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ABSTRACT. Detection of dispersive targets in SAR is obstructed by ambiguity
between the scattering delay and increase of the signal travel time. To overcome
this ambiguity, we design image classifiers based on deep learning that can
discriminate between the instantaneous and delayed targets in coordinate-delay
SAR images (cdSAR). Both targets and images are modeled stochastically.
This allows one to account for the speckle effect but still leaves a possibility of
misclassification.

Previously, we considered a simplified setup where the cdSAR images con-
tained only two coordinates: range and delay, while the cross-range coordinate
of the scatterer to be classified was known. In this work, we incorporate a
third coordinate and determine the tolerance of the previously developed 2D
classifier to inaccuracies in the cross-range position of the scatterer. We found
this tolerance to be shorter than the cross-range resolution. Hence, increasing
the robustness of the classifier appears of merit.

We increase robustness of the classifiers by training them on 3D “slabs” of
cdSAR images that span a finite cross-range interval. Compared to the original
2D classifier, this extension relaxes the requirement of knowing the cross-range
position of the scatterer accurately. However, the improved robustness is not
accompanied by a better classification performance, even though the measure-
ments at the additional cross-range locations provide more information about
the target. We conduct a series of numerical experiments to analyze several
possible explanations of this effect.
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1. Introduction.

1.1. Delayed scattering and radar imaging. Delayed scattering of electromag-
netic waves can be caused by complex geometrical features of the scatterer, such
as cavities or regular structures and/or special material properties [3,4,9]. Typi-
cally, we associate such features with man-made objects, so detection of scattering
delay by means of remote sensing, e.g., radar imaging, is of interest for various
applications.

The main obstacle to the direct detection of scattering delay is the ambiguity
between the delay and increase of the signal travel time if the scattering object is
placed at a larger distance from the radar antenna. This effect is called the range-
delay ambiguity. It has been studied in [9,12-14]. Under certain conditions, the
range-delay ambiguity can be resolved by illuminating the object from various direc-
tions, similarly to how the along-track resolution is achieved in synthetic aperture
radar (SAR) imaging [6,11].

This work extends the results of [21] where we used deep learning to discriminate
between the simulated coordinate-delay SAR (cdSAR) images of instantaneous and
delayed scatterers. Whereas only one spatial coordinate, the range, has been con-
sidered in [21], in the current work we analyze the full-fledged 3D cdSAR images
(two spatial coordinates and delay). Our goal is to identify and assess the potential
benefits of using multiple cross-range coordinates for the robustness and quality of
image classification.

As before, we use the simulated radar targets. A scenario was presented in [30]
where the training on such targets did not generalize well and the corresponding
algorithms demonstrated poor performance when applied to real-life data. Yet the
advantage of simulated targets is that, unlike in the real world,' large datasets of
targets and images with prescribed statistical characteristics can be generated, and
the performance of the classifiers can be evaluated accurately. We consider two con-
figurations, with and without the scattering delay, and with a tunable parameter
that controls our ability to discriminate between the two. Building such configura-
tions in real-life settings presents an extremely difficult task. Hence, our setup can
be thought of as a testbed for studying the effect of different parameters, such as
the grid (step) size and domain size, on the discrimination. Accordingly, we focus
not on the specific percentages of successful or unsuccessful classifications, but on
how those percentages vary as the corresponding simulation parameters change.

1.2. Motivation, research questions, and the roadmap. Our main goal is to
increase the robustness of the classifiers. In this work, robustness is interpreted
as the maximum offset in the cross-range coordinate of the scatterer that does
not significantly affect the system performance. Robustness with respect to the
scatterer coordinates is important because in remote sensing, these coordinates are
unknown, and the accuracy of their determination from the image is limited by the
resolution, contrast, properties of the background, and other factors. If the cross-
range coordinate of a 2D slice of the cdSAR image used for discrimination differs
from the actual coordinate of the scatterer, then the classification performance
decreases compared to that reported in [21]. To alleviate this deficiency, we propose
a new 3D classifier that takes into account an interval of cross-range coordinates

LAt the moment, the availability of real SAR images for algorithm training is indeed limited
compared to conventional optical images (photographs). The situation may be improving though
as additional companies produce large collections of SAR images, see, e.g., [31].
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rather than a single value as in the 2D case. From the standpoint of convenience,
the larger this interval the better. However, if the image coordinates are too far
from the scatterer, the influence of the latter on the image is weak, and an increase
in the amount of such inessential data may be detrimental. In our study we explore
how large the cross-range interval can be so that the discrimination performance is
not affected negatively.

Our second goal is to analyze the effect of including the additional cross-range
coordinates on classification performance. For a given range-delay plane that con-
tains the scatterer, the image at the neighboring cross-range locations is affected
by the scatterer and therefore carries some information about the scatterer. This
information can be used for classification. Yet any variation in the dimension of
the input causes a change of architecture of the corresponding convolutional neu-
ral network (CNN). The difference in architecture can affect the performance of
the CNN-based classifiers, so it is important to verify that different architectures
produce similar results for comparable inputs.

SAR imaging is an established technology. An engineering perspective of the
discipline can be found, e.g., in [8, 10, 19, 22, 23], while a mathematical approach
to SAR imaging is presented in [5,6, 11]. Dispersive targets have been of interest
to SAR community for several decades, see [1,3,4,9,12-14,20,21,24,25]. Machine
learning, on the other hand, is currently going through a phase of explosive growth.
Therefore, we do not attempt to present a bibliography review and only mention two
references that can provide some fundamental knowledge on the subject, see [15,18].
The initial focus of deep learning was on optical images. Currently, there are more
and more publications where the machine learning approach is applied to SAR, see,
e.g., [33] and [32].

In what follows, Section 2 presents the mathematical fundamentals of the
coordinate-delay synthetic aperture radar imaging, Section 3 describes the numeri-
cal experiments, and Section 4 discusses the results and identifies possible extensions
of the current work.

2. Mathematical formulation of the problem.

2.1. Radar imaging operator and imaging kernel. SAR images are obtained
by illuminating the target from multiple antenna positions and processing the scat-
tered signals received by the same antenna, see Figure 1. In this study, the target
is characterized by the time-dependent target reflectivity function v(t,, z), where
z = (21, 22,0) is the target coordinate and ¢, > 0 is the scattering delay. The image
is supposed to (approximately) reconstruct v. We do not consider polarization of
radar signals, i.e., adopt a scalar formulation. The propagation between the an-
tenna and the target is assumed unobstructed while the scattering at the target is
assumed weak (linearized). Then, the scattered signal u(®)(¢, ) due to the emitted
waveform P(t) at the antenna position @ is given by the following convolution-type

expression:
. o 2l —
u®(t, z) :/ (/z/(tmz)P(t— Ao =zl —tz) dz> dt,, (1)
0 &

where ¢ is the speed of light. In formula (1), the antenna radiation pattern and
geometrical attenuation are included into v, while the integral without limits implies
integration over the entire space. The retarded contribution to the argument of P
is the sum of the round-trip travel time 2|z — z|/c and scattering delay ¢,. The
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separation between these two terms in the sum is the main challenge for the remote

sensing of dispersive targets. For a single antenna position, such separation is
impossible [12]. This effect is called the range-delay ambiguity.

z x3 (orbit elevation)

4 L2, Y2, %2
I (range)

zq = (2a1, 242, 0)
x1,Y1, 21 (cross-range)

FIGURE 1. SAR imaging geometry. The targets (scatterers) are
located on the plane z3 = 0. The blue dot and red, straight seg-
ment correspond to the delayed and instantaneous scatterers, re-
spectively. These two scatterers have a common reference point zq.

