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Transionospheric Autofocus for Synthetic Aperture Radar\ast 
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Abstract. Turbulent fluctuations of the electron number density in the Earth's ionosphere may hamper the
performance of spaceborne synthetic aperture radar (SAR). Previously, we have quantified the ex-
tent of the possible degradation of transionospheric SAR images as it depends on the state of the
ionosphere and parameters of the SAR instrument. Yet no attempt has been made to mitigate the
adverse effect of the ionospheric turbulence. In the current work, we propose a new optimization-
based autofocus algorithm that helps correct the turbulence-induced distortions of spaceborne SAR
images. Unlike the traditional autofocus procedures available in the literature, the new algorithm
allows for the dependence of the phase perturbations of SAR signals not only on slow time but also
on the target coordinates. This dependence is central for the analysis of image distortions due to
turbulence, but in the case of traditional autofocus where the distortions are due to uncertainties in
the antenna position, it is not present.
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1. Introduction. Synthetic aperture radar (SAR) illuminates the target with microwaves
and builds an image with the help of a digital signal processing algorithm. Typical SAR inter-
rogating waveforms are narrow-band linear frequency modulated pulses. The same antenna
emits the pulses and receives the returns, i.e., signals reflected off the target. The antenna is
mounted on an overhead platform, such as an airplane or satellite, while the target area is on
the ground. The signal processing algorithm applied to the returns takes into account multiple
pulses emitted and received by the antenna at a series of its successive positions, called the
synthetic aperture. The resulting image approximates the map of backscattering reflectivity
of the target at the central frequency (also called the carrier frequency) of the antenna signal.
Hence, mathematically, SAR imaging is the solution of an inverse problem of reconstruction
of the target reflectivity with the radar returns as the input data.

Phase perturbations in the returns may cause the degradation of a SAR image, e.g.,
the loss of contrast and/or geometric distortions. The perturbations may be due to the
position uncertainty (trajectory errors of the antenna platform) and/or turbulence of the
propagation medium. A procedure to correct the trajectory errors is called the SAR autofocus
[24, 33, 54]. The autofocus introduces an additional phase-correcting factor into the signal
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TRANSIONOSPHERIC AUTOFOCUS FOR SAR 2145

processing algorithm. Its phase is taken as the negative of the estimate of the phase error at
each position of the antenna. The required phase error estimates are obtained by the analysis
of the distorted images, typically in an iterative procedure [24, 54]. Specialized methods for the
mitigation of phase distortions are developed for interferometric problems. In these methods,
the phase difference between two or more images is directly converted into a measurable
quantity, such as the elevation or change of elevation. See, for example, [5, 26, 40, 53] for
ionosphere-induced phase distortions in the interferometric pairs or [48, 49, 63] for the motion
compensation methods for differential interferometry (DInSAR).

There is, however, a fundamental difference between the nature of phase perturbations due
to the antenna motion and those due to the turbulence in the propagation medium. While
the trajectory perturbations can be parameterized by one quantity, the expected position
of the antenna (called slow time), the perturbations due to turbulence are affected by the
properties of the medium on the path of the signal between the antenna and the target. Hence,
turbulence-induced perturbations are functions of the slow time and target coordinates. They
cannot be represented as a function of the slow time alone.

Therefore, to obtain a phase correction in the case of turbulence, one would need to
know the refractive index of the medium averaged along every path connecting the synthetic
aperture and the target. Previously [17, 56, 59], we have analyzed a simpler setting that
involved a nonturbulent dispersive medium (Earth's ionosphere) and employed probing on
two distinct carrier frequencies to derive the required information; see also [18]. In that case,
a key parameter to be obtained is the total electron content (TEC) in the ionosphere, which is
the electron number density integrated along the vertical direction. If the TEC does not vary
in the horizontal direction, then its reconstruction is the reconstruction of one scalar quantity,
as compared to the reconstruction of a function of slow time in the case of an autofocus.

Yet the case of a turbulent medium is more difficult, because the main objective of SAR
is to solve the inverse problem of reconstruction of the unknown target reflectivity, and to
obtain both the reflectivity and phase correction one still relies only on the same data as used
for reconstruction of a univariate phase correction term in the framework of the conventional
autofocus. One simplification commonly employed for the analysis of turbulence-induced
distortions is the linearization with respect to the nonturbulent part of the electron number
density; see [18, Chapter 4]. This eliminates the dependence of perturbations on the frequency
of the signal. In this work, we introduce the additional simplifying assumptions that help
reduce the dimensionality of the problem.

The first simplification is provided by the concept of a phase screen. For an Earth-
observing SAR satellite, the phase perturbations are due to the turbulence in the ionospheric
plasma. The mean electron number density of the ionospheric plasma has a maximum at a
certain altitude, which is lower than the typical orbit of a SAR satellite. It is common to
model this density function by a layer of infinitesimal thickness at this altitude [1, 4, 18, 40].
The phase perturbations are then realized by a bivariate function called the screen (or layer)
density.

Additionally, we recall that the ionospheric turbulence affects the SAR imaging in azimuth
(the coordinate parallel to the orbit) a lot stronger than it affects the imaging in range (the
coordinate normal to the orbit); see [18, Chapter 4] and [19]. Therefore, we restrict the analysis
in the paper to the case where the reflectivity depends only on one coordinate, the azimuth.
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Figure 1. One-dimensional SAR imaging through a phase screen. The screen density at the relative eleva-
tion \xi and phase error due to the antenna position uncertainty are schematically represented by the graph of
one and the same univariate function.

Together with the phase screen assumption, this allows us to represent both unknowns, the
target reflectivity and screen density, as univariate functions; see Figure 1. The transition
from a full two-dimensional reflectivity to a reflectivity that depends only on one coordinate
requires a proper justification. A partial justification of this transition for SAR can be found
in [21]. A comprehensive justification will be the subject of a future work.

The phase perturbation function for the geometry shown in Figure 1 is expressed as follows:

(1.1)
\psi (x, z) =\Psi (s),

s\equiv s(x, z) = \xi x+ (1 - \xi )z, 0\leq \xi \leq 1,

where \xi is the elevation of the phase screen relative to the orbit altitude, x is the coordinate
at the orbit (slow time), z is the azimuthal coordinate of the target, and s is the coordinate
along the phase screen. We emphasize that the foregoing simplified formulation still possesses
the main feature that distinguishes it from the case of plain trajectory errors: the phase
perturbation function \psi in (1.1) depends not only on the slow time but also on the target
coordinate.

As a motivating example, we illustrate the role of the phase corrections in SAR signal
processing by presenting three simulated one-dimensional images in Figure 2. The target
for all three images is composed of three point scatterers represented by \delta -functions of equal
magnitude.1 The antenna signals cross through a phase screen with density \Psi (s) at the relative
elevation \xi = 0.5; see Figure 1. We assume imaging with a low-frequency radar with the carrier
frequency of 300MHz corresponding to the wavelength of 1m and the incidence angle \theta = 60\circ 

as in [18, Table 1.1]. Note that the level of ionospheric scintillations corresponding to the rms

1The definition of a point scatterer for SAR requires care; see [10] or [20, section 3.4].
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TRANSIONOSPHERIC AUTOFOCUS FOR SAR 2147

Figure 2. Examples of one-dimensional SAR images (top plot) in the presence of perturbations due to a
phase screen (bottom plot).

value of \Psi shown in this figure is about C\mathrm{k}L \sim 1032m - 2, which is a high but not unusual
value (see details in Appendix A).

If no phase correction is applied (see subsection 2.2), then the appearance of the peaks
that correspond to the point scatterers in the resulting image is rather rugged (blue curve).
However, if we apply the correction using the same screen density function that defines the
phase perturbations, i.e., \psi (x, z) of (1.1), then the resulting image will display sharp and
narrow peaks (black curve). Note that whereas the target consists of point scatterers, the
black-colored peaks in Figure 2 have finite width. This width provides a lower bound to the
capacity of the SAR instrument to distinguish between closely located targets and is therefore
called the SAR resolution. It is finite because the synthetic aperture length is finite. We
will show that the black-colored image in Figure 2 is very close to the one we would have
obtained if there were no perturbations. Finally, we can use the same screen density function
for reconstruction but ignore its dependence on the target coordinate, i.e., take \psi (x, z) =\Psi (x).
This case appears similar to that of the antenna trajectory errors where \xi = 1. Then, we can
see from (1.1) that for each slow time x, the distortions for z = x will be compensated exactly,
whereas for other target coordinates (i.e., z \not = x), the correction term will not match the
perturbation. The resulting image (red curve in Figure 2) does not look much better than
the image with no correction at all. This demonstrates the importance of taking into account
the geometry of signal propagation.

In our recent work [21], we have developed a procedure of vertical autofocus that recon-
structs the relative elevation of the phase screen. Our current goal is the full SAR inversion,
which is to reconstruct the unknown screen density function \Psi (s), as well as the unknown
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2148 MIKHAIL GILMAN AND SEMYON V. TSYNKOV

target reflectivity \mu (z), assuming that the screen elevation \xi is known. The corresponding
reconstruction procedure will be called the transionospheric autofocus. We will investigate its
performance for those transionospheric SAR imaging regimes where the effect of ionospheric
turbulence most clearly manifests itself; see [18, Chapter 4] and [19].

