
Finding the Shape of Lacunae of the
Wave Equation Using Artificial Neural
Networks

Alina Chertock, Christopher Leonard, and Semyon Tsynkov

1 Introduction

Consider the inhomogeneous scalar wave (d’Alembert) equation in 3D:

.
1

c2

∂2u

∂t2
− Δu = f (x, t), x ∈ R3, t > 0, (1)

subject to zero initial conditions, and with the source term f compactly supported
on a bounded domain .Qf ⊂ R3 × [0,+∞). The solution u to (1) is given by the
Kirchhoff integral:

.u(x, t) = 1

4π

///

|x−ξ |<ct

f (ξ , t − |x − ξ |/c)
|x − ξ | dξ . (2)

The integration in (2) is performed in space over the ball of radius ct centered at . x,
but as f is taken at retarded moments of time, this can be interpreted as integration
in the (3+1)D space-time over the surface of a backward characteristic cone of
Eq. (1) (light cone of the past) with the vertex .(x, t). This surface may or may not
intersect with the support .Qf of the right-hand side f . If there is no intersection,
then .u(x, t) = 0, which implies, in particular, that the solution .u = u(x, t) of

A. Chertock · C. Leonard () · S. Tsynkov
Department of Mathematics, North Carolina State University, Raleigh, NC, USA
e-mail: chertock@math.ncsu.edu; tsynkov@math.ncsu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
D. Wanduku et al. (eds.), Applied Mathematical Analysis and Computations II,
Springer Proceedings in Mathematics & Statistics 472,
https://doi.org/10.1007/978-3-031-69710-4_11

269

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-69710-4protect T1	extunderscore 11&domain=pdf

 885
55738 a 885 55738 a

mailto:chertock@math.ncsu.edu
mailto:chertock@math.ncsu.edu
mailto:chertock@math.ncsu.edu

 10924 55738 a 10924 55738 a

mailto:tsynkov@math.ncsu.edu
mailto:tsynkov@math.ncsu.edu
mailto:tsynkov@math.ncsu.edu
https://doi.org/10.1007/978-3-031-69710-4_11
https://doi.org/10.1007/978-3-031-69710-4_11
https://doi.org/10.1007/978-3-031-69710-4_11
https://doi.org/10.1007/978-3-031-69710-4_11
https://doi.org/10.1007/978-3-031-69710-4_11
https://doi.org/10.1007/978-3-031-69710-4_11
https://doi.org/10.1007/978-3-031-69710-4_11
https://doi.org/10.1007/978-3-031-69710-4_11
https://doi.org/10.1007/978-3-031-69710-4_11
https://doi.org/10.1007/978-3-031-69710-4_11
https://doi.org/10.1007/978-3-031-69710-4_11

270 A. Chertock et al.

Eq. (1) will have a lacuna (secondary lacuna in the sense of Petrowsky [1]):

.u(x, t) ≡ 0 ∀(x, t) ∈
U

(ξ ,τ)∈Qf

{
(x̃, t̃)

II|x̃ − ξ | < c(t̃ − τ), t̃ > τ
} def= Λ. (3)

Mathematically, the lacuna . Λ is the intersection of all forward characteristic cones
(i.e., light cones of the future) of the wave equation (1) once the vertex of the
cone sweeps the support .Qf of the right-hand side .f (x, t). From the standpoint
of physics, . Λ is part of space-time where the waves generated by a compactly
supported source have already passed, and the solution has become zero again. The
primary lacuna (as opposed to secondary lacuna (3)) is the part of space-time ahead
of the propagating fronts where the waves have not reached yet.

The phenomenon of lacunae is inherently three-dimensional (more precisely,
it pertains to spaces of odd dimension). The surface of the lacuna includes the
trajectory of aft (trailing) fronts of the propagating waves. The existence of sharp
aft fronts in odd-dimension spaces is known as the (strong) Huygens’ principle,
as opposed to the so-called wave diffusion, which takes place in spaces of even
dimension [2, 3]. In practice, the wave phenomena that obey Huygens’ principle
occur in our common physical 3D space. In 2D, which can also be considered a
practical setting subject to certain symmetries, Huygens’ principle does not hold,
and there are no lacunae. The 1D case is special, as discussed later in this section.

