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Abstract. Progress in digital wireless communications resulted in extended use of mobile internet access, digital radios, automated
highways and factories. However, with the increasing use of wireless services, the requirements on resources like battery power and
radio spectrum are put under severe pressure. Therefore, the development of radio platforms that optimize the utilization of energy
in addition to guaranteeing spectral efficiency becomes of great importance. Temporally and spectrally localized transmission
strategies that minimize the energy spent to transmit the information-bearing symbols will be crucial towards achieving high
energy efficiency [1].
The theory of wavelets offers many advantages for the design of wireless communications. The main property of wavelets for these
applications is their ability to characterize signals with adaptive time-frequency resolution [2]. In this work, we do not pursue a
multiresolution representation of a signal as in classical wavelet analysis. We rather consider the time-frequency representations
called frames which are applied at a single resolution level [3] (page 53). Specifically, we present the development of wavelets that
offer an exact representation of single-frequency and multi-frequency communications. Then, we provide an approach to wavelet
optimization that minimizes the power to transmit the signal. Directions to the design of finite band wavelets are discussed.

INTRODUCTION

Solution Summary. The key idea is to represent the desired long-wavelength signal as superposition of compactly
supported short pulses (referred to as wavelets or basis functions) that are shifted with an overlap with respect to
one another and are radiated in a predetermined sequence by an array of small antennas [4]. The possibility of such
a representation is facilitated by the results from Shannon’s sampling theory, Fourier analysis, and the theory of
analytic functions. The wavelets that enable the representation (referred to as signal fragmentation) can be optimized
for minimum power use and shaped to allow for the radiation of the desired band of frequencies. In other words, our
goal is to develop a small antenna system that emits prudently chosen signal fragments so that a required bandwidth
of signals may be produced for AM, FM, FSK, and even covert communications, radar imaging/surveillance, ground
perimeter surveillance, satellite communications, and many other applications.

Basic concept. The basic concept of this approach is to synthesize a desired far field signal as a combination of
judiciously chosen pulses (basis functions or wavelets), as suggested in Figure 1. The technical approach involves
obtaining the optimal compactly supported basis functions (wavelets) using the methods of sampling theory specially
adopted for antenna synthesis, with the purpose of accurate signal reproduction in the far field using least power to
produce the desired waveform. Thus, there are two fundamental goals: accuracy and efficiency. Figure 2 shows how
the basis functions are modulated and combined.

(a) Example of wavelet (b) Reconstruction by fragmentation

FIGURE 1. The desired signal of a given frequency constructed from basis functions of short duration
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FIGURE 2. Formation of signal by individual wavelets. Since only a small number of wavelets overlap, individual antennas in an
array can be used repeatedly: the proposed antenna system radiates like a Gatling gun fires bullets: each single antenna at a time
with some overlap

BASIS FUNCTION MATHEMATICS

The fundamental concept of wavelets is that the propagating signal is decomposed into fragments.

Exact fragmentation for a sinusoidal wave

In this section, we present some results from [5, 6] that have served as the starting point for our subsequent analysis,
in particular, the power optimization in the single-frequency and multi-frequency case.

Let ωc be the desired carrier frequency and G(t) = G0 sinωct be the radiated field of the antenna in its Fraunhofer
zone. Then, for a simple “differentiator” antenna the required driving current is I(t) = I0 cosωct, where I0 =−G0/ωc.
We will seek the following representation of the sinusoidal current I(t) = I0 cosωct:

I(t) = ∑∞
n=−∞ I(tn)U(t − tn). (1)

The function U =U(t) in (1) is the elementary pulse, or wavelet, that we assume compactly supported on the interval
[−τ,τ], i.e., U(t) = 0 for t > τ . Hereafter, we will be interested in the case of short pulses compared to the period
of the carrier oscillation: τ � 2π

ωc
. The centers of individual wavelets in the sum (1) are shifted with respect to one

another by equal increments σ > 0:

tn = σn, n = 0,±1,±2,±3, . . . (2)

Differentiation both sides of (1) yields:

I′(t) = G(t) = G0 sinωct = ∑∞
n=−∞ I(tn)U ′(t − tn). (3)

Formula (3) shows that the driving current I(t) obtained by fragmentation (1)–(2) is guaranteed to generate the target
CW signal G(t) = G0 sinωct in the far field even though the radiated wavelets U ′(t − tn) are not, generally speaking,
the same as the original wavelets U(t − tn) at the antenna. The advantage of applying the fragmentation to the driving
current I(t) (as opposed to the radiated signal G(t)) is the automatic elimination of the direct current (DC) in the far
field. Indeed, even if U(t) has a DC component, which if Ũ(0) �= 0, the derivative U ′(t) does not. This is important
because on one hand, direct current may not be radiated into the far field, but on the other hand, as our subsequent
analysis shows, the wavelets U with desired properties often have a DC component.

