,
the 1-D analysis of Section IV shall be generalized to include
the range coordinate.

APPENDIX

We compute the leading term of the decorrelation met-
ric ζϕ̃(b) given by (57) as b/bs → 0 for two common
models used to describe the ionospheric turbulence: Gaussian
turbulence and Kolmogorov turbulence.

A. Gaussian Turbulence

The perturbations of the electron number density due to the
Gaussian turbulence are modeled by the following autocorre-
lation function:

Vr (r) = exp
(
−q2

Gr2). (85)

With the correlation radius r0 defined by

r0 =
1

Vr (0)

∫
∞

0
Vr (r) dr (86)

we can find that

qG =

√
π

2
1
r0

≈ 0.88
1
r0

. (87)

Formulas (55) and (85) yield

Vρ,G(ρ) = 2r0 exp
(
−q2

Gρ2)
and using the Taylor expansion for ρ ≪ r0, we can find the
leading term of (59) as follows:

Vρ,G(0) − Vρ,G(ρ) ≈ 2r0q2
Gρ2.

Hence, for the Gaussian turbulence, formula (57) becomes

ζϕ̃,G(b) = (bqG R)2
(∫ 1

0
VR(u R)(u − ξ)2 du

)
·

(∫ 1

0
VR(u R) du

)−1

. (88)

We proceed by choosing a simple “boxcar” model for VR

VR(l) =

{
V0, if |l − ξ R| ≤ hs/2
0, otherwise

(89)

where V0 = const. This allows us to evaluate the integrals
in (88), which yields

ζϕ̃,G(b) = QG

(
b
bs

)2

(90)
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where bs is defined in (58) and QG = π/48 ≈ 0.07. If
VR(l) is different from (89) while all other assumptions hold,
then expression (90) remains valid with QG ∼ 1.

Formula (90) [see also (60)] yields the leading term of
the metric describing the accuracy of modeling a “thick”
ionosphere by means of a phase screen in the case of a
Gaussian turbulence as b/bs → 0. The factor (b/bs)

2 on the
right-hand side of formula (90) guarantees that ζϕ̃,G(b) ≪ 1 if
|b| ≪ bs . According to (50), this means that the perturbations
of the eikonal due to the “thick” ionosphere can be relatively
well represented by a properly chosen phase screen.

B. Kolmogorov Turbulence

For the Kolmogorov turbulence, the perturbations are
defined via their (spatial) spectrum

V̂ r (q) =
C(

1 + (|q|2/q2
K )
)κ (91)

where

κ =
11
6

, C =
0(κ)

π3/2q3
K 0
(
κ − (3/2)

)
see [10, Sec. 4.A.4]. From (86), we can obtain [see (87)]

qK =

√
π0(κ)

(κ − 1)0
(
κ − (3/2)

) 1
r0

≈ 0.75
1
r0

.

We can derive Vr by the inverse Fourier transform of V̂ r (q)

given by (91)5 and substitute the result into (55), which yields

Vρ,K (ρ) =
1

qK

23−γ
√

π0
(
κ − (3/2)

)
0
(
κ − (3/2)

) (qK ρ)γ Kγ (qK ρ) (92)

where γ = κ − 1 and Kγ is the Macdonald function,
or modified Bessel function of the second kind (see [59,
Ch. 10]). The function ηγ Kγ (η) is not twice differentiable
at η = 0, and its asymptotic behavior near zero is given by
the first two terms of the Puiseux series6

ηγ Kγ (η) ≈ 2γ−10(γ )

(
1 +

0(−γ )

2γ 0(γ )
|η|

2γ

)
(93)

where

2γ = 2(κ − 1) =
5
3
. (94)

Since 0 < γ < 1, we have 0(γ ) > 0, and 0(−γ ) < 0.
Consequently, the function defined by formula (93) attains a
maximum at η = 0, which is consistent with the standard
properties of an autocorrelation function Rϕ̃ . Indeed, if η = 0
were to deliver a minimum rather than a maximum to (93),
then the first integral in (56) and, hence, the right-hand side
of (57) could become negative, which would allow Rϕ̃ > 1.
This, however, is not possible, since Rϕ̃ is an autocorrelation
function.

5For a spatially inhomogeneous random process µ, the formulation in (91)
assumes that VR in (54) varies on a scale much larger than r0 ∼ q−1

K .
6The expression on the right-hand side of (93) has been obtained using

Wolfram Mathematica®; see [60].

Substituting (92) into (59) and proceeding as in
Appendix A, we arrive at

ζϕ̃,K (b) =
|0(−γ )|

2γ 0(γ )
|bqK R|

2γ

(∫ 1

0
VR(u R)|u − ξ |

2γ du
)

·

(∫ 1

0
VR(u R) du

)−1

. (95)

Similarly to the case of a Gaussian turbulence, we eval-
uate (95) using the model (89) for VR(l). The resulting
expression for the Kolmogorov-type turbulence is

ζϕ̃,K (b) = QK

(
|b|

bs

)2γ

(96)

where

QK =
|0(−γ )|

2γ 0(γ )

1
22γ (2γ + 1)

( √
π0(κ)

(κ − 1)0
(
κ − (3/2)

))2γ

≈ 0.2.

To accommodate the more general forms of VR , we assume
that QK ∼ 1. Obviously, formula (96) [see also (60)] yields
ζϕ̃,K (b) ≪ 1 for |b| ≪ bs . This is also similar to the case of
the Gaussian correlation function considered in Appendix A.
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