The question of identifying the hyperbolic equations and systems that admit the
diffusionless propagation of waves has been first formulated by Hadamard [4–6].
He, however, did not know any other examples besides the d’Alembert equation (1).
The notion of lacunae was introduced and studied by Petrowsky in [1], where
conditions for the coefficients of hyperbolic equations that guaranteed the existence
of lacunae have been obtained (see also [3, Chapter VI]). Subsequent developments
can be found in [7, 8]. However, since work [1], no other constructive examples of
either scalar equations or systems that satisfy the Huygens’ principle have been
found except for the wave equation (1) and its equivalents. Specifically, it was
shown in [9] that in the standard .(3 + 1)D space-time with Minkowski metric, the
only scalar hyperbolic equation that has lacunae is the wave equation (1). The first
examples of nontrivial diffusionless equations (i.e., irreducible to the wave equation)
were constructed in [10–12], but the space must be . Rd for odd .d > 5. Examples
of nontrivial diffusionless systems (as opposed to scalar equations) in the standard
Minkowski .(3 + 1)D space-time were presented in [13–15], as well as examples
of nontrivial scalar Huygens’ equations in a .(3 + 1)D space-time equipped with a
different metric (the plane wave metric that contains off-diagonal terms), see [14–
16]. It was shown in [17] that the wave equation on the d-dimensional sphere, where
.d > 3 is odd, satisfying Huygens’ principle; this spherical wave equation can be
transformed into the Euclidean wave equation locally but not globally.

While the examples of nontrivial diffusionless equations/systems built in [10–
16] are primarily of theoretical interest, the original wave equation (1) accounts for
a variety of physically relevant (albeit sometimes simplified) models in acoustics,

Artificial Neural Networks for the Wave Equation 271

electromagnetism, elastodynamics, etc. Accordingly, understanding the shape of
the lacunae (3) is of interest for the aforementioned application areas as lacunae
represent the regions of “quietness” where the corresponding wave field is zero. For
example, in active sound control, once the region of interest falls into a lacuna,
the controller may be tuned off. In numerical simulations of waves, algorithms
that exploit the lacunae demonstrate several advantageous properties, such as non-
deteriorating performance over arbitrarily long times [18] and sub-linear complexity
[19].

The objective of our work is to determine the shape of the lacunae in the solutions
of the wave equation using fully connected artificial neural networks. In the current
paper, we adopt a simplified scenario to construct, test, and verify the proposed
machine learning approach. Specifically, while the true phenomenon of lacunae is
3D and applies to solutions given by the Kirchhoff integral (2), hereafter we conduct
the analysis and simulations in a one-dimensional (1D) setting. The domain of
dependence for .u(x, t) determined by the Kirchhoff integral is the surface of the
backward light cone. To mimic that in 1D, we consider the function .u = u(x, t) and
define its domain of dependence as the sum of two backward propagating rays:

.{(ξ, τ) : ξ − x = ±c(τ − t), ξ ∈ R, τ < t} def= L(x, t). (4)

We do not need a full specification of u for our subsequent considerations. We only
need a sufficient condition for .u(x, t) to be equal to zero, which we take as

. u(x, t) = 0 if L(x, t) ∩ Qf = ∅,

where .Qf is a given bounded domain in (1+1)D space-time: .Qf ⊂ R × [0,+∞).
Accordingly, the function u is going to have a lacuna:

.u(x, t) ≡ 0 ∀(x, t) ∈ {
(x̃, t̃) : L(x̃, t̃) ∩ Qf = ∅} def= Λ1(Qf). (5)

The lacuna .Λ1(Qf) combines both the secondary and primary lacuna. A purely
secondary lacuna would be given by [cf. (3)]

. u(x, t) ≡ 0 ∀(x, t) ∈
U

(ξ,τ)∈Qf

{
(x̃, t̃) : |x̃ − ξ | < c(t̃ − τ), t̃ > τ

} ⊂ Λ1(Qf).

