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1 Introduction 

Consider the inhomogeneous scalar wave (d’Alembert) equation in 3D: 

.
1

c2

∂2u

∂t2
− Δu = f (x, t), x ∈ R3, t > 0, (1) 

subject to zero initial conditions, and with the source term f compactly supported 
on a bounded domain .Qf ⊂ R3 × [0,+∞). The solution u to (1) is given by the 
Kirchhoff integral: 

.u(x, t) = 1

4π

///

|x−ξ |<ct

f (ξ , t − |x − ξ |/c)
|x − ξ | dξ . (2) 

The integration in (2) is performed in space over the ball of radius ct centered at . x, 
but as f is taken at retarded moments of time, this can be interpreted as integration 
in the (3+1)D space-time over the surface of a backward characteristic cone of 
Eq. (1) (light cone of the past) with the vertex .(x, t). This surface may or may not 
intersect with the support .Qf of the right-hand side f . If there is no intersection, 
then .u(x, t) = 0, which implies, in particular, that the solution .u = u(x, t) of 
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Eq. (1) will have a lacuna (secondary lacuna in the sense of Petrowsky [1]): 

.u(x, t) ≡ 0 ∀(x, t) ∈
U

(ξ ,τ )∈Qf

{
(x̃, t̃)

II|x̃ − ξ | < c(t̃ − τ), t̃ > τ
} def= Λ. (3) 

Mathematically, the lacuna . Λ is the intersection of all forward characteristic cones 
(i.e., light cones of the future) of the wave equation (1) once the vertex of the 
cone sweeps the support .Qf of the right-hand side .f (x, t). From the standpoint 
of physics, . Λ is part of space-time where the waves generated by a compactly 
supported source have already passed, and the solution has become zero again. The 
primary lacuna (as opposed to secondary lacuna (3)) is the part of space-time ahead 
of the propagating fronts where the waves have not reached yet. 

The phenomenon of lacunae is inherently three-dimensional (more precisely, 
it pertains to spaces of odd dimension). The surface of the lacuna includes the 
trajectory of aft (trailing) fronts of the propagating waves. The existence of sharp 
aft fronts in odd-dimension spaces is known as the (strong) Huygens’ principle, 
as opposed to the so-called wave diffusion, which takes place in spaces of even 
dimension [2, 3]. In practice, the wave phenomena that obey Huygens’ principle 
occur in our common physical 3D space. In 2D, which can also be considered a 
practical setting subject to certain symmetries, Huygens’ principle does not hold, 
and there are no lacunae. The 1D case is special, as discussed later in this section. 

The question of identifying the hyperbolic equations and systems that admit the 
diffusionless propagation of waves has been first formulated by Hadamard [4–6]. 
He, however, did not know any other examples besides the d’Alembert equation (1). 
The notion of lacunae was introduced and studied by Petrowsky in [1], where 
conditions for the coefficients of hyperbolic equations that guaranteed the existence 
of lacunae have been obtained (see also [3, Chapter VI]). Subsequent developments 
can be found in [7, 8]. However, since work [1], no other constructive examples of 
either scalar equations or systems that satisfy the Huygens’ principle have been 
found except for the wave equation (1) and its equivalents. Specifically, it was 
shown in [9] that in the standard .(3 + 1)D space-time with Minkowski metric, the 
only scalar hyperbolic equation that has lacunae is the wave equation (1). The first 
examples of nontrivial diffusionless equations (i.e., irreducible to the wave equation) 
were constructed in [10–12], but the space must be . Rd for odd .d > 5. Examples 
of nontrivial diffusionless systems (as opposed to scalar equations) in the standard 
Minkowski .(3 + 1)D space-time were presented in [13–15], as well as examples 
of nontrivial scalar Huygens’ equations in a .(3 + 1)D space-time equipped with a 
different metric (the plane wave metric that contains off-diagonal terms), see [14– 
16]. It was shown in [17] that the wave equation on the d-dimensional sphere, where 
.d > 3 is odd, satisfying Huygens’ principle; this spherical wave equation can be 
transformed into the Euclidean wave equation locally but not globally. 