The analysis of the various scenarios and parameter estimates relevant for spaceborne
SAR imaging and, specifically, imaging through a turbulent ionosphere can be found, e.g.,
in [18, 19, 41]. In particular, it has been shown that the expected magnitude of turbulent
fluctuations may be as high as order one. As the nature of turbulent fluctuations is stochastic,
one may see both higher and lower values of phase perturbations for a given level of ionospheric
activity. Another important parameter is the spatial (or horizontal) scale of perturbations,
which is associated with the correlation length of the turbulent medium. In [18, Chapter 4],
we have used the outer scale of turbulence as an estimate of this quantity. For the Earth's
ionosphere, the outer scale of turbulence is on the order of kilometers. It has been shown
that the imaging regime for which the effect of the ionosphere on spaceborne SAR is most
noticeable is where the horizontal scale of perturbations is of the same order or shorter than
the synthetic aperture [19]. For a P-band spaceborne SAR instrument with high azimuthal
resolution, the latter could be on the order of tens of kilometers [18].

If a short horizontal scale is accompanied by large magnitude of perturbations, then the
adverse effect on the image may be severe; see, e.g., [16] and [19, section 4.3.3]. It is a
simulated imaging regime of this type that is represented by the blue curve in the top plot
of Figure 2. On the other hand, if the horizontal scale appears larger than the length of the
synthetic aperture, then the adverse effect of ionospheric turbulence on SAR images reduces
significantly [19]. Hereafter, we will be interested in developing an autofocus algorithm capable
of mitigating the adverse effect of ionospheric turbulence on SAR images in the case of short-
scale perturbations that may have large magnitude.

An excellent starting reference about ``plain"" SAR autofocus is the book [24]. The more re-
cent and notable developments include the two-dimensional autofocus [37, 54] and the Kalman
filter-based real-time autofocus [33] to name a few; see also a recent review in [9]. Additional
examples of the optimization-based autofocus include [30, 31, 35]. Another class of methods
used to reconstruct ionospheric TEC exploits the effect of Faraday rotation and requires polari-
metric SAR imaging. In [27], the ionospheric TEC realized by a phase screen is reconstructed
from the polarimetric measurements, and simultaneously, the screen elevation is estimated by
means of the parallax between the azimuthal sublooks. A combination of map-drift autofocus
and TEC reconstruction using the Faraday rotation is presented in [23]. Note that the effec-
tiveness of the polarimetry-based techniques drops towards the equatorial region where the
angle between the Earth's magnetic field and the propagation direction is large, making the
Faraday rotation weak. For subsequent references regarding the ionosphere-related autofocus
see, e.g., [25, 29, 34].

In the rest of the paper, section 2 presents formulations for the unperturbed SAR (sub-
section 2.1) and SAR affected by a phase screen (subsection 2.2). The optimization-based
approach to transionospheric autofocus is described in section 3. Section 4 presents the nu-
merical simulations for several reconstruction scenarios. We discuss the results and suggest
several future research directions in section 5.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TRANSIONOSPHERIC AUTOFOCUS FOR SAR 2149

2. Problem formulation.

2.1. Imaging without perturbations. For the antenna position \bfitx = (x,R), where R is the
absolute elevation of the trajectory (see Figure 1), the signal at the target location \bfitz = (z,0)
is the retarded potential:

(2.1) u(z, t) =
1

4\pi 

P (t - | \bfitx  - \bfitz | /c)
| \bfitx  - \bfitz | 

.

In (2.1), c is the speed of light and P (t) is the antenna waveform that typically is a narrow-
band pulse:

(2.2) P (t) =

\left\{   A(t) exp ( - i\omega 0t), where
\bigm| \bigm| \bigm| 1
A

dA

dt

\bigm| \bigm| \bigm| \ll \omega 0, | t| \leq \tau /2,

0 otherwise.

In (2.2), \omega 0 is the carrier frequency, and \tau is the pulse duration.
Hereafter, we assume that the target is approximately at the broadside of the antenna

and the size of the target and that of the synthetic aperture is much smaller than R. Then,

(2.3) | \bfitx  - \bfitz | \approx R+
(x - z)2

2R
.

For the denominator in (2.1), we will keep only the first term of the expansion (2.3), whereas
both terms will be used for the oscillating waveform P (t).

Under the first Born approximation, each point of the target is considered a secondary
source, so that the signal received by the same antenna is

(2.4) v(x, t) =

\int 
\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{n}\mathrm{a}
\mathrm{f}\mathrm{o}\mathrm{o}\mathrm{t}\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{t}

P (t - 2| \bfitx  - \bfitz | /c)\nu (z)dz,

where \nu (z) is the target reflectivity. We assume that the synthetic aperture and the antenna
footprint have the same linear dimension L\mathrm{S}\mathrm{A} [18, Chapter 2], so that for a given x, the
footprint, i.e., the domain of integration in (2.4), is defined as

(2.5) \{ z | | x - z| \leq L\mathrm{S}\mathrm{A}/2\} .

The goal of SAR is to invert (2.4), i.e., find \nu given v. This is achieved via SAR signal
processing, which includes the application of a matched filter and integration along the syn-
thetic array. Namely, the image I = I(y) at the location \bfity = (y,0) on the ground (see Figure
1) is given by

(2.6) I(y) =

\int \int 
\mathrm{d}\mathrm{o}\mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n} \mathrm{o}\mathrm{f}
\mathrm{d}\mathrm{e}\mathrm{p}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}

P (t - | \bfitx  - \bfity | /c)w(x, y)v(x, t)dtdx=
\int 
W (y, z)\nu (z)dz,

where the overbar denotes complex conjugate and w(x, y) is a windowing function. The
domain of dependence in the first integral on the right-hand side of (2.6) is chosen similarly
to (2.5), i.e., for a given y,

\{ x | | x - y| \leq L\mathrm{S}\mathrm{A}/2\} ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2150 MIKHAIL GILMAN AND SEMYON V. TSYNKOV

and the integration in t is performed over the interval where P ( \cdot ) is nonzero; see (2.2).2 The
second integral in (2.6) is obtained by substituting v(x, t) into the form of (2.4) and changing
the order of integration. Then, the integration with respect to z in the second integral of
(2.6) is to be performed over the entire real axis. Accordingly, the expression for the imaging
kernel W (y, z) becomes

(2.7) W (y, z) =

\int \int 
\{ | x - y| \leq L\mathrm{S}\mathrm{A}/2\} 
\cap \{ | x - z| \leq L\mathrm{S}\mathrm{A}/2\} 

P (t - 2| \bfitx  - \bfitz | /c)P (t - | \bfitx  - \bfity | /c)w(x, y)dxdt.

We will use either a rectangular or a parabolic windowing function in (2.6):

w\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{t}(x, y) =

\Biggl\{ 
1 if | x - y| \leq L\mathrm{S}\mathrm{A}/2,

0 otherwise,
(2.8a)

w\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{b}(x, y) =w\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{t}(x, y)
\Bigl[ 
1 - 4

\Bigl( x - y

L\mathrm{S}\mathrm{A}

\Bigr) 2\Bigr] 
.(2.8b)

In the case of w=w\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{t}, the absolute value of W (y, z) given by (2.7) is maximal for y= z; see,
e.g., [18, section 2.4.4]. Hence, the largest contribution into I(y) comes from \nu (y); see (2.6).
For an imaging operator \nu \mapsto \rightarrow I (see (2.6)), this is a desirable property.

The sharpness of the image (resolution) is determined by how quickly the value of | W (y, z)| 
decreases from its maximum at y= z as | y - z| increases. For the rectangular window (2.8a),
substituting (2.2) and (2.3) into (2.7) and dropping the inessential constant factors yields
[10, 18]

(2.9) W (y, z)\approx sinc
\Bigl( 
\pi 
y - z

\Delta \mathrm{A}

\Bigr) 
, where \Delta \mathrm{A} =

\pi Rc

\omega 0L\mathrm{S}\mathrm{A}
.

The azimuthal resolution \Delta \mathrm{A} is the width of the peak in the image of a point scatterer
\nu (z)\sim \delta (z - z0). Such an image is sometimes called the point spread function (PSF). Usually
\Delta \mathrm{A} \ll L\mathrm{S}\mathrm{A}, and formula (2.9) is accurate for | y  - z| \lesssim \Delta \mathrm{A} \ll L\mathrm{S}\mathrm{A}. It can be seen from the
expression for the integration domain in (2.7) that W \equiv 0 if | y  - z| \geq L\mathrm{S}\mathrm{A}. For parabolic or
other windowing functions, the width of the PSF peak will differ from \Delta \mathrm{A} given by (2.9) by
a factor of order one.

2.2. Imaging with perturbations. We will represent the phase perturbations accumulated
during the signal round trip between the antenna and the target by a factor exp ( - i\psi (x, z))
(see (1.1)), so that instead of (2.4) the received field becomes

(2.10) v(x, t) =

\int 
| x - z| \leq L\mathrm{S}\mathrm{A}/2

P (t - 2| \bfitx  - \bfitz | /c) exp ( - i\psi (x, z))\nu (z)dz.

