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1 Introduction 

Consider the acoustic wave equation 

.∂2t u − c2(x)�u = F(x, t), (x, t) ∈ R
3 × (0, T ] (1) 

with zero initial data and a source compactly supported in space. We assume there 
exists a bounded connected set . ϒ such that .c(x) = c∞ > 0 whenever .x /∈ ϒ . 
To solve (1) numerically, we truncate the unbounded domain . R3 with a spherical 
artificial outer boundary and set a pth order artificial boundary condition (ABC): 

.∂2t u − c2(x)�u = F(x, t), (x, t) ∈ � × (0, T ]. (2a) 

Bpu = 0 on � × (0, T  ] (2b) 

where .�={x | ‖x‖2 ≤ R} such that .�⊃ϒ ∪ supp(F ) and .� = ∂�. As  p increases, 
the ABC (2b) is expected to better approximate (1). The specific form of the ABC 
(2b) will be introduced later (see Sect. 3). 
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2 Fourth Order Compact Scheme (FOCS) 

We construct a fourth order discretization of the exterior acoustic wave equation 
using a .3 × 3 × 3 stencil in space and three levels in time. Given the uniform time 
step . τ, applying the .θ-scheme [9] to  (1) produces a one parameter family of EPDEs 
on the upper time level 

.(�−κ2)un+1=f n+1 �
(
2− 1/θ

)
f n −f n−1 − κ2un/θ − (

Fn+1 + (1/θ −2)F n +Fn−1)/c2 (3) 

where .κ2=(θτ2c2(x))−1. When .θ = 1/12, (3) is fourth order accurate in t . Applying 
an “equation based” compact finite difference scheme1 to (3) yields a fourth order 
compact scheme (FOCS) 

.Lh[κ2]un+1
i,j,k = h2f n+1

R � h2Rhf
n+1
i,j,k = h2

(
2f n+1

i,j,k/3 + f n+1
ss /36 + f n+1

sc /72
)
. (4) 

The LHS operator in (4) is given by 

. Lh[κ2]ui,j,k � −4ui,j,k + uss/3 + usc/6 − h2
(
2(κ2u)i,j,k/3 + (κ2u)ss/36 + (κ2u)sc/72

)

where uss = ∑
−1≤ī,  ̄j,k̄≤1 
|ī|+|j̄ |+|k̄|=1 

ui+ī,j+j̄ ,k+k̄ and usc = ∑
−1≤ī,j̄ ,k̄≤1 
|ī|+|j̄ |+|k̄|=2 

ui+ī,j+j̄ ,k+k̄ . The 

CFL number, .λ(x) = c(x)τ/h should satisfy .maxx λ(x) ≤ √
5/8 to guarantee stability. 

For a complete derivation of the FOCS, the CFL number, and numerical validation 
over a cubic domain see our previous results in [21]. 

3 Method of Difference Potentials (MDP) 

We apply the .θ-scheme (Sect. 2) to the truncated problem (2) and choose the 
radiation boundary condition [7] for  (2b). This ABC introduces new artificial 
variables . vj on the outer artificial boundary. We then define a sequence of equations 
(one for each . vj ) along the outer boundary. The number of . vj determines the 
accuracy of the ABC as a function of the size (diameter) of . �. Thus, problem (2) 
becomes 

.(� − κ2)un+1 = f n+1, x ∈ �. (5a) 

(∂t/c∞ + ∂r + 1/R)un+1 = vn+1 
1 , x ∈ �. (5b)

(
∂t/c∞ + j/R

)
vn+1 
j = (j (j−1)+�θ,ϕ)vn+1 

j−1/4R2 + vn+1 
j+1, x ∈ �, j = 1, . . . , p  (5c)

1 Start with a central difference formula including the leading error term. Second, differentiate the 
governing equation to replace the high order derivatives contained in the leading error term. Third, 
approximate this expression with central differences. See [21] for detail. 
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where .vn+1
0 =2un+1 and .vn+1

p+1 = 0. We refer to (5b)–(5c) as NRBC. (p). We chose 
this ABC because it works in spherical geometry where we have formulated the 
elliptic PDE and it is easy to implement for any given p. Note that in [11], we used 
a different approach and defined the high order BGT ABCs (time harmonic case) 
directly. 