080002-2

 21 N
ovem

ber 2023 15:07:16



The wavelet U(t) is not specified yet. Its key desired property is that it should enable the exact reconstruction of
the sinusoidal wave as per (1)–(2). Exactness implies that there will be no out-of-band frequencies, i.e., no spectral
leakage. The following theorem can be obtained using the sampling theory. Hereafter, a tilde above a character
denotes the Fourier transform, e.g., Ũ(ω)≡ F [U ](ω).

Theorem 1. Let U = U(t) be compactly supported on [−τ,τ]: U(t) = 0 for |t| > τ , and let U ∈ L2(R). Let also
Ũ( 2πn

σ ±ωc) = 0, n =±1,±2, and Ũ(±ωc) = A �= 0, where ωc and σ are fixed and 0 < τ � σ . Then, τ = σ and the
function U(t) is determined uniquely (up to a multiplicative constant):

Ũ(ω) =
A

sinc(ωcσ)
sinc

(
(ω −ωc)

σ
2

)
sinc

(
(ω +ωc)

σ
2

)
,

U(t) =

{
A

sinc(ωcσ)
1

σ2ωc
sin(ωc(σ −|t|)), |t|� σ ,

0, otherwise.

(4)

The minimum compact support for the desired wavelet U(t) is [−σ ,σ ]. Then, according to (4) we have:

U(t)≡Umin(t) =

{
1

sin(ωcσ) sin(ωc(σ −|t|)), |t|� σ ,

0, otherwise.
(5)

No more than two consecutive wavelets Umin may overlap in (1) at any given moment of time. An example of Umin(t)
is shown in Figure 3(a).

(a) Minimum support wavelet, equation (5) (b) Reconstruction, defined by equation (1)

FIGURE 3. Left panel: minimum support wavelet (5) for ωc = 5 and σ = 2π/100. Right panel: reconstruction of I(t) = cosωct,
ωc = 5, over three full periods by means of formula (1) with a wavelet from the family (5)-(6). Red dots — fragmentation, blue
curve — original time-harmonic signal

The central result that provides foundation for the subsequent optimization is given by the following

Corollary 2. A family of admissible wavelets that guarantee no spectral leakage is given by

U(t) = [W ∗Umin](t), (6)

where Umin is defined by (5) and W ∈ L2(R) can be any even compactly supported function of t, t ∈ [−α,α], that
additionally satisfies

W̃ (ωc) = W̃ (−ωc) = 1. (7)

Note that, if W (t) is sufficiently smooth, then the wavelet U(t) given by (6) is also sufficiently smooth.
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WAVELET POWER OPTIMIZATION

The power is given by the square integral of the elementary current U :

P =

τ∫
−τ

[W ∗Umin]
2(t)dt = 2

τ∫
0

U2(t)dt = 2

τ∫
0

(
∑K

k=0
ckbk(t)

)2
dt. (8)

In formula (8), τ = α +σ and bk(t) = [W (k) ∗Umin](t), where W (k), k = 0,1, . . . ,K, are the basis functions chosen to
represent W (t) on its interval of support [−α,α]. In our implementation, we have used Chebyshev polynomials. For
convenience, we can introduce the matrix B of dimension (K +1)× (K +1):

B =

⎡
⎢⎢⎣

b00 b01 . . . b0,K
b10 b11 . . . b1,K

...
...

. . .
...

bK,0 bK,1 . . . bK,K

⎤
⎥⎥⎦ , where bi, j =

τ∫
0

bi(t)b j(t)dt. (9)

Then, the expression (8) for power becomes:

P = 2cTBc, where c = [c0,c1, . . . ,cK ]
T . (10)

As (10) and (8) are equivalent, the matrix B of (9) is SPD. In practice, the entries of the matrix B are evaluated by
numerical quadratures.

(a) Power minimized wavelet (6) (b) The dependence of minimum power Pmin on α

FIGURE 4. Examples of power minimization

The problem of minimizing P given by (8) subject to the constraints (7) has been solved numerically using two
different approaches. The first one involved an expansion of W (t) using RBFs with subsequent application of the
Levenberg-Marquardt optimization. The second one employed a Chebyshev expansion of W (t) plus Lagrange mul-
tipliers. The results from the two optimizations techniques matched one another with high precision. In Figure 4(a),
we are showing an example of a power optimized wavelet given by formula (6) subject to constraint (7).

Of particular interest is the question of what happens to the minimum power Pmin(α) when α increases. Numerical
observations indicate that Pmin(α) decreases as α grows, albeit with a slowing rate, see Figure 4(b). An intuitive
argument that accounts for these observations is as follows.