While the examples of nontrivial diffusionless equations/systems built in [10– 
16] are primarily of theoretical interest, the original wave equation (1) accounts for 
a variety of physically relevant (albeit sometimes simplified) models in acoustics,
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electromagnetism, elastodynamics, etc. Accordingly, understanding the shape of 
the lacunae (3) is of interest for the aforementioned application areas as lacunae 
represent the regions of “quietness” where the corresponding wave field is zero. For 
example, in active sound control, once the region of interest falls into a lacuna, 
the controller may be tuned off. In numerical simulations of waves, algorithms 
that exploit the lacunae demonstrate several advantageous properties, such as non-
deteriorating performance over arbitrarily long times [18] and sub-linear complexity 
[19]. 

The objective of our work is to determine the shape of the lacunae in the solutions 
of the wave equation using fully connected artificial neural networks. In the current 
paper, we adopt a simplified scenario to construct, test, and verify the proposed 
machine learning approach. Specifically, while the true phenomenon of lacunae is 
3D and applies to solutions given by the Kirchhoff integral (2), hereafter we conduct 
the analysis and simulations in a one-dimensional (1D) setting. The domain of 
dependence for .u(x, t) determined by the Kirchhoff integral is the surface of the 
backward light cone. To mimic that in 1D, we consider the function .u = u(x, t) and 
define its domain of dependence as the sum of two backward propagating rays: 

.{(ξ, τ ) : ξ − x = ±c(τ − t), ξ ∈ R, τ < t} def= L(x, t). (4) 

We do not need a full specification of u for our subsequent considerations. We only 
need a sufficient condition for .u(x, t) to be equal to zero, which we take as 

. u(x, t) = 0 if L(x, t) ∩ Qf = ∅,

where .Qf is a given bounded domain in (1+1)D space-time: .Qf ⊂ R × [0,+∞). 
Accordingly, the function u is going to have a lacuna: 

.u(x, t) ≡ 0 ∀(x, t) ∈ {
(x̃, t̃ ) : L(x̃, t̃ ) ∩ Qf = ∅} def= Λ1(Qf ). (5) 

The lacuna .Λ1(Qf ) combines both the secondary and primary lacuna. A purely 
secondary lacuna would be given by [cf. (3)] 

. u(x, t) ≡ 0 ∀(x, t) ∈
U

(ξ,τ )∈Qf

{
(x̃, t̃ ) : |x̃ − ξ | < c(t̃ − τ), t̃ > τ

} ⊂ Λ1(Qf ).

(6) 
The proposed 1D construct is not accurate on the substance. It merely provides 

an inexpensive testing framework for neural networks. It is designed as a direct 
counterpart of the physical 3D setting and does not represent a true solution of the 
1D wave equation: 

.
1

c2 utt − uxx = f (x, t), x ∈ R, t > 0. (7)
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The solution of (7) subject to zero initial conditions is given by the d’Alembert 
integral: 

.u(x, t) = c

2

/ t

0
dτ

/ x−c(τ−t)

x+c(τ−t)

f (ξ, τ )dξ. (8) 

Unlike (4), the domain of dependence for the 1D solution (8) contains not only the 
two rays, but the entire in-between region as well: 

. {(ξ, τ ) : x + c(τ − t) < ξ < x − c(τ − t), τ < t} def= D(x, y).

Therefore, the solution .u = u(x, t) defined by (8) will not, generally speaking, have 
secondary lacunae as presented by (6).1 

The paper is organized as follows. In Sect. 2, we describe the numerical algorithm 
to build the data set. In Sect. 3, we introduce the neural networks (NN) and discuss 
their training. In Sect. 4, we present the numerical results. Section 5 contains our 
conclusions and identifies directions for future work. 

2 Construction of the Data Set 

In this section, we describe the construction of the data set needed for network 
training. To this end, we introduce a computational domain . Ω := [a, b] × [0, T ]
and discretize it in space and time using a uniform spatial .x1, . . . , xNx and temporal 
.t1, . . . , tNt mesh so that 

. xj = a + (j − 1)Δx, j = 1, . . . , Nx

tn = (n − 1)Δt, n = 1, . . . , Nt ,

where .Δx = b−a
Nx−1 and .Δt = T

Nt−1 . 
We assume that the domain .Qf that defines the lacuna .Λ1 in (5) lies inside a 

subdomain .Q ⊂ Ω, which, for the simplicity of implementation, is taken as a box 
.Q = [a1, b1] × [T0, T1] ⊆ Ω, where .a ≤ a1 < b1 ≤ b and .0 ≤ T0 < T1 ≤ T . We  
can then denote the nodes inside Q by 