(6)
The proposed 1D construct is not accurate on the substance. It merely provides

an inexpensive testing framework for neural networks. It is designed as a direct
counterpart of the physical 3D setting and does not represent a true solution of the
1D wave equation:

.
1

c2 utt − uxx = f (x, t), x ∈ R, t > 0. (7)

272 A. Chertock et al.

The solution of (7) subject to zero initial conditions is given by the d’Alembert
integral:

.u(x, t) = c

2

/ t

0
dτ

/ x−c(τ−t)

x+c(τ−t)

f (ξ, τ)dξ. (8)

Unlike (4), the domain of dependence for the 1D solution (8) contains not only the
two rays, but the entire in-between region as well:

. {(ξ, τ) : x + c(τ − t) < ξ < x − c(τ − t), τ < t} def= D(x, y).

Therefore, the solution .u = u(x, t) defined by (8) will not, generally speaking, have
secondary lacunae as presented by (6).1

The paper is organized as follows. In Sect. 2, we describe the numerical algorithm
to build the data set. In Sect. 3, we introduce the neural networks (NN) and discuss
their training. In Sect. 4, we present the numerical results. Section 5 contains our
conclusions and identifies directions for future work.

2 Construction of the Data Set

In this section, we describe the construction of the data set needed for network
training. To this end, we introduce a computational domain . Ω := [a, b] × [0, T]
and discretize it in space and time using a uniform spatial .x1, . . . , xNx and temporal
.t1, . . . , tNt mesh so that

. xj = a + (j − 1)Δx, j = 1, . . . , Nx

tn = (n − 1)Δt, n = 1, . . . , Nt ,

where .Δx = b−a
Nx−1 and .Δt = T

Nt−1 .
We assume that the domain .Qf that defines the lacuna .Λ1 in (5) lies inside a

subdomain .Q ⊂ Ω, which, for the simplicity of implementation, is taken as a box
.Q = [a1, b1] × [T0, T1] ⊆ Ω, where .a ≤ a1 < b1 ≤ b and .0 ≤ T0 < T1 ≤ T . We
can then denote the nodes inside Q by

.xj𝓁
= xj1+(𝓁−1), 𝓁 = 1, . . . , N

'
x ≤ Nx,

tnp = tn1+(p−1), p = 1, . . . , N
'
t ≤ Nt,

1 While the space dimension is odd in 1D, the wave equation (7) driven by a source term is not
Huygens’. It may, however, demonstrate a Huygens’ behavior with respect to the initial data [2].

Artificial Neural Networks for the Wave Equation 273

Fig. 1 The computational
domain . Ω with subdomain Q
inside the dotted red line, and
.Qf inside the blue circle

where .xj1 and . tn1 are the smallest . xj and . tn values that are inside the set Q and
.x

j1+N
'
x−1 and .t

n1+N
'
t −1 are the largest . xj and . tn values that are inside the set Q, see

Fig. 1.
The shape of the lacuna can then be determined by identifying the set of nodes,

for which the characteristic lines .L(xj , tn) emerging from the node . (xj , tn) ∈
Ω, j = 1, . . . , Nx, n = 1, . . . , Nt (see formula (4)), pass through the domain
. Qf . We, therefore, construct M training data sets by implementing the following
algorithm:

Algorithm 1

1. .Start: Introduce the computational domain . Ω and its
discretization by a uniform mesh . (xj , tn) ∈ Ω, j = 1, . . . , Nx, n =
1, . . . , Nt, and identify the set of nodes . (xj𝓁

, tnp) ∈ Q, 𝓁 =
1, . . . , N

'
x, p = 1, . . . , N

'
t.