In the case of a transionospheric radar, the perturbations are due to the turbulence in the
ionospheric plasma. Formula (2.10) is a result of linearization with respect to the state of the
plasma with no turbulence. In particular, the perturbation phase is considered independent
of the signal frequency. In addition, in the linearized framework we do not take into account
the difference between the average signal propagation speed and speed of light [18, 19].

2In practice, the integral over the fast time t may also involve windowing.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TRANSIONOSPHERIC AUTOFOCUS FOR SAR 2151

The goal of SAR imaging remains the same as that in subsection 2.1: to invert (2.10),
i.e., find \nu given v. However, as v in (2.10) is ``contaminated"" with \psi , one also needs a phase
correction. Our approach to correcting the phase perturbations in (2.10) is based on the
same idea of canceling the oscillations as that in formulae (2.6) and (2.7). In particular, we
introduce a phase correction term \psi \mathrm{r}\mathrm{e}\mathrm{c} into the reconstruction formula (2.6):

(2.11) I\psi (y) =

\int \int 
| x - z| \leq L\mathrm{S}\mathrm{A}/2

P (t - | \bfitx  - \bfity | /c)w(x, y) exp (i\psi \mathrm{r}\mathrm{e}\mathrm{c}(x, y))v(x, t)dtdx.

This leads to the following representation of the image:

(2.12) I\psi (y) =

\int 
W\psi (y, z)\nu (z)dz,

where the new imaging kernel is given by

W\psi (y, z) =

\int \int 
\{ | x - y| \leq L\mathrm{S}\mathrm{A}/2\} 
\cap \{ | x - z| \leq L\mathrm{S}\mathrm{A}/2\} 

P (t - 2| \bfitx  - \bfitz | /c)P (t - | \bfitx  - \bfity | /c)

\cdot w(x, y) exp (i\psi \mathrm{r}\mathrm{e}\mathrm{c}(x, y) - i\psi (x, z))dxdt.

Using formula (2.3) and choosing a rectangular window, we obtain

(2.13) W\psi (y, z)\approx 
\int 

\{ | x - y| \leq L\mathrm{S}\mathrm{A}/2\} 
\cap \{ | x - z| \leq L\mathrm{S}\mathrm{A}/2\} 

exp

\Biggl[ 
i
2\omega 0

Rc
(y - z)

\Bigl( 
x - y+ z

2

\Bigr) 
\underbrace{}  \underbrace{}  

\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m} \bfA 

+i (\psi \mathrm{r}\mathrm{e}\mathrm{c}(x, y) - \psi (x, z))\underbrace{}  \underbrace{}  
\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m} \bfB 

\Biggr] 
dx.

If \psi (x, z) is known, then the choice of \psi \mathrm{r}\mathrm{e}\mathrm{c}(x, y) =\psi (x, y) maximizes W\psi (y, z) for y= z, which
is desirable. For y \not = z, we will assess the effect of the additional term \bfB in the exponent on
the right-hand side of (2.13) when the function \psi \mathrm{r}\mathrm{e}\mathrm{c} =\psi is realized via the phase screen model
(1.1), the relative screen elevation \xi is not too close to either 0 or 1, the function \Psi is smooth,
and its horizontal scale L\Psi satisfies L\Psi \gg \Delta \mathrm{A}.

3 In particular:
\bullet For | y - z| \lesssim \Delta \mathrm{A}, we can use the following expansion:

| \psi \mathrm{r}\mathrm{e}\mathrm{c}(x, y) - \psi (x, z)| \equiv | \psi (x, y) - \psi (x, z)| \approx | (1 - \xi )\Psi \prime (s(x, z))\cdot (y - z)| \sim (1 - \xi )\| \Psi \| 
L\Psi 

| y - z| .

Then, we can see that the term \bfB in (2.13) can be ignored as long as

(2.14) (1 - \xi )
\| \Psi \| 
L\Psi 

\Delta \mathrm{A} \ll 1.

Given that \Delta \mathrm{A}/L\Psi \ll 1, we can expect this condition to be satisfied even when
\| \Psi \| \sim 1, i.e., the magnitude of the phase perturbations per se is not small.

\bullet For | y  - z| \gg \Delta \mathrm{A}, the phase of the integrand in (2.13) oscillates due to the term \bfA 
with or without the term \bfB . Hence, | W | becomes small compared to its peak value
at y= z, similar to (2.9).

3The latter assumption is quite reasonable: the resolution of the Earth-observing SAR instruments is
typically less than 50m [43].
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2152 MIKHAIL GILMAN AND SEMYON V. TSYNKOV

Altogether, we find that the correction of phase perturbations restores the quality of
the image, as demonstrated by the black curves in the top plot of Figure 2. However, this
correction requires that the perturbation function \psi be known at the time of image acquisition.
In practice, this is usually not the case. Hence, our goal is to reconstruct the perturbation
from the available data, i.e., the received signal v(x, t).

2.3. Governing equations. The procedure of range compression described in [21] allows
one to extract and, subsequently, drop the time-dependent terms in (2.10) and (2.11) after
formula (2.3) has been used for distances. Introduce the nondimensional aperture length
F = L\mathrm{S}\mathrm{A}/\Delta \mathrm{A} \gg 1 and consider the coordinates x, y, z, and s normalized by \Delta \mathrm{A}, which also
makes them dimensionless. Then, the reflectivity \mu (z), received signal u(x), and SAR image
\scrI (y) are (cf. formulae (2.10) and (2.11))

u(x) =

\int x+F/2

x - F/2
exp (i\pi (x - z)2/F ) exp ( - i\psi (x, z))\mu (z)dz,(2.15)

\scrI (y) =
\int y+F/2

y - F/2
exp ( - i\pi (x - y)2/F ) exp (i\psi \mathrm{r}\mathrm{e}\mathrm{c}(x, y))w(x, y)u(x)dx,(2.16)

where \psi (x, z) and \psi \mathrm{r}\mathrm{e}\mathrm{c}(x, y) are expressed via the actual screen density \Psi (s) and reconstruc-
tion density \Psi \mathrm{r}\mathrm{e}\mathrm{c}(s), respectively, using formula (1.1) with \xi considered a known constant.4

Similar to (2.12), there is a convolution-type relation between the image and reflectivity that
can be derived from (2.15) and (2.16):

\scrI (y) =
\int 
W\psi (y, z)\mu (z)dz,

where W\psi is still given by (2.13).

3. Optimization approach to autofocus.

3.1. Solution of inverse problem versus autofocus. Equation (2.15) is a model that
defines the received radar signal u via the target reflectivity \mu and phase perturbation \psi . It
allows one to formulate the problem of SAR imaging, i.e., the inverse problem of obtaining the
unknown \mu for a given u, which represents the data. In doing so, as the perturbation phase
\psi directly affects u as well, it needs to be reconstructed along with \mu or compensated for.

Equation (2.16) renders an approximate inversion of (2.15) in the sense that the image
\scrI approximates the unknown reflectivity \mu . The inversion (2.16) is convenient to implement
because it is defined as a direct operation, via the integration along the synthetic array. Its
primary deficiency in the case of transionospheric imaging is that it requires the reconstruction
phase \psi \mathrm{r}\mathrm{e}\mathrm{c} that cannot, generally speaking, be assumed to be known.

Therefore, one may consider a general inverse problem where both \mu and \psi are recon-
structed by minimizing an appropriately chosen measure of discrepancy between the model
signal u of (2.15) and the observed signal u\mathrm{o}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{e}\mathrm{d}, which represents the data:

4The relative screen elevation \xi can be thought of as obtained with the help of the vertical autofocus [21].
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TRANSIONOSPHERIC AUTOFOCUS FOR SAR 2153

(3.1) \| u - u\mathrm{o}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{e}\mathrm{d}\| \rightarrow min .

The minimization in (3.1) is carried through by varying \mu and \psi that define u via (2.15),
while u\mathrm{o}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{e}\mathrm{d} is given. The final reconstructed \mu and \psi are those that render the minimum.

One can think of a broad variety of the concrete optimization formulations that
realize (3.1). Regardless of the specific detail, though, a common concern is the potential
ill-posedness. Indeed, (2.15) contains a convolution, and deconvolution operators are often
ill-posed [60]. This means that if the observed data u\mathrm{o}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{e}\mathrm{d} are noisy,

(3.2a) u\mathrm{o}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{e}\mathrm{d}(x) = u\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}(x) + u\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e}(x),

then the noise component may get amplified in the process of inversion. In formula (3.2a),
u\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} denotes the true signal that corresponds to substituting the actual unknown \mu and \psi 
into (2.15). In that regard, the direct inversion (2.16) offers another advantage. If applied
to plain SAR imaging with no ionosphere and no phase correction, it provides the best L2

signal-to-noise ratio when reconstructing from noisy data [11, section 4.1].
In addition to the data being noisy, the reflectivity \mu is often subject to clutter:

(3.2b) \mu (z) = \mu \mathrm{t}\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{t}(z) + \mu \mathrm{c}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{r}(z).

Clutter may obscure the true target. For example, a target composed of a number of point
scatterers (see, e.g., Figure 2) can be parameterized by their locations zm and amplitudes bm,
m= 1, . . . ,M :

(3.3) \mu \mathrm{t}\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{t}(z) =

M\sum 
m=1

bm\delta (z  - zm).