.xj𝓁
= xj1+(𝓁−1), 𝓁 = 1, . . . , N

'
x ≤ Nx,

tnp = tn1+(p−1), p = 1, . . . , N
'
t ≤ Nt,

1 While the space dimension is odd in 1D, the wave equation (7) driven by a source term is not 
Huygens’. It may, however, demonstrate a Huygens’ behavior with respect to the initial data [2]. 
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Fig. 1 The computational 
domain . Ω with subdomain Q 
inside the dotted red line, and 
.Qf inside the blue circle 

where .xj1 and . tn1 are the smallest . xj and . tn values that are inside the set Q and 
.x

j1+N
'
x−1 and .t

n1+N
'
t −1 are the largest . xj and . tn values that are inside the set Q, see  

Fig. 1. 
The shape of the lacuna can then be determined by identifying the set of nodes, 

for which the characteristic lines .L(xj , tn) emerging from the node . (xj , tn) ∈
Ω, j = 1, . . . , Nx, n = 1, . . . , Nt (see formula (4)), pass through the domain 
. Qf . We, therefore, construct M training data sets by implementing the following 
algorithm: 

Algorithm 1 

1. .Start: Introduce the computational domain . Ω and its 
discretization by a uniform mesh . (xj , tn) ∈ Ω, j = 1, . . . , Nx, n =
1, . . . , Nt, and identify the set of nodes . (xj𝓁

, tnp ) ∈ Q, 𝓁 =
1, . . . , N

'
x, p = 1, . . . , N

'
t. 

2. .Iterate: For . m = 1, 2, . . . , M

(a) Generate a random positive integer .I (m) and a set of 
domains .Q

f
(m)
i

⊂ Q for each .i = 1, . . . , I (m), and define 

.Qf (m) =
( I (m)|  |

i=1

Q
f

(m)
i

)
. (9) 

(b) Construct the following matrices .Ф(m) and .Ψ(m):

- Matrix .Ф(m) with entries .φ
(m)
𝓁,p that indicate for each 

node
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.(xj𝓁
, tnp ) ∈ Q whether or not it belongs to the domain 

.Qf (m), namely, 

.φ
(m)
𝓁,p =

L
1, (xj𝓁

, tnp ) ∈ Qf (m),

− 1, otherwise.

- Matrix .Ψ(m) with entries .ψ
(m)
j,n indicates whether or not 

the characteristic lines .L(xj , tn) intersect with the 
domain .Qf (m), namely, 

.ψ
(m)
j,n =

L − 1, (xj , tn) ∈ Λ1(Qf (m)),

1, otherwise.
(10) 

In practice, we check whether there is a node . (xj𝓁
, tnp ) ∈

Qf (m) and point .(ξ, tnp ) ∈ L(xj , tn), such that . |ξ − xj𝓁
| <

Δx, in which case .ψ
(m)
j,n = 1; otherwise .ψ

(m)
j,n = −1. 

Note that the point .(ξ, tnp ) is not, generally speaking, 
a grid node. The constriction of .Ψ(m) is visualized in 
Fig. 2. 

3. .Form data set: Store the set .{Ф(m),Ψ(m)}Mm=1. 

Remark 1 In one spatial dimension, this approach to constructing the matrices 
.Ψ(m), m = 1, . . . ,M, could be done with a more exact approach by finding the 
lowest and highest characteristic lines coming from the connected regions . Q

f
(m)
i

and finding the nodes between those lines. However, we believe a similar approach 
to the one described in algorithm 1 will work better in 3D, so we also use it here. 

Fig. 2 Characteristic lines 
from the point .(xj , tn). Green 
triangles indicate nodes 
within .Δx of the 
characteristic lines at each 
time step. If there exist a 
green triangle and blue square 
at the same node, then 
.Ψj,n = 1, else .Ψj,n = −1
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Remark 2 Lacunae are regions where the solution is zero. Their shape does not 
depend on the specific form of the solution on the complementary regions where it 
may be non-zero. For our current implementation, we have chosen the piece-wise 
constant source terms, which guarantee the regularity of the solution outside the 
lacunae. Hence, discretization on a uniform grid is adequate, as we do not expect 
any irregular behavior in between the grid nodes. 