The coordinate-delay SAR image I(t,,y) is obtained by applying a matched
filter to the received signal at each point of the data collection domain {x} called
the synthetic aperture:

I(ty,y) = %//P(t 2=yl 1) w1, ) dt de )

c

matched filter
where the overbar denotes complex conjugate. Hereafter, we will use y to denote
the image coordinates (while z will still be used for target coordinates). In equation
(2), K is a normalization factor and the integration limits are determined by y, pulse
duration, and length of the synthetic aperture.
A typical SAR interrogating signal is a linear frequency-modulated pulse (narrow-
band):

P(t) = exp(—iwgt) exp (—iBt*/(27))1{_r 2, /25, where 1< Br <wor. (3)

In (3) and further on, 1 denotes the characteristic function (indicator) of an interval,
wp is the (circular) carrier frequency, and B/(27) and 7 are the pulse bandwidth
and duration, respectively. Another common assumption in SAR is that of a narrow

total aperture angle:
“Lsa_ Lsa (4)
TR T VIR EE
where = (1, —L, H) and @1 € 1{_rg, /2, Lsa/2)- In (4), Lsa is the length of the
synthetic aperture, L is the horizontal distance to the target, and H is the orbit

elevation, see Figure 1.
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The imaging operator that maps the target reflectivity v (¢, z) onto the cdSAR
image I(t,,y) has the following form:

I(ty.y) = / / Wty y te, 2)0(ts, 2) dt dz, (5)

where the expression for the kernel W is obtained by substituting (1), (3), and (4)
into (2) (see also [12]) and choosing the normalization factor as K = Lga7:

W(tya Ytz 2) = W(nyz> Cyzs ¢yz) = exp(_2iﬂCyz)'(I’(77yza K(Cyz"'wyz)/Q) -sinc C(yz)
6
In formula (6), f = wo/B > 1, sinc{ = sin(¢) /¢, and
5 = G/ B. ™)

The quadratic dependence of k on @7 is due to the third term retained in the
Taylor’s expansion of the signal travel distances with respect to the aperture angle,
see Figure 3 and [12, Section 2.2] for detail. In Section 2.2, we will see that it is
the parameter x of (7) that controls the system’s ability to resolve the range-delay
ambiguity.

The function ®(vq,v2) in (6) is defined as

1/2
O (v, v2) déf/ exp(2iv, 8) exp(ivys?) ds. (8)
—1/2
The arguments of the imaging kernel W of (6) are given by
Nyz = Ny — 1z, CyzZCy_Cz» wyz:¢y_1/]za (9)

where the dimensionless coordinates ny, 12, (y, (2, ¥y, and 1, are defined using
the incidence angle 0, see Figure 1, and horizontal wavenumber k| = (wo/c) sin 6:

Ty = KTy, Nz = kyerz, (10a)
B 2y;sind B 2zsin0

Cy = g(fﬂy)? Gz = E(THZ), (10b)
B 2y;sind B 2zsin0

Yy = 5(7_%)7 by = E(T—tz). (10c)

Bt,
- (delay)

A
N

D (, = const

Bzosin6
U (range)

| \3\7'('/4

FIGURE 2. The range-delay plane that contains an instantaneous
scatterer (red, straight segment) and a delayed scatterer (blue,
straight segment) with the same dimensionless reference range
Bzgosinf/c (vertical dashed line). The purple square is the re-
gion where the data are sourced from for building the 2D classifiers
in [21].
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To reduce the cdSAR formulation to traditional SAR, one should replace ®(vy,vs)
with ®(v1,0) = sincv; in (6) and eliminate the arguments t,, and ¢, everywhere.
For example, a regular (i.e., instantaneous) scatterer with reflectivity vinst(2) can
be interpreted as v(ty, 2) = Vinst(2)0(t2). Formula (5) then reduces to

Iinst(y) = /VVinst (ya z)l/inst (Z) dz. (11)

The instantaneous imaging kernel Wi,g of (11) is characterized by the range and
cross-range resolution given by (see, e.g., [11, Chapter 2])
e wo 1 TRc 1
AR= ———=71— - — d Ax= .
R Bsinf T B kH an A woLSA ﬂ—ku(pT
As there is no delay argument in either the reflectivity or the image, the range-delay
ambiguity is not present in the traditional SAR formulation (11).

(12)

T, 21

FIGURE 3. Quadratic dependence of the path length difference on
the aperture angle.

2.2. Range-delay ambiguity. A SAR image should render an approximate recon-
struction of the target reflectivity. This applies to both traditional SAR and cdSAR.
In traditional SAR imaging (11), the best kernel would be Wing ~ 6(y — z), where
d is the Dirac delta function. Indeed, in this case we would have linst(y) X Vinst(2).
However, the limitations due to the finite bandwidth and aperture size of a SAR
sensor result in a finite width of the peak of the function Wi,g around y = z. This
finite width gives rise to a finite resolution (12).

Likewise, the best cdSAR imaging kernel in (5) would be W ~ §(ty, — t.)d(y —
z). Yet the actual function W has a finite-width peak around (t, = t., y = z).
The cdSAR kernel W of (6) is different from Wi,g of (11) in that |W| decreases
slowly along certain directions in the space of its arguments. Specifically, whereas
|sinc (| < 1/|¢] as [¢] — oo, we have |®(vy,vs)| ~ 1/+/[vz| for |vz2] — oo inside the
sector |v1| < |vz|/2. We can say that the range-delay ambiguity manifests itself
as invariance of the imaging kernel w.r.t. range and delay in the limit of k — 0 in
every plane given by equation®

(- = const. (13a)

2Note that the two terms in the definition of ¢» in (10b) can be traced back to the second and
third terms in the argument of P(...) in (1).
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Accordingly, in the three-dimensional space of coordinates (21, 22,t,), we will call
the planes (13a) ambiguity planes. An equivalent formulation in terms of the cdSAR
image coordinates (yi,y2,ty) is

(y = const, (13b)

see formulae (9). It will be useful in the subsequent analysis. In Figure 2, the
intersection of an ambiguity plane with a range-delay plane is shown by the sloped
dashed line.