In this case, the set \{ (bm, zm)\} provides a low-dimensional parameterization of the target
reflectivity function. However, the clutter term in (3.2b) gets in the way of describing the
target using a small number of parameters, which is important for optimization (3.1).

Given the potential hurdles presented by (3.2) for the general variational inversion (3.1),
as well as the advantages of direct inversion (2.16) in terms of both its algorithmic simplicity
and reduced ill-posedness, in the current work we use the direct inversion. Then, the key issue
is how to define the reconstruction phase \psi \mathrm{r}\mathrm{e}\mathrm{c} for (2.16). To address this issue, we introduce
the algorithm of transionospheric autofocus.

In transionospheric autofocus, we choose a certain metric of \scrI (y)\equiv \scrI (y,\psi \mathrm{r}\mathrm{e}\mathrm{c}) and optimize
it by varying \psi \mathrm{r}\mathrm{e}\mathrm{c}:

(3.4) \| \scrI (y,\psi \mathrm{r}\mathrm{e}\mathrm{c})\| \rightarrow min .

One can consider various cost functions \| \cdot \| for minimization (3.4). In subsection 3.2, we use
a discrete counterpart of the L4 norm. Otherwise, if the target contains a point scatterer, one
may think of increasing the height of the peak and/or making the peak as narrow as possible.
Then, the standard imaging performance metrics, such as the peak-to-sidelobe ratio (PSLR)
or integrated sidelobe ratio (ISLR) [13], can be employed.
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2154 MIKHAIL GILMAN AND SEMYON V. TSYNKOV

A fundamental difference between the minimization (3.1) and (3.4) is that whereas (3.1)
can be interpreted as fitting the observed data u\mathrm{o}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{e}\mathrm{d} by choosing the appropriate \mu and
\psi , the autofocus (3.4) is not a data fitting approach. The data are substituted into (2.16)
directly, while the minimization (3.4) determines the best \psi \mathrm{r}\mathrm{e}\mathrm{c} as the one that optimizes the
specific desired characteristics of the resulting image \scrI (y,\psi \mathrm{r}\mathrm{e}\mathrm{c}).

3.2. Numerical model. The ionospheric screen density functions \Psi (s) and \Psi \mathrm{r}\mathrm{e}\mathrm{c}(s) that
define \psi (x, z) and \psi \mathrm{r}\mathrm{e}\mathrm{c}(x, y), respectively, via (1.1), should be random,5 yet their spectrum
should be specified according to the observed spectrum of ionospheric perturbations; see, e.g.,
[7, 52]. We will mention here two noteworthy approaches to doing so (for a more detailed
discussion, see [8]). One option (see, e.g., [2, 7]) is to process the white noise with a filter such
that the output has the desired spectral characteristics. An alternative option, employed by
[6, 22, 46], is to represent \Psi (s) as a finite sum of Fourier harmonics:

(3.5)

\Psi (s) =Re

N\sum 
n=1

an exp (ikns+ i\varphi n)

=

N\sum 
n=1

(pn cos(kns) + qn sin(kns)),

where an, kn \in \BbbR + and \varphi n, pn, qn \in \BbbR . The choice of \{ (an, kn)\} defines the spectrum of the
simulated phase screen, whereas the phases \varphi n are independent identically distributed random
numbers with uniform distribution over (0,2\pi ). For this work, we choose the latter option
because it specifies the phase screen with a small number of parameters. Note that keeping
the number of control variables low is critically important for the effectiveness of optimization
procedures.

We construct the wavenumbers for (3.5) according to

(3.6) kn = n
2\pi 

(l\mathrm{m}\mathrm{a}\mathrm{x}/\Delta \mathrm{A})
,

where the longest period of perturbations l\mathrm{m}\mathrm{a}\mathrm{x} is a parameter of the problem. This parameter
characterizes the horizontal scale of perturbations in our model of ionospheric turbulence.
Note that even when the spectrum in (3.5) and (3.6) is fixed, any individual realization of the
phase screen still depends on the set of phases \{ \varphi n\} . It should also be mentioned that modern
SAR satellites, such as TerraSAR-X, can produce stripmap images with the azimuthal extent
of 50km (and acquisition length extendable to over 103km; see [57]), which is larger than the
outer scale of turbulence. At the same time, it has been found that phase perturbations with
the scales over L\mathrm{S}\mathrm{A} have little effect on SAR images; see [19]. Hence, it does not make sense
to use l\mathrm{m}\mathrm{a}\mathrm{x} \gg L\mathrm{S}\mathrm{A} in (3.6).

In addition, we define the magnitude of perturbations as as the L2 norm of \Psi in (3.5):

(3.7) as =

\Biggl( \sum 
n

a2n

\Biggr) 1/2

.

The magnitude of perturbations is a key quantity that affects the distortions of SAR images.

5At least, the procedure of building these functions should be capable of producing multiple realizations.
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The reconstruction density is represented similarly to (3.5):

(3.8) \Psi \mathrm{r}\mathrm{e}\mathrm{c}(s) =

N \mathrm{r}\mathrm{e}\mathrm{c}\sum 
n=1

(p\mathrm{r}\mathrm{e}\mathrm{c}n cos(k\mathrm{r}\mathrm{e}\mathrm{c}n s) + q\mathrm{r}\mathrm{e}\mathrm{c}n sin(k\mathrm{r}\mathrm{e}\mathrm{c}n s)).

For the minimization (3.4) that implements autofocus, the optimization variables in (3.8)
will be p\mathrm{r}\mathrm{e}\mathrm{c}n and q\mathrm{r}\mathrm{e}\mathrm{c}n . The reconstruction wavenumbers k\mathrm{r}\mathrm{e}\mathrm{c}n , as well as their total number
N \mathrm{r}\mathrm{e}\mathrm{c} in (3.8), can be chosen differently from those in (3.5). The motivation for doing so is
to avoid committing the so-called inverse crime [12, section 5.3]. The latter refers to the
parameterization of an inverse problem in such a way that the resulting finite set of equations
over a finite set of unknowns would have an exact solution. Independently, the introduction
of the noise term into the data (see (3.2a)) contributes along the same lines.

The noise term in formula (3.2a) is realized as follows:

(3.9) u\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e} = a\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e} \cdot 
\Bigl( 1
2

\Bigr) 1/2
\cdot max(| u(x)| ) \cdot n\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l},

where a\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e} = 0.05 and the real and imaginary parts of n\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l} are arrays of independent
standard normal Gaussian variables of the appropriate dimension. The dimension is equal to
that of the discretization of quadratures in formulae (2.15) and (2.16) (see section 4). The
noise term (3.9) is added when u computed according to (2.15) is substituted into (2.16).

The clutter term in formula (3.2b) is realized via the speckle model [47]:

(3.10) \mu \mathrm{c}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{r} = a\mathrm{c}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{r} \cdot 
\Bigl( d
2

\Bigr) 1/2
\cdot n\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l},

where a\mathrm{c}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{r} = 0.1 and n\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l} is the same as that used in (3.9). The reflectivity \mu given by
(3.2b), (3.3), and (3.10) is substituted under the integral in (2.15) that yields the reflected
signal u.

Altogether, there are three instances where the model parameters are generated randomly:
\bullet The phases \{ \varphi n\} in the Fourier representation (3.5) of the phase screen density \Psi (s):

one random number for each n.
\bullet The term n\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l} in the expression for noise (3.9): two random numbers (the real and

imaginary parts) for each discrete location x.
\bullet The term n\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l} in the expression for clutter (3.10): two random numbers (the real

and imaginary parts) for each discrete location z.
In the numerical simulations of section 4, we use one specific realization of the set of

random variables (\{ \varphi n\} , \mu \mathrm{c}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{r}, u\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e}) for all our experiments except those discussed in sub-
section 4.2.5 and Appendix C. For the former, we use 10 different realizations of (\{ \varphi n\} , \mu \mathrm{c}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{r},
u\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e}). For the latter, we generate 30 realizations, and also the sets \{ (bm, zm)\} in (3.3) vary
from one realization to another (see the details in Appendix C).

Finally, we consider a cost function as negative of the fourth power of the \ell 4 norm of the
discretized image \scrI defined by (2.16):

(3.11) Cost[\Psi \mathrm{r}\mathrm{e}\mathrm{c}] = - 
\sum 
j

| \scrI (yj ,\Psi \mathrm{r}\mathrm{e}\mathrm{c})| 4,
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2156 MIKHAIL GILMAN AND SEMYON V. TSYNKOV

where yj are the sampling points. A theoretical justification for using the cost function (3.11)
has been given in [44] for the case of a traditional autofocus, i.e., \xi = 1 in (1.1), for two-
dimensional images and spotlight processing.6 A wider class of cost functions including those
based on \ell p metrics has been introduced and analyzed in [45] for the problem of adaptive
optics described by the Fresnel--Kirchhoff equation that is similar to the spotlight case in
SAR. In [15] (see also [58]), we can find a numerical study for the cost functions given by
 - 
\sum 

j | \scrI (yj)| 2\beta with different values of \beta and different types of targets. It was found that the
cost function with large \beta (in particular, \beta = 5) is efficient when there are very bright isolated
pixels but fails once the contrast drops. At the same time, small \beta (such as \beta = 0.5) works well
when there are large dark regions (in SAR imagery, this may correspond to reflection from a
lake or freshly paved surface) but poorly for bright scatterers on top of the clutter. The case
of \beta = 2 that corresponds to (3.11) is the one most frequently used, apparently because of its
universality.