3 Construction of the Neural Network and Training 

In this paper, we use a fully connected feed forward neural network . NΘ :
R

N
'
x×N

'
t → R

Nx×Nt to approximate the shape of the lacunae. To train . NΘ, we search 
for the parameter set . Θ that minimizes the loss function: 

.L(Θ) = 1

MNxNt

ME
m=1

||Ψ(m) − NΘ(Ф(m))||2
F , (11) 

where .|| · ||F is the matrix Frobenius norm. The fully connected neural network with 
K hidden layers is the composition of functions 

.NΘ = NΘK+1 ◦ NΘK
◦ . . . ◦ NΘ1 , (12) 

with 

. NΘk
(z) = σk(Ak), Ak = Wkz + bk, k = 1, 2, . . . , K + 1,

where . Ak is the connection between layers .k−1 and k, and . σk is the activation for the 
layer k. Here, .k = 0 corresponds to the input layer and .k = K+1 corresponds to the 
output layer, and we assume that there are . wk nodes on each layer .k = 0, . . . , K+1. 
For each connection between layers, .Wk ∈ Rwk×wk−1 is the weight matrix and . bk ∈
R

wk is the bias vector. The parameters in the sets .Θk are the element values for 
the weight matrix .Wk and bias vector . bk , and .Θ = ∪K+1

k=1 Θk is the parameter set 
that we train the neural network to learn by minimizing the loss function (11). We  
can represent the architecture of a fully connected feed forward neural network as 
shown in Fig. 3. 

in
pu

t 

1 2 . . .  

+1
 (o

ut
pu

t) 

1 2 +1 

Fig. 3 Neural network architecture
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For each .k = 1, 2, . . . , K + 1, the activation function . σk is usually a nonlinear 
function that is applied to each element of its input vector. Many activation functions 
can be used; some of the most popular ones include the rectified linear unit (ReLU), 
sigmoid functions, softmax, etc. [20]. 

We train the neural network .NΘ with the following algorithm: 

Algorithm 2 

1. .Start: Randomly split the data set into two sets, the training 
set of size .Mtr, .{Ф(mi), Ψ(mi)}, .i = 1, 2, . . . , Mtr and the valida-
tion set of size .Mval, .{Ф(ml), Ψ(ml)}, .l = 1, 2, . . . , Mval. 

(a) The training set is used in the optimization algorithm 
to find the parameter set . Θ that minimizes (11). 

(b) The validation set is used to check that the neural net-
work can generalize to data that are not in the 
training set. 

2. .Set hyperparameters: loss function, optimizer, learning rate, 
number of epochs, batch size, number of hidden layers, num-
ber of nodes per hidden layer, and activation functions. 

(a) loss function: The function to be minimized given the 
training data set, see (11). 

(b) optimizer: The algorithm used to find the global minimum 
of the loss function. 

(c) initial learning rate: The initial step size that the 
optimization 
algorithm takes. Depending on the optimization 
algorithm, the step sizes may change between steps. 

(d) number of epochs: The number of times the optimization 
algorithm goes through the entire training data set. 

(e) batch size: The number of samples from the training data 
that will propagate through the network for each update 
of the parameters. 

(f) number of hidden layers: K. 
(g) number of nodes per each hidden layer: .wk, k = 1, . . . , K. 
(h) activation functions: .σk, k = 1, . . . , K + 1. 

3. Randomly initialize the parameter set: .Θ(0). 
4. .Iterate: For . e = 1, 2, . . . , number of epochs

(a) Randomly split the training set into . β separate batches. 
(b) .Iterate: For batch=1,2,. . . .,.β

- Update the neural network parameters using one step of 
the optimization algorithm.



Artificial Neural Networks for the Wave Equation 277

(c) With the current parameter set .Θ(e), evaluate the output 
of .NΘ(e) (see formula (12)) applied to all of the input 
values .Ф(ml), .l = 1, 2, . . . ,Mval, in the validation set, and 
calculate the loss value .L(Θ(e)) defined in (11). If this 
loss value is smaller than at the end of every other 
epoch before it, set .Θ = Θ(e). 

5. .Retrieve parameters: Return .NΘ with the parameter set . Θ

obtained in step 3c. 