For finite &, the function ®(vq,vs) given by (8) has a central peak with respect
to its second argument at vo = 0. The width of this peak corresponds to the value
of w1 where for a pair points separated in range by the resolution Agr of (12),
the path difference Ag(1 — cos(pr/2)) ~ Ary?/8 is comparable to the carrier
wavelength A = 2mc/wp, see Figure 3. This peak is what allows us to resolve
the range-delay ambiguity, i.e., discriminate between the instantaneous and delayed
scattering. Indeed, we can rewrite the second argument of ® in (6) using (9) and (10)

as follows:
Bsin6

K(Cyz + wyz)/Q =K (yQ - Z2)' (14)

As the right-hand side of (14) depends only the spatial coordinates, it is not sub-
ject to the range-delay ambiguity, unlike other terms in (6). Moreover, the resulting
range resolution appears inversely proportional to x. However, the aforementioned
slow decay of |®(vy, v2)| for large |vg| implies that the sidelobes will still be promi-
nent, see [12] for detail. Hence, resolving the range-delay ambiguity may not be an
easy task even when the target is illuminated from a series of locations {x}.

2.3. Statistical models of scatterers. Unlike in the conventional photography
where illumination is incoherent, radar imaging uses coherent signals [e.g., as ex-
pressed by (3)] to probe the targets. For this reason, radar images of extended
objects always have grainy appearance due to the phenomenon called speckle [16,
17,27]). The interpretation of instantaneous speckle presented in [27, Chapter 4]
uses stochastic models of scatterer reflectivity. In the current work, we extend the
approach used in [12,13,21] by adding the cross-range dimension. In particular,
we define one-dimensional inhomogeneous targets using an inhomogeneous complex
Gaussian white noise process 1(¢) with the following autocorrelation function:

(1(¢) (€)= (¢ = Q) Lo<¢ <o (15)

where (imax is @ parameter. The support of the autocorrelation in (15), i.e., lo<¢<¢,n
is an Lj-integrable function of ¢ and hence satisfies a sufficient condition for u to
exist, see [2].

Using (15), we define the reflectivity functions for two types of inhomogeneous
scatterers:

vs(tz, z) = Usé(kHQDT(Zl — zdl))é(B;z>u<§;k”(22 — zd2)>7 (16)

(22 —zdg))u(BQtz>. (17)

An instantaneous scatterer defined by formula (16) is localized in the cross-range
coordinate, i.e., 21 = zq1. Regarding the range coordinate, this scatterer is char-
acterized by the reference location z4q and length smax = wWoCmax/(Bky). In turn,
formula (17) defines a delayed scatterer with the maximum delay tmax = 2¢max/B

B
Ut(tz, z) = O't(S(k‘H(pT(Zl — zdl))a(;okl‘
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located at z4, i.e., 21 = zq1 and 23 = zq2. The intensities of the scatterers are con-
trolled by the constants o > 0 and o; > 0. The supports of {|vg|?) and (|;|?) are
shown in Figures 1 and 2. Note that if the random process p in the definitions (16)
and (17) is the same, these supports intersect one and the same set of ambiguity
planes (13a).

In addition to the inhomogeneous models (16) and (17), we will use an instanta-
neous speckle as a background (sometimes called clutter). The model of the speckle
reflectivity function vspeckie(z) that is used in the conventional SAR imaging is a
homogeneous two-dimensional white Gaussian noise [27]:

<Vspeckle(z/)yspeckle(z)> = Ugé(z/ - Z), (18)

where of is the average speckle intensity. We adapt this model for the cdSAR
treatment by explicitly specifying the dependence on the delay time ¢, as follows:

Bt,

w(ts,2) = 5(7)yspeckle(z). (19)

Formulations (15)—(19) permit the following unifying expression for the autocor-
relation of the scatterer reflectivity:

<V0l(tfz7 z/)ya(t27 Z)> = O'iRa(Ez, 213 22; tZ7 21, Z2)7 (20)

where « is a scatterer type: a € {b,s,t}, 21 = 2] — 21, 22 = 25 — 29, t, =t — t,,
and

S /B  _\./Bt
Ra(tz; 21, 225tz 21, 22) = 5(1€|\<PT21)5(;/€|\22)5( 2z
0

)aa(tz,zl,zg). (21)

In turn, the factors a,(tz, 21, 22) define the spatio-temporal localization of the scat-
terers:

Bt,
an(tz, 21,22) = 5( 5 ), (22a)
Bt,
Qg (tz, Z1, 2’2) = 5(I€HQOT(21 — Zdl))(S(T) 1zd2 <z2<zd2+Smax? (22b)
B
at(tz, Z1, 22) = (S(k”goT(Zl — Zdl))é(;ok‘|(22 — ng)) 10§tz§tmaxﬂ (22C)

see (16), (17), and (19). Note that the multiplication of the delta-functions in (21)—
(22) is legitimate because each coordinate or delay argument on the left-hand sides
appear as an argument of only one delta-function on the corresponding right-hand
side.

2.4. Statistics of cdSAR images. In order to realize the scenarios with and
without scattering delays, we combine the statistical models from Section 2.3 in
two different ways:

Vinst(tzaz) :Vb(tzaz) +l/5(tz,z), (233“)
Vdel(tzvz) :Vb(tzvz)+ys(t27z)‘ (23b)

Using the expressions for the scatterer reflectivities in Section 2.3, we can calcu-
late the covariance matrices of the resulting cdSAR images. Due to the linearity of
scattering in (1), we have

I(ty,y) = 1(ny, Gy by) = Zloz(ny:Cyawy)) (24)
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where a € {b, s,t} is the scatterer type, and

Ia(ﬁyaCyd’y) = /// W(nyzaCyzawyz)ya(UZ7<—z7’l/)z)dnz dCz dwz7 (25)

see (5), where the coordinate transform (¢, z) — (72, (s, %) is implied. Assuming
that the two terms on the right-hand sides of both (23a) and (23b) are statistically
independent and using (1, ¢, ) instead of (1, y,1y) for the sake of brevity, we
obtain

<I(7’/7 Cla ’l/)/)I(T], Ca 1[))> = Z <Ia(77/7 Clv W)Ia(??v C7 1/})> (26)
Using (6), (20), (21), and (25), we express the expectations on the right-hand side
of (26) as follows:

<Ioz(n/a </a 7;[}/)[04(77’ Cv"/))> ~ 0'(21 ///‘I)(U' — Nz, H(C - W - Cz + "/’z)) SinC(C/ - Cz)

: (P(n — Nz, ’Q(C - 1/} - Cz + 1pz)) SinC(C - Cz)
- €xXp (_225(C - CI)>ao¢(77z> <Z7 ¢z) dnz dCz dqu
(27)
Notice that the absolute value of the covariance given by (27) quickly decreases
as |¢ — ¢'| increases due to the sinc factors in the integrand. This allows us to
simplify calculations of cdSAR image covariance by restricting formula (27) to a
single ambiguity plane, i.e., considering only ¢’ = {. For the same reason, we take
(, = ( and drop integration over (,, arriving at

<Ia(77/a Cﬂ/}l)la(nv CJ/’)> ~ Oi //‘1)(77' — Nz, H(*@[}, + ijz))(l)(n — 1Nz, fi(ﬂ/J + 7/1z))
: aa(n27<—7wz)dnz dwz

(28)
At the same time, due to the same factor sinc ¢ in the kernel (6), we assume that the
image values corresponding to different values of { are nearly independent provided
that the grid size in the coordinate ( is at least m. Computation of the integral
in (28) for each o € {b, s,t} is simplified further by the delta functions in (22).