Advancing the time marching scheme amounts to solving the EPDE (5) at 
every time step. The method of difference potentials (MDP) utilizes the uniformly 
discretized FOCS, but has the capacity to handle the curvilinear geometry of 
. �. Difference potentials can be considered discrete counterparts to Calderon-
Seeley potentials which reduce a given PDE to an equivalent pseudo-differential 
equation on the boundary of its domain. The MDP embeds the BVP (5) into  
a simple cubic auxiliary domain .�0 ⊃ � while the Calderon-Seeley potentials 
are approximated with difference potentials constructed from the discrete solution 
operator to the EPDE on the auxiliary domain. Since the equation is positive definite 
and the auxiliary domain is a cube, a geometric multigrid method can compute the 
discrete solution operator in .O(N logN) operations and achieve optimal (multigrid) 
convergence rates [22]. In addition, the MDP uses a spectral representation of the 
boundary condition on . �. See the monograph [18] for more on the MDP and [1, 3– 
6, 10, 14, 19] for various applications of the MDP. 

In Sect. 3.1, we define some constructs pertinent to the MDP. In Sect. 3.2, we  
introduce the Boundary Equation with Projection (BEP) and the governing theorem 
which shows the relationship between the solution to the BEP and the solution to 
(5) on . �. In Sect. 3.3, we show how to solve the BEP. 

3.1 Preliminaries 

The following constructs are necessary to solve the EPDE (5) at every time step. 

• Grid Sets: Let .N0/M0 denote the uniform mesh of . �0 including/excluding the 
boundary nodes, .�0 = N

0 \ M
0, .M+ = M

0 ∩ �̄, and .M− = M
0 \ M

+. For  
any .(xi, yj , zk) ∈ M

0, let  . Ni,j,k = {(xi+ī , yj+j̄ , zk+k̄) | |ī|, |j̄ |, |k̄| ≤ 1, 1 ≤
|ī| + |j̄ | + |k̄| ≤ 2}. Then let .N± = {∪Ni,j,k | (xi, yj , zk) ∈ M

±}. Finally, 
the discrete boundary .γ = N

+ ∩ N
− are nodes which straddle the continuous 

boundary . �. Choose . �0 large enough so .γ ∩ �0 = ∅. 
• Auxiliary Problem (AP): Given the discrete AP .Lh[κ2]w = g in .M0 and 

.w = 0 on . �0, where the RHS g on . M0 can be arbitrary, the solution operator 

. Gh (Green’s operator) produces the unique solution .w = Ghg to the discrete 
AP. 

• Difference Potential: A density, . vγ, is a grid function supported on . γ. The  
difference potential with density . vγ is .vN+ = PN+vγ = w −Gh

(
Lh[κ2]w|M+

)
, 

where .vγ = w|γ and the difference projection is .Pγvγ = PN+vγ|γ.
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3.2 Boundary Equation with Projection (BEP) 

The following theorem (Theorem 1.1.7 [18] or Proposition 3.4 [23]) gives us a 
representation of the solution to the BVP (5) using the difference potential. 