Remark 3 To apply the neural network to any input matrix . Ф, one needs to reshape 
the matrix into a vector of size .N

'
xN

'
t . One can then reshape the vector output to be 

a matrix of the size of . Ψ, which is .Nx × Nt . 

Remark 4 The training set is usually about 80% of the total data set, and the other 
20% is the validation set. 

Remark 5 Finding good hyperparameters is often done by running multiple trials 
of the training algorithm with different hyperparameters and identifying which 
one results in the best outcome. The specific hyperparameters we have used are 
presented in Sect. 4. 

4 Numerical Results 

In this section, we conduct several numerical experiments to demonstrate the 
performance of the machine learning approach to detect the lacunae. All of our 
models are built and trained using the open-source library PyTorch [20]. 

To define the set .Q
f

(m)
i

in (9), we draw uniformly distributed values . x(m)
i ∼

U(a1, b1), .t
(m)
i ∼ U(0, T1), and .r(m)

i ∼ U(0, R) for .i = 1, 2, ..I (m), and then let 

.Q
f

(m)
i

= {(x, t) ∈ [a1, b1]×[0, T1] : (x −x
(m)
i )2 + (t − t

(m)
i )2 ≤ (r

(m)
i )2}. (13) 

Recall that .I (m) is the number of sets on the right-hand side of (9). As mentioned 
in Algorithm 1, this integer is randomly generated, and in our numerical examples, 
it is an integer between 1 and 4. If .I (m) > 1, then we may have a disconnected set 
.Qf (m) . 

For all of the examples, the computational domains are . Ω = [−20, 20] × [0, 20]
and .Q = [−10, 10] × [0, 10]. We discretize . Ω and Q such that .Nx = 64, .Nt = 64, 
.N

'
x = 32, and .N

'
t = 32. The max radius in (13) we use is .R = 5. We generated 

.M = 10,000 data pairs for our training process, randomly splitting the data such 
that .Mtr = 8000 and .Mval = 2000. For the hyperparameters in Algorithm 2, we  
use: 

(a) .L(Θ) = 1
MNxNt

EM
m=1 ||Ψ(m) − NΘ(Ф(m))||2

F , where .|| · ||F is the Frobenius 
norm.
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(b) The Adam optimizer [21]. 
(c) Initial learning rate .= 10−4. 
(d) Number of epochs .= 200. 
(e) Batch size .= 32. 
(f) .K = 3. 
(g) .wk = 256 for all .k = 1, . . . , K . 
(h) .σk = LeakyReLU [20] for .k = 1, . . . , K and .σK+1 = tanh. 

Remark 6 The Adam optimizer learning rate is adjusted after each iteration of 
the optimization process. The algorithm updates these learning rates based on the 
gradients at previous time steps and tries to find an optimal time step to reach a 
global minimum efficiently. For more details, see [21]. 

Equipped with all the parameters and data, we train a neural network .NΘ such 
that for a given set .Qf represented by the matrix . Ф as described in Algorithm 1, the  
neural network will produce 

. NΘ(Ф) ≈ Ψ,

where . Ψ is the matrix representing the location of the lacunae .Λ1(Qf ) and its 
compliment .(Λ1(Qf ))c. 

4.1 Example 1: Case I (m) = 1 

In the first example, we consider a particular case where .I (m) = 1 for each 
.m = 1, . . . ,M , and .M = 10,000. After training the neural network, . NΘ, we apply 
it to a test set that is independent of the training and validation sets. In Fig. 4, the  
training and validation loss are shown for each epoch in the training process. For a 
given input matrix . Ф, let .Ψref denote the reference solution matrix with elements 

Fig. 4 Loss of training and 
test sets after each epoch. 
Error is given by Eq. (11) 
over the entire data sets
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Fig. 5 Reconstruction of the shape of the lacuna (5) by neural network (12) in the case .I (m) = 1. 
Top left: reference solutions .Ψref . Top right: neural Network solutions .ΨNN . Bottom left: the sets 
. Qf . Bottom right: . Ψref − ΨNN

.ψ
ref
j,n ∈ {−1, 1}, .j = 1, . . . , Nx , .n = 1, . . . , Nt , determining whether or not 

the node .(xj , tn) is in the lacuna, see (10). Then for the neural network solution, 
.ΨNN := NΘ(Ф) ∈ (−1, 1), we state that it correctly identifies that the node . (xj , tn)

is in the right set, .Λ1(Qf ) or .Λ1(Qf )c, if  

. (ψNN
j,n ≤ 0 and ψ

ref
j,n = −1) or (ψnn

j,n > 0 and ψ
ref
j,n = 1),

and incorrectly identifies which set the node is in if 

. (ψNN
j,n > 0 and ψ

ref
j,n = −1) or (ψnn

j,n ≤ 0 and ψ
ref
j,n = 1).