2.5. The discrimination problem. Expression (28) defines the covariance for
the circular Gaussian variables I,. When xk > 0, the covariance functions for I
and I; given by (28) are different, as illustrated in Figure 4. This difference is
controlled by two parameters, £ and (max, defined in (7) and (15), respectively.
In particular, according to (6) and (8), an increase of x reduces the widths of the
peaks of the blue and red curves in Figure 4 and thus improves separation between
them. In turn, the value of (,.x represents the distance between the upper ends
of the red and blue “sticks” in this figure, and hence, an increase of (nax also
increases the separation between the two covariances. Since the component I}, in
the images resulting from the two scenarios in (23) is the same, the discrimination
between these scenarios should improve as the product K(pa.x increases. This has
been confirmed in [12] where a discrimination procedure was built based on the
maximum likelihood principle. In the current work, we associate this discrimination
with detection of the scattering delay with the help of radar imaging (see also our
earlier publications [12-14,21]).

Another factor that affects the discrimination between ving and vge in (23) is the
contrast. The numerical value of the contrast characterizes the share of intensity
of the inhomogeneous scatterer, (|I|?) or (|I;|?), in the total image intensity (|I]?).
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FIGURE 4. Schematic: separation of statistical characteristics of
the instantaneous (the red stick) and delayed (the blue stick) scat-
terers in the range-delay plane containing the scatterers, see also
Figure 2. The red and blue curves represent (|I5|*(0,¢,1)) and
(| 1:]2(0,¢, 1)) given by (25), (28) as functions of ¢ for a fixed .
For the case of zq1 = zq2 = 0, the maxima of these curves are
located near ¥ = ¢ and ¢ = —(, respectively. However, this be-
havior is barely noticeable beyond 0 < ¢ < (iax, see (15); in this
illustration, (pax = 127.

This share is defined by the relations between o2, 07, and of in (16), (17), and (19),
respectively, and also the level of signal noise, see Appendix A for more details. In
particular, the case of zero contrast means that the scatterer reflectivity is zero,
hence the images due to vy, and vge are identical, whereas the value of contrast
equal to one means that the entire signal is due to the inhomogeneous scatterer.
Obviously, as the value of the contrast decreases, the maxima of the red and blue
curves in Figure 4 become less prominent, thus making the discrimination between
the two scattering scenarios harder.

As another illustration, Figures 5 and 6 display the average (top rows) and indi-
vidual amplitude (bottom rows) of the sampled cdSAR images, with the discretiza-
tion grid in the range-delay plane corresponding to the purple square in Figure 2,
see also [21, Figures 2 and 3]. Figures 5 and 6 correspond to two different values
of the cross-range coordinate: n = kHcpTzdl and n = ngoTzdl + 7, respectively (ac-
cording to (12), the cross-range distance between these two locations is Ap). We
can see that the top plots in Figure 5 are mostly in agreement with the schematic
in Figure 4. At the same time, due to the stochasticity, the bottom plots bear
little or no resemblance to the corresponding top plots in the same figure (neither
to Figure 4). The patterns in the top plots in Figure 6 are due to the cross-range
sidelobes of the imaging kernel (6). As indicated by the color scales, these patterns
have much smaller variations of intensity as compared to those in Figure 5; still,
there is a clear difference between the two types of targets. At the same time, it
appears very hard to notice the corresponding patterns in the bottom plots of the
same figure.

From the pattern recognition perspective, discriminating between the averages
(the images in the top rows in Figures 5 and 6) should not be too hard. Unfortu-
nately, only the individual images (represented in the bottom rows of these figures)
are available in the typical real world situations. It is then not much of a surprise
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k= 0.6, Crax = 8m, contrast = 0.7, x-range offset =0
averaging over 1000 image pairs
t-model s-model
25
20

k15

010

o o

-10 0 10

Wi

x = 0.6, (max = 8m, contrast = 0.7, x-range offset =0
image pair no. 17
t-model s-model
25
20
15

010

-10 0 10

Wi

FicURE 5. Magnitude of cdSAR images in the range-delay plane
containing the inhomogeneous scatterers. Top plots: average over
the dataset; bottom plots: individual images.

that the classification based on the individual images similar to those presented in
these figures is subject to errors.

2.6. Simulation of image ensembles. The cdSAR images given by (24) can be
described as multivariate zero-mean Gaussian variables. Expressions (26) with (28)
provide the covariances, and hence, completely define the probability distribution
functions (PDF) for these variables. Remember that when considered a function of
the image values and values of model parameters, such PDF is called likelihood.

Technically speaking, knowledge of the PDF opens the way to calculating all
metrics of the corresponding random variables. This includes the misclassification
rate of the maximum likelihood based classifiers employed in [12-14]: its expectation
could be calculated using the following procedure:
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k= 0.6, Cnax = 8n, contrast = 0.7, x-range offset = 1
averaging over 1000 image pairs
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FIGURE 6. Same as in Figure 5, but in the range-delay plane
shifted by 7 in the cross-range direction.

1. Choose one of the two scenarios in (23), specify the values of the relevant
parameters, such as &, (max, and the value of the contrast ¢, and choose
d discretization points.

2. Consider a discretized realization (i.e., a 2d-dimensional vector) I = I,. + il;
given by (24), where I, € R? I, € R, This image may be due to either
scenario (23a) with ¢gs = g or scenario (23b) with ¢; = ¢, where g5 and ¢; are
the contrasts for the corresponding scenarios, see Appendix A. Note that these
two scenarios also give rise to two likelihood functions (in fact, two PDFs):
ps(I,qs) and p¢(1, q¢), regardless of what model was used to generate I.

3. For this realization I, calculate the maxima

Ps,max([) = H}ZE}XPS (1,45), Prmax(I) = HZE}Xpt (I,q;) (29)

by varying ¢, and ¢;, respectively.
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4. Depending on the scenario in item 1, we define the classification outcome
Cs(I) or Cy(I) as follows: if the larger of the resulting maxima in (29) comes
from the same scenario, then the outcome is assigned the value Cy(I) = 1
or Cy(I) =1 (i.e., the classification is correct), otherwise Cs(I) = 0 or Ci(I) =
0 (misclassification).