Theorem 1 (Boundary Equations of Calderón-Seely Type) Consider the dis-
crete EPDE 

.Lh[κ2]un+1
N+ = h2f̃ n+1

R =
{
0, xh ∈ M

−

h2f n+1
R , xh ∈ M

+ (6) 

where the RHS is assembled according to (3). The density .un+1
γ coincides with 

the trace of a solution to (6) on  . γ : .un+1
γ = un+1

N+ |γ, if and only if it satisfies the 
inhomogeneous BEP 

.un+1
γ = Pγu

n+1
γ + Ghf̃

n+1
R |γ. (7) 

If the above holds, .un+1
N+ is given by the generalized Green’s formula: 

.un+1
N+ = PN+un+1

γ + Ghf̃
n+1
R |N+ . (8) 

Note that Theorem 1 doesn’t make any explicit reference to the boundary condition 
on . �. It shows how the trace of the solution, .un+1

γ = un+1
N+ |� , can be substituted into 

the generalized Green’s Formula (8) to solve the discrete EPDE (6). However, the 
boundary condition on . � is necessary to construct .un+1

γ . 

3.3 Solving the Boundary Equation with Projection 

The density .un+1
γ is obtained from .ξn+1

� = (
un+1|�, ∂ru

n+1|�
)
by applying an 

affine operator called the extension operator (see Appendix 1). It is derived using 
a combination of Taylor’s Theorem about the continuous boundary . � and a spectral 
representation of .ξn+1

� in terms of spherical harmonics (recall, . � is a sphere). From 
Theorem 1, the trace of the discrete solution must satisfy the inhomogeneous BEP 
(7). Consequently, substituting (21) into (7) yields the linear system 

.Q0c
n+1
0 + Q1c

n+1
1 = −Ghf̃

n+1
R |N+ − qn+1

I . (9) 

.Qi ∈C
|γ|×(1+L)2 in (9) is the result of applying .Pγ − Iγ to each of the columns of 

.Ai ∈ C
|γ|×(1+L)2 (defined in (21), Appendix 1), .qn+1

I = (Pγ − Iγ)Ex
n+1
I (. Exn+1

I

defined in (18)), and .cn+1
i ∈C

(1+L)2 (defined in (22)) are the Fourier coefficients of 
.∂i

ru
n+1|� . . Q0 and . Q1 require .(1 + L)2 calls of the solution operator . Gh. However,
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.PN+(α
(i)
lmYm

l ) = (−1)mPN+(α
(i)
lmYm

l )∗ [14, Eq. (53)] reduces the number of times 
we need to call . Gh by nearly one half. The matrices . Q0 and . Q1 only need to be 
computed once as they don’t depend on time. Since we assume the solution to the 
exterior problem (1) is smooth2 the total number of columns .(1 + L)2 � |γ|. The  
spectral form of NRBC. (p) provides the additional equations necessary to solve for 
both unknowns in (9). Accordingly, (5b)–(5c) satisfies (see [7, eqs. (40) and (45)]) 

. (∂t/c∞ + ∂r + 1/R)u =
∞∑

l=1

l∑

m=−l

(vlm · e1)Ym
l (θ, ϕ)

dvlm/dt = Alvlm − l(l + 1)c∞
〈
u, Ym

l

〉
e1/2R2

where .vlm = [v(1)
lm , . . . , v

(p)
lm ]T ∈ C

p, .e1 = [1, 0, . . . , 0]T ∈ R
p, the tridiagonal 

matrix . Al contains .− c∞
R

[1, . . . , p]T ∈ R
p along the diagonal, . c∞[1, . . . , 1]T ∈

R
p−1 along the superdiagonal, and . 

c∞
4R2 [2(1)− l(l +1), . . . , p(p−1)− l(l +1)]T ∈

R
p−1 along the subdiagonal, and the weighted inner product is defined in (19). We  

truncate the auxiliary variables of NRBC. (p) using .l=0, . . . , L and .m=−l, . . . , l to 
be consistent with the truncation of the extension operator (see Appendix 1). First, 
we discretize the spectral boundary condition in time. If we discretize the ODE 
.dw/dt = g with the fourth order linear multistep method backwards differentiation 
formula (BDF4) .wn+1 + ∑4

j=1 ajw
n+1−j = b0τg

n+1 [15], replace u and . ∂ru with 
the expansion (20), use orthogonality of the spherical harmonics (19), and combine 
like terms, we obtain a system of equations for the Fourier coefficients: 