MULTI FREQUENCY WAVELETS

Two distinct frequencies

Next, we develop wavelets that would guarantee the exact reconstruction of signals composed of a finite number of

distinct frequencies. As our first example, let us consider a signal composed of two distinct frequencies ω(1)
c and ω(2)

c :
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I(t) = I1 cosω(1)
c t + I2 cosω(2)

c t. (11)

For example, amplitude modulation (AM) of the carrier oscillation cosωct by a (much) lower frequency ωm:

IAM(t) = cosωmt cosωct =
1

2
[cos((ωc +ωm)t)+ cos((ωc −ωm)t)], (12)

falls into the category of signals (11). Indeed, on the right-hand side of equation (12), we have two distinct frequen-

cies: ω(1)
c = ωc +ωm and ω(2)

c = ωc −ωm. We would like to build a wavelet U(t) that enables the leakage-free
reconstruction of the signal (11) by means of formula (1). Both τ and σ must be much shorter than the smaller of the
two periods, 2π

ω(1)
c

or 2π
ω(2)

c

.

Similar to formula (6), the wavelets that guarantee the exact representation of the dual-frequency signal (11) can be
represented as

U(t) = [W ∗ [U (1)
min ∗U (2)

min]](t), (13)

where U (1)
min(t) and U (2)

min(t) are the minimum wavelets (5) that correspond to the frequencies ω(1)
c and ω(2)

c , respectively.

As diam
(
supp [U (1)

min ∗U (2)
min]

)
= 4σ , for suppU = [−τ,τ] we have τ = α +2σ .

A finite number of distinct frequencies

The approach described in previous Section extends to a larger number of distinct frequencies:

I(t) = I1 cosω(1)
c t + I2 cosω(2)

c t + . . .+ IN cosω(M)
c t. (14)

Following the same rationale as in previous section, we obtain the desired wavelet in the time domain:

U(t) = [W ∗U (1)
min ∗U (2)

min ∗ . . .∗U (M)
min ](t). (15)

Multi-frequency wavelet optimization

The dual-frequency wavelet (13) can be optimized to carry minimal power. We considered the case where α =

3.5×10−9, σ = 1.57×10−9, ω(1)
c = 1.00×109, and ω(2)

c = 1.01×109. Let

W (t) =
K

∑
k=0

ckTk

( t
α

)
.

Figure 5 shows the double convolution product

[W ∗U (1)
min ∗U (2)

min](t)

that minimizes the power defined similar to (8) for Chebyshev degrees K = 6 and K = 8.
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(a) Wavelets for K = 6 (b) Wavelets for K = 8

FIGURE 5. Optimized dual-frequency wavelets [W ∗U (1)
min ∗U (2)

min](t)

The results for three distinct frequencies. We considered the case where α = 3× 10−9, σ = 1× 10−9, ω(1)
c =

0.6×109, and ω(2)
c = 0.75×109. ω(3)

c = 0.9×109. Let

W (t) =
K

∑
k=0

ckTk

( t
α

)
.

Figure 6 shows the triple convolution product

[W ∗U (1)
min ∗U (2)

min ∗U (3)
min](t)

that minimizes the power defined similar to (8) for the Chebyshev expansions with K = 4 and K = 6.

(a) Wavelets for K = 4 (b) Wavelets for K = 6

FIGURE 6. Optimized triple-frequency wavelets [W ∗U (1)
min ∗U (2)

min ∗U (3)
min](t)
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Performance of a single-frequency wavelet for other frequencies

Let I2(t) = I2,0 cosω2t, where ω2 �= ωc. We will use the minimum wavelet U(t) = Umin(t) of (5) designed for the
frequency ωc to reconstruct the current I2(t) by means of the fragmentation expansion (1):

I2,rec(t) = ∑∞
n=−∞ I2(tn)U(t − tn). (16)

As ω2 �= ωc, we expect that the reconstructed current I2,rec(t) of (16) will not coincide exactly with the original current
I2(t). The is to estimate the corresponding reconstruction error. Our detailed estimation shows that for ω2 < ωc and
ωcσ � 1 we have

max |I2(t)− I2,rec(t)|� I2,0ω2
c σ2

(1

6
+

2

π2

)
.

or

max |I2(t)− I2,rec(t)|� const · (ωcσ)2.

Consequently, the overall error of reconstruction (16) when the target frequency ω2 is not equal to the design frequency
ωc, ω2 < ωc, decays quadratically with the small parameter ωcσ .

CONCLUSIONS

We presented families of wavelets that offer an exact leakage-free representation of single-frequency and multi-
frequency signals. We have also developed an approach to minimize the power of the wavelets and assessed the
performance of a single-frequency wavelet for the frequencies other than its design carrier frequency.
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