In addition to the \ell p metric with p = 4 that corresponds to (3.11), we have conducted
numerical experiments for other values of p, including the well-known sparsity-promoting
metric p= 1. The demonstrated performance was found inferior to (3.11). Other potential cost
functions include the traditional metrics used to assess the PSF quality, e.g., ISLR or PSLR
[13]. They could be effective when strong point scatterers are present. However, gradient-
based optimizers work well if the cost function is a smooth function of the optimization
variables. For the metrics such as ISLR or PSLR smoothness is not guaranteed though because
the peak location (i.e., argmaxy | \scrI (y,\Psi \mathrm{r}\mathrm{e}\mathrm{c})| ) does not necessarily depend continuously on the
optimization variables. This appears to be the case when the optimization variables are p\mathrm{r}\mathrm{e}\mathrm{c}n
and q\mathrm{r}\mathrm{e}\mathrm{c}n in (3.8). Therefore, we did not use PSLR or ISLR in this work. On the other hand,
the metric (3.11) is a continuous function of p\mathrm{r}\mathrm{e}\mathrm{c}n and q\mathrm{r}\mathrm{e}\mathrm{c}n . Moreover, unlike the \ell 1-norm, it is
smooth with respect to these optimization variables, as one can see by substituting (3.5) and
(1.1) into (2.16).

The formulation for the cost function (3.11) may also be extended by incorporating a
regularization term. Regularization terms enforce certain a priori properties on the set of
control variables. In our case, we want the amplitudes of harmonics of the resulting phase
screen function \Psi \mathrm{r}\mathrm{e}\mathrm{c}(s) to decrease as the wavenumber increases. Hence, we add a penalty
proportional to \| \Psi \prime \| 22. The final form of the cost function used in the numerical experiments
is as follows:

(3.12) Cost[\Psi \mathrm{r}\mathrm{e}\mathrm{c}] = - d
\sum 
j

| \scrI (yj ,\Psi \mathrm{r}\mathrm{e}\mathrm{c})| 4 + \zeta 

N \mathrm{r}\mathrm{e}\mathrm{c}\sum 
n=1

k2n((p
\mathrm{r}\mathrm{e}\mathrm{c}
n )2 + (q\mathrm{r}\mathrm{e}\mathrm{c}n )2),

where d is the discretization step, p\mathrm{r}\mathrm{e}\mathrm{c}n and q\mathrm{r}\mathrm{e}\mathrm{c}n are the coefficients in formula (3.8), and the
value of the weighting parameter \zeta = 0.7 has been chosen experimentally.

4. Numerical simulations.

4.1. Baseline example of transionospheric autofocus. In this example, we use the para-
bolic windowing function (2.8b) in (2.16) and take F \equiv L\mathrm{S}\mathrm{A}/\Delta \mathrm{A} = 100, \xi = 0.5 in both (2.15)
and (2.16). The discretization step for computing the numerical quadratures in (2.15) and

6Note that (2.15) and (2.16) represent stripmap processing for a one-dimensional image with no restriction
on the value of \xi .
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Table 1
Default coefficients in formula (3.5) for \Psi (s) in Figure 3.

n kn pn qn

1 0.03770 -0.81357 5.98784
2 0.07540 -1.21312 0.90033
3 0.11310 0.64135 0.19871
4 0.15080 0.23489 -0.29575
5 0.18850 0.08524 0.22619
6 0.22619 -0.10959 -0.12715

Figure 3. Simultaneous reconstruction of \Psi and \mu with the cost function (3.12) for N=N \mathrm{r}\mathrm{e}\mathrm{c} = 6.

(2.16) (see also (3.12)) is d= 1/4. The scatterer model is given by (3.2b), (3.3) with M = 3,
z1 = 144, z2 = 180, z3 = 216, and b1 = b2 = b3 = 1. The screen density function is described by
formula (3.5) with N = 6 and the values of the parameters specified in Table 1. The values
of kn in Table 1 correspond to formula (3.6) while the values of pn and qn are obtained using
a random number generator. Since the power spectrum of oscillations is rapidly decreasing
[42, 51], adding higher harmonics has little effect on the quality of reconstructed images (see
Appendix B for details).

Figure 3 illustrates the idea of optimization-based autofocus (3.4) and shows the recon-
struction of both the reflectivity and phase screen density by minimizing the cost function
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(3.12), with p\mathrm{r}\mathrm{e}\mathrm{c}n and q\mathrm{r}\mathrm{e}\mathrm{c}n being the optimization variables; see (3.8). In this example, the
simulation and reconstruction wavenumber spectra (3.6) are identical, each containing six
harmonics. However, the presence of both noise and clutter (see (3.2)) prevents the exact
reconstruction of the ``true"" screen density \Psi . The top and bottom panels of Figure 3 present
the one-dimensional image and the phase screen functions, respectively, while the plots in
the middle row are zoom-ins to the peaks in the top panel. The minimization (3.4) is per-
formed using an interior-point method implemented via the MATLAB fmincon function with
an explicitly specified gradient of (3.12).

From Figure 3 we can see that although the level of distortions is high, the quality of the
reconstructed image (purple curves), in terms of the height and shape of the peaks due to the
point scatterers, is very close to that of the image reconstructed using the exact \Psi (s) (black
curves). Note also that \Psi \mathrm{r}\mathrm{e}\mathrm{c} =\Psi does not necessarily correspond to a stationary point of the
cost functional in (3.12), so the values smaller than Cost[\Psi ] can be achieved, as is the case in
Figure 3 (see the last line of the plot title).

4.2. Additional examples of reconstruction. In this section, we illustrate a variety of
factors that affect the outcome of the focusing procedure, while a detailed analysis of those
will be presented in the future.

4.2.1. Windowing function. Figure 4 demonstrates focusing with the rectangular window
(2.8a) in (2.16). As expected, the peaks due to the point scatterers in this case appear narrower
than those for the parabolic window [13]. However, we are going to see that the parabolic
windowing function (2.8b) improves the autofocus behavior in more demanding settings.

4.2.2. The magnitude and horizontal scale of perturbations. When the magnitude of
perturbations is large, the perturbations with a shorter horizontal scale cause a stronger

Figure 4. Same as in Figure 3 but with a rectangular window.
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TRANSIONOSPHERIC AUTOFOCUS FOR SAR 2159

defocusing effect and thus may be expected to present a harder challenge for autofocus (see
also [16, 19, 24]). We can observe this in Figure 5 where the heights of the peaks in the focused
image are reduced quite noticeably, and the accuracy of reconstruction of \Psi is poor. When a
rectangular window is used, these effects become stronger; see Figure 6.

Reconstruction with the magnitude as of (3.7) more than 3 times higher than that in the
previous two cases is shown in Figures 7 and 8. Once again, we see that the parabolic window,
unlike its rectangular counterpart, enables focusing for rather high levels of distortions.

Figure 5. Same as in Figure 3 but with a smaller value of l\mathrm{m}\mathrm{a}\mathrm{x}.

Figure 6. Same as in Figure 5 but with a rectangular window.
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2160 MIKHAIL GILMAN AND SEMYON V. TSYNKOV

Figure 7. Same as in Figure 3 but with a higher magnitude of perturbations; see (3.7).

Figure 8. Same as in Figure 7 but with a rectangular window.

4.2.3. Nonperiodic perturbation function. According to (3.6), all wavenumbers in Table
1 are proportional to k1. Therefore, the function \Psi (s) in Figure 3, as well as several other fig-
ures, is periodic. However, condition (3.6) can be lifted, resulting in a nonperiodic realization
of \Psi (s); see Table 2 and Figure 10. Notice that although we choose a1 = 0 for \Psi (s) given by
(3.5), this condition is not enforced in the spectrum of \Psi \mathrm{r}\mathrm{e}\mathrm{c}(s).
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Table 2
Coefficients in formula (3.5) for \Psi (s) in Figure 10 (cf. Table 1).

n kn pn qn

1 0.03016 0.00000 0.00000
2 0.07157 -4.69435 3.48393
3 0.12161 1.93410 0.59926
4 0.17945 0.57836 -0.72820
5 0.24466 0.17641 0.46811
6 0.31702 -0.19452 -0.22570

Figure 9. Same as in Figure 3 but with with the wavenumbers \{ k\mathrm{r}\mathrm{e}\mathrm{c}
n \} different from \{ kn\} (see (3.8)); namely,

k\mathrm{r}\mathrm{e}\mathrm{c}
1 = 0.7k1 and N \mathrm{r}\mathrm{e}\mathrm{c} = 10 versus N = 6.

In Figure 10, the shape of the peaks in the image is quite good (similar to Figure 3),
yet the perturbation function is not reconstructed so well. We discuss this issue further in
subsection 4.2.4.