. −
4∑

j=1

ai

〈
un+1−j , Y 0

0

〉
= (1 + τc∞b0/R)

〈
un+1, Y 0

0

〉
+ τc∞b0

〈
∂ru, Y 0

0

〉
. (10a) 

− 
4∑

j=1 

ai�
n+1−j 
lm = Âl�

n+1 
lm +

〈
∂ru

n+1, Ym 
l

〉
bl , l  = 1, . . . , L, |m| ≤  l,(10b) 

.�lm = [〈u, Ym
l 〉, vlm]T ∈ C

p+1, .bl = [τc∞b0, 0, . . . , 0]T ∈ R
p+1, and the 

tridiagonal matrix 

.Âl =
(

(1 + τc∞b0/R) −τb0c∞eT
1

τb0l(l + 1)c∞e1/2R2 Ip×p − τb0Al

)
∈ R

p+1×p+1 (11)

2 Let .g ∈ Ck,γ(S2) for some .k ≥ 0 and .γ ∈ (0, 1] such that .k + γ > 1/2. Then there exists . C > 0
such that .‖g − QLg‖∞ ≤ C/Lk+γ−1/2 where .QLg is the orthogonal projection of g on the space of 
polynomials of degree .≤ L on . S2 [2, Corollary 4.14]. 
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Rearranging (10) yields: 

. −
4∑

j=1

ai

1 + τc∞b0/R
〈un+1−j , Y 0

0 〉 = 〈
un+1, Y 0

0

〉 + τc∞b0

1 + τc∞b0/R
〈∂ru

n+1, Y 0
0 〉. 

(12a) 

−Â
−1 
l

( 4∑

j=1 

ai�
n+1−j 
lm

)
= �n+1 

lm + 〈∂ru
n+1, Ym 

l 〉Â−1 
l bl , l  = 1, . . . , L, |m| ≤  l. 

(12b) 

Now we are in a position to substitute the spectral form of NRBC. (p) into (9). Since 
(9) doesn’t depend on the auxiliary variables .vn+1

lm we extract the equations in (12) 
which only include the Fourier coefficients of .(un+1|�, ∂ru

n+1|�). If we take the  
first component of (12b) for .l = 1, . . . , L and .m = −l, . . . , l along with (12a) 
and arrange them as a linear system where the lm-th component is placed in row 
.l(l + 1) + m + 1, then 

.cn+1
0 + Mcn+1

1 = cn+1
NRBC(p) (13) 

where 

. M = diag

(
τc∞b0

1 + τc∞b0/R
, Â

−1
1 b1 · ẽ1, . . . , Â−1

L bL · ẽ1
)

and 

. cn+1
NRBC(p) = −

4∑

j=1

aj

( 〈un+1−j , Y 0
0 〉

1 + τc∞b0/R
, Â

−1
1 �

n+1−j

1,−1 · ẽ1, . . . , Â−1
L �

n+1−j
L,L · ẽ1

)T

and .ẽ1 = [1, 0, . . . , 0]T ∈ R
p+1. Substituting (13) into (9) yields: 

.
(
Q1 − Q0M

)
c1 = −Q0c

n+1
NRBC(p) − Ghf̃

n+1
R |N+ − qn+1

I . (14) 

The overdetermined system (14) is solved for .cn+1
1 in the sense of least squares 

using QR factorization. Then .cn+1
0 is computed with (13). The NRBC. (p) auxiliary 

variables .vn+1
lm are computed from (12b) for .l = 1, . . . , L and .m = −l, . . . , l. Now  

that the Fourier coefficients are all known we can use the extension operator (21) to 
compute the density .un+1

γ which we substitute into the generalized Green’s formula 

(8) to compute the solution .un+1
N+ and advance the time marching scheme.
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4 Numerical Simulations 