2. .Iterate: For . m = 1, 2, . . . , M

(a) Generate a random positive integer .I (m) and a set of
domains .Q

f
(m)
i

⊂ Q for each .i = 1, . . . , I (m), and define

.Qf (m) =
(I (m)| |

i=1

Q
f

(m)
i

)
. (9)

(b) Construct the following matrices .Ф(m) and .Ψ(m):

- Matrix .Ф(m) with entries .φ
(m)
𝓁,p that indicate for each

node

274 A. Chertock et al.

.(xj𝓁
, tnp) ∈ Q whether or not it belongs to the domain

.Qf (m), namely,

.φ
(m)
𝓁,p =

L
1, (xj𝓁

, tnp) ∈ Qf (m),

− 1, otherwise.

- Matrix .Ψ(m) with entries .ψ
(m)
j,n indicates whether or not

the characteristic lines .L(xj , tn) intersect with the
domain .Qf (m), namely,

.ψ
(m)
j,n =

L − 1, (xj , tn) ∈ Λ1(Qf (m)),

1, otherwise.
(10)

In practice, we check whether there is a node . (xj𝓁
, tnp) ∈

Qf (m) and point .(ξ, tnp) ∈ L(xj , tn), such that . |ξ − xj𝓁
| <

Δx, in which case .ψ
(m)
j,n = 1; otherwise .ψ

(m)
j,n = −1.

Note that the point .(ξ, tnp) is not, generally speaking,
a grid node. The constriction of .Ψ(m) is visualized in
Fig. 2.

3. .Form data set: Store the set .{Ф(m),Ψ(m)}Mm=1.

Remark 1 In one spatial dimension, this approach to constructing the matrices
.Ψ(m), m = 1, . . . ,M, could be done with a more exact approach by finding the
lowest and highest characteristic lines coming from the connected regions . Q

f
(m)
i

and finding the nodes between those lines. However, we believe a similar approach
to the one described in algorithm 1 will work better in 3D, so we also use it here.

Fig. 2 Characteristic lines
from the point .(xj , tn). Green
triangles indicate nodes
within .Δx of the
characteristic lines at each
time step. If there exist a
green triangle and blue square
at the same node, then
.Ψj,n = 1, else .Ψj,n = −1

Artificial Neural Networks for the Wave Equation 275

Remark 2 Lacunae are regions where the solution is zero. Their shape does not
depend on the specific form of the solution on the complementary regions where it
may be non-zero. For our current implementation, we have chosen the piece-wise
constant source terms, which guarantee the regularity of the solution outside the
lacunae. Hence, discretization on a uniform grid is adequate, as we do not expect
any irregular behavior in between the grid nodes.

3 Construction of the Neural Network and Training

In this paper, we use a fully connected feed forward neural network . NΘ :
R

N
'
x×N

'
t → R

Nx×Nt to approximate the shape of the lacunae. To train . NΘ, we search
for the parameter set . Θ that minimizes the loss function:

.L(Θ) = 1

MNxNt

ME
m=1

||Ψ(m) − NΘ(Ф(m))||2
F , (11)

where .|| · ||F is the matrix Frobenius norm. The fully connected neural network with
K hidden layers is the composition of functions

.NΘ = NΘK+1 ◦ NΘK
◦ . . . ◦ NΘ1 , (12)

with

. NΘk
(z) = σk(Ak), Ak = Wkz + bk, k = 1, 2, . . . , K + 1,

where . Ak is the connection between layers .k−1 and k, and . σk is the activation for the
layer k. Here, .k = 0 corresponds to the input layer and .k = K+1 corresponds to the
output layer, and we assume that there are . wk nodes on each layer .k = 0, . . . , K+1.
For each connection between layers, .Wk ∈ Rwk×wk−1 is the weight matrix and . bk ∈
R

wk is the bias vector. The parameters in the sets .Θk are the element values for
the weight matrix .Wk and bias vector . bk , and .Θ = ∪K+1

k=1 Θk is the parameter set
that we train the neural network to learn by minimizing the loss function (11). We
can represent the architecture of a fully connected feed forward neural network as
shown in Fig. 3.

in
pu

t

1 2 . . .