5. The expected value of the classification outcome in item 4 is calculated using
the PDFs ps and p; specified in item 3:

(Cul0)) = / Cu(Dpe(Lq)dL, dI,,  (Ci(g)) = / Ci(Dpu(L.q)dl, ., (30)

where both dI,. and dI; mean integration over R% and ¢, = ¢; = ¢.
6. The values obtained in item 5 are averaged over the two scenarios in item 1
to yield the average misclassification rate Mayg(g):

Vis6) = 1~ Cunglg) = 1 — )+ (CH0), 51)

Because of the stochastic nature of SAR imaging, see Section 2.4, and the difficul-
ties associated with resolving the range-delay ambiguity presented in Section 2.2,
the number of discretization nodes d has to be large. Hence, the calculation of
expectation in item 5 requires integration of rather nontrivial and discontinuous
functions Cs(I) and C¢(I) over a multidimensional domain, see (30). This makes
the previous method prohibitively expensive, even in the 2D case. An alternative
approach we used in [12-14] is to calculate the experimental misclassification rate
over representative ensembles of cdSAR images using the same maximum likeli-
hood principle as that specified in items 3 and 4. These ensembles are created
by sampling the aforementioned multivariate Gaussian PDFs. Essentially, this is
a Monte-Carlo procedure applied to the calculation of the expectations in item 5,
and its implementation requires the generation of image ensembles according to a
certain multivariate Gaussian statistics. In addition, these ensembles can provide
training sets for the classifiers based on neural networks. This approach was intro-
duced in [21] and continued in the current work. The modifications required for a
transition from 2D to 3D c¢dSAR images are described in Appendix B.

3. Numerical experiments.

3.1. General principles. We discretize the cdSAR images using a regularly spaced
3D grid with step sizes m and 7/2 in the non-dimensional range By, sin/c and de-
lay Bt, /2, respectively, see Figure 7. The discretization allows us to extract image
subsets similar to those used in [21], see Figure 5.° For the non-dimensional cross-
range coordinate n = kjpry1, we use step size 7 in most cases, whereas smaller
sizes (such as m/2, w/4, etc.) have also been used, e.g., in Sections 3.3 and 3.4. The
envelope of a typical discretized domain is shown in Figure 7.

In both 2D and 3D cases, the classifiers are realized as feed-forward convolutional
neural networks (CNNs). The training procedure in each case is the supervised
learning with cross-entropy as the loss function [18]. The implementations employs
the PyTorch software package [28].

The classifiers are trained on a dataset containing 10 values of the target contrast
in the interval between 0.0 and 0.9. The dataset is split into three parts used for
training, validation, and testing (or evaluation), and containing 70%, 15%, and

3This way, we can perform the contrast scaling procedure as described in Appendix A.
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FI1GUuRE 7. Coordinate-delay SAR imaging, cf. Figure 1. The en-
velopes of the 2D and 3D discretized domains are the purple square
(also shown in Figure 2) and gray parallelepiped, respectively. The
instantaneous scatterers and the purple square are in the plane of
symmetry of the parallelepiped. The side of the parallelepiped that
is aligned with the ambiguity planes ¢, = const is highlighted yel-
low.

15% of the images for each contrast, respectively. In training and validation, all
target contrasts are combined, whereas in testing, we calculate the percentage of
classification errors for each contrast separately. The average misclassification rate
Mave(q), see (31), is plotted as a function of the contrast; such a graph is sometimes
called the misclassification curve, see, e.g., Figure 8.

Note that in the process of training a deep learning classifier, its parameters
(called weights and biases) are initialized randomly. Different initializations can lead
to different final values of these parameters in the trained CNN, so the performance
of the resulting classifiers may differ. In order to assess and monitor this effect,
we routinely created ensembles of classifiers using the stochasticity of initializations
and calculated the spread of the resulting misclassification rates. This spread, in
terms of the standard deviation, is shown in some of the plots, see, e.g., Figures
8 and 11. When analyzing these sets of classifier instances, we have discovered
that some ensembles of classifiers have a few outliers with much lower performance
than the rest.* Such outliers are ignored when the mean and standard deviation
of the misclassification rate are calculated, and we display the number of such
outliers for each case in the plot legend. This procedure is legitimate because in
our experiments, the test and validation performances are found to be very close,
so the identification of outliers can be performed at the validation step.

4 The outliers have been detected using the Matlab® rmoutliers routine using the default
“median” method. The classifier is designated as an outlier if its performance is an outlier for at
least two of the total 10 values of contrast.
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3.2. Performance of classifiers when the scatterer location is known.

3.2.1. 2D classifiers with a cross-range offset. In a set of experiments illustrated
in Figure 8, we used 2D classifiers where the 2D slices of cdSAR images with
a fixed offset in the cross-range coordinate have been taken as input, both for
training/validation and testing. With the grid size in the non-dimensional coordi-
nate n = ny [see (10)] equal to 7, an index offset of n that is shown in the legend
for each curve corresponds to a physical offset of nAy, see (12).

We observe that the offset slices are not as good for the discrimination pur-
poses as the one containing the scatterer. Figure 9 illustrates a similar experiment
with a reduced grid size in the cross-range dimension; we see that the performance
drops significantly as the absolute offset exceeds A /4, and as it reaches ~ 1.5A 5
(corresponding to n = 6), the 2D classifier becomes worthless. This is not very
surprising because the azimuthal sidelobes of the imaging kernel are characterized
by much lower contrast as compared to the central peak, see Figures 5 and 6, as
well as [12, Figure 2].

On one hand, the offset value of A, /4 mentioned above can serve as a measure
of robustness of 2D classifiers. On the other hand, we can argue that a significant
amount of “information” contained in the slices with the offset exceeding Ay /4
is due to the stochasticity of clutter and noise and, hence, irrelevant to the scat-
terer and its type, so learning it in other scenarios will not necessarily improve the
discrimination quality.

2D-slices: x-range grid step = 1, K = 0.4, (pax = 8

o

~<idx offset = 4: 8 classifiers
Sidx offset = 3: 8(1) classifiers
idx offset = 2: 8 classifiers
Asidx offset = 1: 8 classifiers
7idx offset = 0: 9 classifiers

misclassification rate
o =)
N

o
o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
contrast

FIGURE 8. Misclassification curves (i.e., the dependence of the av-
eraged misclassification rate on the target contrast) due to 2D clas-
sifiers with different cross-range offsets. Solid curves represent the
average over the ensemble of classifiers, whereas the shaded regions
around them illustrate the standard deviation. For each curve, the
total number of classifiers, followed by the number of outliers (see
Section 3.1), is listed. The grid step in the cross-range direction
is AA.