Table 1 defines the components of our test problems (see Appendix 2). For T1, 
the direction of propagation is normal to . � which corresponds to the maximum 
absorption. For T2, the off-center location of the center of the source implies the 
solution no longer meets . � at a right angle. For T3, the off center location of the 
source and differentiation defined by means of the multi-index . α generate even more 
asymmetry than T2. In addition, the source term provides continuous output for 
all .t > 0. Finally, T4 and T5 repeat T1 and T2 respectively with variable speed. 
In all our simulations .R = 1.5, .�0 = [−2, 2]3, .L = 18, and the termination 
criteria is .‖r(i)

h ‖ ≤ 10−12‖r(0)
h ‖ + 10−12 where the residual of the ith iteration is 

.r
(i)
h = g − Lhu

(i)
h . For our multigrid method we use the V(1,1) cycle per iteration 

using full-weighting as the restriction operator and tri-cubic interpolation as the 
prolongation operator. 

Figure 1 qualitatively demonstrates why high order ABCs are necessary. A grid 
refinement analysis would fail to demonstrate fourth order accuracy since the plots 
from several grids overlap when .t ∈ (4, 5). Increasing the order of the NRBC clearly 
improves the absorption since the gap between dash and dashed-dotted (or dashed-
dotted and dotted) plots increases over the interval when .t ∈ (4, 5). However, the 
order isn’t high enough to eliminate the reflection error on each and every grid.

To perform a full-fledged grid refinement analysis we run our simulations with 
NRBC(6). Table 2 shows fourth order convergence for all test problems defined 
in Table 1. Recall that, there are two sources of error. The first source of error is 
the reflection error due to replacing (1) with (2), which decreases as the order of 
NRBC. (p) increases. The second source of error is the discretization error from the 
FOCS which decreases as the grid is refined. An ABC of a sufficiently high order 
guarantees the reflection errors are so much smaller than the discretization error 
that refining the grid effectively produces fourth order convergence. There exists a 
sufficiently fine grid where refining the grid no longer improves the overall error as 
seen Fig. 1. Fortunately, a high order ABC decreases the “floor” of this threshold 
value.

Table 1 Components of the Test solution and source term defined in Appendix 2 

Name .α .R0 m .x0 .t0 .S(t) . c2

T1 .(0, 0, 0) 1.5 7 .(0, 0, 0) 3.0 .5(1 −
12t2) exp (−6t2)

1 

T2 .(0, 0, 0) 1.0 7 .(15/100, 15/100, 15/100) 4.0 .sin (8t) exp (−6t2) 1 

T3 .(1, 1, 0) 0.75 12 .(0, 0, 1/4) 0.2 .
(
sin11 (πt/5) +
1√
3
sin11 (πt/5

√
2)

)
χ(0,∞)

1 

T4 .(0, 0, 0) 1.5 7 .(0, 0, 0) 3.0 .5(1 −
12t2) exp (−6t2)

. 4/5 + exp (−20‖x‖22)/5

T5 .(0, 0, 0) 1.0 7 .(15/100, 15/100, 15/100) 4.0 .sin (8t) exp (−6t2) . 4/5 + exp (−20‖x‖22)/5
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Fig. 1 Error history for T3 for low order NRBC with respect to the infinity norm

Table 2 Error (.∞-norm on . M+) when using NRBC(6), .τ = 9h
√
5/8/10, and . T = 10.0

CPUTIME (s) Avg. # multigrid iterations 

h Error Rate get Q0,Q1 Time marching Gh f̃ n+1 
R qn+1 

I PN+un+1 
γ 

T1 4/33 9.55e-01 – 10.1 56.7 4.28 3.96 3.96 
4/65 3.75e-02 4.67 138.7 916.2 4.09 3.71 3.66 
4/129 2.24e-03 4.07 1328.7 12984.4 3.69 3.41 3.37 
4/257 1.37e-04 4.03 10524.03 195352.92 3.41 3.20 3.11 