+1
 (o

ut
pu

t)

1 2 +1

Fig. 3 Neural network architecture

276 A. Chertock et al.

For each .k = 1, 2, . . . , K + 1, the activation function . σk is usually a nonlinear
function that is applied to each element of its input vector. Many activation functions
can be used; some of the most popular ones include the rectified linear unit (ReLU),
sigmoid functions, softmax, etc. [20].

We train the neural network .NΘ with the following algorithm:

Algorithm 2

1. .Start: Randomly split the data set into two sets, the training
set of size .Mtr, .{Ф(mi), Ψ(mi)}, .i = 1, 2, . . . , Mtr and the valida-
tion set of size .Mval, .{Ф(ml), Ψ(ml)}, .l = 1, 2, . . . , Mval.

(a) The training set is used in the optimization algorithm
to find the parameter set . Θ that minimizes (11).

(b) The validation set is used to check that the neural net-
work can generalize to data that are not in the
training set.

2. .Set hyperparameters: loss function, optimizer, learning rate,
number of epochs, batch size, number of hidden layers, num-
ber of nodes per hidden layer, and activation functions.

(a) loss function: The function to be minimized given the
training data set, see (11).

(b) optimizer: The algorithm used to find the global minimum
of the loss function.

(c) initial learning rate: The initial step size that the
optimization
algorithm takes. Depending on the optimization
algorithm, the step sizes may change between steps.

(d) number of epochs: The number of times the optimization
algorithm goes through the entire training data set.

(e) batch size: The number of samples from the training data
that will propagate through the network for each update
of the parameters.

(f) number of hidden layers: K.
(g) number of nodes per each hidden layer: .wk, k = 1, . . . , K.
(h) activation functions: .σk, k = 1, . . . , K + 1.

3. Randomly initialize the parameter set: .Θ(0).
4. .Iterate: For . e = 1, 2, . . . , number of epochs

(a) Randomly split the training set into . β separate batches.
(b) .Iterate: For batch=1,2,. . . .,.β

- Update the neural network parameters using one step of
the optimization algorithm.

Artificial Neural Networks for the Wave Equation 277

(c) With the current parameter set .Θ(e), evaluate the output
of .NΘ(e) (see formula (12)) applied to all of the input
values .Ф(ml), .l = 1, 2, . . . ,Mval, in the validation set, and
calculate the loss value .L(Θ(e)) defined in (11). If this
loss value is smaller than at the end of every other
epoch before it, set .Θ = Θ(e).

5. .Retrieve parameters: Return .NΘ with the parameter set . Θ

obtained in step 3c.

Remark 3 To apply the neural network to any input matrix . Ф, one needs to reshape
the matrix into a vector of size .N

'
xN

'
t . One can then reshape the vector output to be

a matrix of the size of . Ψ, which is .Nx × Nt .

Remark 4 The training set is usually about 80% of the total data set, and the other
20% is the validation set.

Remark 5 Finding good hyperparameters is often done by running multiple trials
of the training algorithm with different hyperparameters and identifying which
one results in the best outcome. The specific hyperparameters we have used are
presented in Sect. 4.

4 Numerical Results

In this section, we conduct several numerical experiments to demonstrate the
performance of the machine learning approach to detect the lacunae. All of our
models are built and trained using the open-source library PyTorch [20].

To define the set .Q
f

(m)
i

in (9), we draw uniformly distributed values . x(m)
i ∼

U(a1, b1), .t
(m)
i ∼ U(0, T1), and .r(m)

i ∼ U(0, R) for .i = 1, 2, ..I (m), and then let

.Q
f

(m)
i

= {(x, t) ∈ [a1, b1]×[0, T1] : (x −x
(m)
i)2 + (t − t

(m)
i)2 ≤ (r

(m)
i)2}. (13)

Recall that .I (m) is the number of sets on the right-hand side of (9). As mentioned
in Algorithm 1, this integer is randomly generated, and in our numerical examples,
it is an integer between 1 and 4. If .I (m) > 1, then we may have a disconnected set
.Qf (m) .