3.2.2. 3D classifiers with a cross-range offset. In the following experiment, we ex-
plore whether the performance of the 3D classifiers is as sensitive to the shift of the
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2D-slices: x-range grid step = 0.25, k = 0.4, (pax = 8

idx offset = 5: 8 classifiers
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0.1 idx offset = 2: 8 classifiers
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contrast
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FIGURE 9. Same as in Figure 8, but with 4 times smaller grid step
in the cross-range direction.

inhomogeneous scatterers in the cross-range direction as that of the 2D classifiers,
provided that the magnitude of the shift is known.

With the projection of the discretization grid on the plane n = 0 fixed, we vary the
number of discretization points in the cross-range direction. Each point corresponds
to a 2D slice of the discretization grid. We call a collection of several adjacent slices
of this kind a slab. Accordingly, a discretization grid with only one value of the
cross-range coordinate (i.e., a 2D structure) is called a 1-slab. In this section, we
also use 3-slabs and 7-slabs. Moreover, for each of the classifiers considered, we use
two different grid sizes in the cross-range direction.

The resulting misclassification curves are presented in Figure 10. These plots
show that as long as the scatterer is covered by the discretization grid, the perfor-
mance of the 3D classifier with a moderate number of slabs is comparable to that
of the centered 2D classifier. At the same time, once the scatterer is no longer
within the discretization grid, we can observe that the classification quality quickly
deteriorates, similarly to Figures 8 and 9.

We therefore conclude that the 3D classifiers offer an increased tolerance to in-
accuracies in determining the scatterer position.

3.2.3. Centered 3D classifiers. A conjecture introduced in Section 3.2.1 about the
fast decline of useful information as the cross-range offset increases pertains to
2D classifiers. Even if confirmed, it does not automatically apply to 3D classifiers
that collect information from several cross-range offsets and may use the relations
between them to infer additional information about the target. We address this
topic in the next series of simulations where the cdSAR images have a total of
33 discretization points in the cross-range direction. We use 3-, 7-, and 11-slab
classifiers with the cross-range coordinate of the inhomogeneous scatterer in the
symmetry plane of the cdSAR discretization grid, see, e.g., Figures 10 and 11. In
addition, we employ two 32-node discretization grids (and the associated classifiers)
obtained by dropping one of the two outer cross-range coordinates: these cases are
called “first-clipped” and “last-clipped,” see Figure 11.
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FIGURE 10. Misclassification curves for 3-slab (top row) and 7-slab
(bottom row) classifiers applied to cdSAR images with cross-range
grid sizes of 1A, (left column) and 0.25A, (right column). For
both grid sizes, the scatterer is within the discretization grid as long
as the index offset for the 3-slab and 7-slab does not exceed 1 and 3,
respectively. For some reason that is still not fully understood, a
larger than usual number of classifiers misbehave for offset=3 for
the left bottom plot, so the procedure of outlier removal described
in Footnote 4 on page 14 was not effective.

As the number of slabs increases, our simulations show no improvement in classi-
fication performance. In fact, the discrimination quality even slightly decreases, as
can be seen in Figure 11. At the same time, the misclassification curves produced
by the 2D and 3D classifiers appear qualitatively very similar (this also includes
the cases in Figure 10 where the scatterer is covered by the discretization grid) de-
spite the substantial differences in CNN architecture and format of the input data.
This indicates that apparently, the 2D mechanism still plays a dominant role in
classification with a 3D architecture.

There are several possible explanations to the foregoing observation. The first
hypothesis is that the effect of “noise” information in the slabs far away from the
scatterer, see Section 3.2.1, outweighs that of the additional “good” information
contained in the same slabs. The second hypothesis is that the 3D classifier ar-
chitecture is not as efficient as that in 2D. Yet the third possibility is that in the
2D case, extracting the correct slab (i.e., with the cross-range coordinate equal to
that of the scatterer) is equivalent to providing a significant amount of information
about the scatterer, while for the 3D classifier this is not so important as long as the
scatterer is within the discretization grid. We further elaborate on these hypotheses
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in Appendix C, but still do not have an unambiguous explanation of the observed
effect. One obstacle is the lack of formal definition of information applicable to the

phenomena we analyze.
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FIGURE 11. Left panel: Misclassification curves (see the caption
to Figure 8) for different number of slices in the 3D discretization
grids. Right panel: the relative difference between the 3D and
2D misclassification rates (the 2D classifier is labeled as “center
slice” on the left panel). For this plot, the values for the two
largest contrasts (i.e., 0.8 and 0.9) are not representative because
the number of misclassifications is very low.
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FIGURE 12. Averaged performance of classifiers trained on multi-
ple cross-range offsets, see Section 3.3. The training offsets range
from —0.5AA to 0.5A with a step of 0.25A,. Each curve corre-
sponds to a test dataset having a single value of the cross-range
offset. Left: 2D classifiers. Center: 7-slab classifiers. Right: differ-
ence in performance for the same offset values.

3.3. Robustness of the 3D classifier. In real-world remote sensing scenarios,
the true location of the scatterers is unknown. Given the finite SAR resolution,
see (12), and the presence of noise, the coordinates of individual scatterers can be
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FIGURE 13. Same as in Figure 12 but for the offsets from —2A4
to 2A with a step of 0.5A . The 3D classifiers are 11-slabs.

determined only with some finite accuracy. In particular, it means that the actual
value of the cross-range offset is unknown. In the context of the current work, it
has two implications. First, a cross-range offset can lead to a significant increase of
the misclassification rate, especially for 2D classifiers, see Sections 3.2.1 and 3.2.2.
Second, having a classifier trained and tested on the same offset can be considered
as an indirect way of providing the offset information to the classifier. This is true
for all the results presented in Section 3.2.

In order to simulate the lack of information about the actual cross-range coor-
dinate of the scatterers, we perform the training on datasets that combine several
values of the cross-range offset. The resulting classifiers can be tested on each off-
set separately, the same way as the target contrasts are currently treated. This
will make the misclassification rate a function of two variables: contrast and off-
set. Unlike in Section 3.2.2, we choose to restrict the offset value such that the
location of the inhomogeneous scatterers corresponds to one of the inner slices. In
particular, for 7- and 11-slab classifiers used in this experiment, the dataset includes
inhomogeneous scatterers on slices 2 through 6 and 2 through 10, respectively. The
resulting misclassification curves are displayed in Figures 12 and 13. We see that
the performance is close to that reported in Figure 10.

Two conclusions can be drawn from the previous result. First, we observe that
the offset information does not play a significant role in the training. Second and
most important, we clearly see an advantage of using multi-slab classifiers in terms
of robustness, i.e., tolerance to inaccuracies in predicting the cross-range location
of the scatterer. As a measure of robustness, we can use the magnitude of the
cross-range offset that does not result in a substantial degradation of the classifier
performance. For the cases shown in Figures 12 and 13, the robustness increases by
a factor of about 2 and 8, respectively, as compared to that for 2D classifiers, see
Section 3.2.1.