T2 4/33 7.92e-01 – 9.9 25.1 3.79 3.53 3.52 
4/65 5.10e-02 3.96 135.0 393.9 3.73 3.38 3.25 
4/129 2.73e-03 4.22 1343.9 5720.4 3.38 3.13 3.06 
4/257 1.55e-04 4.05 10572.62 79376.43 3.18 3.02 2.88 

T3 4/33 9.33e-01 – 10.1 23.0 4.64 4.36 4.39 
4/65 7.34e-02 3.67 140.1 392.1 4.64 4.31 4.32 
4/129 4.61e-03 3.99 1346.2 5577.1 4.64 4.29 4.29 
4/257 2.84e-04 4.02 10514.64 80684.77 4.63 4.29 4.28 

T4 4/33 1.85e+01 – 10.8 26.78 4.96 4.49 4.35 
4/65 7.09e-02 4.71 165.37 431.53 4.54 4.14 4.03 
4/129 3.84e-03 4.21 1571.36 6266.19 4.40 3.97 3.80 
4/257 2.31e-04 4.06 11931.39 90038.02 4.02 3.73 3.59 

T5 4/33 1.10e+00 – 10.78 17.28 4.13 3.98 3.73 
4/65 1.06e-01 3.38 161.66 260.71 4.02 3.71 3.55 
4/129 4.90e-03 4.43 1454.40 3439.12 3.95 3.50 3.37 
4/257 2.87e-04 4.09 11821.86 49433.50 3.60 3.36 3.22
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5 Concluding Remarks and Future Work 

We derived a high order scheme for (1) using a combination of the .θ-scheme, 
a compact finite difference scheme in space, multigrid, the MDP, and a high 
order ABC. Our numerical examples demonstrate that if the order of the ABC is 
sufficiently high, refining the grid effectively produces fourth order accuracy. 

A perfectly matched layer (PML) is another approach to truncating unbounded 
problems. A PML is a layer surrounding the domain which rapidly attenuates any 
incoming waves. Modern PMLs are derived by transforming the governing equation 
in time to the frequency space, using a complex coordinate transformation, per-
forming some algebraic manipulation, and transforming back to the time space. The 
PML modified governing equation resembles the original governing equation with 
some additional parameters and some auxiliary equations supported in the PML. 
Discretizing PMLs with high order accuracy while maintaining long term stability 
is challenging. Instead, we derived a FOCS for a Cartesian sponge layer [8], which 
behaves similarly to a PML without the additional auxiliary equations, but offers 
less effective absorption. We were able to demonstrate fourth order convergence 
provided the sponge layer was sufficiently thick. Otherwise the convergence rate 
would stall. This mirrors the results shown in Sect. 4. 

In the future, we will solve the three dimensional wave scattering problem about 
a spherical body adapting the current high order MDP scheme as a foundation. We 
will close the unbounded problem with NRBC.(p) or the newly developed sponge 
layer [8], construct an auxiliary problem which contains the scattering region and 
the above closure, then define a similar BEP to solve the scattering problem. 

Appendix 1: Extension Operator 

Consider the pair .
(
xh, x̃h

) ∈ (γ, �) where . ̃xh is the orthogonal projection of . xh onto 
. �. By Taylor’s Theorem 

.Ex(ξn+1) =
(
un+1 + �∂ru

n+1 + ∑4
j=2

�j

j ! ∂
j
r un+1

)
|x̃h

+ O(�5) (15) 

where .� = |xh − x̃h| if .xh /∈ � or .� = −|xh − x̃h| if .xh ∈ �. We choose a fifth order 
extension operator even though we only desire fourth order accuracy. According 
to Reznik’s Theorem [16, 17], a sixth order extension operator is sufficient for 
maintaining fourth order accuracy for a second order PDE discretized with fourth 
order accuracy. However, Reznik’s Theorem isn’t always necessary. For example, 
[3] uses a fourth order MDP scheme for the 2D acoustic wave equation using a 
fourth order extension operator. Dirichlet boundary conditions maintained fourth 
order accuracy, but Neumann boundary conditions dropped to third order accuracy. 
Thus, we opted for a fifth order accurate extension operator. Differentiating the 
acoustic wave equation (1) in spherical coordinates (i.e. .�u = ∂2r u+ 2

r
∂ru+�θ,ϕu/r2)