4.2.4. Different wavenumber spectra for simulation and reconstruction. Figure 9 shows
an example where the wavenumber spectra of the original and reconstructed phase screen den-
sity functions are different (see (3.5) and (3.8)), with k\mathrm{r}\mathrm{e}\mathrm{c}1 = 0.7k1 and N = 6 versus N \mathrm{r}\mathrm{e}\mathrm{c} = 10.
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2162 MIKHAIL GILMAN AND SEMYON V. TSYNKOV

Figure 10. Reconstruction of the scene with a nonperiodic \Psi (s); see subsection 4.2.3.

The quality of the reconstructed peaks suggests that the distortions are essentially compen-
sated; however, it can be seen that the function \Psi itself is not reconstructed very accurately.
The same is true about Figure 10.

We can offer the following interpretation to this observation. The cost function (3.11)
favors sharp and high peaks [45]. At the same time, it is the second derivative of the phase
perturbation that may cause a deterioration of the peak. Indeed, by considering the Taylor
expansion for \Psi one can show that the constant term has no effect on the sharpness of the peaks
in | \scrI | , while the linear term results in a horizontal shift of the peak without its deformation;
see also [19, 24]. Hence, as the peaks in Figures 9 and 10 are sharp, we conclude that the
second derivative of \Psi must have been reconstructed accurately in the region surrounding
the peaks. Indeed, in the corresponding lower panels we can observe that | (\Psi \mathrm{r}\mathrm{e}\mathrm{c})\prime \prime  - \Psi \prime \prime | is
relatively small in the central part of the domain, while toward the endpoints it may increase.

Note that for F = 100 and \xi = 0.5 (see subsection 4.1), the peak due to a point scatterer
located at zm, m= 1,2,3, is affected by the values of \Psi (s) and \Psi \mathrm{r}\mathrm{e}\mathrm{c}(s) for

(4.1) | s - zm| \leq \xi F/2 = 25;

see (1.1) and (2.5). For a group of point scatterers, the domain of dependence is given by

(4.2) min
m

(zm) - \xi F/2\leq s\leq max
m

(zm) + \xi F/2,
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TRANSIONOSPHERIC AUTOFOCUS FOR SAR 2163

because the appearance of the peaks does not depend on the values of \Psi \mathrm{r}\mathrm{e}\mathrm{c}(s) outside of this
domain. For our current setup, the interval (4.2) is 119 \leq s \leq 241. A similar observation
can be made about the area around the relatively well-reconstructed middle peak in Figure
8, where the domain of dependence given by (4.1) is 155\leq s\leq 205.

4.2.5. Multi-start initialization. Since the cost function (3.12) is a smooth function of
the optimization variables p\mathrm{r}\mathrm{e}\mathrm{c}n and q\mathrm{r}\mathrm{e}\mathrm{c}n (see (3.8)), its minimization can be performed using
gradient-based methods. Still, the outcome of the optimization procedure depends on the
solver initialization. In all of our previous examples, the initial guess was zero: \Psi \mathrm{r}\mathrm{e}\mathrm{c} \equiv 0, i.e.,
p\mathrm{r}\mathrm{e}\mathrm{c}n = 0 and q\mathrm{r}\mathrm{e}\mathrm{c}n = 0 for all n. By exploring the behavior of the cost function around the
stopping points of the optimizer and comparing the results against Cost[\Psi ], we find that the
cases of poor reconstruction, such as those shown in Figures 5, 6, and 8, correspond to local
rather than global minima of the cost function.

One possible approach to finding the global minimum is to generate multiple starting
points and choose the best minimization outcome. Our observations show that the optimiza-
tion landscape for the problem of minimizing (3.12) may have multiple local minima. For the
wavenumber spectrum and other parameters that correspond to Figure 5, we have created
K = 10 realizations of \Psi and n\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l} or, equivalently, (\{ \varphi n\} , \mu \mathrm{c}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{r}, u\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e}):

(4.3) (\{ \varphi n\} , \mu \mathrm{c}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{r}, u\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e})k, k= 1, . . . ,K;

see formulae (3.5), (3.9), and (3.10). Each triplet (4.3) gives rise to a realization of the

phase screen \Psi (k) and observable radar field u
(k)
\mathrm{o}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{e}\mathrm{d}; see formulae (2.15) and (3.2). For

each u
(k)
\mathrm{o}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{e}\mathrm{d}, k = 1, . . . ,K, we have performed a gradient-based minimization of the cost

function (3.12) starting from 600 randomly chosen initial guesses. Out of the 600 results, we
have chosen the best one, i.e., the one with the minimum cost function. The corresponding

reconstructed screen density is denoted by \Psi 
(k)
\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}, k= 1, . . . ,K.

Moreover, for each u
(k)
\mathrm{o}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{e}\mathrm{d}, k= 1, . . . ,K, we have performed a single optimization starting

from the initial guess \Psi \mathrm{r}\mathrm{e}\mathrm{c} = 0. The resulting reconstructed screen density is denoted by

\Psi 
(k)
\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{e}, k = 1, . . . ,K. The corresponding image \scrI (y,\Psi (k)

\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{e}) will serve as a reference point for
comparison for each k= 1, . . . ,K.

To assess the effect of multi-start on autofocus performance, we compare the height of the

peaks in the images \scrI (y,\Psi (k)
\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}) and \scrI (y,\Psi (k)

\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{e}), as well as the values of the cost function

Cost[\Psi 
(k)
\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}] and Cost[\Psi 

(k)
\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{e}] (see (3.12)), for k = 1, . . . ,K. We also compute the similar

metrics for the case of the exact reconstruction, i.e., where one uses \Psi \mathrm{r}\mathrm{e}\mathrm{c} = \Psi (k) in formula
(2.16) and obtains \scrI (y,\Psi (k)), k= 1, . . . ,K. (Exact reconstruction is an idealized scenario that
requires no optimization and rather assumes that the phase correction is known.)

Accordingly, for each k = 1, . . . ,K and each of the three peaks we consider the variation
(increase) in the peak height due to the multi-start,

(4.4a) max
y \mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r} \mathrm{p}\mathrm{e}\mathrm{a}\mathrm{k}

| \scrI (y,\Psi (k)
\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i})|  - max

y \mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r} \mathrm{p}\mathrm{e}\mathrm{a}\mathrm{k}
| \scrI (y,\Psi (k)

\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{e})| ,

and the corresponding variation due to the exact reconstruction,

(4.4b) max
y \mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r} \mathrm{p}\mathrm{e}\mathrm{a}\mathrm{k}

| \scrI (y,\Psi (k))|  - max
y \mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r} \mathrm{p}\mathrm{e}\mathrm{a}\mathrm{k}

| \scrI (y,\Psi (k)
\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{e})| .
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2164 MIKHAIL GILMAN AND SEMYON V. TSYNKOV

Table 3
The effect of multi-start on autofocus performance.

\bfW \bfa \bfv \bfe \bfn \bfu \bfm \bfb \bfe \bfr \bfs \bfp \bfe \bfc \bft \bfr \bfa \bff \bfo \bfr \Psi \bfa \bfn \bfd \Psi \mathrm{r}\mathrm{e}\mathrm{c}

\bfI \bfd \bfe \bfn \bft \bfi \bfc \bfa \bfl \bfD \bfi ff\bfe \bfr \bfe \bfn \bft 

Multi-start \Psi \mathrm{r}\mathrm{e}\mathrm{c} =\Psi Multi-start

mean std mean std mean std

Peak \#1 height increase 0.0818 0.0933 0.0889 0.0935 0.0185 0.1497
Peak \#2 height increase 0.0833 0.1035 0.0910 0.1011 0.0578 0.0887
Peak \#3 height increase 0.0825 0.0828 0.0883 0.0825 0.1641 0.1400
Cost function decrease 0.5496 0.5268 0.5272 0.5242 0.4245 0.2026

We also consider the reduction in the value of the cost function (3.12) due to the multi-start,

(4.4c) Cost[\Psi 
(k)
\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{e}] - Cost[\Psi 

(k)
\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{i}],

and that due to the exact reconstruction,

(4.4d) Cost[\Psi 
(k)
\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{e}] - Cost[\Psi (k)].

Then, we compute the mean and standard deviation of each of the four quantities (4.4) over
the ensemble k= 1, . . . ,K, K = 10. The results are shown in columns 2--5 of Table 3.

In addition, we have performed the same experiment for the case where the wavenumber
spectra for \Psi and \Psi \mathrm{r}\mathrm{e}\mathrm{c} were different (namely, we used N = 6, N \mathrm{r}\mathrm{e}\mathrm{c} = 10, and k\mathrm{r}\mathrm{e}\mathrm{c}1 = 0.7k1).
In that case, the exact reconstruction \Psi \mathrm{r}\mathrm{e}\mathrm{c} =\Psi is not possible, and accordingly, we could only
consider the gains in autofocus performance due to the multi-start (4.4a) and (4.4c), while
the quantities (4.4b) and (4.4d) were not available. The mean and standard deviation of the
quantities (4.4a) and (4.4c) in the case where the wavenumber spectra for \Psi and \Psi \mathrm{r}\mathrm{e}\mathrm{c} were
different are presented in columns 6 and 7 of Table 3.