For all of the examples, the computational domains are . Ω = [−20, 20] × [0, 20]
and .Q = [−10, 10] × [0, 10]. We discretize . Ω and Q such that .Nx = 64, .Nt = 64,
.N

'
x = 32, and .N

'
t = 32. The max radius in (13) we use is .R = 5. We generated

.M = 10,000 data pairs for our training process, randomly splitting the data such
that .Mtr = 8000 and .Mval = 2000. For the hyperparameters in Algorithm 2, we
use:

(a) .L(Θ) = 1
MNxNt

EM
m=1 ||Ψ(m) − NΘ(Ф(m))||2

F , where .|| · ||F is the Frobenius
norm.

278 A. Chertock et al.

(b) The Adam optimizer [21].
(c) Initial learning rate .= 10−4.
(d) Number of epochs .= 200.
(e) Batch size .= 32.
(f) .K = 3.
(g) .wk = 256 for all .k = 1, . . . , K .
(h) .σk = LeakyReLU [20] for .k = 1, . . . , K and .σK+1 = tanh.

Remark 6 The Adam optimizer learning rate is adjusted after each iteration of
the optimization process. The algorithm updates these learning rates based on the
gradients at previous time steps and tries to find an optimal time step to reach a
global minimum efficiently. For more details, see [21].

Equipped with all the parameters and data, we train a neural network .NΘ such
that for a given set .Qf represented by the matrix . Ф as described in Algorithm 1, the
neural network will produce

. NΘ(Ф) ≈ Ψ,

where . Ψ is the matrix representing the location of the lacunae .Λ1(Qf) and its
compliment .(Λ1(Qf))c.

4.1 Example 1: Case I (m) = 1

In the first example, we consider a particular case where .I (m) = 1 for each
.m = 1, . . . ,M , and .M = 10,000. After training the neural network, . NΘ, we apply
it to a test set that is independent of the training and validation sets. In Fig. 4, the
training and validation loss are shown for each epoch in the training process. For a
given input matrix . Ф, let .Ψref denote the reference solution matrix with elements

Fig. 4 Loss of training and
test sets after each epoch.
Error is given by Eq. (11)
over the entire data sets

Artificial Neural Networks for the Wave Equation 279

Fig. 5 Reconstruction of the shape of the lacuna (5) by neural network (12) in the case .I (m) = 1.
Top left: reference solutions .Ψref . Top right: neural Network solutions .ΨNN . Bottom left: the sets
. Qf . Bottom right: . Ψref − ΨNN

.ψ
ref
j,n ∈ {−1, 1}, .j = 1, . . . , Nx , .n = 1, . . . , Nt , determining whether or not

the node .(xj , tn) is in the lacuna, see (10). Then for the neural network solution,
.ΨNN := NΘ(Ф) ∈ (−1, 1), we state that it correctly identifies that the node . (xj , tn)

is in the right set, .Λ1(Qf) or .Λ1(Qf)c, if

. (ψNN
j,n ≤ 0 and ψ

ref
j,n = −1) or (ψnn

j,n > 0 and ψ
ref
j,n = 1),

and incorrectly identifies which set the node is in if

. (ψNN
j,n > 0 and ψ

ref
j,n = −1) or (ψnn

j,n ≤ 0 and ψ
ref
j,n = 1).