464 F. F. Smith et al.

yields the high order derivatives: 

.∂2r u = − ((2/R)∂ru + �θ,ϕu/R2) + (1/c2∞)∂2t u. (16a) 

∂3 r u = ∂2 t ∂ru/c2∞ − 2∂2 t u/(c2∞R) + (6−�θ,ϕ)∂ru/R2 + 4�θ,ϕu/R3. (16b) 

∂4 r u = (8−�θ,ϕ)∂2 t u/(c2∞R2) − 2∂2 t ∂ru/(c2∞R) + ∂2 t ∂
2 
r u/c2∞ + (�2 

θ,ϕ−18�θ,ϕ)u/R4 

+(8�θ,ϕ−24)∂ru/R3 (16c) 

since the source term is zero on . � and the speed .c(x) = c∞ on . �. Replacing the 
time derivatives of (16) with the one sided difference scheme in time . ∂i

r∂
2
t un+1 =

dn+1
i ∂i

ru
n+1 + ∑ni

j=0 d
n−j
i ∂i

ru
n−j + O(τni ), which preserves fifth order accuracy 

since .τ = O(�), and substituting the expressions into (15) leads to 

. Ex(ξn+1) = [
1 + �2

(
d
n+1
0 /c2∞−�θ,ϕ/R2

)
/2 + �3

(
−2dn+1

0 /(c2∞R)+4�θ,ϕ/R3
)
/6 + �4(dn+1

0 dn+1
2 /c4∞

+(�2
θ,ϕ−18�θ,ϕ)/R4 + (8dn+1

0 −(dn+1
0 +dn+1

2 )�θ,ϕ)/(c2∞R2)
)
/24

]
un+1 + [

� − �2/R

+�3
(

(6−�θ,ϕ )/R2+d
n+1
1 /c2∞

)
/6 − �4

(
2(dn+1

2 +d
n+1
1 )/(c2∞R)+(24−8�θ,ϕ )/R3

)
/24

]
∂ru

n+1 + Exn+1
I (17) 

where the inhomogeneous term is given by 

. Exn+1
I = [

�2/(2c2∞) − �3/(3c2∞R) + �4
(

(8−�θ,ϕ)/(c2∞R2)+d
n+1
2 /c4∞

)
/24

] n0∑

j=0

d
n−j

0 un−j

+[
�3/(6c2∞) − �4/(12c2∞R)

] n1∑

j=0

d
n−j

1 ∂ru
n−j + (�4/(24c2∞))

n2∑

j=0

d
n−j

2 ∂2r un−j . (18) 

Finally, we introduce the spectral form of the trace . ξn+1
� = (un+1|�, ∂ru

n+1|�)

using spherical harmonics as our basis functions. The spherical harmonics are 
eigenfunctions of the Laplace-Beltrami operator, i.e., . �θ,ϕYm

l (θ, ϕ) = −l(l +
1)Ym

l (θ, ϕ) on the unit sphere . S2 [2, Section 3.3] and form an orthonormal basis 
on the sphere of radius R centered at the origin with respect to the weighted inner 
product [2, eq. (4.6)]: 

.〈v,w〉 =
∫ 2π

0

∫ π

0
v(R, θ, ϕ)w(R, θ, ϕ)∗ sin(θ)dθdϕ (19) 