From Table 3 we see that appreciable gains can be achieved by the multi-start method
as compared to a single optimization run. With the typical peak height and cost value being
1 and  - 2, respectively (the cost values are listed in the last line of the plot title in Figure 3
and other similar figures), we find that on average, the relative increase in the peak height
due to the multi-start is about 10\%, whereas the relative decrease of the cost function value
is about 20\%. At least for the case of identical wavenumber spectra presented in Table 3, the
multi-start approach is nearly as effective as the exact reconstruction of \Psi .

For the case of different wavenumber spectra, we plot the average error of reconstruc-
tion of the screen density function in Figure 11. As expected, we see that the accuracy of
reconstruction is significantly higher inside the domain of dependence (4.2) (cf. Figure 9).

In addition, in Appendix C we analyze the case of resolving a pair of closely located point
scatterers in the target area.

5. Discussion and future work. We have developed and tested numerically an optimization-
based autofocus algorithm for transionospheric SAR imaging. Its primary objective is to
compensate for the distortions of SAR images due to turbulence in the Earth's ionosphere.
The ionospheric turbulence is modeled with the help of a phase screen. The unknown ground
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TRANSIONOSPHERIC AUTOFOCUS FOR SAR 2165

Figure 11. Average accuracy of reconstruction of the phase screen density for the case of different wavenum-
ber spectra. The boundaries of the domain of dependence (4.2) are marked by the vertical dashed lines.

reflectivity is reconstructed by the conventional SAR signal processing that involves the ap-
plication of a matched filter and summation along the synthetic array. Along with the SAR
reconstruction, the proposed autofocus procedure determines the ionospheric phase correc-
tion using a variational approach. The best phase correction is the one that optimizes certain
desired characteristics of the image, such as the sharpness of its peaks due to point scatterers.

The current paper reports on the initial stages of development of the proposed autofocus
procedure. To illustrate its performance, we have conducted a set of numerical experiments
with a limited number of realizations of the problem parameters. In our simulations, we varied
the azimuthal windowing function, the magnitude and horizontal scale of perturbations, the
wavenumber spectrum for the reconstructed screen density function, and the distance between
point scatterers, and we also used multiple realizations of the screen density function with a
fixed spectrum. In addition to these factors, the autofocus performance may also depend on

\bullet the levels of noise and clutter; see (3.2), (3.9), and (3.10);
\bullet the number of harmonics in the representation of \Psi and \Psi \mathrm{r}\mathrm{e}\mathrm{c}; see (3.5) and (3.8);
\bullet the length of the synthetic aperture F =L\mathrm{S}\mathrm{A}/\Delta \mathrm{A};
\bullet the difference between the assumed and actual screen elevations; see [21].

Moreover, as the density of the phase screen depends on the set of random phases \{ \varphi n\} (see
formula (3.5)), the degree of distortions and efficiency of autofocus shall be evaluated in the
corresponding stochastic framework. Specifically, multiple realizations of the phase screen, as
well as noise and clutter, shall be considered, and the quality of reconstruction of both \mu and
\Psi shall be judged across the entire ensemble, similarly to subsection 4.2.5 and Appendix C.
We will report on the results of this extended study in a subsequent publication.

The phase screen representation of the Earth's ionosphere that we employed in the cur-
rent paper is quite common for the SAR community [1, 4, 40]. Sometimes, multiple phase
screens are used [58], and our optimization procedure can be extended to handle those as well.
However, a sufficient justification to support the use of the phase screens for the analysis of
transionospheric SAR is lacking in the literature. Moreover, it is known that in general the
phase screens are not always applicable [36].
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2166 MIKHAIL GILMAN AND SEMYON V. TSYNKOV

The actual Earth's ionosphere has finite thickness. It is a layer of plasma that is nonuni-
form both vertically and horizontally [3, 18, 41]. Two different rays (signal travel paths) that
intersect the screen at the same point will necessarily acquire the same phase perturbation.
However, otherwise these rays may travel through different parts of the ionosphere. Therefore,
in the full-fledged finite-thickness setting they will acquire different phase perturbations. The
effect of the resulting mismatch on the autofocus performance needs to be analyzed.

An argument can be given, similar to the one in [18, Appendices 4.A.1 and 4.A.2], that
even when the correlation length of turbulent fluctuations of the electron number density in
the ionosphere is short, the phase perturbations will nonetheless be strongly correlated for
the rays traveling through different parts of the ionosphere but crossing a given surface, the
screen, at the same location. These correlation properties can, perhaps, justify the use of
the phase screens for certain ionospheric conditions and certain SAR imaging regimes. For
other ionospheric and/or SAR conditions, though, the possibility of using a finite-thickness
representation of the ionosphere for the development of transionospheric autofocus will need
to be explored. This group of issues with be the subject of our future work.

In addition, the following extensions of the work reported in this paper are worthwhile.
Our current analysis relies on having several dominant point scatterers in the target area.

The focusing ability of the proposed methodology should also be investigated in the case
where the target contains no point scatterers. The following formulation for reflectivity of a
distributed target [47] may be considered as a replacement for (3.3):

\mu \mathrm{t}\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{t}(z) = g(z) \cdot n\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l}, where g(z)\geq 0,
\bigm| \bigm| \bigm| dg
dz

\bigm| \bigm| \bigm| \ll g

\Delta \mathrm{A}
;

cf. (3.10). For this scatterer model, the goal of the reconstruction is to retrieve the modulating
function g(z). A study of the optimization-based conventional SAR autofocus (i.e., the case
of \xi = 1) that included distributed targets can be found in [15].

Even if the scene contains dominant point scatterers, the autofocus performance may
depend on the number of such bright points. As this number grows, the relative cost of
``losing"" one scatterer decreases, and individual scatterers located far from the groups of
other scatterers appear more vulnerable than others. This effect may also depend on the
chosen cost function and parameterization of the phase screen density. Overall, a study of
this topic may be worthy of a separate publication.

We have seen that by using a parabolic windowing function (2.8b) in (2.15), we improve
the focusing performance. Other types of windows, such as the popular Hann, Hamming, or
Kaiser windows [32], can also be tried. In general, such windows are known to suppress the
oscillations of the point spread function (PSF). Hence, studying the various approaches to
regularization of \scrI and its effect on autofocus is of interest.

The advantage of Fourier representation of the phase screen density (see (3.5)) is that
the relevant scales of turbulence are specified explicitly via the wavenumber spectrum \{ kn\} .
Yet the Fourier representation (3.5) offers no localization with respect to the space variable s.
This may be seen as a drawback because there is no easy way to improve a ``partially focused""
image, such as that in Figure 7, where the middle peak is sharp whereas two others are not.
Representation of \Psi (s) by splines may be considered a viable alternative, while the control of
the horizontal scales can be rendered by introducing a penalty term into the cost function.
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When discussing the role of the second derivative of \Psi in subsection 4.2.4, we have indi-
cated that the constant and linear terms in the Taylor expansion of \Psi have no effect on the
image sharpness and, hence, the cost function. Accordingly, each minimum of the cost func-
tion (either local or global) may be attained by an entire class of screen densities. Removing
this ambiguity may improve the performance of the optimizer.

The presence of local minima in the autofocus optimization problem (3.4) is demonstrated
by the results shown in Figures 5, 6, and 8. We see that local minima lead to poor focusing.
Convexification of the problem is desirable (see, e.g., [28]); however, no efficient convexification
technique could be found for (2.16). In the absence of a convex metric (see also the discussion
about metrics towards the end of subsection 3.2), the multi-start approach (subsection 4.2.5)
may improve the results. Alternatively, one can explore such techniques as genetic algorithms
or swarm optimization [38]. Similar to multi-start, these methods are computationally ex-
pensive. Another difficulty is that the values of some key parameters, such as the number
of starting points or particles in the swarm, should be found experimentally because little is
known about the ``basins of attraction"" of the local and global minima in multidimensional
spaces; see, e.g., [62].

Arguably, the large differences between the values at the local and global minima in Fig-
ures 5, 6, and 8 indicate that the genetic- and swarm-based methods may have an advantage
over the multi-start approach. For example, in the swarm optimization, the particle near the
local minimum can be pulled away from the corresponding attraction basin once the differ-
ence between the cost function value at the particle's coordinate and the current population
minimum becomes large enough [38]. This leads to a more efficient utilization of computa-
tional resources as compared to the multi-start, where ``the particle"" remains stuck at this
local minimum. For the same reason, when budgeting multi-start computations, increasing
the number of initial guesses should be preferred to strengthening the stopping criteria of the
gradient-based optimizer.

An extension of (2.15) and (2.16) to the case of the two-dimensional targets and images
(with both azimuthal and range coordinates present) will provide the additional data for
focusing and allow one to properly take into account the phenomena of range cell migration
and textured clutter [13, 21, 47].

Appendix A. Variance of the perturbation phase and CkL. A brief and very helpful
presentation of the concept and meaning of C\mathrm{k}L as a measure of the ionospheric scintillation
can be found in [42, formulae (4)--(6)]. In order to calculate the C\mathrm{k}L value corresponding to
the magnitude of \Psi (s) in Figure 2, we used the following relation (see [51, formula (19)]):

(A.1) \langle \Psi 2\rangle = 2r2\mathrm{e}\lambda 
2 H

cos\theta 
GCs

\Bigl( 2\pi 
r0

\Bigr)  - 2\mathrm{v}+1 \Gamma (v - 1/2)

4\pi \Gamma (v+ 1/2)
.