3.4. Discretization in the cross-range direction. Natural guidelines for choos-
ing the grid sizes are the spatial and temporal scales of intensity of the imaging
kernel |W|, see (6) and Figures 5 and 6. In particular, for the range and cross-range
directions, these will be the resolution sizes Ar and Ap, respectively, see (12).
Discretization with a smaller step will result in the correlated image values. Nev-
ertheless, it is a legitimate question whether a smaller grid size may improve the
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FIGURE 14. Performance of multi-slabs with different cross-range
grid steps, see Section 3.4. In the left and center panels, the curves
with the same line style and color correspond to different offset
indices but same offset distance. Similarly to Figure 12, the right
panel plots the difference between the data displayed in the center
and left panels.

classification performance. In order to address this issue, we create pairs of multi-
slab classifiers with different cross-range grid sizes and compare their performance.

Similarly to Section 3.3, the numerical experiment involves training on multiple
cross-range offsets and testing on individual offsets. Figure 14 presents the results
for the 7-slab and 11-slab classifiers with the cross-range grid sizes of 0.25A and
0.125A 4, respectively. The envelopes of the training grids for both classifiers corre-
spond to one and the same shape in the coordinate-delay space (illustrated by the
parallelepiped in Figure 7), with the cross-range offsets not exceeding 0.5A by ab-
solute value. At the same time, the training dataset for the 7-slab classifier includes
5 different offset values, whereas that for the 11-slab has 9 offset values. Despite
the differences in discretization and training, the test results presented in Figure 14
don’t show a significant difference in performance between the two classifiers. We
see here that halving the grid size did not lead to an increase in the classification
performance.

4. Discussion. We studied the classification performance for the problem of de-
tecting the scattering delay in SAR images. Our approach extends that of [21] where
two-dimensional classifiers were built based on convolutional neural networks. In
the current work, we considered three-dimensional classifiers and compared their
performance to that of the 2D ones.

The main advantage of the 3D classifiers is their improved robustness. Compared
to 2D, they impose less stringent requirements on how accurately one should know
the position of the scatterers. On the other hand, while the 3D classifiers use
more input data, it does not translate into a better classification performance.
Altogether, we consider the transition from 2D to 3D beneficial for classification
problems although some questions related to classification performance still need to
be addressed (see Appendix C).

We also note that, while the problem of identifying the dispersive targets in SAR
images is important for applications, it has received little attention in the literature.
Work [9] is based on a coordinate-delay imaging functional, similar to what we use
in this paper. Work [1] employs sub-banding, while work [3] relies on a special
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parameterization of a delayed target response. A direct comparison of classification
performance between our current methodology and any of these earlier approaches
would be difficult to make because of considerable dissimilarities in the setup and
assumptions. Therefore, in this work we chose to compare the results against those
obtained using our own previously developed techniques.

The targets in this study were chosen so as to enable a convenient formulation
of a “benchmark” classification case. Yet the reflectivity models we employ are not
very realistic. The development and adaptation of a realistic dispersive target model
is an important future goal. Other extensions may include the following topics.

e Special study of those rare cases that result in a misclassification for high
target contrasts. Do these cases have something in common? Can the perfor-
mance for high contrasts be improved even further?

e Combination of classification with the determination of the target position.
Our preliminary experiments demonstrated that the YOLO technology [29]
can be successfully utilized in such a scenario.

e Incorporation of scatterers with the off-grid coordinates. This addresses the
issue of the so-called “inverse crime”, see [7, Section 5.3].

e Defining and quantifying information for the purpose of classification, see
Appendix C, and revisiting the results presented so far with this concept as a
new tool.

e Analysis of imagery where multiple targets with different properties may be
present.

e Analysis of targets that are both extended in space and delayed in time.

e Going beyond the plain delay detection and obtaining a resolution with respect
to the delay variable. More sophisticated models of target dispersion will be
needed here.

Appendix A. Contrast scaling procedure and its validation. In the 2D set-
tings of [12-14,21], the contrast has been defined as follows:

2D 2D
¢?P) = Ko _ Ko} (32)
K§2D)Uf + K}(fD)U% + KéQD)Ug Kt(QD)Uf + K,(DQD)ag + KI(IQD)UIQI
see, in particular, [12, equation (88) and Appendix]. The parameters K&QD) are

expressed via the radar parameters such as the bandwidth, incident angle, and the
aperture angle, and their values represent the scaling constants that appeared in
the calculation of (|I,|?) for different «, as in Section 2.3. Note that the noise term
K §2D)a§ in (32) characterizes the intensity of the additive noise component I, that
is realized as an uncorrelated circular Gaussian process.

To validate our three-dimensional setup, we have extracted the 2D sub-images
with the same geometry and discretization grid as in our previous 2D studies, see
Figures 2, 5, and 7, and with the cross-range coordinate equal to that of the scat-
terer, i.e., n = kjprza1. We found that the statistics of image brightness and
performance of the existing 2D classifiers for the sub-images did not match our pre-
vious results if formula (32) were used to define the contrast. The mismatch may
be due to the cross-range sidelobes of the imaging kernel (6).
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To make the contrast values in this work comparable to our previous results, we
employed a definition similar to (32):
Kso'g KtO'g

= = 3 33
K,0? + Kyol + Kno?2 Ko} 4+ Kyo? + Kyo2 (33)

q

and scaled the constants K, in (33) as follows. We generated a significant amount
of sampled single-component images I, using the approach described at the end
of Section 2.6. Similarly to the 2D case, we added noise to the right hand side
of (24), with the intensity 2 times smaller than that of the background, i.e., {|I,|?) =
0.5(|1|?) [21], resulting in

Ksag KtO'tQ
- K02+ 1.5Kbcr§ -4 = Kio? + 1.5Kb0§

depending on which of the two scenarios in (23) is considered. The values of the
scaling factors K, were determined by comparing the 95% percentiles of the inten-
sity (i.e., |[Io|?) for the corresponding scatterer types between the sub-images and
their 2D counterparts.

To further validate the 3D setting, we generated representative datasets of 3D
cdSAR images with the same target and radar parameters, including the values
of the contrast, as those employed in [21]. From these images, similarly to the
foregoing contrast scaling procedure, we have extracted the 2D sub-images by taking
n = kjerz41. Then we have applied the existing 2D classifiers to the resulting 2D
datasets and confirmed that the misclassification curves come out similar to those
in [21].