We can then determine how accurate the neural network is by calculating

.accuracy = # of nodes correctly identified

total # of nodes
. (14)

From 1000 test cases, the neural network was able to identify which set each
node belonged to with approximately .99.12% accuracy. Figure 5 shows an example

280 A. Chertock et al.

taken from the test set. The top left represents the values for the reference solutions
.Ψref , the top right represents the values of the neural network solution . ΨNN , the
bottom left shows nodes in the set . Qf , and the bottom right represents the difference
.Ψref − ΨNN . For the top graphs, the values range from .[−1, 1] with .−1 indicating
nodes in .Λ1(Qf) with blue dots and 1 indicating nodes in .Λ1(Qf)c with red dots.
The element values for the reference solution are either -1 or 1, so all the nodes are
either dark blue or red, respectively. The neural network has values between .−1 and
1. Thus the node colors in its graph might be different shades of red, blue, and white.
On the plot for .Ψref −ΨNN , the white nodes indicate that the two solutions are close
to each other, the red nodes indicate that the .Ψref is greater than .ΨNN and the blue
nodes indicate .Ψref is less than .ΨNN . Note that the interior of the sets .Λ1(Qf) and
.Λ1(Qf)c for the neural network solution are clearly defined as very close to -1 or
1, but there is some uncertainty from the neural networks along the boundary. It is
expected that the neural network would generally have more difficulty learning the
edges of these sets.

4.2 Example 2: Case 1 ≤ I (m) ≤ 4

In this case, we generate our data choosing .I (m) to be a random integer such that
.1 ≤ I (m) ≤ 4 for each .m = 1, . . . ,M . Once trained, the neural network was able to
predict which set, .Λ1(Qf) or .(Λ1(Qf))c, each node belongs to with approximately
.98.55% accuracy over .1,000 test cases where the accuracy is calculated as in (14).
In particular, the accuracy is expected to decrease as we increase the max value . I (m)

can be. For this example, it is only a slight decrease from the case in Sect. 4.1 with
.Im = 1 for all .m = 1, . . . ,M . This section shows two examples using the same
layout as in Fig. 5. In Fig. 6, we see the result from an example taken from the test
set. Figure 7 shows an example where we chose .Qf such that the lacuna (5) has a
“pocket,” i.e., a fully enclosed area. It is a part of the secondary lacuna (6).

4.3 Example 3: More Complicated Geometry of Qf

In this section, we show that the neural network (12) can successfully reconstruct
the shape of the lacunae (5) even when the geometry of the support of the source
function differs very considerably from the geometries used for training the network.
In Fig. 8, we present the results for the case where the set .Qf is composed
of a rectangle and a triangle, whereas the network is the same network trained
on combinations of circles. The reconstruction accuracy for this case evaluated
according to (14) is 95.5%

Fig. 6 Reconstruction of the shape of the lacuna (5) by neural network (12) in the case . 1 ≤ I (m) ≤
4 with the same layout as in Fig. 5

Fig. 7 Reconstruction of the shape of the lacuna (5) by neural network (12) in the case . 1 ≤ I (m) ≤
4 with a handcrafted example such that the lacunae has a “pocket”

282 A. Chertock et al.

Fig. 8 Reconstruction of the shape of the lacuna (5) by neural network (12) in the case where the
geometry of .Qf is represented by a rectangle and a triangle

5 Discussion

We have demonstrated that a fully connected neural network can accurately recon-
struct the shape of the lacunae in an artificial one-dimensional setting introduced
in Sect. 1. While we have trained our network to find the shape of a combined
lacuna (5), we anticipate that having it identify only the secondary lacunae (6) would
not present any additional issues. A challenging next step is to extend the proposed
approach to a realistic three-dimensional setting where the secondary lacunae are
defined according to (3) and account for the actual physics of the solutions to the
wave equation (1).

Acknowledgments The work of A. Chertock was supported in part by NSF Grants DMS-1818684
and DMS-2208438. C. Leonard was supported in part by NSF Grant DMS-1818684. The work of
S. Tsynkov was partially supported by the US-Israel Binational Science Foundation (BSF) under
grant # 2020128.