In this formula, the factor 2 is due to the two-way propagation, r\mathrm{e} is the classical electron
radius, \lambda is the radar wavelength, H is the thickness of the plasma layer, \theta is the incidence
angle, and G is the geometric factor that will be ignored (i.e., G= 1). Further, Cs is the factor
in the formula defining the spectral density function of fluctuations of the electron number
density n\mathrm{e}:
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Q(K) =
Cs

((2\pi /r0)2 +K2)\mathrm{v}+1/2
,

such that

\langle (n\mathrm{e}  - \langle n\mathrm{e}\rangle )2\rangle =
\int \infty 

0
4\pi K2Q(K)dK.

In turn, the parameters v and r0 are called the spectral index and the outer scale of the iono-
spheric turbulence; following [42], we specify their values as v = 3 and r0 = 5km, respectively.

The parameter C\mathrm{k}L is defined as the intensity of the electron number density pulsations
integrated over the plasma layer and scaled with the wavenumber K1km = 2\pi /(1km):

(A.2) C\mathrm{k}L=CsHK
 - (2\mathrm{v}+1)
1km .

The units of C\mathrm{k}L, almost universally dropped in the literature, are [m - 2]. The estimate of the
value of C\mathrm{k}L for Figure 2 in the main text has been obtained by substituting the magnitude
of \Psi (s) and the radar parameters from [18, Table 1.1] into (A.1) and (A.2). The resulting
value of C\mathrm{k}L \sim 1032m - 2 is relatively high; see, e.g., [55]. Yet we can find the values of C\mathrm{k}L
orders of magnitude higher that have been reported in the literature and used in the context
of transionospheric SAR imaging; see [7, 25, 42, 50].

Appendix B. Reconstruction with a reduced number of harmonics. In the simulations
reported in this work we used fewer than 10 harmonics in the spectrum, resulting in kN/k1 <
10; see (3.5) and (3.6). It is therefore a legitimate concern whether the simulations with such
a spectrum are representative of focusing with a real ionosphere where the scales may range
from a few kilometers down to about 70m (see, e.g., [14, 42, 61]).

Nevertheless, we find that adding harmonics with larger wavenumbers to the simulation
has little effect on the quality of reconstructed images. The reason is that the power spectrum
of oscillations decreases rapidly toward smaller scales; see [51]. This conclusion is supported
by a series of reconstructions that we have performed; see Figure 12. For the simulations

Figure 12. Reconstruction with a reduced number of harmonics. The number of ``in"" and ``out"" harmonics
corresponds to the representation of \Psi (s) and \Psi \mathrm{r}\mathrm{e}\mathrm{c}(s) via (3.5) in (2.15) and (2.16), respectively.
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Figure 13. Examples of focusing results for scenes containing a pair of closely located point scatterers. The
spacing in the pair is 1 (top row), 2 (middle row), and 3 (bottom row). The black and purple curves correspond
to the reconstruction with \Psi \mathrm{r}\mathrm{e}\mathrm{c} = \Psi and \Psi \mathrm{r}\mathrm{e}\mathrm{c} resulting from the optimization with the cost function (3.12),
respectively. The black dots on the abscissa axis correspond to the ``true"" location of the scatterers in the
pair, whereas the locations of the auxiliary point scatterers are marked by the black hollow circles. The filled
diamonds indicate the detected peaks due to the pair of scatterers, whereas the contoured diamonds correspond
to the additional peaks.

illustrated by Figure 12, \Psi \mathrm{r}\mathrm{e}\mathrm{c}(s) in formula (2.16) is obtained by dropping one or more of the
shortest harmonics from \Psi (s), and the resulting image is compared with the one built with
the original \Psi . We observe that with 6 harmonics in the spectrum of \Psi as in Table 1, the
quality of the images obtained using 5 or even 4 longest harmonics in the spectrum of \Psi \mathrm{r}\mathrm{e}\mathrm{c} is
quite satisfactory for the chosen class of targets.

Appendix C. Resolving a pair of closely located point scatterers. We reconstruct the
scenes that contain a pair of point scatterers at a certain distance from each other, hence-
forth called the PS-spacing. The goal is to see how accurately this scene is represented in
the resulting image. In our experiments, we varied the value of PS-spacing from 1 to 12 in
resolution units; see subsection 2.3. For each value of PS-spacing, we have conducted 30 indi-
vidual reconstruction experiments. The reconstruction examples are illustrated in Figures 13
and 14, whereas the averaged metrics characterizing the distortions in the appearance of the
pair of point scatterers are plotted in Figures 15 and 16.

In the said experiments, the radar parameters, as well as the clutter and noise levels, were
the same as in Figure 3. The magnitudes of the point scatterers in the pair are uniformly
distributed in the range between 0.7 and 1, and the position of the midpoint of the pair is
random. In addition to the pair, four more point scatterers, with the magnitudes ranging
from 0.3 to 0.5, have been randomly placed in the imaged scene such that none of them
gets closer than PS-spacing to any scatterer in the pair. The phases of the scatterers are
uniformly random in [0,2\pi ). For each realization of \mu \mathrm{t}\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{t} obtained this way (see (3.2b)),
we generate separate random realizations of u\mathrm{n}\mathrm{o}\mathrm{i}\mathrm{s}\mathrm{e}, \mu \mathrm{c}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{r}, and \{ \varphi n\} (see (3.9), (3.10), and
(3.5), respectively). The optimization procedure is then applied to each of the 30 data vectors
u\mathrm{o}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{e}\mathrm{d} (see (3.2a)) for each PS-spacing, and the results are analyzed as follows.

The top row in Figure 13 shows clips from the images where the value of PS-spacing is 1
(the entire images can be found in Figure 14). We see that even with a perfect reconstruction of
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Figure 14. Same as in Figure 13, but showing the entire scenes.

Figure 15. Averaged distortion measures for a pair of close point scatterers for the reconstruction with \Psi \mathrm{r}\mathrm{e}\mathrm{c}

resulting from the optimization with the cost function (3.12).

the phase perturbation, i.e., \Psi \mathrm{r}\mathrm{e}\mathrm{c} =\Psi (black curves), the two peaks don't always separate from
each other. For the middle row, where PS-spacing equals 2, the perfect reconstruction provides
a certain degree of peak separation in all demonstrated cases, whereas the optimization-based
reconstruction (purple curves) fails to do so most of the time. However, for PS-spacing = 3
(the bottom row), the minimization-based reconstruction is shown to produce a pair of well-
defined peaks with the magnitudes and locations close to those obtained using the perfect
reconstruction. The same is true for higher values of PS-spacing as well.

To characterize the autofocus performance quantitatively in the case of a pair of peaks,
we formulate the distortion metrics as follows. In the sampled images, 6 highest peaks are
determined using the MATLAB findpeaks function (see [39]), and two peaks with the loca-
tions closest to the midpoint between the original coordinates of the scatterers are selected as
those representing the pair. Using the peak location and value, i.e., yj and \scrI (yj), we calculate
the absolute changes of the peak magnitude, complex phase, and location (the left, central,
and right panels in Figure 15, respectively) with respect to the corresponding parameters
of the point scatterer, i.e., (bm, zm) in (3.3), and average the results over 30 realizations for
each value of PS-spacing. These averages are plotted against the value of PS-spacing for the
optimization-based reconstruction and perfect reconstruction in Figures 15 and 16, respec-
tively. Since the distortion metrics for PS-spacing = 1 come out disproportionally high, this
data point is excluded from the plots.
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Figure 16. Same as in Figure 15, but for \Psi \mathrm{r}\mathrm{e}\mathrm{c} =\Psi .

From Figure 15, we can see that starting from the actual PS-spacing = 4, the distortions
in the peak magnitude and PS-spacing calculated from the image are low; see the left panel
and the yellow curve on the right panel, respectively. The distortions in the peak phases
(the middle panel) remain comparatively high. The latter is not surprising because the cost
function is not sensitive to the image phase. We can also see that the distortions in the
absolute peak locations (the right panel) are significantly higher that those in the PS-spacing.
A part of the explanation is, again, the lack of sensitivity of the cost function (3.12) to the
shift of the image as a whole. Besides, note that this shift is proportional to the gradient
of the residual phase perturbations, i.e., (\Psi  - \Psi \mathrm{r}\mathrm{e}\mathrm{c})\prime . As long as the value of PS-spacing is
small compared to the horizontal scale of phase perturbation (cf. (2.14)), the change in PS-
spacing should be proportional to the second derivative of the residual phase perturbation,
i.e., (\Psi  - \Psi \mathrm{r}\mathrm{e}\mathrm{c})\prime \prime . Per the discussion regarding Figure 9 in the beginning of subsection 4.2.4,
we expect that with a good focusing, the latter expression will be small.

A comparison between Figures 15 and 16 shows that the perfect reconstruction yields much
smaller position and phase errors as compared to the optimization-based approach, whereas
the results regarding the peak amplitudes are comparable. This observation is consistent with
the formulation of the cost function in (3.12).

Acknowledgment. We would like to thank the anonymous referees for their comments
and suggestions.
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