In addition, we wanted to see whether the classification quality of 2D classifiers is
sensitive to the discretization grid. In particular, we considered a 2D cross-section
of the 3D cdSAR image aligned with the inhomogeneous scatterers in the cross-
range coordinate. While the shape of this figure is a parallelogram (shown in light
blue in Figure 7), the discretization grid used in [21] covers a smaller square (shown
in purple) with one side parallel to the ambiguity direction. Since this square is
sufficiently large to cover the supports of both scatterers used in the experiment
(instantaneous and delayed), we expected that the additional pixels in the same
plane will not significantly affect the classification. The numerical experiments
confirmed our expectations.

=q, (34)

qs

Appendix B. Generation of correlated Gaussian variables. The generation
of multivariate Gaussian variables requires construction of the covariance matrices.
In general, large matrices slow down the computations. Note that one of the goals
of the transition from formula (27) to (28) was to reduce the size of the covariance
matrices. Still, we have found that even with this simplification, the resulting ma-
trices for the 3D case are too large for the efficient generation of image ensembles.’
Specifically, since I, in (28) is complex-valued, the size of the covariance matrix for
an ambiguity plane with d sampling locations (see item 2 on page 12) is 2d x 2d. In
order to capture the differences between the types of individual images illustrated
in Figures 5 and 6, the value of d should be large. In particular, for the 32 x 32
discretization grid used in [12-14], each of the three scatterer types on the right
hand sides of (23) leads to 32 covariance matrices of the size 64 x 64. For the 3D
geometry in the current study, the number of discretization points in each ambiguity

5Note that in the two-dimensional treatment of cdSAR imaging used in our previous studies,
the ambiguity planes of (13) turn into ambiguity lines by dropping the cross-range coordinate.
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plane will be significantly larger than 32, and accordingly, the size of the covariance
matrix will be significantly larger than 64 x 64.

The main bottleneck in the process of generation of correlated Gaussian is the fac-
torization of the covariance matrix. The need for the factorization can be explained
as follows. We assume that an efficient procedure of generation of i.i.d. standard
normal variables is available, e.g., in the form of the Matlab© randn function. This
way we can generate the Gaussian vectors u € R2? with the covariance (uu®) =1,
where I is the identity matrix. For a covariance matrix C € R2?*2¢_the correlated
zero-mean Gaussian vectors v satisfying (vvT) = C can be obtained using a linear
transform v = Lu, where L € R24x2d gatisfies C = LLT, see, e.g., [26]. Indeed, it
is easy to show that

(vwb) = L(uu™)L" = LIL" = C.

In turn, the calculation of the matrix L is realized in the Matlab© mvnrnd function
via the Cholesky factorization. We have found that the Cholesky factorization step
for covariance matrices of the required size becomes computationally expensive.

In order to have an efficient way of simulating large datasets needed for training
the neural networks, we have developed an alternative approach to the simulation
of discretized 3D cdSAR images. In particular, we populate the support of the
target or clutter with a circular Gaussian noise scaled with the corresponding o,
see Section 2.3. The convolution product of the resulting “sources” with the three-
dimensional imaging kernel (6) is evaluated numerically. It can be shown that the
covariance of the image values obtained from this procedure is very close to the one
resulting from the “continuous” formula (28). Additional validation of this method
is described in Appendix A.

Appendix C. Useful and “noise” information in the offset slabs of cdSAR
images. In Section 3.2.3, we reported an unexpected result that, the performance
of a zero-offset 2D classifier could not be improved upon by employing 3D classifiers,
including the cases where the 3D discretization grid contains the 2D one as a subset.
In other words, while each additional value of the cross-range coordinate brings
along the same number of new discretization points as the original 2D grid, the
classification performance remains unaffected.

This result is somewhat counterintuitive as additional samples would normally
be interpreted as additional information, i.e., something useful for discrimination.
To gain further insight into this, we have conducted several numerical experiments
that we describe below.

In the first experiment, to highlight the role of the offset slabs, we performed the
train/test sequence on the 3D cdSAR images from which we removed the “center
slice” (i.e., all discretization points with the cross-range coordinate equal to that
of the inhomogeneous scatterers). In Figures 15 and 16, such classifiers are called
“PS-clipped”. Figure 15 demonstrates a decent discrimination performance of the
classifier based on the remaining data. Consequently, some information about the
scatterers can be derived from the offset slabs. Moreover, we can observe that the
classifiers with and without the center slice have common features. In particular, an
increase in the number of slabs (in Figure 15, from 11 to 32) may lead to a decrease
of performance, cf. Figure 11.

A notable observation made from similar plots in Figure 16 is that the “PS-
clipped” 32-slab classifier outperforms the 2D classifiers with the offsets A and 2A 5
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effect of size on clipped slabs: x-range grid step = 1, kK = 1, (uax = 8
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FI1GURE 15. Similar to Figure 11 but for multi-slabs with the cen-
tral slab removed.

for moderate and high contrasts. Therefore, in some situations the performance of a
multi-slab is better than that of the best of its 2D components. In other words, here
we have examples where a 3D classifier is able to “combine the information” from
several 2D slices, so that adding more slices does not decrease the discrimination
quality, as compared to Figures 11 and 15.
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FIGURE 16. Multi-slabs with the slab aligned with the scatterer
removed, as compared to the offset 2D slabs.

The next experiment attempts to reveal the relation between the three-dimensional
structure in cdSAR images and the discrimination quality. We have compared per-
formances of two types of classifiers for the 7-slab and 11-slab discretization grids:
the first type contained three-dimensional convolutional kernels, whereas the clas-
sifiers of the second type had convolutions only in the range-delay plane, whereas
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in the cross-range coordinate the kernels were fully connected. Note that the role
of convolutions in CNN is to detect geometrical features, hence the fully connected
option is equivalent to disregarding the geometrical structure in the cross-range
direction and treating each slice as a separate feature map, see [15, Chapter 9].
Figure 17 shows no significant difference in performance for 7-slabs, whereas for
11-slabs, the architecture with convolutions in the cross-range dimension shows a
superior performance as compared to that without the convolutions. This obser-
vation indirectly supports the hypothesis that capturing the structure of cdSAR
images in the cross-range direction may increase the classification performance, al-
though such a gain could not be seen in the experiments with the original images,
as described in Section 3.2.3.

Altogether, the key benefit of adding the cross-range coordinate to cdSAR images
is the increase of classification robustness (see Sections 3.2.2 and 3.3). In addition,
the 3D discretization grids can collect more useful information about the scatter-
ers compared to the 2D grids. Yet the question of whether or not the additional
information will translate into a gain in classification performance requires further
investigation.

convolutions vs. features: x-range grid step = 1, K = 1, (pax = 8
06 absolute value 08 relative difference to 'center slice'
<center slice: 32(1) classifiers A
Sseven_slabs_feature: 15(3) classifiers 0.6 °
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FiGure 17. Multislabs with and without convolution in the cross-
range dimension. The organization of the left and right panels is
similar to that in Figure 11.
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