Artificial Neural Networks for the Wave Equation 283

References

1. I. Petrowsky, Matematicheskii Sbornik (Recueil Mathématique) 17 (59)(3), 289 (1945)
2. V.S. Vladimirov, Equations of Mathematical Physics (Dekker, New-York, 1971)
3. R. Courant, D. Hilbert, Methods of Mathematical Physics. Volume II (Wiley, New York, 1962)
4. J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations (Yale

University Press, New Haven, 1923)
5. J. Hadamard, Problème de Cauchy (Hermann et cie, Paris, 1932). [French]
6. J. Hadamard, Ann. of Math. (2) 43, 510 (1942)
7. M.F. Atiyah, R. Bott, L. Gårding, Acta Math. 124, 109 (1970)
8. M.F. Atiyah, R. Bott, L. Gårding, Acta Math. 131, 145 (1973)
9. M. Matthisson, Acta Math. 71, 249 (1939). [French]

10. K.L. Stellmacher, Nachr. Akad. Wiss. Göttingen. Math. Phys. Kl. Math.-Phys. Chem. Abt.
1953, 133 (1953). [German]

11. J.E. Lagnese, K.L. Stellmacher, J. Math. Mech. 17, 461 (1967)
12. K.L. Stellmacher, Math. Ann. 130, 219 (1955). [German]
13. R. Schimming, in Proceedings of the Joint IUTAM/IMU Symposium “Group-Theoretical

Methods in Mechanics”, ed. by N.H. Ibragimov, L.V. Ovsyannikov (USSR Acad. Sci., Siberian
Branch, Institute of Hydrodynamics — Computing Center, USSR, Novosibirsk, 1978), pp.
214–225

14. M. Belger, R. Schimming, V. Wünsch, Z. Anal. Anwendungen 16(1), 9 (1997). Dedicated to
the memory of Paul Günther

15. P. Günther, Huygens’ principle and hyperbolic equations, Perspectives in Mathematics, vol. 5
(Academic Press Inc., Boston, MA, 1988). With appendices by V. Wünsch

16. P. Günther, Arch. Rational Mech. Anal. 18, 103 (1965). [German]
17. P.D. Lax, R.S. Phillips, Comm. Pure Appl. Math. 31(4), 415 (1978)
18. S. Petropavlovsky, S. Tsynkov, J. Comput. Phys. 336, 1 (2017). URL https://doi.org/10.1016/

j.jcp.2017.01.068
19. S. Petropavlovsky, S. Tsynkov, E. Turkel, Journal of Computational Physics 471, Paper

No. 111632 (2022). URL https://doi.org/10.1016/j.jcp.2022.111632
20. A. Paszke, et. al., in Advances in Neural Information Processing Systems 32 (Curran

Associates, Inc., 2019), pp. 8024–8035. URL http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

21. D.P. Kingma, J. Ba, arXiv e-prints arXiv:1412.6980 (2014)

https://doi.org/10.1016/j.jcp.2017.01.068
https://doi.org/10.1016/j.jcp.2017.01.068
https://doi.org/10.1016/j.jcp.2017.01.068
https://doi.org/10.1016/j.jcp.2017.01.068
https://doi.org/10.1016/j.jcp.2017.01.068
https://doi.org/10.1016/j.jcp.2017.01.068
https://doi.org/10.1016/j.jcp.2017.01.068
https://doi.org/10.1016/j.jcp.2017.01.068
https://doi.org/10.1016/j.jcp.2017.01.068
https://doi.org/10.1016/j.jcp.2017.01.068
https://doi.org/10.1016/j.jcp.2022.111632
https://doi.org/10.1016/j.jcp.2022.111632
https://doi.org/10.1016/j.jcp.2022.111632
https://doi.org/10.1016/j.jcp.2022.111632
https://doi.org/10.1016/j.jcp.2022.111632
https://doi.org/10.1016/j.jcp.2022.111632
https://doi.org/10.1016/j.jcp.2022.111632
https://doi.org/10.1016/j.jcp.2022.111632
https://doi.org/10.1016/j.jcp.2022.111632
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