We can then determine how accurate the neural network is by calculating 

.accuracy = # of nodes correctly identified

total # of nodes
. (14) 

From 1000 test cases, the neural network was able to identify which set each 
node belonged to with approximately .99.12% accuracy. Figure 5 shows an example
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taken from the test set. The top left represents the values for the reference solutions 
.Ψref , the top right represents the values of the neural network solution . ΨNN , the  
bottom left shows nodes in the set . Qf , and the bottom right represents the difference 
.Ψref − ΨNN . For the top graphs, the values range from .[−1, 1] with .−1 indicating 
nodes in .Λ1(Qf ) with blue dots and 1 indicating nodes in .Λ1(Qf )c with red dots. 
The element values for the reference solution are either -1 or 1, so all the nodes are 
either dark blue or red, respectively. The neural network has values between .−1 and 
1. Thus the node colors in its graph might be different shades of red, blue, and white. 
On the plot for .Ψref −ΨNN , the white nodes indicate that the two solutions are close 
to each other, the red nodes indicate that the .Ψref is greater than .ΨNN and the blue 
nodes indicate .Ψref is less than .ΨNN . Note that the interior of the sets .Λ1(Qf ) and 
.Λ1(Qf )c for the neural network solution are clearly defined as very close to -1 or 
1, but there is some uncertainty from the neural networks along the boundary. It is 
expected that the neural network would generally have more difficulty learning the 
edges of these sets. 

4.2 Example 2: Case 1 ≤ I (m) ≤ 4 

In this case, we generate our data choosing .I (m) to be a random integer such that 
.1 ≤ I (m) ≤ 4 for each .m = 1, . . . ,M . Once trained, the neural network was able to 
predict which set, .Λ1(Qf ) or .(Λ1(Qf ))c, each node belongs to with approximately 
.98.55% accuracy over .1,000 test cases where the accuracy is calculated as in (14). 
In particular, the accuracy is expected to decrease as we increase the max value . I (m)

can be. For this example, it is only a slight decrease from the case in Sect. 4.1 with 
.Im = 1 for all .m = 1, . . . ,M . This section shows two examples using the same 
layout as in Fig. 5. In Fig. 6, we see the result from an example taken from the test 
set. Figure 7 shows an example where we chose .Qf such that the lacuna (5) has a 
“pocket,” i.e., a fully enclosed area. It is a part of the secondary lacuna (6). 

4.3 Example 3: More Complicated Geometry of Qf 

In this section, we show that the neural network (12) can successfully reconstruct 
the shape of the lacunae (5) even when the geometry of the support of the source 
function differs very considerably from the geometries used for training the network. 
In Fig. 8, we present the results for the case where the set .Qf is composed 
of a rectangle and a triangle, whereas the network is the same network trained 
on combinations of circles. The reconstruction accuracy for this case evaluated 
according to (14) is 95.5%



Fig. 6 Reconstruction of the shape of the lacuna (5) by neural network (12) in the case . 1 ≤ I (m) ≤
4 with the same layout as in Fig. 5 

Fig. 7 Reconstruction of the shape of the lacuna (5) by neural network (12) in the case . 1 ≤ I (m) ≤
4 with a handcrafted example such that the lacunae has a “pocket”
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Fig. 8 Reconstruction of the shape of the lacuna (5) by neural network (12) in the case where the 
geometry of .Qf is represented by a rectangle and a triangle 

5 Discussion 

We have demonstrated that a fully connected neural network can accurately recon-
struct the shape of the lacunae in an artificial one-dimensional setting introduced 
in Sect. 1. While we have trained our network to find the shape of a combined 
lacuna (5), we anticipate that having it identify only the secondary lacunae (6) would 
not present any additional issues. A challenging next step is to extend the proposed 
approach to a realistic three-dimensional setting where the secondary lacunae are 
defined according to (3) and account for the actual physics of the solutions to the 
wave equation (1). 
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