The derivatives are given by 

.∂k
r u ≈

L∑

l=0

l∑

m=−l

〈
∂k
r u, Ym

l

〉
Ym

l (θ, ϕ), on �, k = 0, 1, . . . (20)
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and then the extension operator (17) becomes 

.un+1
γ = Ex(ξn+1) = A0c

n+1
0 + A1c

n+1
1 + Exn+1

I (21) 

The matrices are given by 

. Ai = [
α

(i)
0,0Y

0
0 α

(i)
1,−1Y

−1
1 α

(i)
1,0Y

0
1 α

(i)
1,1Y

1
1 . . . α

(i)
L,LYL

L

]
, i ∈ {0, 1}

where the coefficients are 

. α
(0)
lm = 1 + �2

(
d
n+1
0 /c2∞+l(l+1)/R2

)
/2 − �3

(
2dn+1
0 /(c2∞R)+4l(l+1)/R3

)
/6

+ �4
(

l(l+1)(l(l+1)+18)/R4+d
n+1
0 d

n+1
2 /c4∞+(8dn+1

0 +(d
n+1
0 +d

n+1
2 )l(l+1))/(c2∞R2)

)
/24

α
(1)
lm = � − �2/R + �3

(
(6+l(l+1))/R2+d

n+1
1 /c2∞

)
/6 − �4

(
2(dn+1

2 +d
n+1
1 )/(c2∞R)+(8l(l+1)+24)/R3

)
/24

and the Fourier coefficients are 

.cn
i = [〈∂i

ru
n, Y 0

0 〉 〈∂i
ru

n, Y−1
1 〉 . . . 〈∂i

ru
n, YL

L 〉]T , i ∈ {0, 1, 2} (22) 

Substituting the expansions (20) into (18) produces the spectral from of .Exn+1
I . To  

compute the spherical harmonics numerically, see [12]. Given .g ∈ C(S), the Fourier 
coefficients .〈g, Ym

l 〉 for .l = 0, 1, . . . , L and .m = −l, . . . , l can be computed fast 
using the spherical harmonic transform described in [20]. 

Appendix 2: Generating Test Solutions 

The function 

.u(x, t) = S(t−t0−r/c)/(4πr) with r = ‖x − x0‖2 (23) 

solves the wave equation (1), with constant speed c, driven by the point source term 
.F(x, t) = δx0(x)S(t). We construct a family of smooth test solutions similar to (23) 
employing the same strategy as [13, Section 8.2]. Define the test solution 

.uTest(x, t) = Dα
(
φm(r/R0)S(t−t0−r/c)/(4πr)

)
(24) 

where .Dα = ∂ |α|/∂xα1∂yα2∂zα3 , and the smooth step function is defined as follows 

.φm(r) =
{

rm+1 ∑m
k=0

(
m+k
m

)(2m+1
m−k

)
(−r)k if 0 ≤ r < 1

1 if r ≥ 1
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Since .φm(r/R0)/r = O(rm) as .r ↓ 0, (24) vanishes at . x0 provided .m > |α|. By  
construction, (24) equals (23) on the complement of the sphere of radius . R0 centered 
at . x0 when .|α| = 0, and satisfies the acoustic wave equation (1) where the source 
term is given by 

. F Test(x, t) � Dα
(
cφ′

m(r/R0)S
′(t−t0−r/c)/(2πR0r) − c2φ′′

m(r/R0)S(t−t0−r/c)/(4πR2
0r)

)

(25) 

The source term (25) is compactly supported in space in the ball of radius . R0
centered at . x0. The translation . t0 is chosen sufficiently large so that the initial data 
are zero (up to machine precision) assuming that S is a smooth rapidly decaying 
function or compactly supported. 

To generate a family of test solutions with variable speed, consider a function 
of the form .φm(r/R0)S(t−t0−r/c(x))/(4πr), then follow the same procedure as outlined 
above. The resulting source term will be supported on the union of . ϒ and the sphere 
of radius . R0 centered at . x0. 
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